Embedding of Octonion Fourier Transform in Geometric Algebra of \mathbb{R}^{3} and Polar Representations of Octonion Analytic Signals in Detail

Eckhard Hitzer*

${ }^{1}$ College of Liberal Arts, International Christian University, 181-8585 Mitaka, Tokyo, Japan

Correspondence

*Eckhard Hitzer, International Christian University, College of Liberal Arts, 181-8585 Mitaka, Tokyo, Japan. Email: hitzer@icu.ac.jp

Present Address

International Christian University, College of Liberal Arts, 181-8585 Mitaka, Tokyo,
Japan. Email: hitzer@icu.ac.jp

Abstract

\section*{Summary}

We show how the octonion Fourier transform can be embedded and studied in Clifford geometric algebra of three-dimensional Euclidean space $C l(3,0)$. We apply a new form of dimensionally minimal embedding of octonions in geometric algebra, that expresses octonion multiplication non-associativity with a sum of up to four (individually associative) geometric algebra product terms. This approach leads to new polar representations of octonion analytic signals and signal reconstruction formulas.

KEYWORDS:

Clifford geometric algebra, octonions, Fourier transform, analytic signal, polar representation, signal reconstruction

1 | INTRODUCTION

This paper is an extension of the conference proceedings ${ }^{[14}$. Hypercomplex Fourier transforms experienced rapid development during the last 30 years. A historical overview of this field can be found in ${ }^{33}$, a variety of approaches is included in ${ }^{[8]}$, and a recent comprehensive textbook is ${ }^{[10]}$. For an up-to-date survey of signal and image processing in Clifford geometric algebra, see Section 6 of ${ }^{[12]}$. In Definition 9 of ${ }^{[4]}$ a Clifford algebra based hypercomplex Fourier transform producing a multidimensional analytic signal was defined. In the book ${ }^{6}$ this approach is applied for the non-associative and non-commutative hypercomplex algebra of octonions. Apart from its non-associativity, octonions have many outstanding algebraic properties (e.g. the highest dimensional normed division algebra). Octonion Fourier transforms (OFT) have already found a wide range of applications (for more details see Chapters 5.6 and 9.4 of ${ }^{6}$, and the references cited therein) to modulation theory, including the modulation of amplitude, frequency, single-sidebands, compatible single-sidebands and single-quadrant modulation, Hilbert filters and signal power analysis. Further applications are to electromagnetic fields, field theory, physics, relativistic quantum mechanics, holomorphicity, analytic signal entropy, medicine (e.g., medical image processing), noise analysis and image processing.

It is therefore of great interest for us in this work to use a recently invented minimal embedding ${ }^{[13 \mid 15]}$ of octonions in the Clifford geometric algebra of three-dimensional space $C l(3,0)$ and consequently embed the OFT in $C l(3,0)$. This embedding allows to break down non-associative octonion multiplication into sums of associative geometric products, and therefore to easily apply existing geometric algebra computing software ${ }^{\sqrt{112 / 18]}}$. And it allows to establish new polar representations for octonion analytic signals, based on the polar decomposition (exponential factorization) ${ }^{[1] 19}$ of geometric algebra multivectors.

We first review in Section 2 fundamental properties of octonions ${ }^{16}$ and in Section 3 the new embedding of octonions in Clifford geometric algebra $C l(3,0)$. Then we present in Section 4 the OFT of ${ }^{6}$, as well as octonion analytic signals, and in Section 5 embed the OFT in $C l(3,0)$. Finally, in Section 6 we utilize the polar decomposition of ${ }^{[1119}$ for complex biquaternions

[^0]and multivectors in $C l(3,0)$ to introduce new polar representations for octonion analytic signals and the reconstruction formulas of the original real signal. The paper concludes with Section 7. references and two appendixes on new simplified formulas for the polar decomposition of multivectors in $C l(3,0)$ and with example computations.

2 | OCTONIONS

Here we first briefly summarize important octonion algebra properties (see ${ }^{16}$, pp. 300-302, ${ }^{13 / 5}$), assuming $a, b, c, x, y \in \mathbb{O}$.

- Octonions \mathbb{D} form an eight-dimensional bilinear algebra over the reals \mathbb{R} with basis $\left\{1, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}, \mathbf{e}_{6}, \mathbf{e}_{7}\right\}$.
- The multiplication table ${ }^{1}$ is given by $(1 \leq i, j \leq 7)$

$$
\begin{equation*}
\mathbf{e}_{i} \star \mathbf{e}_{i}=-1, \quad \mathbf{e}_{i} \star \mathbf{e}_{j}=-\mathbf{e}_{j} \star \mathbf{e}_{i} \text { for } i \neq j, \quad \mathbf{e}_{i} \star \mathbf{e}_{i+1}=\mathbf{e}_{i+3} \tag{1}
\end{equation*}
$$

where $(i, i+1, i+3)$ can be permuted cyclically and translated modulo 7 .

- Via the Cayley-Dickson doubling process, octonions can directly be defined from pairs of quaternions $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{H}$ (note the order of factors, $\mathrm{qc}(\ldots)$ is quaternion conjugation):

$$
\begin{equation*}
\left(p_{1}, q_{1}\right) \star\left(p_{2}, q_{2}\right)=\left(p_{1} p_{2}-\operatorname{qc}\left(q_{2}\right) q_{1}, q_{2} p_{1}+q_{1} \operatorname{qc}\left(p_{2}\right)\right) \tag{2}
\end{equation*}
$$

- © has no zero divisors, i.e., $a b=0$ implies $a=0$ or $b=0$.
- \mathbb{O} is a division algebra, i.e., $a x=b$ and $y a=b$ have unique solutions x, y for non-zero a.
- \mathbb{O} admits unique inverses.
- \mathbb{O} is non-associative, i.e., in general $a(b c) \neq(a b) c$.
- \mathbb{O} is alternative, i.e., $a(a b)=a^{2} b$ and $(a b) b=a b^{2}$.
- \mathbb{O} is one of only four alternative division algebras over $\mathbb{R}: \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
- \mathbb{O} is flexible, i.e., $a(b a)=(a b) a$.
- \mathbb{O} has a (positive-definite quadratic form) norm $\|\ldots\|: \mathbb{O} \rightarrow \mathbb{R}$, the norm is preserved (i.e. admits composition), such that $\|a b\|=\|a\|\|b\|$.
- \mathbb{O} is one of only four unital norm-preserving division algebras over $\mathbb{R}: \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
- © is essential for treating triality, an automorphism of the universal covering spin group Spin(8) of the rotation group $\mathrm{SO}(8)$ or \mathbb{R}^{8}. Triality is not an inner automorphism, nor an orthogonal matrix similarity, nor a linear transformation $C l(8,0) \rightarrow C l(8,0)$, nor a linear automorphism of $\mathrm{SO}(8)$. Triality permutes three elements in the center of $C l(8,0)$, namely $\left\{-1, e_{12345678},-e_{12345678}\right\}$, with basis vectors $e_{i},(1 \leq i \leq 8)$, of \mathbb{R}^{8}. Triality is a restriction of a polynomial mapping $C l(8,0) \rightarrow C l(8,0)$ of degree two.
Furthermore, like for complex numbers, quaternions and biquaternions, there is a polar decomposition for octonions ${ }^{19}$.

3 | EMBEDDING OF OCTONIONS IN CLIFFORD GEOMETRIC ALGEBRA OF THREE-DIMENSIONAL EUCLIDEAN SPACE

For readers not familiar with Clifford geometric algebra we refer to the excellent textbook ${ }^{[16}$, and to the tutorial introduction ${ }^{77}$. The current section summarizes the results needed from ${ }^{[13]}$.

The Clifford geometric algebra $C l(3,0)$ of Euclidean space \mathbb{R}^{3} has eight basis elements

$$
\begin{equation*}
\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, I \sigma_{1}=\sigma_{23}, I \sigma_{2}=\sigma_{31}, I \sigma_{3}=\sigma_{12}, I=\sigma_{123}\right\} \tag{3}
\end{equation*}
$$

[^1]Table 1 GA $C l(3,0)$ multiplication table, $C l(3,0) \cong$ Pauli algebra.

Left	Right factors							
factors	1	$I \sigma_{1}$	$I \sigma_{2}$	$I \sigma_{3}$	σ_{1}	σ_{2}	σ_{3}	I
1	1	$I \sigma_{1}$	$I \sigma_{2}$	$I \sigma_{3}$	σ_{1}	σ_{2}	σ_{3}	I
$I \sigma_{1}$	$I \sigma_{1}$	-1	$-I \sigma_{3}$	$I \sigma_{2}$	I	$-\sigma_{3}$	σ_{2}	$-\sigma_{1}$
$I \sigma_{2}$	$I \sigma_{2}$	$I \sigma_{3}$	-1	$-I \sigma_{1}$	σ_{3}	I	$-\sigma_{1}$	$-\sigma_{2}$
$I \sigma_{3}$	$I \sigma_{3}$	$-I \sigma_{2}$	$I \sigma_{1}$	-1	$-\sigma_{2}$	σ_{1}	I	$-\sigma_{3}$
σ_{1}	σ_{1}	I	$-\sigma_{3}$	σ_{2}	1	$I \sigma_{3}$	$-I \sigma_{2}$	$I \sigma_{1}$
σ_{2}	σ_{2}	σ_{3}	I	$-\sigma_{1}$	$-I \sigma_{3}$	1	$I \sigma_{1}$	$I \sigma_{2}$
σ_{3}	σ_{3}	$-\sigma_{2}$	σ_{1}	I	$I \sigma_{2}$	$-I \sigma_{1}$	1	$I \sigma_{3}$
I	I	$-\sigma_{1}$	$-\sigma_{2}$	$-\sigma_{3}$	$I \sigma_{1}$	$I \sigma_{2}$	$I \sigma_{3}$	-1

where $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ forms an orthonormal vector basis of \mathbb{R}^{3}. Its multiplication table is given in Table 1 . The eight components of a general multivector $M \in C l(3,0)$ can be grouped by grade into the scalar part $\langle M\rangle=\langle M\rangle_{0}$, the three-dimensional vector part $\langle M\rangle_{1} \in \mathbb{R}^{3}$ (where usually \mathbb{R}^{3} is identified with the grade one vector subspace $C l_{1}(3,0)$), the three-dimensional bivector part $\langle M\rangle_{2} \in C l_{2}(3,0)$ spanned by $\left\{\sigma_{23}, \sigma_{31}, \sigma_{12}\right\}$, and the trivector (pseudoscalar) part $\langle M\rangle_{3}$.

We can construct in $C l(3,0)$ an octonionic product ${ }^{13}$, after splitting it in its even subalgebra $\mathrm{Cl}^{+}(3,0)$ with basis

$$
\begin{equation*}
\left\{1, \sigma_{23}, \sigma_{31}, \sigma_{12}\right\} \tag{4}
\end{equation*}
$$

and the set $\mathrm{Cl}^{-}(3,0)$ of odd grade (w.r.t. grades in $\mathrm{Cl}(3,0)$) elements

$$
\begin{equation*}
\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, I=\sigma_{123}\right\} \tag{5}
\end{equation*}
$$

We will use the Clifford conjugation ${ }^{2}$ (indicated by an overbar \bar{M}), i.e. the composition of (main) grade involution $n^{3}(\widehat{M})$ and reversion ${ }^{4}(\widetilde{M})$. Clifford conjugation preserves grades zero and three, but changes the signs of grades one and two in $C l(3,0)$. A realization of the octonionic product of M, N in $C l(3,0)$ is given by four (individually associative) geometric algebra product terms

$$
\begin{align*}
M & =M_{+}+M_{-}, \quad N=N_{+}+N_{-} \\
M \star N & =M_{+} N_{+}+\overline{N_{-}} M_{-}+N_{-} M_{+}+M_{-} \overline{N_{+}} \tag{6}
\end{align*}
$$

with even grade parts $M_{+}, N_{+} \in C l^{+}(3,0)$ and odd grade parts $M_{-}, N_{-} \in C l^{-}(3,0)$. The multiplication table is Table 2 with octonionic product illustration in Fano plane diagram form in Fig. 1

The octonion conjugate (anti-involution) in $C l(3,0)$ is given by

$$
\begin{equation*}
M^{\star}=\widetilde{M}_{+}-M_{-}=\bar{M}_{+}-M_{-}, \quad(M \star N)^{\star}=N^{\star} \star M^{\star} \tag{7}
\end{equation*}
$$

Computing the octonion norm yields (including norm-preservation):

$$
\begin{equation*}
\|M\|=M \star M^{\star}=\langle M \widetilde{M}\rangle=M * \widetilde{M}=\sum_{i=1}^{8} M_{i}^{2}, \quad\|M \star N\|=\|M\|\|N\| \tag{8}
\end{equation*}
$$

where $M_{i} \in \mathbb{R}, 1 \leq i \leq 8$, are the coefficients of M in the $C l(3,0)$ basis 3$)$, and $A * B=\langle A B\rangle$ means to compute the scalar product of $A, B \in C l(3,0)$, i.e. the scalar part of the geometric product.

The above reviewed (dimensionally) minimal embedding is very flexible. It even allows to reversely embed Clifford geometric algebra $C l(3,0)$ in octonions by defining the geometric product in terms of the octonionic produc ${ }^{5}$ (see ${ }^{[13]}$, Section 3.3 for

[^2]Table 2 Multiplication table for octonion embedding in $C l(3,0)$. The upper left 4×4-block corresponds to $M_{+} N_{+}$, the upper right 4×4-block to $N_{-} M_{+}$, the lower left 4×4-block to $M_{-} \bar{N}_{+}$, and the lower right 4×4-block to $\bar{M}_{-} N_{-}$of (6).

Left	Right factors							
factors	1	$I \sigma_{1}$	$I \sigma_{2}$	$I \sigma_{3}$	σ_{1}	σ_{2}	σ_{3}	I
1	1	$I \sigma_{1}$	$I \sigma_{2}$	$I \sigma_{3}$	σ_{1}	σ_{2}	σ_{3}	I
$I \sigma_{1}$	$I \sigma_{1}$	-1	$-I \sigma_{3}$	$I \sigma_{2}$	I	σ_{3}	$-\sigma_{2}$	$-\sigma_{1}$
$I \sigma_{2}$	$I \sigma_{2}$	$I \sigma_{3}$	-1	$-I \sigma_{1}$	$-\sigma_{3}$	I	σ_{1}	$-\sigma_{2}$
$I \sigma_{3}$	$I \sigma_{3}$	$-I \sigma_{2}$	$I \sigma_{1}$	-1	σ_{2}	$-\sigma_{1}$	I	$-\sigma_{3}$
σ_{1}	σ_{1}	$-I$	σ_{3}	$-\sigma_{2}$	-1	$I \sigma_{3}$	$-I \sigma_{2}$	$I \sigma_{1}$
σ_{2}	σ_{2}	$-\sigma_{3}$	$-I$	σ_{1}	$-I \sigma_{3}$	-1	$I \sigma_{1}$	$I \sigma_{2}$
σ_{3}	σ_{3}	σ_{2}	$-\sigma_{1}$	$-I$	$I \sigma_{2}$	$-I \sigma_{1}$	-1	$I \sigma_{3}$
I	I	σ_{1}	σ_{2}	σ_{3}	$-I \sigma_{1}$	$-I \sigma_{2}$	$-I \sigma_{3}$	-1

Figure 1 Illustration of $C l(3,0)$ basis elements under the octonionic product (6) in Table 2 see ${ }^{136}$ for details.
details):

$$
\begin{array}{ll}
M_{+} N_{+} \stackrel{\text { 吕 }}{=} M_{+} \star N_{+}, & M_{-} N_{-} \stackrel{\sqrt[6]{\underline{6}}}{=} N_{-} \star \bar{M}_{-}, \\
M_{-} N_{+} \stackrel{\sqrt{6}}{=} N_{+} \star M_{-}, & M_{+} N_{-}=-\left(N_{-} \star \mathbf{e}_{7}\right) \star\left(M_{+} \star \mathbf{e}_{7}\right), \tag{9}
\end{array}
$$

with $M_{+} \in \operatorname{span}\left[1, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]$ and $M_{-} \in \operatorname{span}\left[\mathbf{e}_{4}, \mathbf{e}_{5}, \mathbf{e}_{6}, \mathbf{e}_{7}\right]$. Note that on the right side of the second equality in (9), the conjugation operation \bar{M}_{-}is defined on the relevant octonion components as $\overline{\mathbf{e}_{4}}=-\mathbf{e}_{4}, \overline{\mathbf{e}_{5}}=-\mathbf{e}_{5}, \overline{\mathbf{e}_{6}}=-\mathbf{e}_{6}$, and $\overline{\mathbf{e}_{7}}=\mathbf{e}_{7}$.

4 | OCTONION FOURIER TRANSFORM

From now on, if no brackets are given, the order of multiplication is assumed to be from left to right, e.g., $A B C=(A B) C$, etc. According to Section 4.2 . of ${ }^{6}$, the OFT of an integrable three-dimensiona ${ }^{6}$ real signal $f \in L^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ can be defined as

$$
\begin{equation*}
\mathcal{F}\{f\}(\mathbf{u})=\int_{\mathbb{R}^{3}} f(\mathbf{x}) e^{-\mathbf{e}_{1} 2 \pi u_{1} x_{1}} e^{-\mathbf{e}_{2} 2 \pi u_{2} x_{2}} e^{-\mathbf{e}_{4} 2 \pi u_{3} x_{3}} d^{3} x \tag{10}
\end{equation*}
$$

with three-dimensional position vectors and frequency vectors, and volume element

$$
\begin{equation*}
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, \quad d^{3} x=d x_{1} d x_{2} d x_{3}, \tag{11}
\end{equation*}
$$

respectively, and octonion units $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{4}\right\}$ in the exponents. As pointed out in ${ }^{6}$, any triplet of octonion units could be used in the octonionic kernel of (10), as long as the three do not form a quaternionic subalgebra, by that reason, e.g., the triplet $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is excluded, compare the multiplication table Table 2.3 and its Fano plane visualization Fig. 2.2 in ${ }^{6}$. In the latter the triplet $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ clearly lies on a straight line.

Given suitable integrability conditions, the inverse OFT can be computed as

$$
\begin{equation*}
f(\mathbf{x})=\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}(\mathbf{x})=\int_{\mathbb{R}^{3}} \mathcal{F}\{f\}(\mathbf{u}) e^{\mathbf{e}_{4} 2 \pi u_{3} x_{3}} e^{\mathbf{e}_{2} 2 \pi u_{2} x_{2}} e^{\mathbf{e}_{1} 2 \pi u_{1} x_{1}} d^{3} u, \quad d^{3} u=d u_{1} d u_{2} d u_{3} \tag{12}
\end{equation*}
$$

Abbreviating $s_{k}=\sin \left(2 \pi u_{k} x_{k}\right), c_{k}=\cos \left(2 \pi u_{k} x_{k}\right), k=1,2,3$, we can express the kernel of 10, using multiplication table Table 2.3 of ${ }^{66}$, as

$$
\begin{align*}
& e^{-\mathbf{e}_{1} 2 \pi u_{1} x_{1}} e^{-\mathbf{e}_{2} 2 \pi u_{2} x_{2}} e^{-\mathbf{e}_{4} 2 \pi u_{3} x_{3}}=\left(c_{1}-s_{1} \mathbf{e}_{1}\right)\left(c_{2}-s_{2} \mathbf{e}_{2}\right)\left(c_{3}-s_{3} \mathbf{e}_{4}\right) \\
& \quad=c_{1} c_{2} c_{3}-s_{1} c_{2} c_{3} \mathbf{e}_{1}-c_{1} s_{2} c_{3} \mathbf{e}_{2}-c_{1} c_{2} s_{3} \mathbf{e}_{4}+s_{1} s_{2} c_{3} \mathbf{e}_{3}+s_{1} c_{2} s_{3} \mathbf{e}_{5}+c_{1} s_{2} s_{3} \mathbf{e}_{6}-s_{1} s_{2} s_{3} \mathbf{e}_{7} \tag{13}
\end{align*}
$$

The significance of this decomposition is, that therefore a real signal $f \in L^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ is decomposed by the OFT (10) into eight spectral components of distinct even-odd symmetries: \{eee,oee,eoe,eeo,ooe,oeo,eoo,ooo\}, where e=even, o=odd. Following the multiplication table Table 2.3 of ${ }^{6}$, and using the alternative octonion multiplication property of Section 2 , we find the following conjugations $(i, j=2, \ldots, 7)$

$$
\alpha_{i}\left(\mathbf{e}_{j}\right)=\mathbf{e}_{i} \mathbf{e}_{j} \mathbf{e}_{i}= \begin{cases}\mathbf{e}_{j}, & i \neq j \tag{14}\\ -\mathbf{e}_{j}, & i=j\end{cases}
$$

This allows to express all $\mathcal{F}\{f\}\left(\pm u_{1}, \pm u_{2}, \pm u_{3}\right)$ in terms of $\mathcal{F}\{f\}(\mathbf{u})$ each time using four suitable α_{i} conjugations. For example,

$$
\begin{equation*}
\mathcal{F}\{f\}\left(-u_{1}, u_{2}, u_{3}\right)=\alpha_{1}\left(\alpha_{3}\left(\alpha_{5}\left(\alpha_{7}(\mathcal{F}\{f\}(\mathbf{u}))\right)\right)\right) . \tag{15}
\end{equation*}
$$

As a consequence the OFT in all eight octants of the three-dimensional frequency space can be obtained from the OFT only applied to the first octant, where all three frequency components are positive (i.e. $\left\{u_{1} \geq 0, u_{2} \geq 0, u_{3} \geq 0\right\}$).

4.1 | Hypercomplex Analytic Signal

A real signal $f \in L^{1}(\mathbb{R}, \mathbb{R})$ can be extended to a complex analytic signal with positive frequency by multiplying its Fourier transform $\mathcal{F}_{\mathbb{R}}\{f\}(u)$ with $(1+\operatorname{sgn} u), u \in \mathbb{R}$ being the frequency, and back transforming

$$
\begin{equation*}
\psi(x)=\mathcal{F}_{\mathbb{R}}^{-1}\left\{(1+\operatorname{sgn} u) \mathcal{F}_{\mathbb{R}}\{f\}(u)\right\}(x) \tag{16}
\end{equation*}
$$

equivalent to direct application of the Hilbert transform, where $*$ means convolution,

$$
\begin{equation*}
H[f(x)]=\left(\frac{1}{\pi x}\right) \circledast f(x), \quad \psi(x)=f(x)+i H[f(x)]=\left[\delta(x)+i \frac{1}{\pi x}\right] \circledast f(x) . \tag{17}
\end{equation*}
$$

We can recover the original signal as the real part of $\psi(x)$, i.e.,

$$
\begin{equation*}
f(x)=\frac{1}{2}(\psi(x)+\operatorname{cc}(\psi(x))) \tag{18}
\end{equation*}
$$

where cc(...) refers to complex conjugation.
Analogously, we can construct for real three-dimensional signals $f \in L^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ an analytic hypercomplex signal with triple convolution by (see Section 5.2.3 of ${ }^{6}$ for details)

$$
\begin{align*}
\psi\left(x_{1}, x_{2}, x_{3}\right)_{1} & =\left[\delta\left(x_{1}\right)+\mathbf{e}_{1} \frac{1}{\pi x_{1}}\right] \times\left[\delta\left(x_{2}\right)+\mathbf{e}_{2} \frac{1}{\pi x_{2}}\right] \times\left[\delta\left(x_{3}\right)+\mathbf{e}_{4} \frac{1}{\pi x_{3}}\right] \circledast \circledast \circledast f\left(x_{1}, x_{2}, x_{3}\right) \\
& =f+v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{12} \mathbf{e}_{3}+v_{3} \mathbf{e}_{4}+v_{13} \mathbf{e}_{5}+v_{23} \mathbf{e}_{6}+v \mathbf{e}_{7}, \tag{19}
\end{align*}
$$

which has only three-dimensional frequency values $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in the first octant of frequency space, where all three frequency components are positive $(+++)$. The original signal $f \in L^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ is the scalar real component of $\psi\left(x_{1}, x_{2}, x_{3}\right)$. The corresponding analytic signals $\psi\left(x_{1}, x_{2}, x_{3}\right)_{k}, k=2, \ldots, 8$ in the other seven octants are obtained by simply changing the three plus signs in the first line of 19) to $(-++),(+-+),(--+),(++-),(-+-),(+--),(---)$, respectively. And we can recover the original signal simply by

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{8} \sum_{k=1}^{8} \psi\left(x_{1}, x_{2}, x_{3}\right)_{k} \tag{20}
\end{equation*}
$$

Instead of computing $\psi\left(x_{1}, x_{2}, x_{3}\right)_{k}, k=2, \ldots, 8$, one by one, we can obviously also obtain them from $\psi\left(x_{1}, x_{2}, x_{3}\right)_{1}$ by applying to it compositions of octonionic conjugations (14) as, e.g., in (15). We note that ${ }^{(6)}$, p. 167, states for $\psi\left(x_{1}, x_{2}, x_{3}\right)_{1}$ of (19): The exact polar representation of this signal is unknown.

This outline of the OFT and its corresponding analytic first octant frequency spectrum signal may suffice here to be able to somewhat appreciate its uniquely interesting properties, due to its octonionic kernel. For more details we refer to ${ }^{6}$. Polar reconstruction will be discussed in Section 6

5 | EMBEDDING THE OFT IN CLIFFORD GEOMETRIC ALGEBRA OF THREE-DIMENSIONAL EUCLIDEAN SPACE

Now we reach the main purpose of this work to extend the embedding of octonions in Clifford geometric algebra $C l(3,0)$ of Section 3 to a full embedding of the OFT. An essential first step is the question on how to identify the three unit octonions $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{4} with corresponding non-scalar basis elements of $C l(3,0)$. $\mathrm{In}^{\sqrt{6}}$, page 70 , when defining the OFT, it is emphasized that the choice of $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{4}, for constructing the transformation kernel is not unique, but other triplets suggested always include \mathbf{e}_{2}, located at the center of the Fano diagram Fig. 2.2 in ${ }^{6}$. Comparing this situation with our Fano diagram Fig. 1 . we conveniently choose the three basis blades $\sigma_{1},-I,-I \sigma_{3}$. We observe that $\sigma_{1},-I \in C l^{-}(3,0)$ are both odd-, and $-I \sigma_{3} \in C l^{+}(3,0)$ is even graded, respectively.

We therefore define the embedding in the geometric algebra $C l(3,0)$ of the OFT of a real signal $f \in L^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ as

$$
\begin{equation*}
\mathcal{F}\{f\}(\mathbf{u})=\int_{\mathbb{R}^{3}} f(\mathbf{x}) e^{-\sigma_{1} 2 \pi u_{1} x_{1}} \star e^{I 2 \pi u_{2} x_{2}} \star e^{I \sigma_{3} 2 \pi u_{3} x_{3}} d^{3} x \tag{21}
\end{equation*}
$$

The kernel of the embedded OFT (21) can be expressed in geometric algebra, using multiplication table Table 2 , as

$$
\begin{align*}
K\left(x_{1}, x_{2}, x_{3}\right)= & {\left[e^{-\sigma_{1} 2 \pi u_{1} x_{1}} \star e^{I 2 \pi u_{2} x_{2}}\right] \star e^{I \sigma_{3} 2 \pi u_{3} x_{3}} } \\
= & {\left[\left(c_{1}-\sigma_{1} s_{1}\right) \star\left(c_{2}+I s_{2}\right)\right] \star\left(c_{3}+I \sigma_{3} s_{3}\right) } \\
= & c_{1} c_{2} c_{3}-s_{1} c_{2} c_{3} \sigma_{1}+c_{1} s_{2} c_{3} I+c_{1} c_{2} s_{3} I \sigma_{3}-s_{1} s_{2} c_{3} \sigma_{1} \star I-s_{1} c_{2} s_{3} \sigma_{1} \star\left(I \sigma_{3}\right) \\
& +c_{1} s_{2} s_{3} I \star\left(I \sigma_{3}\right)-s_{1} s_{2} s_{3}\left[\sigma_{1} \star I\right] \star\left(I \sigma_{3}\right) \\
= & c_{1} c_{2} c_{3}-s_{1} c_{2} c_{3} \sigma_{1}+c_{1} s_{2} c_{3} I+c_{1} c_{2} s_{3} I \sigma_{3}-s_{1} s_{2} c_{3} I \sigma_{1}+s_{1} c_{2} s_{3} \sigma_{2}+c_{1} s_{2} s_{3} \sigma_{3}-s_{1} s_{2} s_{3} I \sigma_{2} \\
= & c_{1} c_{3}\left(c_{2}+s_{2} I\right)-s_{1} c_{3}\left(c_{2}+s_{2} I\right) \sigma_{1}+s_{1} s_{3}\left(c_{2}-s_{2} I\right) \sigma_{2}+c_{1} s_{3}\left(c_{2}-s_{2} I\right) I \sigma_{3} \\
= & c_{3}\left(c_{1}-s_{1} \sigma_{1}\right)\left(c_{2}+s_{2} I\right)+s_{3}\left(s_{1} \sigma_{2}+c_{1} \sigma_{1} \sigma_{2}\right)\left(c_{2}-s_{2} I\right) \\
= & c_{3}\left(c_{1}-s_{1} \sigma_{1}\right)\left(c_{2}+s_{2} I\right)+s_{3} \sigma_{1} \sigma_{2}\left(c_{1}-s_{1} \sigma_{1}\right)\left(c_{2}-s_{2} I\right) \\
= & {\left[c_{3}\left(c_{2}+s_{2} I\right)+s_{3} \sigma_{1} \sigma_{2}\left(c_{2}-s_{2} I\right)\right]\left(c_{1}-s_{1} \sigma_{1}\right) } \\
= & {\left[c_{3} e^{I 2 \pi u_{2} x_{2}}+s_{3} I \sigma_{3} e^{-I 2 \pi u_{2} x_{2}}\right]\left(c_{1}-s_{1} \sigma_{1}\right) } \tag{22}
\end{align*}
$$

Now we observe that to change the sign of any of the three frequency components in the result, GA has seven very simple involutions

$$
\begin{array}{rll}
K\left(-u_{1}, u_{2}, u_{3}\right) & =\sigma_{3} K\left(u_{1}, u_{2}, u_{3}\right) \sigma_{3}, & \\
K\left(u_{1},-u_{2}, u_{3}\right)=\sigma_{3} \widehat{K}\left(u_{1}, u_{2}, u_{3}\right) \sigma_{3}, \\
K\left(u_{1}, u_{2},-u_{3}\right) & =\sigma_{1} K\left(u_{1}, u_{2}, u_{3}\right) \sigma_{1}, & \\
K\left(-u_{1},-u_{2}, u_{3}\right)=\widehat{K}\left(u_{1}, u_{2}, u_{3}\right), \tag{23}\\
K\left(-u_{1}, u_{2},-u_{3}\right) & =\sigma_{2} K\left(u_{1}, u_{2}, u_{3}\right) \sigma_{2}, & \\
K\left(u_{1},-u_{2},-u_{3}\right)=\sigma_{2} \widehat{K}\left(u_{1}, u_{2}, u_{3}\right) \sigma_{2}, \\
K\left(-u_{1},-u_{2},-u_{3}\right) & =\sigma_{1} \widehat{K}\left(u_{1}, u_{2}, u_{3}\right) \sigma_{1}, &
\end{array}
$$

Note that the frequency sign change only operating in octonion algebra always requires a composition of four conjugations (as e.g. in (15)). For later use, we tabulate the action of these involutions on all basis elements of $C l(3,0)$ in Table 3 Note that each involution reproduces the respective basis element up to a sign factor listed in the table, e.g., $\sigma_{3} \sigma_{1} \sigma_{3}=-\sigma_{1}, \sigma_{1} \widehat{\sigma_{2}} \sigma_{1}=+\sigma_{2}$, etc.

5.1 | Embedding of Octonion Analytic Signal in Geometric Algebra $\mathrm{Cl}(3,0)$

We now ask how the octonion analytic signal, defined in (19), can be embedded in the geometric algebra $C l(3,0)$ of threedimensional Euclidean space \mathbb{R}^{3} ? Similar to our study of the kernel of the embedding of the OFT, we therefore need to apply

Table 3 Action (sign changes) of all involutions in (23) on all basis elements A of $C l(3,0)$.

Basis		Involution						
blade A	identity	\widehat{A}	$\sigma_{3} A \sigma_{3}$	$\sigma_{3} \hat{A} \sigma_{3}$	$\sigma_{1} A \sigma_{1}$	$\sigma_{2} A \sigma_{2}$	$\sigma_{2} \hat{A} \sigma_{2}$	$\sigma_{1} \hat{A} \sigma_{1}$
1	+	+	+	+	+	+	+	+
σ_{1}	+	-	-	+	+	-	+	-
σ_{2}	+	-	-	+	-	+	-	+
σ_{3}	+	-	+	-	-	-	+	+
$I \sigma_{1}$	+	+	-	-	+	-	-	+
$I \sigma_{2}$	+	+	-	-	-	+	+	-
$I \sigma_{3}$	+	+	+	+	-	-	-	-
I	+	-	+	-	+	+	-	-

the embedding of octonion multiplication in geometric algebra to the convolution factor product that appears in the definition of the octonion analytic signal in the first line of (19). We again replace $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{4}, by the three $C l(3,0)$ basis blades $\sigma_{1},-I$, and $-I \sigma_{3}$, respectively, and obtain ${ }^{7}$

$$
\begin{align*}
& \left\{\left[\delta\left(x_{1}\right)+\sigma_{1} \frac{1}{\pi x_{1}}\right] \star\left[\delta\left(x_{2}\right)-I \frac{1}{\pi x_{2}}\right]\right\} \star\left[\delta\left(x_{3}\right)-I \sigma_{3} \frac{1}{\pi x_{3}}\right] \\
& =\left[\delta\left(x_{3}\right)\left(\delta\left(x_{2}\right)-I \frac{1}{\pi x_{2}}\right)-I \sigma_{3} \frac{1}{\pi x_{3}}\left(\delta\left(x_{2}\right)+I \frac{1}{\pi x_{2}}\right)\right]\left(\delta\left(x_{1}\right)+\sigma_{1} \frac{1}{\pi x_{1}}\right) \tag{24}
\end{align*}
$$

The following threefold convolution, carried out algebraically in the geometric algebra $C l(3,0)$, will therefore give the embedding of the octonion analytic signal of (19) in $C l(3,0)$

$$
\begin{align*}
\psi\left(x_{1}, x_{2}, x_{3}\right)_{1} & =\left[\delta\left(x_{3}\right)\left(\delta\left(x_{2}\right)-I \frac{1}{\pi x_{2}}\right)-I \sigma_{3} \frac{1}{\pi x_{3}}\left(\delta\left(x_{2}\right)+I \frac{1}{\pi x_{2}}\right)\right]\left(\delta\left(x_{1}\right)+\sigma_{1} \frac{1}{\pi x_{1}}\right) \circledast \circledast \circledast f\left(x_{1}, x_{2}, x_{3}\right) \\
& =f+v_{1} \sigma_{1}-v_{2} I-v_{3} I \sigma_{3}-v_{12} I \sigma_{1}+v_{13} \sigma_{2}+v_{23} \sigma_{3}+v I \sigma_{2} \tag{25}
\end{align*}
$$

Furthermore, the seven simple GA involutions of (23) will also analogously yield the embedded version of the octonion analytic signal for the other seven octants, which corresponds to changing one, two or all three signs of $\sigma_{1},-I$, and $-I \sigma_{3}$, in (25):

$$
\begin{align*}
& \psi\left(x_{1}, x_{2}, x_{3}\right)_{2}=\sigma_{3} \psi\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{3}, \quad \psi\left(x_{1}, x_{2}, x_{3}\right)_{3}=\sigma_{3} \widehat{\psi}\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{3}, \\
& \psi\left(x_{1}, x_{2}, x_{3}\right)_{4}=\hat{\psi}\left(x_{1}, x_{2}, x_{3}\right)_{1}, \quad \psi\left(x_{1}, x_{2}, x_{3}\right)_{5}=\sigma_{1} \psi\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{1}, \\
& \psi\left(x_{1}, x_{2}, x_{3}\right)_{6}=\sigma_{2} \psi\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{2}, \quad \psi\left(x_{1}, x_{2}, x_{3}\right)_{7}=\sigma_{2} \widehat{\psi}\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{2}, \\
& \psi\left(x_{1}, x_{2}, x_{3}\right)_{8}=\sigma_{1} \hat{\psi}\left(x_{1}, x_{2}, x_{3}\right)_{1} \sigma_{1}, \tag{26}
\end{align*}
$$

where in number ordering of the octants we simply follow Fig. 4.10 and Table 5.4 of 6 . The original scalar signal can always be reconstructed from the eight octant specific signals of 25) and 26 , and therefore from the purely positive frequency (in the first octant of the three-dimensional frequency space) signal $\psi\left(x_{1}, x_{2}, x_{3}\right)_{1}$, as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{8} \sum_{k=1}^{8} \psi(x)_{k} \tag{27}
\end{equation*}
$$

which is the consequent octant generalization of the reconstruction (18) of a real one-dimensional signal from its complex analytic signal. The single complex conjugation in (18) is replaced by the seven geometric algebra involutions of (26). With the help of Table 3 that has eight positive signs in the first row of scalars 1 , and precisely four positive and four negative signs ${ }^{8}$ in each of the other seven rows, it is obvious that the sum of the eight involutions (including the identity) in 27) will give eight times the scalar part of $\psi\left(x_{1}, x_{2}, x_{3}\right)_{1}$ and zero for all the non-scalar parts.

[^3]
6 | POLAR REPRESENTATION OF EMBEDDED OCTONION ANALYTIC SIGNAL

First we review in Section 6.1 two proposals in ${ }^{6}$ for polar representations of octonion analytic signals. Then in Section 6.2 we look at new candidates for polar representations of octonion analytic signals, after embedding them in the Clifford geometric algebra $C l(3,0)$.

6.1 | Previous Candidates for Polar Representations of Octonion Analytic Signals

For octonion signals with spectrum in the first octant $\sqrt{19}$, Hahn and Snopek first propose in Section 7.5 .2 of ${ }^{6}$ a polar form with one amplitude function $A_{0}\left(x_{1}, x_{2}, x_{3}\right)$ (the octonion norm of (19) and seven phase angle functions $\Phi_{k}\left(x_{1}, x_{2}, x_{3}\right), 1 \leq k \leq 7$

$$
\begin{align*}
\psi_{1}^{H S}\left(x_{1}, x_{2}, x_{3}\right) & =A_{0} e^{\mathbf{e}_{1} \Phi_{1}} e^{\mathbf{e}_{2} \Phi_{2}} e^{\mathbf{e}_{3} \Phi_{3}} e^{\mathbf{e}_{7} \Phi_{7}} e^{\mathbf{e}_{4} \Phi_{4}} e^{\mathbf{e}_{5} \Phi_{5}} e^{\mathbf{e}_{6} \Phi_{6}}, \\
A_{0} & =\sqrt{f^{2}+v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{12}^{2}+v_{13}^{2}+v_{23}^{2}+v^{2}} \tag{28}
\end{align*}
$$

where we have omitted for brevity the arguments $\left(x_{1}, x_{2}, x_{3}\right)$ of all seven phase angles Φ_{k} and all functions $f, v_{1}, v_{2}, v_{3}, v_{12}, v_{13}, v_{23}, v$. After defining

$$
\begin{equation*}
c_{k}=\cos \Phi_{k}\left(x_{1}, x_{2}, x_{3}\right), \quad s_{k}=\sin \Phi_{k}\left(x_{1}, x_{2}, x_{3}\right), \quad 1 \leq k \leq 7 \tag{29}
\end{equation*}
$$

Hahn and Snopek provide the 16 term reconstruction formula for the scalar real signal as

$$
\begin{align*}
f_{r e c}\left(x_{1}, x_{2}, x_{3}\right)=A_{0} & {\left[c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7}+s_{1} s_{2} s_{3} c_{4} c_{5} c_{6} c_{7}-s_{1} c_{2} c_{3} s_{4} s_{5} c_{6} c_{7}+c_{1} s_{2} s_{3} s_{4} s_{5} c_{6} c_{7}\right.} \\
& -s_{1} s_{2} c_{3} s_{4} c_{5} s_{6} c_{7}+s_{1} c_{2} s_{3} c_{4} s_{5} s_{6} c_{7}-c_{1} c_{2} s_{3} c_{4} s_{5} s_{6} c_{7}-s_{1} s_{2} c_{3} c_{4} s_{5} s_{6} c_{7} \\
& +c_{1} c_{2} s_{3} s_{4} c_{5} c_{6} s_{7}+s_{1} s_{2} c_{3} s_{4} c_{5} c_{6} s_{7}+c_{1} s_{2} c_{3} c_{4} s_{5} c_{6} s_{7}-s_{1} c_{2} s_{3} c_{4} s_{5} c_{6} s_{7} \\
& \left.-s_{1} c_{2} c_{3} c_{4} c_{5} s_{6} s_{7}+c_{1} s_{2} s_{3} c_{4} c_{5} s_{6} s_{7}-c_{1} c_{2} c_{3} s_{4} s_{5} s_{6} s_{7}-s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}\right] . \tag{30}
\end{align*}
$$

On the other hand, for the simpler case of three-dimensional separable real signals

$$
\begin{equation*}
f^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) g_{3}\left(x_{3}\right), \quad g_{k} \in L^{1}\left(\mathbb{R}^{1}, \mathbb{R}^{1}\right), \quad k=1,2,3 \tag{31}
\end{equation*}
$$

the proposed polar representation and its reconstruction (see Section 7.5.2.1 of ${ }^{6}$) look much easier

$$
\begin{equation*}
\psi_{1}^{H S^{\prime}}\left(x_{1}, x_{2}, x_{3}\right)=A_{0}^{\prime} e^{\mathbf{e}_{1} \Phi_{1}} e^{\mathbf{e}_{2} \Phi_{2}} e^{\mathbf{e}_{4} \Phi_{4}}, \quad f_{\text {rec }}^{\prime}=A_{0}^{\prime} \cos \Phi_{1} \cos \Phi_{2} \cos \Phi_{4}, \tag{32}
\end{equation*}
$$

again omitting for brevity the arguments $\left(x_{1}, x_{2}, x_{3}\right)$ of $A_{0}^{\prime}, \Phi_{1}, \Phi_{2}$ and Φ_{3}.

6.2 | New Polar Representations of Embedded Octonion Analytic Signals

6.2.1 | Polar Representation Based on Polar Decomposition in $C l(3,0)$

As shown in $\frac{19}{}$, Theorem 1, there exists an elegant and very compact polar decomposition for complex biquaternions. Due to the isomorphism between complex biquaternions and the Clifford algebra $C l(3,0)$, this can be carried over to multivectors in $C l(3,0)$ as well, see ${ }^{11}$, Section 4.3, equation (49). In the following we will first summarize the polar decomposition of $C l(3,0)$ multivectors provided in ${ }^{[1911]}$, then provide a set of direct (computationally) simplified formulas for its computation, followed by an explicit example. The simplified formulas are derived in appendix A, and the example is fully computed in appendix B

A summary of the polar decomposition of $C l(3,0)$ multivectors in ${ }^{1911}$ can be given as follows. As for notation, all unit vectors u (two degrees of freedom (DOF)), all unit bivectors i_{2} (two DOF), and the central unit pseudoscalar $I=\sigma_{123}$ in $C l(3,0)$ square to

$$
\begin{equation*}
u^{2}=+1, \quad i_{2}^{2}=-1, \quad I^{2}=-1 \tag{33}
\end{equation*}
$$

The even subalgebra of $C l(3,0)$ is isomorphic to quaternions \mathbb{H} : $C l^{+}(3,0) \cong \mathbb{H}$. That means general multivectors M in $C l(3,0)$ can always be represented as complex $\left(I^{2}=-1\right)(\mathrm{bi})$ quaternions:

$$
\begin{equation*}
M=M_{+}+M_{-}=p+I q \tag{34}
\end{equation*}
$$

where p and q are (isomorphic to) quaternions

$$
\begin{equation*}
p=M_{+}=a_{p} e^{\alpha_{p} i_{p}}, \quad q=I^{-1} M_{-}=a_{q} e^{\alpha_{q} i_{q}}, \quad a_{p}, a_{q} \in \mathbb{R}_{0}^{+}, \quad i_{p}^{2}=i_{q}^{2}=-1 \tag{35}
\end{equation*}
$$

with unit bivectors $i_{p}, i_{q} \in C l_{2}(3,0)$.
The polar decomposition of $M \in C l(3,0)$ is

$$
M=p+I q= \begin{cases}e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } q=0 \tag{36}\\ I e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } p=0 \\ e^{\alpha_{0}} e^{\alpha_{2} i_{2}} \frac{1+I f}{2} & \text { for } q=p \mathbf{f} \\ e^{\alpha_{0}} e^{\alpha_{1} u^{\prime}} e^{\alpha_{2} i_{2}} e^{\alpha_{3} I} & \text { otherwise }\end{cases}
$$

where in line three (compare (26) in ${ }^{[11}$) we have the special case that the quotient $p^{-1} q$ results in a unit bivector $\mathbf{f}=p^{-1} q$. The value of $i_{2}=i_{p}$ in lines one (compare (19) in ${ }^{(11)}$) and three, $i_{2}=i_{P}$ in line four, while in line two we have $i_{2}=i_{q}$. We note that line one is a special case of line four for $\alpha_{1}=\alpha_{3}=0$. Line two (compare (19) in ${ }^{[11}$) is a special case of line four for $\alpha_{1}=0$ and $\alpha_{3}=\pi / 2$. So essentially only lines three and four of (36) matter, and we have one special (line three) case with idempotent factor $\left(\frac{1+I f}{2}\right)$, signaling that M is not invertible, and one general case (line four: see Section 4.2 of ${ }^{[1]}$ for all computational details) with full exponential factorization. The latter has the necessary eight DOF: four DOF are given by the phase angles $\alpha_{k}, k=0,1,2,3$, two DOF by unit vector u^{\prime} and two by unit bivector i_{2}.

Here we present a computationally simplified set of formulas for computing the polar decomposition of a general multivector $M \in C l(3,0)$. First we compute the central number $M \bar{M} \in \mathbb{R} \oplus I \mathbb{R}$, i.e. a scalar plus a pseudoscalar (algebraically like a complex number).

For $M \bar{M}=0$ we have the special case of M being a divisor of zero, i.e., not invertible ${ }^{10}$ Then we can directly compute the entities of line 3 of 36 as

$$
\begin{equation*}
\alpha_{0}=\ln 2+\frac{1}{2} \ln \left(M_{+} \overline{M_{+}}\right), \quad \alpha_{2}=\operatorname{atan} 2\left(\left|\langle M\rangle_{2}\right|,\langle M\rangle_{0}\right), \quad i_{2}=\frac{\langle M\rangle_{2}}{\left|\langle M\rangle_{2}\right|} \text { for }\langle M\rangle_{2} \neq 0, \quad \mathbf{f}=I^{-1} M_{+}^{-1} M_{-}=\left(M_{+}^{-1} M_{-}\right)^{*}, \tag{37}
\end{equation*}
$$

where the upper star index of A^{*} applied to a multivector $A \in C l(3,0)$ means geometric algebra duality, i.e., $A^{*}=A I^{-1}=-A I$. And we note that in this case we have

$$
\begin{equation*}
M_{+}=2 e^{\alpha_{0}} e^{\alpha_{2} i_{2}}, \quad M_{-}=I M_{+} \mathbf{f} \tag{38}
\end{equation*}
$$

The above formulas also apply in the case of $\langle M\rangle_{2}=0$, i.e., $M_{+}=\langle M\rangle_{0}$. Then $e^{\alpha_{2} i_{2}}$ degenerates to ± 1, and it is simpler to express

$$
\begin{equation*}
M=2\langle M\rangle_{0} \frac{1+I \mathbf{f}}{2}=e^{\alpha_{0}} \operatorname{sgn}\langle M\rangle_{0} \frac{1+I \mathbf{f}}{2}, \quad \alpha_{0}=\ln 2+\ln \left|\langle M\rangle_{0}\right|, \quad \mathbf{f}=I^{-1} \frac{M_{-}}{\langle M\rangle_{0}}=\frac{\left(M_{-}\right)^{*}}{\langle M\rangle_{0}} \tag{39}
\end{equation*}
$$

For $M \bar{M} \neq 0$, i.e., when M is not a divisor of zero (and thus invertible) we get with the normed multivector (compare A11)

$$
\begin{equation*}
N=\frac{M}{\sqrt{M \bar{M}}}=N_{+}+N_{-}, \quad N_{ \pm}=\left(\frac{M}{\sqrt{M \bar{M}}}\right)_{ \pm} \tag{40}
\end{equation*}
$$

the general simplified decomposition formulas for invertible multivectors

$$
\begin{align*}
& \alpha_{0}=\frac{1}{4} \ln (\operatorname{det}(M)), \\
& \alpha_{1}=\operatorname{atanh}\left(-\frac{N_{-} \overline{N_{-}}}{N_{+} \overline{N_{+}}}\right)^{\frac{1}{2}}, \quad u^{\prime}=\frac{N_{-} \overline{N_{+}}}{\left|N_{-} \overline{N_{+}}\right|}, \\
& \alpha_{2}=\operatorname{atan} 2\left(\left|\langle N\rangle_{2}\right|,\langle N\rangle_{0}\right), \quad i_{2}=\frac{\langle N\rangle_{2}}{\left|\langle N\rangle_{2}\right|} \text { for }\langle N\rangle_{2} \neq 0, \\
& \alpha_{3}=\frac{1}{2} \operatorname{atan} 2\left(\left(\langle M \bar{M}\rangle_{3}\right)^{*},\langle M \bar{M}\rangle_{0}\right) . \tag{41}
\end{align*}
$$

We note that for $\langle N\rangle_{2}=0$, i.e., $N_{+}=\langle N\rangle_{0}$, the factor $e^{\alpha_{2} i_{2}}$ degenerates to $\pm 1=\operatorname{sgn}\langle N\rangle_{0}$, and thus α_{2} and i_{2} need not to be computed. The derivation of (37) to (41), based on the results of ${ }^{1911]}$ can be found in appendix A

[^4]To better understand how to compute the generic case decomposition of line four of (36), we present the following numerical example (see all computational details in Appendix B).

Example 6.1.

$$
\begin{align*}
M & =1+2 \sigma_{1}+3 \sigma_{2}+4 I \sigma_{1}+5 I \sigma_{3}+6 I=e^{1.0436} e^{1.5574 u^{\prime}} e^{0.66405 i_{2}} e^{1.8304 I} \\
u^{\prime} & =0.9047 \sigma_{1}-0.1544 \sigma_{2}+0.3972 \sigma_{3}, \quad i_{2}=-0.2959 I \sigma_{3}-0.6685 I \sigma_{2}-0.6823 I \sigma_{1} . \tag{42}
\end{align*}
$$

We thus propose to use this new polar representation method (36) for the embedded octonion analytic signal (25), as one way to answer the open question for the exact polar representation of (19).

Now let us assume, we have a general embedded octonion analytic signal in this new form of polar decomposition

$$
\begin{equation*}
\psi_{1}\left(x_{1}, x_{2}, x_{3}\right)=e^{\alpha_{0}} e^{a} e^{B} e^{\alpha_{3} I} \tag{43}
\end{equation*}
$$

with

$$
\begin{align*}
& a=a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}=\alpha_{1} u^{\prime}, \quad \alpha_{1}=|a|=\sqrt{a^{2}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}, \quad u^{\prime}=\frac{a}{\alpha_{1}}, \\
& B=b_{1} \sigma_{23}+b_{2} \sigma_{31}+b_{3} \sigma_{12}, \quad \alpha_{2}=|B|=\sqrt{-B^{2}}=\sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}, \quad i_{2}=\frac{B}{\alpha_{2}}, \\
& b=i_{2}^{*}=i_{2}(-I)=\frac{b_{1} \sigma_{1}+b_{2} \sigma_{2}+b_{3} \sigma_{3}}{\alpha_{2}} \tag{44}
\end{align*}
$$

where $\alpha_{0}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ and α_{3} are scalar functions of (x_{1}, x_{2}, x_{3}), and consequently α_{1}, α_{2}, vector a and bivector B are also functions of $\left(x_{1}, x_{2}, x_{3}\right)$. Note that the unit vector b is dual (and thus orthogonal) to the unit bivector i_{2}.

What does the reconstruction of the original real scalar signal f look like? In order to answer this question, we note that

$$
\begin{equation*}
e^{a}=e^{\alpha_{1} u^{\prime}}=\cosh \alpha_{1}+u^{\prime} \sinh \alpha_{1}, \quad e^{B}=e^{\alpha_{2} i_{2}}=\cos \alpha_{2}+i_{2} \sin \alpha_{2}, \quad e^{\alpha_{3} I}=\cos \alpha_{3}+I \sin \alpha_{3}, \tag{45}
\end{equation*}
$$

and abbreviate in this context

$$
\begin{equation*}
c_{1}=\cosh \alpha_{1}, \quad s_{1}=\sinh \alpha_{1}, \quad c_{2}=\cos \alpha_{2}, \quad s_{2}=\sin \alpha_{2}, \quad c_{3}=\cos \alpha_{3}, \quad s_{3}=\sin \alpha_{3} \tag{46}
\end{equation*}
$$

Now we can expand the above polar representation of the embedded octonion signal as

$$
\begin{align*}
\psi_{1}\left(x_{1}, x_{2}, x_{3}\right) & =e^{\alpha_{0}}\left(c_{1}+u^{\prime} s_{1}\right)\left(c_{2}+i_{2} s_{2}\right)\left(c_{3}+I s_{3}\right) \\
& =e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}+c_{1} s_{2} c_{3} i_{2}+s_{1} c_{2} c_{3} u^{\prime}+s_{1} s_{2} c_{3} u^{\prime} i_{2}+c_{1} c_{2} s_{3} I+c_{1} s_{2} s_{3} i_{2} I+s_{1} c_{2} s_{3} u^{\prime} I+s_{1} s_{2} s_{3} u^{\prime} i_{2} I\right) \tag{47}
\end{align*}
$$

We observe that only the first term and the scalar part of the last term do contribute to the scalar part of ψ_{1}

$$
\begin{align*}
f_{\text {rec }} & =\left\langle\psi_{1}\left(x_{1}, x_{2}, x_{3}\right)\right\rangle=e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}+s_{1} s_{2} s_{3}\left\langle u^{\prime} i_{2} I\right\rangle\right)=e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}+s_{1} s_{2} s_{3} u^{\prime} \cdot\left(-i_{2}^{*}\right)\right)=e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}-s_{1} s_{2} s_{3} u^{\prime} \cdot b\right) \\
& =e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}-s_{1} s_{2} s_{3} \cos \varphi_{a b}\right) \tag{48}
\end{align*}
$$

where in the last line we introduced the angle $\varphi_{a b}, \cos \varphi_{a b}=u^{\prime} \cdot b$, between the vector a and the normal vector b of i_{2}. Comparing with the octonionic reconstruction result (30) in ${ }^{6}$, we see that even without the assumption of separability, we obtain a considerably simpler, more compact and geometrically intuitive result in terms of the amplitude factor $e^{\alpha_{0}}$, the (hyperbolic) cosines and sines of the parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and of the cosine of the angle $\varphi_{a b}$ between the vectors a and b (normal to i_{2}).

6.2.2 | Polar Representation Based on Polar Decomposition in $C l(3,0)$ and Intuition from Separability

Another way to answer the above question for the polar decomposition of embedded octonion analytic signals can be proposed based on analysis of a separable three-dimensional signal (31) that leads to a decomposition of the form

$$
\begin{equation*}
\psi_{1}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=A_{1} A_{2} A_{3}\left[\cos \left(\alpha_{2}\right) e^{-\alpha_{3} I}-\sin \left(\alpha_{2}\right) I \sigma_{3} e^{\alpha_{3} I}\right]\left(\cos \left(\alpha_{1}\right)+\sin \left(\alpha_{1}\right) \sigma_{1}\right) \tag{49}
\end{equation*}
$$

where the scalar amplitude- and angle parameters $A_{1}, A_{2}, A_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are all functions of (x_{1}, x_{2}, x_{3}). More general, without assuming separability, we have

$$
\begin{equation*}
\psi_{1}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=e^{\alpha_{0}}\left[\cos \left(\alpha_{2}\right) e^{-\alpha_{3} I}+\sin \left(\alpha_{2}\right) i_{2} e^{\alpha_{3} I}\right]\left(\cos \left(\alpha_{1}\right)+\sin \left(\alpha_{1}\right) u\right) \tag{50}
\end{equation*}
$$

with

$$
\begin{align*}
& a=a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}=\alpha_{1} u, \quad \alpha_{1}=|a|=\sqrt{a^{2}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}, \quad u=\frac{a}{\alpha_{1}} \\
& B=b_{1} \sigma_{23}+b_{2} \sigma_{31}+b_{3} \sigma_{12}, \quad \alpha_{2}=|B|=\sqrt{-B^{2}}=\sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}, \quad i_{2}=\frac{B}{\alpha_{2}} \\
& b=i_{2}^{*}=i_{2}(-I)=\frac{b_{1} \sigma_{1}+b_{2} \sigma_{2}+b_{3} \sigma_{3}}{\alpha_{2}} \tag{51}
\end{align*}
$$

where $\alpha_{0}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ and α_{3} are scalar functions of (x_{1}, x_{2}, x_{3}), and consequently α_{1}, α_{2}, thus vector a and bivector B are also functions of $\left(x_{1}, x_{2}, x_{3}\right)$.

The reconstruction formula for the real signal f^{\prime} from the polar representation (50) amounts simply to compute its scalar part. In analogy to 48, we obtain with (note the different definitions of s_{1} and c_{1}, compared to (46)

$$
\begin{gather*}
c_{1}=\cos \alpha_{1}, \quad s_{1}=\sin \alpha_{1}, \quad c_{2}=\cos \alpha_{2}, \quad s_{2}=\sin \alpha_{2}, \quad c_{3}=\cos \alpha_{3}, \quad s_{3}=\sin \alpha_{3} \tag{52}\\
f_{r e c}^{\prime}=\left\langle\psi \varepsilon_{1}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)\right\rangle=e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}-s_{1} s_{2} s_{3} u \cdot b\right)=e^{\alpha_{0}}\left(c_{1} c_{2} c_{3}-s_{1} s_{2} s_{3} \cos \varphi_{a b}\right) \tag{53}
\end{gather*}
$$

where in the last line we again introduced the angle $\varphi_{a b}$ between the vector a and the normal vector b of i_{2}. We note that the two geometric algebra embedding based reconstruction formulas 48) and (53) are formally identical, apart from the differences in using hyperbolic cosines and sines at the beginning of (46), while only trigonometric cosines and sines are used in (52).

Remark 1. We note that in the case of a truly separable signal, like in 49) with $u=\sigma_{1}$ and $i_{2}=-I \sigma_{3}$, we have

$$
\begin{equation*}
-\cos \varphi_{a b}=-u \cdot b=\left\langle u i_{2} I\right\rangle=\left\langle\sigma_{1}\left(-I \sigma_{3}\right) I\right\rangle=\left\langle\sigma_{1} \sigma_{3}\right\rangle=0 \tag{54}
\end{equation*}
$$

and hence the even simpler result

$$
\begin{equation*}
f_{r e c}^{\prime}=e^{\alpha_{0}} c_{1} c_{2} c_{3}, \tag{55}
\end{equation*}
$$

formally identical to the above $\sqrt{32}$, also found in Section 7.5.2.1 of ${ }^{6}$.
Further research has to show which of these two geometric algebra based polar representations of embedded octonion analytic signals may be preferable.

7 | CONCLUSIONS

We have briefly reviewed octonions and their new minimal embedding in the geometric algebra of three-dimensional space $C l(3,0)$. We further reviewed the notion of OFT and octonion analytic signal, embedded both in $C l(3,0)$, and finally suggested two interesting possibilities for polar decompositions of the embedded octonion analytic signal, together with the corresponding signal reconstruction formulas. In this context we have given for the polar decomposition of multivectors in $C l(3,0)$ new simplified computation formulas. Further research, including concrete applications to non-separable signals, is desirable.

ACKNOWLEDGMENTS

I thank God for His help: (Jesus said:) For everyone who asks receives; the one who seeks finds; and to the one who knocks, the door will be opened ${ }^{17}$. I thank my colleague S. J. Sangwine for fruitful and inspiring collaboration, as well as the organizers of the workshop ENGAGE 2022, and of CGI 2022. I further thank the anonymous reviewers for pointing out errors and for important suggestions for improving of the manuscript.

Author contributions

The author is responsible for all parts of this work.

Financial disclosure

None reported.

Conflict of interest

The authors declare no potential conflict of interests.

Availability of data

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

How to cite this article: Hitzer, E. (2023), Embedding of Octonion Fourier Transform in Geometric Algebra of \mathbb{R}^{3} and Polar Representations of Octonion Analytic Signals in Detail, Math. Meth. in the Appl. Sciences, 2023;00:1-6.

APPENDIX

A DERIVATION OF SIMPLIFIED FORMULAS FOR EXPONENTIAL DECOMPOSITION IN $C L(3,0)$

Based on the general results for the exponential factorization of $C l(3,0)$ multivectors M in $\frac{1911 \text {, we now prove the simplified }}{}$ computation formulas (37) to 41).

For a general multivector $M \in C l(3,0)$ we have the additive decomposition

$$
\begin{equation*}
M=M_{+}+M_{-}=p+I q, \quad p, q \in C l^{+}(3,0), \quad p=M_{+}, \quad q=I^{-1} M_{-}=\left(M_{-}\right)^{*} \tag{A1}
\end{equation*}
$$

For $M \bar{M}=0$ the multivector M is a divisor of zero and will take on the factorized form

$$
\begin{equation*}
M=e^{\alpha_{0}} e^{\alpha_{2} i_{2}} \frac{1+I \mathbf{f}}{2}=\frac{1}{2} e^{\alpha_{0}} e^{\alpha_{2} i_{2}}+\frac{1}{2} e^{\alpha_{0}} e^{\alpha_{2} i_{2}} I \mathbf{f} \tag{A2}
\end{equation*}
$$

with

$$
\begin{equation*}
M_{+}=\langle M\rangle_{0}+\langle M\rangle_{2}=\frac{1}{2} e^{\alpha_{0}} e^{\alpha_{2} i_{2}}=\frac{1}{2} e^{\alpha_{0}} \cos \alpha_{2}+i_{2} \frac{1}{2} e^{\alpha_{0}} \sin \alpha_{2}, \quad\langle M\rangle_{0}=\frac{1}{2} e^{\alpha_{0}} \cos \alpha_{2}, \quad\langle M\rangle_{2}=i_{2} \frac{1}{2} e^{\alpha_{0}} \sin \alpha_{2} \tag{A3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{-}=\frac{1}{2} e^{\alpha_{0}} e^{\alpha_{2} i_{2}} I \mathbf{f}=M_{+} I \mathbf{f}=M_{+} \mathbf{f} I \tag{A4}
\end{equation*}
$$

From (A3 we immediately find

$$
\begin{equation*}
M_{+} \overline{M_{+}}=\frac{1}{4} e^{2 \alpha_{0}} e^{\alpha_{2} i_{2}} e^{-\alpha_{2} i_{2}}=\frac{1}{4} e^{2 \alpha_{0}} \quad \Leftrightarrow \quad \alpha_{0}=\frac{1}{2} \ln \left(4 M_{+} \overline{M_{+}}\right)=2+\frac{1}{2} \ln \left(M_{+} \overline{M_{+}}\right) \tag{A5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\left|\langle\boldsymbol{M}\rangle_{2}\right|}{\langle\boldsymbol{M}\rangle_{0}} \quad \Leftrightarrow \quad \alpha_{2}=\operatorname{atan} 2\left(\left|\langle M\rangle_{2}\right|,\langle M\rangle_{0}\right) \tag{A6}
\end{equation*}
$$

For the special case of $\langle\boldsymbol{M}\rangle_{2}=0$, i.e., $M_{+}=\langle\boldsymbol{M}\rangle_{0}$, we have

$$
\begin{equation*}
\alpha_{0}=2+\frac{1}{2} \ln \left(\langle M\rangle_{0}^{2}\right), \quad e^{\alpha_{2} i_{2}} \rightarrow \operatorname{sgn}\langle M\rangle_{0}= \pm 1 \tag{A7}
\end{equation*}
$$

For $\langle\boldsymbol{M}\rangle_{2} \neq 0$, we see from (A3) that

$$
\begin{equation*}
i_{2}=\frac{\langle M\rangle_{2}}{\left|\langle M\rangle_{2}\right|} \tag{A8}
\end{equation*}
$$

Finally from (A4) we then conclude

$$
\begin{equation*}
\mathbf{f}=M_{+}^{-1} M_{-} I^{-1}=\left(M_{+}^{-1} M_{-}\right)^{*} \tag{A9}
\end{equation*}
$$

and if furthermore $\langle\boldsymbol{M}\rangle_{2}=0$, i.e., $M_{+}=\langle\boldsymbol{M}\rangle_{0}$, this becomes simply

$$
\begin{equation*}
\mathbf{f}=\frac{\left(M_{-}\right)^{*}}{\langle M\rangle_{0}} \tag{A10}
\end{equation*}
$$

This completes the derivation of the simplified computation of the exponential factorization of a (non-invertible) multivector $M \in C l(3,0)$ that is a divisor of zero.

Now we derive the simplified factorization expressions for a $M \in C l(3,0)$ with $M \bar{M} \neq 0$, i.e. for M being invertible (not a divisor of zero). Division with $\sqrt{M \bar{M}}$ leads to a unit norm multivector

$$
\begin{equation*}
N=\frac{M}{\sqrt{M \bar{M}}}, \quad N \bar{N}=1 \tag{A11}
\end{equation*}
$$

and hence the central (scalar and pseudoscalar) amplitude is given by

$$
\begin{align*}
& \sqrt{M \bar{M}}=e^{\alpha_{0}+\alpha_{3} I}=e^{\alpha_{0}} e^{\alpha_{3} I}, \quad M \bar{M}=e^{2 \alpha_{0}} e^{2 \alpha_{3} I}=e^{2 \alpha_{0}}\left(\cos 2 \alpha_{3}+I \sin 2 \alpha_{3}\right), \\
& e^{2 \alpha_{0}}=\sqrt{|M \bar{M}|^{2}}=(M \bar{M}(\overline{M \bar{M}}))^{\frac{1}{2}}=(M \bar{M} \widehat{M} \widetilde{M})^{\frac{1}{2}}=\sqrt{\operatorname{det}(M)} \\
& \Leftrightarrow \quad \alpha_{0}=\frac{1}{4} \ln (M \bar{M} \widehat{M} \widetilde{M})=\frac{1}{4} \ln (\operatorname{det}(M)) \tag{A12}
\end{align*}
$$

where we notice that $\operatorname{det}(M)=M \bar{M} \widehat{M} \widetilde{M}$, compare ${ }^{2199}$. And

$$
\begin{equation*}
\tan \left(2 \alpha_{3}\right)=\frac{\langle M \bar{M}\rangle_{3} I^{-1}}{\langle\boldsymbol{M} \overline{\boldsymbol{M}}\rangle_{0}}=\frac{\langle\boldsymbol{M} \bar{M}\rangle_{3}^{*}}{\langle\boldsymbol{M} \overline{\boldsymbol{M}}\rangle_{0}} \quad \Leftrightarrow \quad \alpha_{3}=\frac{1}{2} \operatorname{atan}\left(\left(\langle\boldsymbol{M} \overline{\boldsymbol{M}}\rangle_{3}\right)^{*},\langle M \bar{M}\rangle_{0}\right) \tag{A13}
\end{equation*}
$$

Interpreting $\sqrt{M \bar{M}}$ as a complex number, the computation of α_{0} and α_{3} simply means to obtain the logarithm of the magnitude, and the phase angle, respectively.
$\mathrm{In}{ }^{[11]}$ we find the definition of $P, Q \in C l^{+}(3,0)$ as
hence

$$
\begin{equation*}
\alpha_{1}=\operatorname{atanh} \sqrt{\frac{\left(N_{-}\right)^{*} \overline{\left(N_{-}\right)^{*}}}{N_{+} \overline{N_{+}}}}=\operatorname{atanh} \sqrt{-\frac{N_{-} \overline{N_{-}}}{N_{+} \overline{N_{+}}}} \tag{A15}
\end{equation*}
$$

because

$$
\begin{equation*}
Q \bar{Q}=N_{-} I^{-1} \overline{N_{-} I^{-1}}=N_{-} I^{-1} I^{-1} \overline{N_{-}}=-N_{-} \overline{N_{-}} \tag{A16}
\end{equation*}
$$

From we have

$$
\begin{equation*}
u^{\prime}=\frac{\left\langle N e^{-\alpha_{p} i_{P}}\right\rangle_{1}}{\left|\left\langle N e^{-\alpha_{P} i_{P}}\right\rangle_{1}\right|}=\frac{\left\langle N P^{-1}\right\rangle_{1}}{\left|\left\langle N P^{-1}\right\rangle_{1}\right|}=\frac{I Q P^{-1}}{\left|I Q P^{-1}\right|}=\frac{N_{-} N_{+}^{-1}}{\left|N_{-} N_{+}^{-1}\right|}=\frac{N_{-} \overline{N_{+}}}{\left|N_{-} \overline{N_{+}}\right|} . \tag{A17}
\end{equation*}
$$

According to ${ }^{[11}$, we have

$$
\begin{equation*}
e^{\alpha_{2} i_{2}}=\cos \alpha_{2}+i_{2} \sin \alpha_{2}=e^{\alpha_{P} i_{P}}=\frac{P}{a_{P}}=\frac{N_{+}}{\left|N_{+}\right|}=\frac{1}{\left|N_{+}\right|}\left(\langle N\rangle_{0}+\langle N\rangle_{2}\right) \tag{A18}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\left|\langle N\rangle_{2}\right|}{\langle N\rangle_{0}} \Leftrightarrow \alpha_{2}=\operatorname{atan} 2\left(\left|\langle N\rangle_{2}\right|,\langle N\rangle_{0}\right), \quad i_{2}=\frac{\langle N\rangle_{2}}{\left|\langle N\rangle_{2}\right|} \tag{A19}
\end{equation*}
$$

For the special case of $\langle N\rangle_{2}=0$ we have $e^{\alpha_{2} i_{2}} \rightarrow \pm 1=\operatorname{sgn}\langle N\rangle_{0}$, and do not need to compute α_{2} and i_{2}.

B COMPUTATION OF EXAMPLE 6.1

We assume in $C l(3,0)$ the multivector

$$
\begin{equation*}
M=1+2 \sigma_{1}+3 \sigma_{2}+4 I \sigma_{1}+5 I \sigma_{3}+6 I \tag{B20}
\end{equation*}
$$

A first step is to norm M by division with the central square root of $M \bar{M}$.

$$
\begin{align*}
M \bar{M} & =\left(1+2 \sigma_{1}+3 \sigma_{2}+4 I \sigma_{1}+5 I \sigma_{3}+6 I\right)\left(1-2 \sigma_{1}-3 \sigma_{2}-4 I \sigma_{1}-5 I \sigma_{3}+6 I\right) \\
& =1-4-9+16+25-36+I(12-16)=-7-4 I \\
& =\sqrt{65} \frac{-7-4 I}{\sqrt{65}}=e^{2 \times 1.0436} e^{2 \times 1.8304 I}, \quad\langle M \bar{M}\rangle_{0}=-7, \quad\langle M \bar{M}\rangle_{3}=-4 I \tag{B21}
\end{align*}
$$

showing that $\alpha_{0}=1.0436$ and $\alpha_{3}=1.8304$. We can check the value of α_{0} by computing the determinant

$$
\begin{equation*}
\operatorname{det}(M)=M \bar{M} \widehat{M} \widetilde{M}=65, \quad \alpha_{0}=\frac{1}{4} \ln \operatorname{det}(M)=\frac{1}{4} \ln 65=1.0436, \tag{B22}
\end{equation*}
$$

and similarly we can check (to make the angle positive, we add 2π)

$$
\begin{equation*}
\alpha_{3}=\frac{1}{2} \operatorname{atan} 2\left(-4 I^{*},-7\right)=\frac{1}{2} \operatorname{atan} 2(-4,-7)=\frac{1}{2}(-2.6224) \cong \frac{1}{2}(-2.6224+2 \pi)=1.8304 \tag{B23}
\end{equation*}
$$

We therefore have

$$
\begin{equation*}
\sqrt{M \bar{M}}=e^{1.0436} e^{1.8304 I} \tag{B24}
\end{equation*}
$$

and

$$
\begin{align*}
N= & M \sqrt{M \bar{M}}^{-1}=M e^{-1.0436} e^{-1.8304 I} \\
= & 1.9519+1.1807 \sigma_{1}-0.2712 \sigma_{2}+1.7019 \sigma_{3} \\
& -0.4520 I \sigma_{3}-1.0212 I \sigma_{2}-1.0424 I \sigma_{1}-0.8828 I \\
= & N_{+}+N_{-}, \tag{B25}
\end{align*}
$$

Therefore

$$
\begin{align*}
N_{+} & =1.9519-0.4520 I \sigma_{3}-1.0212 I \sigma_{2}-1.0424 I \sigma_{1} \\
\langle N\rangle_{0} & =1.9519, \quad\langle N\rangle_{2}=-0.4520 I \sigma_{3}-1.0212 I \sigma_{2}-1.0424 I \sigma_{1}, \quad\left|\langle N\rangle_{2}\right|=1.5276 \\
N_{-} & =-0.8828 I+1.1807 \sigma_{1}-0.2712 \sigma_{2}+1.7019 \sigma_{3} \tag{B26}
\end{align*}
$$

And we represent N_{+}as a rotor

$$
\begin{equation*}
N_{+}=\left|N_{+}\right| e^{\alpha_{2} i_{2}}=2.4786 e^{0.66405 \times\left(-0.2959 I \sigma_{3}-0.6685 I \sigma_{2}-0.6823 I \sigma_{1}\right)}, \quad\left|N_{+}\right|=\sqrt{N_{+} \overline{N_{+}}}=2.4786 \tag{B27}
\end{equation*}
$$

that is

$$
\begin{align*}
\alpha_{2} & =\operatorname{atan} 2\left(\left|\langle N\rangle_{2}\right|,\langle N\rangle_{0}\right)=0.66405 \\
i_{2} & =\frac{\langle N\rangle_{2}}{\left|\langle N\rangle_{2}\right|}=-0.2959 I \sigma_{3}-0.6685 I \sigma_{2}-0.6823 I \sigma_{1} \tag{B28}
\end{align*}
$$

We finally have

$$
\begin{equation*}
e^{\alpha_{1} u^{\prime}}=N e^{-\alpha_{P} i_{P}}=2.4786+2.0517 \sigma_{1}-0.3502 \sigma_{2}+0.9008 \sigma_{3}, \tag{B29}
\end{equation*}
$$

with unit vector part

$$
\begin{equation*}
u^{\prime}=\frac{N_{-} \overline{N_{+}}}{\left|N_{-} \overline{N_{+}}\right|}=0.9047 \sigma_{1}-0.1544 \sigma_{2}+0.3972 \sigma_{3}, \tag{B30}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1}=\operatorname{atanh} \sqrt{-\frac{N_{-} \overline{N_{-}}}{N_{+} \overline{N_{+}}}}=\operatorname{atanh} \sqrt{\frac{5.1435}{6.1435}}=1.5574 \tag{B31}
\end{equation*}
$$

In summary the polar decomposition gives

$$
\begin{align*}
M & =e^{1.0436} e^{1.5574 u^{\prime}} e^{0.66405 i_{2}} e^{1.8304 I}, \\
u^{\prime} & =0.9047 \sigma_{1}-0.1544 \sigma_{2}+0.3972 \sigma_{3}, \quad i_{2}=-0.2959 I \sigma_{3}-0.6685 I \sigma_{2}-0.6823 I \sigma_{1} . \tag{B32}
\end{align*}
$$

All computations have been verified with The Clifford Multivector Toolbox for Matlab ${ }^{18}$.

References

1. R. Ablamowicz, Computations with Clifford and Grassmann Algebras. Adv. Appl. Clifford Algebras 19, pp. 499-545 (2009). DOI: https://doi.org/10.1007/s00006-009-0182-3.
2. G. Aragon-Camarasa, G. Aragon-Gonzalez, J.L. Aragon, M.A. Rodriguez-Andrade, Clifford Algebra with Mathematica, Preprint, version 2, 2018, DOI: https://arxiv.org/abs/0810.2412.
3. F. Brackx, E. Hitzer, S. Sangwine, History of Quaternion and Clifford-Fourier Transforms, in: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM) Vol. 27, Birkhäuser, Basel, 2013, pp. xi-xxvii.
4. T. Bülow, G. Sommer, Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case, in IEEE Transactions on Signal Processing, vol. 49, no. 11, pp. 2844-2852 (Nov. 2001), DOI: https://doi.org/10.1109/78.960432
5. J.H. Conway, D.A. Smith, On Quaternions and Octonions, Peters AK., Natick, Massachusetts, 2003, https://the-eye.eu/ public/Books/Bibliotik/O/On\%20Quaternions\%20and\%20Octonions\%20-\%20John\%20H.\%20Conway.pdf
6. S.L. Hahn, K.M. Snopek, Complex and Hypercomplex Analytic Signals - Theory and Applications, Artech House, Norwood (MA), 2017.
7. E. Hitzer, Introduction to Clifford's Geometric Algebra, SICE Journal of Control, Measurement, and System Integration, Vol. 51, No. 4, pp. 338-350, (April 2012). Preprint: http://arxiv.org/abs/1306.1660, DOI: https://doi.org/10.48550/arXiv. 1306.1660
8. E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics 27, Birkhäuser, Basel, 2013. DOI: https://doi.org/10.1007/978-3-0348-0603-9
9. E. Hitzer, S.J. Sangwine, Multivector and multivector matrix inverses in real Clifford algebras, Applied Mathematics and Computation, Vol. 311, pp. 375-389 (2017), DOI: https://doi.org/10.1016/j.amc.2017.05.027
10. E. Hitzer, Quaternion and Clifford Fourier Transforms, Foreword by S.J. Sangwine, Chapman and Hall/CRC, London, 1st edition, 2021.
11. E. Hitzer, On factorization of multivectors in $C l(3,0), C l(1,2)$ and $C l(0,3)$, by exponentials and idempotents, Complex Variables and Elliptic Equations, pp. 1-23, (2021), DOI: https://doi.org/10.1080/17476933.2021.2001462
12. E. Hitzer, C. Lavor, D. Hildenbrand, Current Survey of Clifford Geometric Algebra Applications. Math Meth Appl Sci. 2022, pp. 1-31 (2022), DOI: https://doi.org/10.1002/mma.8316.
13. E. Hitzer, Extending Lasenby's embedding of octonions in space-time algebra $C l(1,3)$, to all three- and four dimensional Clifford geometric algebras $C l(p, q), n=p+q=3,4$. Math Meth Appl Sci., pp. 1-24 (2022). DOI: https://doi.org/10. 1002/mma.8577.
14. E. Hitzer, Embedding of Octonion Fourier Transform in Geometric Algebra of \mathbb{R}^{3} and Polar Representations of Octonion Analytic Signals. In: Hitzer, E., Papagiannakis, G., Vasik, P. (eds), Empowering Novel Geometric Algebra for Graphics and Engineering. ENGAGE 2022. Lecture Notes in Computer Science, vol 13862, pp 123-134, Springer, Cham, 2023. DOI: https://doi.org/10.1007/978-3-031-30923-6_10
15. A. Lasenby, Some recent results for $S U(3)$ and octonions within the GA approach to the fundamental forces of nature, Math Meth Appl Sci., pp. 1-21 (2023). DOI: https://doi.org/10.1002/mma. 8934
16. P. Lounesto, Clifford Algebras and Spinors, 2nd ed., Lon. Math. Soc. Lect. Note Ser. 286, Cambridge University Press, Cambridge (UK), 2001.
17. Matthew Chapter 7 Verse 8, New International Version of the Bible, https://www.biblegateway.com/ last accessed 01 June 2022.
18. S.J. Sangwine, E. Hitzer, Clifford Multivector Toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27, pp. 539-558 (2017). DOI: https://doi.org/10.1007/s00006-016-0666-x
19. S.J. Sangwine, E. Hitzer, Polar Decomposition of Complexified Quaternions and Octonions. Adv. Appl. Clifford Algebras 30, 23, pp. 1-12 (2020). DOI: https://doi.org/10.1007/s00006-020-1048-y.
20. B. Shilhavy, https://vaccineimpact.com/2022/44821-dead-4351483-injured-following-covid-19-vaccines-in-european -database-of-adverse-reactions/. last accessed 02 June 2022.
21. D.S. Shirokov, Concepts of trace, determinant and inverse of Clifford algebra elements, In: Proc. 8th Congress of ISAAC, edited by V. I. Burenkov et al, Vol. 1, pp. 187-194, Friendship Univ. of Russia, arxiv preprint (2012), DOI: https://doi.org/ 10.48550/arXiv.1108.5447.

AUTHOR BIOGRAPHY

Eckhard Hitzer. Eckhard Hitzer holds a PhD in theoretical physics from the University of Konstanz in Konstanz, Germany. He is Senior Associate Professor at College of Liberal Arts of International Christian University in Tokyo, Japan. His main research interests are theory and application of Clifford geometric algebras. Visiting Fellow for Religious, Philosophical and Scientific Foundations of Sustainable Society at Europa Institute of Sophia University, Tokyo, Japan. He recently published: Quaternion and Clifford Fourier Transforms, Chapman and Hall/CRC, 474 pp., Sep. 2021. Editor of GA-Net, and GA-Net Updates (blog).

[^0]: ${ }^{\dagger}$ Soli Deo Gloria.
 ${ }^{0}$ Abbreviations: GA, geometric algebra; OFT, octonion Fourier transform;

[^1]: ${ }^{1}$ This depends obviously on deliberate ordering and sign choices for the basis elements.

[^2]: ${ }^{2}$ Note that by construction $\overline{M_{ \pm}}=(\bar{M})_{ \pm}$.
 ${ }^{3}$ Grade involution \widehat{M} changes the sign of all odd grade parts, i.e., of grades one and three.
 ${ }^{4}$ Reversion \widetilde{M} reverts the order of all products and thus changes the sign of grades two and three.
 ${ }^{5}$ Note that the factors \mathbf{e}_{7} (later identified with the pseudoscalar $I \in C l(3,0)$) in the last equation of 9 are essential.

[^3]: ${ }^{7}$ Note the close algebraic analogy to the computation in [22, associating c_{k} and $\delta\left(x_{k}\right)$, as well as s_{k} and $-1 /\left(\pi x_{k}\right)$, for $k=1,2,3$.
 ${ }^{8}$ Corresponding to a set of four elementary octonion conjugations 14 .

[^4]: ${ }^{10} M \bar{M}$ is a factor in the determinant of M, see $\overline{B 22}$: $\operatorname{det}(M)=M \bar{M} \widetilde{M} \bar{M}$, showing that $\operatorname{det}(M)=0 \Leftrightarrow M \bar{M}=0$. The determinant is the same when computed in a matrix representation of $C l(3,0)$.

