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Abstract

We present an alternating direction method of multipliers (ADMM) for a generic overlapping
group lasso problem, where the groups can be overlapping in an arbitrary way. Meanwhile, we
prove the lower bounds and upper bounds for both the ℓ1 sparse group lasso problem and the ℓ0
sparse group lasso problem. Also, we propose the algorithms for computing these bounds.

1 Generic ℓ0 sparse overlapping group lasso

The generic ℓ0 sparse overlapping group lasso problem is defined as

min
x∈Rn

{
F (x) :=

1

2s
∥x− v∥2 + λ0∥x∥0+λ1

m∑
i=1

∥xGi∥2

}
(1)

where m denotes the number of groups, and Gi ⊆ {1, 2, . . . , n} contains the feature indices of the
i-th group. Here s is the step size employed to get v based on x. Note that

⋂
i={1,...,m}Gi ̸= ∅.

Now consider the problem,

minimizexGi
∈Rni ,z∈Rn

1
2s

∥z − v∥2 + λ0∥z∥0+λ1

∑m
i=1∥xGi∥2

subject to xGi − zi = 0, i = 1, 2, . . . ,m
(2)

where zi ∈ Rni is defined by (zi)j = zG(i,j) = zg. Here, G(i, j) = g denotes the global
index (location) of the j-th element in the set (group) Gi. Hence, z is a linear function of
zi, i ∈ {1, . . . ,m}.

The augmented Lagrangian for (2) is

Lρ(xGi , z, yGi) =

m∑
i=1

[
λ1∥xGi∥2+y

T
Gi

(xGi − zi) +
ρ

2
∥xGi − zi∥22

]
+

1

2s
∥z − v∥2 + λ0∥z∥0. (3)

xk+1
Gi

:= argmin
xGi

(
λ1∥xGi∥2+x

T
Gi
ykGi

+
ρ

2
∥xGi − zk+1

i ∥22
)
, i = 1, 2, . . . ,m (4)

zk+1 := argmin
z

(
1

2s
∥z − v∥22 + λ0∥z∥0+

m∑
i=1

(ρ
2
∥xk+1

Gi
− zi∥22−zTi ykGi

))
(5)

yk+1
Gi

:= ykGi
+ ρ(xk+1

Gi
− zk+1

i ) (6)

where xGi and z are primal variables, and yGi are dual variables. The x-update is actually a
group lasso problem and can be solved with the proximal operator of group lasso as follows.

xk+1
Gi

= argmin
xGi

(
λ1∥xGi∥2+x

T
Gi
ykGi

+
ρ

2
∥xGi − zk+1

i ∥22
)
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= argmin
xGi

(
1

2
∥xGi − zk+1

i ∥22+xTGi

ykGi

ρ
+
λ1

ρ
∥xGi∥2

)

= argmin
xGi

(
1

2
∥xGi − (zk+1

i −
ykGi

ρ
)∥22+

λ1

ρ
∥xGi∥2

)

= Sλ1/ρ(z
k+1
i −

ykGi

ρ
), i = 1, 2, . . . ,m

where Sλ(·) is a soft-thresholding operator defined as

Sλ(a) = (∥a∥2−λ)+
a

∥a∥2
.

Now we derive the solution to the z-update.

zk+1 = argmin
z

(
1

2s
∥z − v∥22 + λ0∥z∥0 +

m∑
i=1

(ρ
2
∥xk+1

Gi
− zi∥22 − zTi y

k
Gi

))

= argmin
z

n∑
g=1

 1

2s
(zg−vg)2+λ0∥zg∥0+

∑
G(i,j)=g

(ρ
2
(zi)

2
j −(yki )j(zi)j−ρ(xk+1

i )j(zi)j
)

= argmin
z

n∑
g=1

 1

2s
(zg − vg)

2 + λ0∥zg∥0 +
kgρ

2
z2g − zg

∑
G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

= argmin
z

n∑
g=1

 1

2s
z2g − 1

s
vgzg +

kgρ

2
z2g − zg

∑
G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)
+ λ0∥zg∥0


= argmin

z

n∑
g=1

(
1

2s
+
kgρ

2
)z2g − vg

s
zg − zg

∑
G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)
+ λ0∥zg∥0


= argmin

z

n∑
g=1

(
1

2s
+
kgρ

2
)z2g − zg

vg
s

+
∑

G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)+ λ0∥zg∥0


= argmin

z

n∑
g=1

(
1

2
z2g − zg

vg/s+
∑

G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

1/s+ kgρ
+

λ0

1/s+ kgρ
∥zg∥0

)

equivalently,

zk+1
g = argmin

zg

(
1

2
z2g − zg

vg/s+
∑

G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

1/s+ kgρ
+

λ0

1/s+ kgρ
∥zg∥0

)

= argmin
zg

1

2

(
zg −

vg/s+
∑

G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

1/s+ kgρ

)2

+
λ0

1/s+ kgρ
∥zg∥0


= H√

2λ0/(1/s+kgρ)

(
vg/s+

∑
G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

1/s+ kgρ

)
, ∀g ∈ {1, 2, . . . , n}

where Hλ(·) is a hard-thresholding operator defined as follows.

Hλ(u) =

{
u, if |u|> λ

0, otherwise.

Note that when u is a vector, Hλ(·) is an element-wise hard-thresholding operator.
Thus, we obtain the final update formulas for x, z and y as follows.

xk+1
Gi

= Sλ1/ρ(z
k+1
i −

ykGi

ρ
), ∀i ∈ {1, 2, . . . ,m}
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zk+1
g = H√

2λ0/(1/s+kgρ)

(
vg/s+

∑
G(i,j)=g

(
(yki )j + ρ(xk+1

i )j
)

1/s+ kgρ

)
, ∀g ∈ {1, 2, . . . , n}

yk+1
Gi

= ykGi
+ ρ(xk+1

Gi
− zk+1

i ), ∀i ∈ {1, 2, . . . ,m}

1.1 The matrix form of the ℓ0 sparse overlapping group lasso

Define x̃ = [xTG1
, xTG2

, . . . , xTGm
]T ∈ Rñ and z̃ = [zTG1

, zTG2
, . . . , zTGm

]T ∈ Rñ where ñ =
∑m

i=1 ni.
Then z̃ can be represented as

z̃ = Gz

where each row of G has only one entry being 1 and other entries being 0. The corresponding
definition of z-update becomes

zk+1 = argmin
z

(
1

2s
∥z − v∥22 + λ0∥z∥0 +

ρ

2
∥x̃k −Gz∥22 − (ỹk)TGz

)
= argmin

z

(
1

2

(
zT z

s
+ ρzTGTGz

)
−
(
vT z

s
+ (ρx̃k)TGz + (ỹk)TGz

)
+ λ0∥z∥0

)
= argmin

z

(
1

2
zT
(
I

s
+ ρGTG

)
z −

(
vT z

s
+ (ρx̃k)TGz + (ỹk)TGz

)
+ λ0∥z∥0

)
= argmin

z

(
1

2
zT
(
I

s
+ ρGTG

)
z −

(v
s
+GT (ρx̃k + ỹk)

)T
z + λ0∥z∥0

)
where ỹ = [yTG1

, yTG2
, . . . , yTGm

]T ∈ Rñ. We observe that GTG is a diagonal matrix of which the
g-th diagonal entry corresponds to the number of groups that the global variable zg involves.
Since GTG is positive semidefinite and s, ρ > 0, I/s + ρGTG is definitely a positive definite
matrix. Let I/s+ ρGTG = diag(c1, . . . , cn) and C = diag(

√
c1, . . . ,

√
cn) where cg = 1/s+ kgρ.

Thus, CTC = I/s+ ρGTG. With this setting, we have

zk+1 = argmin
z

(
1

2
zTCTCz −

(v
s
+GT (ρx̃k + ỹk)

)T
C−1Cz + λ0∥z∥0

)
= argmin

z

(
1

2
∥Cz − C−1

(v
s
+GT (ρx̃k + ỹk)

)
∥22 + λ0∥z∥0

)
.

Since C is diagonal, the z-update reduces to n subproblems as follows.

zk+1
g = argmin

zg

(
1

2

(
√
cgzg − 1

√
cg

·
[v
s
+GT (ρx̃k + ỹk)

]
g

)2

+ λ0∥zg∥0

)

= argmin
zg

(
1

2

(
zg − 1

cg
·
[v
s
+GT (ρx̃k + ỹk)

]
g

)2

+
λ0

cg
∥zg∥0

)

= H√
2λ0/cg

(
1

cg
·
[v
s
+GT (ρx̃k + ỹk)

]
g

)
which is exactly the same as the previous counterpart result.

1.2 Solving the dual problem via ADMM

The dual of (2) is,

min
xGi

,z

1

2s
∥z − v∥2 + λ0∥z∥0+λ1

m∑
i=1

∥xGi∥2+
m∑
i=1

yTGi
(xGi − zi)

=min
z

(
1

2s
∥z − v∥2 + λ0∥z∥0−

m∑
i=1

yTGi
zi

)
+min

xGi

(
m∑
i=1

(λ1∥xGi∥2+y
T
Gi
xGi)

)

=min
z

(
1

2s
(zT z − 2vT z + vT v)− ỹT z̃ + λ0∥z∥0

)
+

m∑
i=1

min
xGi

(
λ1∥xGi∥2+y

T
Gi
xGi

)
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=min
z

(
1

2s
(zT z − 2vT z − 2sỹTGz + vT v) + λ0∥z∥0

)
+

m∑
i=1

min
xGi

(
λ1∥xGi∥2+y

T
Gi
xGi

)
=min

z

(
1

2s
(zT z − 2(v + sGT ỹ)T z + vT v) + λ0∥z∥0

)
+

m∑
i=1

min
xGi

(
λ1∥xGi∥2+y

T
Gi
xGi

)
=min

z

(
1

2s

(
∥z − (v + sGT ỹ)∥2+vT v − (v + sGT ỹ)T (v + sGT ỹ)

)
+ λ0∥z∥0

)
+

m∑
i=1

min
xGi

(
λ1∥xGi∥2+y

T
Gi
xGi

)
=min

z

(
1

2s
∥z − (v + sGT ỹ)∥2+λ0∥z∥0

)
+

m∑
i=1

min
xGi

(
λ1∥xGi∥2+y

T
Gi
xGi

)
+

1

2s
(∥v∥2−∥v + sGT ỹ∥2)

=min
z

(
1

2s
∥z − (v + sGT ỹ)∥2+λ0∥z∥0

)
− 1

2s
∥v + sGT ỹ∥2+ 1

2s
∥v∥2, ∥yGi∥2≤ λ1, i = 1, . . . ,m

After dropping the constant term, the dual problem of (2) becomes

max
ỹ∈Ω

min
z∈Rn

{
ψ(z, ỹ) =

1

2s
∥z − (v + sGT ỹ)∥2+λ0∥z∥0−

1

2s
∥v + sGT ỹ∥2

}
. (7)

where Ω is defined as follows:

Ω = {ỹ ∈ Rñ | ∥yGi∥2≤ λ1, i = 1, 2, . . . ,m}.

For a given ỹk−1, the optimal z minimizing ψ(z, ỹk−1) in (7) is given by

zk = H√
2sλ0

(v + sGT ỹk−1). (8)

Plugging (8) into (7), we get the following maximization problem with respect to ỹ:

max
ỹ∈Ω

{ω(ỹ) = −ψ(zk, ỹ)} (9)

which is equivalent to the following problem

max
ỹ∈Ω

ỹTG(zk − 2v) (10)

which can be solved analytically as follows.

ỹGi =
[G(zk − 2v)]i

∥[G(zk − 2v)]i∥2
(11)

where [G(zk − 2v)]i ∈ Rni denotes the counterpart corresponding to the group Gi. Finally, our
methodology for minimizing the problem defined in (2) is to alternate update z and ỹ.

1.3 The bounds on the optimal value of the overlapping group
lasso

Before presenting the results regarding the bounds of the optimal value of the ℓ0 sparse group
lasso, we introduce three lemmas which lead to the upcoming theorem. For completeness, we
describe a well known result as the following lemma, namely the quadratic mean (QM) is no less
than the arithmetic mean (AM).

Lemma 1.1 (QM≥AM). Given x ∈ Rn, the following√∑n
i=1 x

2
i

n
≥
∑n

i=1|xi|
n

holds. The equality holds if and only if x1 = x2 = . . . = xn.
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Proof. According to Cauchy-Schwartz inequality which says that given two vectors x,y ∈ Rn,
∥x∥2∥y∥2≥ |xTy|, we have

√∑n
i=1 x

2
i

n
=

√√√√ n∑
i=1

(
|xi|√
n
)2 ·

=1︷ ︸︸ ︷√√√√ n∑
i=1

(
1√
n
)2

≥
∑n

i=1|xi|
n

≥
∑n

i=1 xi

n
,

where the equalities in the first and second inequalities hold if and only if |x1|= |x2|= · · · = |xn|
and x1 = x2 = · · · = xn, respectively. This completes the proof.

1.3.1 Lower bound on the overlapping group lasso

Lemma 1.2 (lower bound on the overlapping group lasso). Given x ∈ Rn, w ∈ Rm
++ and

some groups Gi ⊆ {1, 2, . . . , n}, i = 1, 2, . . . ,m, let IGi(j) denote an indicator function whose
value is 1 if j ∈ Gi and 0 otherwise. Then, the following

∥Lx∥1≤
m∑
i=1

wi∥xGi∥2

holds, where L = diag(l) with elements lj =
∑m

i=1
wi√
|Gi|

⊙ I(j ∈ Gi), j = 1, . . . , n and I(e) = 1

if e is true, 0 otherwise. The equality holds if and only if for every Gi, the entries of xGi are
identical.

Proof.

m∑
i=1

wi∥xGi∥2 = w1∥xG1∥2+ · · ·+ wm∥xGm∥2

=

m∑
i=1

wi

√√√√|Gi|∑
j=1

|xj |2 =

m∑
i=1

wi

√
|Gi| ·

√∑|Gi|
j=1 |xj |2

|Gi|

≥
m∑
i=1

wi

√
|Gi| ·

∑|Gi|
j=1 |xj |
|Gi|

=

m∑
i=1

wi√
|Gi|

·
|Gi|∑
j=1

|xj |

=

n∑
j=1

m∑
i=1

(
wi√
|Gi|

⊙ I(j ∈ Gi)

)
|xj |

where I(e) is an indicator function defined as follows:{
1, if e is true

0, otherwise.

The second line follows from the definition of p-norm (p ≥ 1) and the third line from Lemma 1.1.
The equality holds if and only if the entries belonging to the same group are identical for all the
groups. Let L = diag(l), the diagonal matrix with elements lj =

∑m
i=1

wi√
|Gi|

⊙ I(j ∈ Gi), j =

1, . . . , n, so we have
m∑
i=1

wi∥xGi∥2≥ ∥Lx∥1 (12)
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1.3.2 Computing the lower bound on the overlapping group lasso

Since we have found the lower bound on the overlapping group lasso operator, the overlapping
group lasso problem reduces to solving a weighted lasso problem as follows.

min
x∈Rn

{
fGL lb(x) :=

1

2
∥x− v∥22+λ∥Lx∥1

}
(13)

Since fGL lb(x) is separable w.r.t x, this is equivalent to solving the following subproblem for
each i.

min
xi∈R

{
fGL lb(xi) :=

1

2
(xi − vi)

2 + λli|xi|
}

If xi > 0, then fGL lb(xi) =
1
2
(xi − vi)

2 + λlixi. By the first-order optimality condition,

∇fGL lb(xi) = xi − vi + λli = 0 ⇐⇒ xi = vi − λli > 0 ⇐⇒ vi > λli.

For xi < 0, we have the following similar argument.

∇fGL lb(xi) = xi − vi − λli = 0 ⇐⇒ xi = vi + λli < 0 ⇐⇒ vi < −λli.

In the case of xi = 0, let ν be the subdifferential of |xi| at xi = 0, then ν ∈ [−1, 1]. Thus,

0 ∈ ∂fGL lb(0) = 0− vi + λliν ⇐⇒ vi
λli

∈ ν ⇐⇒ |vi|≤ λli

where the RHS follows from the fact that |ν|≤ 1. To sum up, the solution to the subproblem is

xi =


vi − λli, if vi > λli

0, if |vi|≤ λli

vi + λli, if vi < −λli.
i = 1, 2, . . . , n. (14)

1.3.3 Upper bound on the overlapping group lasso

Lemma 1.3 (upper bound on the overlapping group lasso). Given x ∈ Rn, w ∈ Rm
++

and some groups Gi ⊆ {1, 2, . . . , n}, i = 1, . . . ,m, denote the total number of appearances in all
groups by kj , j = 1, . . . , n, and let U = diag(

√
k1∥w∥2, . . . ,

√
kn∥w∥2). Then, the following

m∑
i=1

wi∥xGi∥2≤ ∥Ux∥2

holds. The equality holds if and only if
∥xG1

∥2
w1

= . . . =
∥xGm∥2

wm
.

Proof.
m∑
i=1

wi∥xGi∥2 = w1∥xG1∥2+ · · ·+ wm∥xGm∥2

≤
√
w2

1 + · · ·+ w2
m ·
√

∥xG1∥22+ · · ·+ ∥xGm∥22

=

√√√√ m∑
i=1

w2
i ·

√√√√ n∑
g=1

kgx2g =

√√√√ n∑
g=1

(

m∑
i=1

w2
i )kgx

2
g

where the second line follows from Cauchy-Schwarz inequality and the equality holds if and only

if
∥xG1

∥2
w1

= . . . =
∥xGm∥2

wm
. Let U0 = diag(

√
k1, . . . ,

√
kn) and w = (w1, . . . , wm), then we have

m∑
i=1

wi∥xGi∥2≤ ∥w∥2·
√

xT diag(k1, . . . , kn)x = ∥w∥2·∥U0x∥2 (15)

By the positive homogeneity of ∥·∥2, ∥w∥2 can be absorbed into U0 as follows.

m∑
i=1

wi∥xGi∥2≤ ∥Ux∥2 (16)

where U = diag(u) and u = (
√
k1∥w∥2, . . . ,

√
kn∥w∥2).
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1.3.4 Computing the upper bound on the overlapping group lasso

After replacing the overlapping group lasso operator with ∥Ux∥2, the upper bound on the
overlapping group lasso is equal to the optimal value of the following problem.

min
x∈Rn

{
fGL ub(x) :=

1

2
∥x− v∥22+λ∥Ux∥2

}
(17)

Let s be an element of the subdifferential of ∥·∥2 at 0. Then if x = 0, solving the following zero
subgradient equation gives

0− v + λUT s = 0 ⇐⇒ v = λUT s ⇐⇒ U−1v = λs ⇐⇒ ∥U−1v∥2≤ λ

Thus, we obtain that if ∥U−1v∥2≤ λ, the optimal minimizer is 0.
When x ̸= 0, we have

∇fGL ub(x) = x− v +
λUTUx

∥Ux∥2
= 0 ⇐⇒

(
I+

λUTU

∥Ux∥2

)
x = v ⇐⇒ x =

(
I+

λUTU

∥Ux∥2

)−1

v.

Thus, we reformulate the optimality condition as x = T (x) for the case of x ̸= 0, where T is the
operator

T (x) :=

(
I+

λUTU

∥Ux∥2

)−1

v. (18)

Then we have the following result concerning T (x).

Theorem 1.4. T (x) has a unique fixed point x∗. In other words, the corresponding fixed point
iteration

x(k+1) := T (x(k))

converges to a unique x∗.

Proof. Since U is a diagonal matrix, UTU = U2. Let G = I + λUTU
∥Ux∥2

, then G is a diagonal

matrix with elements Gii = 1 +
λu2

i
∥Ux∥2

, i = 1, 2, . . . , n. Thus, G−1 is also a diagonal matrix with
elements

0 < ρi =
∥Ux∥2

∥Ux∥2+λu2
i

= 1− λu2
i

∥Ux∥2+λu2
i

< 1. (19)

Then we have xi = ρivi for each i. Let ρ be a vector whose i-th entry is ρi with ρi ∈ (0, 1). So,
x = ρ⊙ v where ⊙ is the element-wise Hadamard product, which indicates x is a contracted

version of v. Let ρi(y) = 1− λu2
i

y+λu2
i
with y = ∥Ux∥2> 0. Then

ρ′i(y) =
λu2

i

(y + λu2
i )

2
> 0.

which shows ρi is a strictly increasing function of y, i.e., ∥Ux∥2. By (19), a smaller (bigger) ∥Ux∥2
gives a smaller (bigger) ρi for each i which in turn generates smaller (bigger) xi via xi = ρivi for
each i, and then small (greater) ∥Ux∥2. Thanks to this interplay between ∥Ux∥2 and ρ, the
sequences regarding ∥Ux∥2 and ρ generated by performing T (x) are monotone. For example, let
us start the iteration with x(0) ̸= 0. Then x(1) = ρ(0) ⊙ v. Suppose ∥Ux(0)∥2> ∥Ux(1)∥2, then

ρ
(0)
i = 1− λu2

i

∥Ux(0)∥2+λu2
i

> 1− λu2
i

∥Ux(1)∥2+λu2
i

= ρ
(1)
i , i = 1, 2, . . . , n. (20)

Thus,
x
(2)
i = ρ

(1)
i vi < ρ

(0)
i vi = x

(1)
i , i = 1, 2, . . . , n.

Since U is a diagonal matrix with nonnegative diagonal entries ui, we have

∥Ux(2)∥2=

√√√√ n∑
i=1

(uix
(2)
i )2 <

√√√√ n∑
i=1

(uix
(1)
i )2 = ∥Ux(1)∥2
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So, ∥Ux(0)∥2> ∥Ux(1)∥2> ∥Ux(2)∥2. Substituting ∥Ux(1)∥2 and ∥Ux(2)∥2 into (20), we get

ρ
(1)
i > ρ

(2)
i > ρ

(3)
i . By repeating this, the contraction interplay between ∥Ux(k)∥2 and ρi(k) lead

to that both {∥Ux(k)∥2} and {ρ(k)i }i=1,2,...,n are decreasing sequences. Also, {∥Ux(k)∥2} and

{ρ(k)i } are both bounded below by 0. Since monotone bounded sequences converge, {∥Ux(k)∥2}
and {ρ(k)i } are convergent. Assuming limk→∞∥Ux(k)∥2= c and limk→∞ ρ

(k)
i = ρi yield

xi =
cvi

c+ λu2
i

, i = 1, 2, . . . , n.

Multiplying both sides by ui, squaring both sides and summing over i gives

c2 =

n∑
i=1

(uixi)
2 =

n∑
i=1

(cuivi)
2

(c+ λu2
i )

2
=⇒ 1 =

n∑
i=1

(uivi)
2

(c+ λu2
i )

2
(21)

The solution to the equation on the RHS of (21) is c which is unique since c = ∥Ux∗∥2> 0.
We can show this by contradiction. Specifically, suppose c′ > c is the solution to (21). Since
λ, ui > 0, i = 1, 2, . . . , n, then we get

(uivi)
2

(c′ + λu2
i )

2
<

(uivi)
2

(c+ λu2
i )

2
=⇒

n∑
i=1

(uivi)
2

(c′ + λu2
i )

2
<

n∑
i=1

(uivi)
2

(c+ λu2
i )

2
= 1

which contradicts the supposition c′ > c is the solution to (21), i.e.,
∑n

i=1
(uivi)

2

(c′+λui)2
= 1. Similar

arguments hold for the case when c′ < c. Thus, c, i.e., ∥Ux∗∥2 is unique. Furthermore, ρ is

unique because of ρi = 1− λu2
i

∥Ux∥2+λu2
i
, i = 1, 2, . . . , n.

For the case of ∥Ux(0)∥2< ∥Ux(1)∥2, similar arguments give increasing and bounded sequences

{∥Ux(k)∥2} and {ρ(k)i }. Thus, they are convergent as well. If ∥Ux(0)∥2= ∥Ux(1)∥2, we luckily
hit the fixed point in one step. Finally, x∗ is unique due to x∗ = ρ⊙ v. Therefore, T (x) is a
fixed point operator. This completes our proof.

1.4 The bounds on the optimal value of the ℓ1 sparse overlapping
group lasso

We have found the bounds for the overlapping group lasso operator in the previous section. Now
it is natural to transform the bounds on the optimal value of the ℓ1 sparse overlapping group
lasso into solving two problems.

1.4.1 Lower bound on the optimal value of the ℓ1 sparse overlapping group
lasso

The lower bound can be obtained by solving the following problem.

min
x∈Rn

{
fℓ1 GL lb(x) :=

1

2
∥x− v∥22+λ∥Lx∥1+λ1∥x∥1

}
. (22)

Since L is a diagonal matrix, it can be rewritten as

min
x∈Rn

{
fℓ1 GL lb(x) :=

1

2
∥x− v∥22+∥(λL+ λ1I)x∥1

}
. (23)

which shares the same form as (13) and can be solved in a similar way. For brevity, we present
its solution directly as follows.

xi =


vi − λli, if vi > λli + λ1

0, if |vi|≤ λli + λ1

vi + λli, if vi < −λli − λ1.

i = 1, 2, . . . , n.
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1.4.2 Upper bound on the optimal value of the ℓ1 sparse overlapping group
lasso

The upper bound can be obtained by solving the following problem.

min
x∈Rn

{
fℓ1 GL ub(x) :=

1

2
∥x− v∥22+λ∥Ux∥2+λ1∥x∥1

}
. (24)

Let µ and ν be the subdifferentials of ∥x∥2 and ∥x∥1 at x = 0, where ∥µ∥2≤ 1 and ∥ν∥∞≤ 1.
∆ and Λ are defined as

∆ = {µ ∈ Rn | ∥µ∥2≤ 1}, Λ = {ν ∈ Rn | ∥ν∥∞≤ 1}.

If x = 0, using the first-order optimality condition gives

0 ∈ 0−v+λUTµ+λ1ν ⇐⇒ U−1v ∈ λµ+λ1U
−1ν ⇐⇒ U−1(v−λ1ν) = λµ ⇐⇒ max

ν∈Λ
∥U−1(v−λ1ν)∥2≤ λ

Since U−1 is also a diagonal matrix with positive diagonal entries, the maximum value of
∥U−1(v − λ1ν)∥2 is attained at ν = − sgn(v) ⊙ 1. Here, sgn is an elementwise sign function
whose value is 1 for positive inputs, −1 for negative inputs and 0 otherwise, and 1 is a vector
with all entries being 1. With these settings, we have

max
ν∈Λ

∥U−1(v − λ1ν)∥2= ∥U−1 (v + λ1 sgn(v)⊙ 1) ∥2=

√√√√ n∑
i=1

(
vi + λ1 sgn(vi)

ui

)2

≤ λ

Hence, we get that x = 0 if and only if ∥U−1 (v + λ1 sgn(v)⊙ 1) ∥2≤ λ.
Now we talk about the case of x ̸= 0. By the first-order optimality condition, we have

0 ∈ x− v + λ
UTUx

∥Ux∥2
+ λ1x

′

where x′ denotes the subdifferential of ∥x∥ at x ̸= 0 defined as follows.

x′i =


1, if xi > 0

−1, if xi < 0

ν ∈ [−1, 1], if xi = 0.

If xi = 0, we have

xi = 0 ⇐⇒ 0 ∈ 0− vi + 0 + λ1ν ⇐⇒ vi ∈ λ1ν ⇐⇒ |vi|≤ λ1.

By contradiction, if xi ̸= 0, it is clear to see that the optimal xi shares the common sign with vi,
otherwise it will lead to greater objective values. Thus, we get

x̃+ λ
ŨT Ũx̃

∥Ũx̃∥2
= ṽ − λ1 sgn(ṽ)⊙ 1 ⇐⇒ x̃ = Tℓ1 ub

(
I+ λ

ŨT Ũx̃

∥Ũx̃∥2

)−1

(ṽ − λ1 sgn(ṽ)⊙ 1)

where x̃ represents the reduced x after removing zero entries, and ṽ, Ũ are the corresponding
notations. By Theorem 1.4, Tℓ1 ub(x̃) is a fixed point operator.

1.5 The bounds on the optimal value of the ℓ0 sparse overlapping
group lasso

1.5.1 Lower bound on the optimal value of the ℓ0 sparse overlapping group
lasso

The lower bound can be obtained by solving the following problem.

min
x∈Rn

{
fℓ0 GL lb(x) :=

1

2
∥x− v∥22+λ∥Lx∥1+λ0∥x∥0

}
. (25)
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which is separable and can be divided into subproblems as follows.

min
xi∈R

{
fℓ0 GL lb(xi) :=

1

2
(xi − vi)

2 + λli∥xi∥1+λ0∥xi∥0
}
. (26)

If xi ̸= 0, then (26) can be reduced to solving the following simpler problem.

min
xi∈R

fℓ0 GL lb(xi) =
1

2
(xi − vi)

2 + λli|xi|+λ0

whose solution is given by (14), namely, xi = vi − λli sgn(vi). In this case, if |vi|> λli, the
corresponding objective value is

fℓ0 GL lb(vi − λli sgn(vi)) =
1

2
(λli)

2 + λli|vi − λli sgn(vi)|+λ0,

and if |vi|≤ λli, we are done and definitely xi = 0. However, in the case of |vi|> λli, we still
need to compare 1

2
(λli)

2 + λli|vi − λli sgn(vi)|+λ0 with fℓ0 GL lb(0) =
1
2
v2i due to the existence

of the additional term λ0. If fℓ0 GL lb(0) ≤ fℓ0 GL lb(vi − λli sgn(vi)), the solution is 0 rather
than vi − λli sgn(vi).

1.5.2 Upper bound on the optimal value of the ℓ0 sparse overlapping group
lasso

The upper bound can be obtained by solving the following problem.

min
x∈Rn

{
fℓ0 GL ub(x) :=

1

2
∥x− v∥22+λ∥Ux∥2+λ0∥x∥0

}
. (27)

By the definition of the induced norm of ∥·∥a,b, we have ∥Ux∥2≤ ∥U∥2∥x∥2. When a = b = 2,
∥U∥2 is called the spectral norm and it is equal to the maximum singular value of U, denoted as
σmax(U). Thus, the upper bound can be relaxed as follows.

min
x∈Rn

{
fℓ0 GL ub(x) :=

1

2
∥x− v∥22+λσmax(U)∥x∥2+λ0∥x∥0

}
. (28)

which has a closed-form solution proposed by Shao et al. (2022).
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