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Abstract  

In this paper the laws of quantum dynamics are enunciated based upon statistical 

considerations of a generic quantum system. A new concept called quantropy is introduced 

and related to the Feynman path integral formalism as well as the orthodox Copenhagen 

Interpretation.  

1. Introduction 

There are many consistent interpretations of quantum mechanics [1]. All of them are equivocal 

[2]. However, the standard Copenhagen Interpretation (CI) provided by Bohr et. al. is the most 

popular and has stood the test of time [2]. The postulates of quantum mechanics are standard. 

Then, its just shut up and calculate. There are no proper laws of quantum dynamics as there are in 

Newtonian mechanics. Also, there systematic law describing the transition from classical to 

quantum or vice versa. 

 The Feynman Path Integral (FPI) formalism is a third way to understand much of the 

quantum [3]. The other two being Heisenberg’s matrix method and Schrӧdinger’s wave 

mechanics. The wave mechanics was given a statistical interpretation by Born [4] called the Born 

rule. 

 In this paper, we then do the following:  

a. Enunciate systematically the laws of quantum dynamics by deriving them mathematically 

from a set of statistical postulates. 

b. Relate the paths in the FPI formalism to the semi-classical theory by means of new notions. 

c. Derive a relationship relating quantum dynamical randomness (not to be confused with 

entropy) and the Born probability density. 

The present work takes a completely different route to build the theory of Quantum Mechanics 

for bosons as well as fermions taking thereby definitive steps in the directions of construction of a 

statistical theory of quantum dynamics. 

 Through the canonical theory, one arrives at the Legendre transform 
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𝐿 = ∑ 𝑝𝑖�̇�𝑖𝑖 − 𝐻         (1-a) 

 Or  

 ∑ 𝑝𝑖�̇�𝑖 − 𝐿 = 𝐻𝑖          (1-b) 

where, 𝑝𝑖 is the momentum canonically conjugate to the generalized coordinate 𝑞𝑖; �̇�𝑖 are the 

corresponding generalized velocities. 𝐿 is the Lagrangian functional and 𝐻 is the Hamiltonian which in 

the quantum domain satisfies the Schrӧdinger’s postulate 

�̂�𝜓 = �̂�𝜓           (2) 

with �̂�, the energy operator, and 𝜓, the wave function. 𝐻, the Hamiltonian functional in Classical 

mechanics becomes a linear operator in quantum mechanics. 

The Lagrangian, 𝐿, in (1-a,b) is a measure of  how active a system is. 

The principle of least action 

𝛿 ∫ 𝐿 𝑑𝑡 = 0            (3) 

therefore, measures the laziness of the system. 

2. Some Background 

The first postulate of QM tells us that every quantum system is characterized by physical observables. 

For each such physical observable there exists a linear Hermitian operator which operates on an eigen 

vector and yields an eigenvalue which is one of the outcomes of the measurement. 

Let the ket |𝜓 ⟩ be the eigen vector and 𝑎𝑖 be the eigenvalue for �̂�, the corresponding linear 

Hermitian operator so that for one of the identical quantum measurements, the first postulates translates 

as  

�̂�|𝜓 ⟩ = 𝑎𝑖|𝜓 ⟩           (4) 

The 1-form or bra, ⟨𝑋 |, spans an abstract vector space dual to that spanned by |𝜓 ⟩ so that a physical 

inner product space whose fluents are such as 𝜓(𝑥) and are given by the inner product 

𝜓(𝑥) = ⟨𝑋|𝜓⟩           (5) 

The probability density that the quantum system in the state 𝜓(𝑥) is given by 

𝑃 = 𝜓∗𝜓           (6-a) 

Or 

𝑃 = |𝜓|2           (6-b) 

where, 𝜓∗ is the wave function complex conjugate to 𝜓. The more precise statement of the Born rule may 

be found in [4]. 

3. The Main Thurst 



Consider now the actional  𝑆 = ∫ 𝐿 𝑑𝑡. That the nature is lazy is described by eq(3), viz., 𝛿𝑆 = 0. 

That is, we vary the paths between two fixed points, find 𝑆 for each possible path and choose the path that 

gives the least action. This path is the classical path as given by Newton’s law. This action has the 

dimensions of ℏ. And, Planck’s quantum condition tells us that “action is quantized”.  

Now, action is a function of time. 

𝑑𝑆

𝑑𝑡
= 𝐿           (7) 

𝛿𝑆 = ∑
𝜕𝐿

𝜕�̇�𝑖
𝑖 𝛿𝑞𝑖           (8) 

Clearly, 

𝜕𝑆

𝜕𝑞𝑘
=

𝜕𝐿

𝜕�̇�𝑘
= 𝑝𝑘          (9) 

So that, 𝑆 is a function of the generalized coordinates 𝑞𝑘. 

As such 

�̇� = ∑
𝜕𝑆

𝜕𝑞𝑖
�̇�𝑖 +

𝜕𝑆

𝜕𝑡𝑖            (10) 

Which upon using eqs (7) and (9), becomes 

�̇� = 𝐿 = ∑ 𝑝𝑖�̇�𝑖 +
𝜕𝑆

𝜕𝑡𝑖          (11) 

Comparing with eq(1-a), we have 

𝜕𝑆

𝜕𝑡
= −𝐻           (12) 

We thus see that, 𝑆 is a function of time 𝑡, and  

𝑑𝑆 = ∑ 𝑝𝑖�̇�𝑖 − 𝐻 𝑑𝑡𝑖 = 𝑑𝐴 − 𝐻 𝑑𝑡        (13) 

Where 𝐴 is action ∫ 𝑝 𝑑𝑞. We thus write, 

𝑆 = 𝑆(𝑞𝑘; 𝑡)           (14) 

From eq(13), it is clear that, 𝑑𝑆 is a perfect differential. 

As already mentioned, the alternative quantization procedure for quantizing a classical system is due to 

Feynman and is based on the quantity 𝑆, the other one is the canonical quantization procedure to Dirac. In 

QM, we need an apparatus which is ‘classical’ to measure quantum effects. For such an apparatus, Dirac 

suggested that, the wavefunction should be, 

𝜙𝑎𝑝𝑝𝑎𝑟𝑎𝑡𝑢𝑠~  exp (
𝑖

ℏ
 ∫ 𝐿 𝑑𝑡)        (15) 



Feynman boldly proposed that, even though the classical motion requires 𝛿𝑆 = 0, for calculation of 

quantum amplitude (i.e., the wavefunction), all paths will contribute and, 

𝑆 = 𝑆𝐶𝑙+𝑆1+𝑆2 + 𝑆3 + ⋯         (16) 

Here 𝑆𝐶𝑙  is the classical Euler-Lagrange path, 𝑆1, 𝑆2, … , 𝑆𝑘 , … are the paths near and around classical paths 

where ∫ 𝐿 𝑑𝑡 is evaluated. The Feynman amplitude is then, 

Ψ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × exp (
𝑖

ℏ
 ∑ 𝑆𝑘𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 )       (17) 

In this way, Feynman proposed an alternate formulation of QM. 𝑆 has the dimensions of ℏ. Naturally, the 

phase will violently oscillate unless 𝑆𝑘 is in the ℏ neighborhood of the classical path. Thus the classical 

limit is restored as ℏ → 0. 

 When an apparatus makes a quantum measurement, the system falls into one of the states which 

correspond to one of 𝑆𝑘. Firstly, there are the beables [5] and then there are the observables. We redefine 

beables here as the states that the quantum system is actually in and the measuring apparatus being 

classical, the apparatus knocks the system from a beable to an observable. 

The fundamental ansatz that we start with is that the most important quantity, the quantum mechanical 

probability 𝑃 = |𝜓|2 is defined by 

ln 𝑃 =  ∑ 𝑓(𝑛𝑟)𝑟           (18) 

Now, we fix the following ansatz, 

∑ 𝑛𝑟 = 𝑁𝑟             (19-a) 

and 

∑ 𝑛𝑟𝛾𝑟 = 𝐻𝑟           (19-b) 

Here, 𝛾𝑟 corresponds to the path corresponding to the ℏ − 𝑛𝑏𝑑 action mentioned above. It corresponds to 

the kinetic energy of the quantum system. The subscript 𝑟 corresponds to the 𝑟 − 𝑡ℎ copy of the quantum 

system following one of the Feynman paths. We now fix up Lagrange multipliers as, 

𝛼 + 𝛽𝛾𝑟 =
𝜕𝑓

𝜕𝑛𝑟
          (20) 

Then,  

𝛿 ln 𝑃 =  ∑
𝜕𝑓

𝜕𝑛𝑟
𝛿

𝑟

𝑛𝑟 = ∑(𝛼 + 𝛽𝛾𝑟)𝛿

𝑟

𝑛𝑟 

= 𝛼 ∑ 𝛿𝑛𝑟 +  𝛽 ∑ 𝛾𝑟𝛿𝑛𝑟

𝑟𝑟

   

            (21) 



Since 𝑛𝑟 is fixed by ansatz (19-a), 

∑ 𝛿𝑛𝑟 = 0𝑟            (22) 

From (19-b), 

∑ 𝑛𝑟𝛿𝛾𝑟 + ∑ 𝛾𝑟𝛿𝑛𝑟𝑟𝑟 = 𝛿𝐻         (23) 

The first term in eq(23) corresponds to the quantum system sampling the various paths. This leads to 

some kind of quantal work. Thus, 

∑ 𝑛𝑟𝛿𝛾𝑟 = ∑ ∑ 𝑛𝑟

𝜕𝛾𝑟

𝜕�̇�𝑖
𝛿�̇�𝑖

𝑖𝑟𝑟

 

            (24) 

Which translates to 

𝑝𝑖 = ∑ 𝑛𝑟

𝜕𝛾𝑟

𝜕�̇�𝑖
𝑟

 

            (25) 

The second term in eq(23) is proportional to the amount of activity of the system. This then is the 

negative of the variational Lagrangian 𝛿𝐿 given by 

∑ 𝛾𝑟𝛿𝑛𝑟

𝑟

= −𝛿𝐿 

            (26) 

Therefore, combining eqs (23) to (26), we have 

∑ 𝑝𝑖

𝑖

𝛿�̇�𝑖 − 𝛿𝐿 = 𝛿𝐻 

which translates to eq(1-b). Thus in essence, the Legendre transform is the first law of quantum 

dynamics more precisely that 

1.) the circulation is conserved in phase space. Even more fundamental is the fact that the phase space 

is quantized. The Schrӧdinger equation given by (2) is also an alternative to the first law that the 

Hamiltonian evolves in time according to eq (2). 

On the other hand, 

𝛿 ln 𝑃 = 𝛽 ∑ 𝛾𝑟𝛿𝑛𝑟

𝑟

= −𝛽 𝛿𝐿 

            (27) 



Therefore, 𝛽 𝛿𝐿 is a total differential and 𝛽, the integrating factor of the Lagrangian. The statistical 

theory leads naturally to the second law of quantum dynamics which we enunciate as follows: 

2.) 𝛿𝐿 has an integrating factor namely 

𝛿𝐾 = −
1

𝜏
𝛿𝐿 

            (28) 

where, 𝐾 is a new quantity called the quantropy. It is like entropy in thermodynamics but not the 

same. It corresponds to least activity of the system as can interpreted from (28). This implies that the 

collapse of the wavefunction upon quantum measurement corresponds to least activity of the quantum 

system. Hence, the negative sign. The state of maximum randomness and quantropy are oppositely 

related. 𝜏 is the inverse Euclidean time. It shows that time is something that arises from the average 

property of the collection of the Feynman paths. For dimensional consistency, we insert  

𝛽 =
1

ℏ𝜏
 

            (29) 

So, 

𝛿 ln 𝑃 = − 
1

ℏ𝜏
𝛿𝐿 

or  

𝛿𝐾 = − ℏ 𝛿 ln 𝑃 

or therefore, 

𝐾 = − ℏ ln 𝑃 

            (30) 

Or alternately, 

𝐾 = − ℏ ln|𝜓|2  

            (30’) 

Thus, the quantropy is related to the logarithm of the probability density of the quantum system, thus 

relating the Feynman formalism to the Born rule. From the above analysis, it is apparent that the 

normalization of the wavefunction tends to serve as a law of quantum dynamics. Say, the third law. 

We enunciate a minus first law of quantum dynamics as the law of conservation of information due to 

Susskind [6]. The Heisenberg Uncertainty Principle can be put up as the zeroth law. 



3.)  It is impossible for quantropy to become zero, since the quantum system is bound to be 

somewhere.  

This is the formal statement of the third law of quantum dynamics. The evaluation of quantropy 

corresponds more or less to the R-Process (the Reduction Process) that Penrose speaks of in the 

context of the collapse of the wavefunction upon quantum measurement. 

We pronounce the zeroth law thus, 

In the case of absence of the system, the apparatus making the measurement detects uniform time. 

The Pauli theorem on time figures as the fourth law of quantum dynamics, stated thus, 

       4.) It is impossible to have a linear Hermitian Time operator, if the Hamiltonian is semi-bounded or 

discrete. 

Just as temperature is a concept that holds macroscopically and breaks down at the individual 

molecular/ atomic level, time is also a concept that plays out a similar role in quantum mechanics. 

4. Conclusions 

The concept of quantropy is central in the afore discussion. It corresponds to both the U-Process  

(Unitary Process) and the R-Process. The conservation of information is inherent in the concept of 

quantropy. It is related to action and since action and entropy are related, it is related to entropy but is 

unlike entropy. The process of quantum measurement corresponds to a decrease in quantropy (note 

the negative sign). The laziness of the system is also encompassed in quantropy. It is interesting to see 

how quantropy relates to entanglement entropy and the Ryu-Takayanagi formula. It is also interesting 

to see the connection between quantropy and the most important principle of quantum mechanics: the 

principle of contextuality. 
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