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The procedures of quantization are the same in the case of matter as in the case of light. 

They involve specific invariants to the scale change, and specific statistics describing that 
scale change in physics. A previous part of this work [35] explores the general mathematics 
of the physics involved in the problem of quantization. The present part deepens the 
similitude between the procedures of quantization in light and matter, by proving the 
identity of the resonators serving for quantization from a thermodynamical point of view. 
They are dipoles: electric in the case of light – Planck’s resonators, representing the matter 
– and magnetic in the case of matter – Procopiu’s resonators, representing the light. 
Mathematical details are exposed, and some physical consequences in observance thereof 
are explored. 
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There are more things in heaven and earth, Horatio, 
than are dreamt of in your philosophy. 

Hamlet, Prince of Denmark 
 

1. INTRODUCTION 

Procopiu’s quantization procedure is the only quantization procedure in the case of 

matter that reproduces the Planck’s archetypal procedure from the case of light [35]. The 

essential differences between the two procedures of quantization stay in details of 

realization: (1) the structure of the quantum (universal constant, in the case of Planck, vs. 

invariant, in the case of Procopiu), and (2) the associated statistics (discrete, in the case 

of Planck, vs. continuous, in the case of Procopiu). However, the nature of the two 

essential items of this kind of quantization procedure is the same in the two cases, 

indicating the differentiae of such a concept: the quantum is a mathematical invariant 

connected with a dynamics just like the classical Newtonian force, and the associated 

statistics is that of ensembles described by probability densities with quadratic variance 

function, invented by Max Planck in order to serve the quantization. These two defining 

differentiae of the concept of quantization procedure initiated by Max Planck are, by and 

large, not of physical nature. In this work, however, we intend to go deeper into the 

parallel between the quantization of light and the quantization of matter, by showing that 

it goes beyond non-physical criteria. There is a more detailed parallelism between the two 

procedures, and it regards the very physical structure of the resonator invented by Max 

Planck which, besides its definition as an instanton given by us previously (see [35], §4.4), 

needs a little theoretical explanation in order to be suitably understood and applied for the 

case of matter. 

Our ideas in approaching this analogy came largely from applying the scale transition 

perspective to a description of the physical structure of matter. We were thereby led to a 

specific comprehension of the modern asymptotic freedom concept that, from the natural 

philosophy perspective, was made possible only by the quantization procedure. From this 

viewpoint, the particles realizing the cohesion of matter are photons, insofar as they need 
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to be described like photons: they must be conceived as free particles, at least formally 

speaking. Particularly illuminating, at least for what we have to say here anyway, are the 

2004 Nobel lectures of the recognized forerunners of the theory of asymptotic freedom – 

and their different works, of course, serving for the foundation of this physical concept – 

especially David Gross’ Nobel Lecture and the presentation slides [21]. 

In order to unveil from the very beginning the natural-philosophical point of view, 

we start with the observation that Max Planck defined the concept of resonator in order 

to account for the equilibrium temperature of the radiation in a physical enclosure 

containing matter and light. Even though Planck presented his choice as just an incidental 

one, the physics ever since tells us another story: his resonator is the most convenient 

concept that could ever serve the purpose of quantization. In a word, the resonator is a 

necessity, not just an incident. Without this choice we are not able to construct a 

thermodynamics of radiation based on the electromagnetic theory of light. And, as we 

intend to show here, there is, indeed, a more general theory of radiation necessarily asking 

for the Planck’s concept of resonator: the electromagnetic theory is just a particular case. 

Fact is that, according to Kirchhoff’s laws of radiation, a thermal equilibrium can be 

established in a Wien-Lummer enclosure [53] containing radiation and matter. This 

equilibrium is essential in defining a temperature of radiation according to the laws of 

thermodynamics. However, the Kirchhoff’s laws of radiation are only phenomenological: 

they do not require details regarding the physical structure of the matter used in describing 

this thermal equilibrium. They simply ask for matter as a category, respecting only the 

thermodynamical prescriptions. Therefore, according to these laws, we can think freely 

of any physical structure of the matter in thermodynamical equilibrium with radiation in 

an enclosure, in order to be able to define the temperature of radiation. 

We can think, for instance, of an ideal gas, as Wily Wien once did (see [52] for a 

closer documentation), on the occasion of establishing the radiation law bearing his name, 

i.e., the Wien’s radiation law. This is, in our opinion, the first sign that the Kirchhoff’s 

laws are not quite so general in order to satisfy the thermodynamical requirements of 

thermal equilibrium. More to the point, their generality should not stand upon the idea of 

arbitrariness of the matter structure in equilibrium with radiation, but upon the idea of 

determining that structure in order to realize such an equilibrium. For the Wien’s case in 
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point, the ideal gas is the only one liable of having an absolute temperature connected to 

a sufficient statistic – namely, the average kinetic energy of the molecular chaos – by its 

very definition. Then, and only then, if a thermodynamical equilibrium is established in 

an enclosure containing gas and radiation, one can talk about the constant temperature of 

the matter inside enclosure, which is measured by the absolute temperature of the gas. 

Only at this point, therefore, can we apply the thermodynamical reasons, to the effect that 

the absolute temperature should also be the radiation’s temperature, considering, of 

course, the light as a physical system submitted to the same thermodynamic laws as the 

matter. This is just the general idea, but in order to get real regarding an equilibrium of 

the two physical ‘substructures’ – light and matter – of the content of a Wien-Lummer 

enclosure, we need to consider the interaction between them, and this fact brings 

complications. 

It is on this occasion when Max Planck used the fact that the Kirchhoff’s laws do not 

require a structure for the matter in the enclosure, as an advantage. To wit, he translated 

the lack of requirement into the liberty of an invention, physically decided based on the 

fact that the light is an electromagnetic phenomenon. Indeed, the Wien’s ideal gas 

considerations, on the occasion of establishing his law of radiation, were conducted in 

such a way that they disregarded an important physical point of concern: the mechanism 

of interaction of the matter with radiation. Indeed, in his reasoning, Wien resorted heavily 

on the classical ‘analogy’, if we may say so, between the kinetic energy of molecules and 

the energy of light, as calculated from its intensity. This allowed him to skip the details 

of the mechanism of interaction that would be able to explain physically the 

thermodynamical equilibrium. 

On the other hand, Planck’s choice for the fundamental structure of the matter in 

equilibrium with radiation – the resonator – is an electric vibrating dipole, instead of just 

the simple material point of the ideal gas. It was deliberately chosen to fill in for such a 

missing point: the physical details of the interaction of the matter with radiation should 

be explicit, inasmuch as the radiation is electromagnetic. Indeed, it was known from 

Hertz’s electromagnetic theory ([27], pp. 137 ff) that such a dipole can absorb and emit 

electromagnetic light. Thus, based on this natural phenomenon, a thermal equilibrium can 
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be physically established inside a Wien-Lummer cavity, which is liable to be theoretically 

described in terms of the electrical dipoles interacting with radiation, by a kind of 

statistical theory. And, to this end, Max Planck even constructed a special statistics for 

describing the physics of this kind of equilibrium: the statistical theory of ensembles 

characterized by probabilities having densities with variance function quadratic in their 

mean values (see [35], §2.3). Reproducing, for conformity and documentation, Planck’s 

own words, the ideas above are expressed as follows: 

… This law (Kirchhoff’s, a/n) states that a vacuum completely enclosed 
by reflecting walls, in which any emitting and absorbing bodies are 
scattered in any arrangement whatever, assumes in the course of time the 
stationary state of black radiation, which is completely determined by one 
parameter only, namely, the temperature, and in particular does not 
depend on the number, the nature, and the arrangement of the material 
bodies present. Hence, for the investigation of the properties of the state 
of black radiation the nature of the bodies which are assumed to be in the 
vacuum is perfectly immaterial. In fact, it does not even matter whether 
such bodies really exist somewhere in nature, provided their existence and 
their properties are consistent with the laws of thermodynamics and 
electrodynamics. If, for any special arbitrary assumption regarding the 
nature and arrangement of emitting and absorbing systems, we can find a 
state of radiation in the surrounding vacuum which is distinguished by 
absolute stability, this state can be no other than that of black radiation. 

Since, according to this law, we are free to choose any system whatever, 
we now select from all possible emitting and absorbing systems the 
simplest conceivable one, namely, one consisting of a large number N of 
similar stationary oscillators, each consisting of two poles, charged with 
equal quantities of electricity of opposite sign, which may move relatively 
to each other on a fixed straight line, the axis of the oscillator. 

It is true that it would be more general and in closer accord with the 
conditions in nature to assume the vibrations to be those of an oscillator 
consisting of two poles, each of which has three degrees of freedom of 
motion instead of one, i.e., to assume the vibrations as taking place in 
space instead of in a straight line only. Nevertheless we may, according 
to the fundamental principle stated above, restrict ourselves from the 
beginning to the treatment of one single component, without fear of any 
essential loss of generality of the conclusions we have in view. ([39], pp. 
135 – 136; emphasis added, n/a) 
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Taking up the issues presented here by starting from the end one of this excerpt, the 

history of physics proved, quite contrarily, that the generality was lost, in fact, and even 

in an important aspect at that: the fundamental structures of the matter in equilibrium with 

radiation are not arbitrary, but they must be dipoles. This is one of the essential conclusion 

of the discovery of the modern asymptotic freedom [21]. One can say that the generality 

can be preserved, indeed, but only from a dynamical point of view and, moreover, even 

by a special formulation of dynamics. This formulation contains the equilibrium in a 

specific way, according to the idea of force characterizing a statics, once voiced by 

Eugene Wigner on the occasion of a proposal of some particular foundations of the wave 

mechanics [54]. However, in order to take heed of such an idea, we need to learn some 

more lessons from the physics of light along the lines of Planck’s procedure of 

quantization. And because Procopiu’s procedure of quantization is the only one going 

along those very lines, but specifically in the case of matter not light, we may be allowed 

to go back to a presentation of the essentials of the theory of Procopiu quantization in the 

most notable form of a counterpart of Wien-Lummer cavity [53], involving the forces 

directly. However, these are to be conceived in a special optical medium that generalizes 

the electromagnetic vacuum, but points out to the dipole as a necessary fundamental 

structure in physics, as required by the asymptotic freedom. 

The general natural-philosophical grounds for our approach in constructing a 

counterpart of Planck’s ideas expressed in the previous excerpt, but with application to 

the case of matter, are as follows. First, notice that in the very Planck’s expression, the 

content of a Wien-Lummer enclosure in the problem of radiation is, so to speak, ‘a piece 

of vacuum’. Then, nothing appears as more natural than taking the fundamental unit of 

matter imagined by Planck as necessary in solving the problem of radiation – the Planck’s 

resonator – as «a piece of vacuum having two electric charges at the ends». This is, indeed, 

just the definition of an electric dipole in the Katz’s natural philosophy of charge (see 

[34], §3.1); for conformity see also the original [30]). Then, according to the same natural 

philosophy, the correspondent in matter of the Planck’s resonator should be, simply, «a 

piece of matter having two magnetic charges at the ends», i.e., a magnetic dipole, which 

we propose to call a Procopiu’s resonator, in view of the fact that the Procopiu’s 



The Physical Basis of Procopiu’s Quantization 

 
 
 
 

 
 
 
 
 
 

7 

quantization is a quantization in the case of matter that completely parallels that of 

Planck’s from the case of light (see [35], passim]. The hard part of such an analogy would 

then be, not conceiving the resonator because this is readily available to our intellect, but 

conceiving the equivalent of a Wien-Lummer cavity ‘completely enclosing matter’. 

However, according to the very same natural philosophy of Katz for charges, this concept 

seems to have been exercised by the human intellect for ages. Indeed, by ‘duality’, as it 

were, we can think that this should be ‘a matter enclosed by reflecting walls’. If these 

reflecting walls are taken, by the very same ‘duality principle’, as made from ‘vacuum’ – 

replicating the reflecting walls of Planck, which are made from ‘matter’, obviously – we 

get the well-known image, largely utilized in theoretical physics, of an isolated extended 

particle, standing alone in a universe. 

One can say that this is the kind of physical particle that can be described by the first 

quantization procedure ever. It can be defined, according to the precepts of special 

relativity, as a genuine ‘instanton’ (see [35], Chapter 4, especially §4.4): a collection of 

simultaneous events described by a sl(2, R) Riemannian manifold. The present work gives, 

by and large, the essential mathematics helping to understand the physics of such a natural 

philosophy, but from the perspective of the modern asymptotic freedom concept. 

2. THE RESONATOR AS A FUNDAMENTAL PHYSICAL STRUCTURE 

Regardless the category whose physical structure it explains – and talking of category 

we have in mind a kind of Kantian use of the concept, meaning specifically matter and 

light here, taken as two different categories – the resonator has, according to Katz’s 

natural philosophy of charges, the very same fundamental physical structure: a dipole; 

electric, representing the matter in the case of light, respectively magnetic, representing 

the light in the case of matter. And while we are along this path of mending the 

philosophical meaning of categories, let us notice that the vacuum is a category too: it is 

taken here as meaning the absence of matter, according to the physical definition of this 

concept. This objectively means matter interpreted by particles having Newtonian forces 

between them, in order to be conceivable as ensembles of particles in equilibrium. From 

this point of view it is important to notice that matter and light are two opposite categories: 
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the physics, mainly that of the last century, has established that they go into one another 

when disappearing. Neither of them goes into vacuum. The dipole will be presented here, 

mathematically, as a metric structure regardless of the idea of interpretation: a property 

of the geodesics of a special Riemann manifold of positive curvature. The general 

incentives for such a presentation come, by and large, from the Louis de Broglie’s theory 

of optical ray (see [5], especially [5b] and [5c]) serving for completion of the Fresnel’s 

physical theory of light, by proving its harmony with the quantum concepts (see also [34], 

Chapter 2, §2.1 for more details). 

2.1. THE GENERAL THEORY OF AN OPTICAL RAY 

The first problem to be solved, in the de Broglie’s order of things physical – for, this 

is, indeed, an order set forth by an analysis of the work of Louis de Broglie (see [34], 

passim) – is that of some theoretical requirements for the physical description of a light 

ray. To start with, one needs to know the equation of progression of the phenomenon of 

light along an optical ray, i.e. a mathematical description of the propagation phenomenon 

from the point of view of the ray theory. The mathematical point of view in the natural-

philosophical requirements on propagation of light is usually represented via a local 

displacement in an arbitrary direction from a point along the ray, which thus decides the 

ray path. The mathematics is, again usually, handled by the so-called Euler-Lagrange 

equations describing the displacement according to the idea that the real path of the light 

is corresponding to an extremum of the optical path, defined as (see, e.g., [48], [49]; these 

are the works we follow here, anyway): 

 
(2.1.1) 

where (ds)2 º ádx|dxñ is the square of arclength of the corresponding geometrical path, 

i.e. of the path in the empty space hosting the optical medium of refraction index n(x), 

assumed to be Euclidean. The variational problem associated with the integral from 

equation (2.1.1) – the Fermat’s principle – provides the differential ‘equation of motion 

along the ray’, where the geometrical path length is playing the part of ‘time’ of motion. 

From this perspective, therefore, the motion represents a propagation, whose time is 

represented by the geometrical path length from a position to another, as in the classical 

I =
def

n(x, y, z) ⋅ dx dx∫
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optics, where the light is assumed to propagate through free space. The corresponding 

differential equation is: 

 
(2.1.2) 

This demands a little explanation from our part, mainly regarding the ket notation. 

In this kind of optical problems, the geometry is dealing with coordinates of location 

only. Thus, what is meant by the symbol |xñ, as well as by x, is a set of three coordinates 

in space, locating the positions in a Cartesian reference frame. Only, the Dirac’s notation 

suggests an algebraic realization of the vector as a 3´1 matrix, i.e., a matrix with three 

lines and a column. In the cases where the reference frame is unique in space, like in path 

optics, there is no difference in meaning between the two notations. Such a difference 

occurs only when the reference frame changes along the path, and it is important for the 

global geometry involved in the optics of light, in that the geometrical quantities of 

physical interest are the torsions, not the curvatures as usual [8]. 

For now, though, coming back to our trail of discussion here, regarding the classical 

optics, after working on the algebraical expansion of the equation (2.1.2), we end up with 

the differential equation: 

 (2.1.3) 

Here, the accent means differentiation upon s, and a dot between vectors means the 

regular dot-product of the vectors. Assuming a functional form of the refraction index of 

the medium, will give us the properties of propagation in that physical medium – if it 

exists at all – described by that refraction index. To wit, let us choose a refraction index 

having the functional form: 

 
(2.1.4) 

where áx|xñ is the sum of squares of the coordinates along the path of light. The 

coordinates are taken here in a form scaled with reference to some gauge lengths, in order 

to maintain the spirit of Fresnel’s physical theory of light, whereby the coordinates are to 

be considered pure numbers, so that the notation makes sense for now, from a 

mathematical point of view. The equation (2.1.3) then becomes: 

d
ds

n(x) d
ds
x

⎛
⎝⎜

⎞
⎠⎟
= ∇n(x)

n(x) ′′x + (∇n(x) ⋅ ′x ) ′x = ∇n(x)

n(x) = 1+ x x( )−1 ∴ ∇n(x) = −2 1+ x x( )−2 x
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 (2.1.5) 

Using the definition of the elementary arclength of the path in terms of coordinates, 

which we take a priori as Cartesian, obviously in an – again, assumed – Euclidean 

background space, we have: 

 
(2.1.6) 

Then, by differentiating the last equality, we get the relations: 

 
(2.1.7) 

that can be used in order to conclude on the equation (2.1.5). First, by differentiating 

the very equation (2.1.5), we have: 

 (2.1.8) 

whence dot-multiplying this by |x²ñ and using the first relation from (2.1.7), we get: 

 
(2.1.9) 

Geometrically, this means that the curvature of the ray path should be constant for 

this kind of continuum, for the curvature of a geometrical path is in fact measured by the 

second derivative of the coordinates along that path. Returning then to (2.1.5) once again, 

but this time for dot-multiplying it by |x²ñ directly, while using the first of the results 

(2.1.7) and the result (2.1.9), gives: 

 
(2.1.10) 

where R is a non-dimensional constant, suggesting, again, the necessity of a gauge 

length in defining the curvature. As we shall see, this observation is of tremendous 

importance in deciding upon the definition of one of the most important concepts of 

physics, the frequency, based on the phenomenon of holography. Bluntly put, the 

frequency is, indeed, defined as a measure of curvature. For now, though, just inserting 

the first relation (2.1.10) into equation (2.1.8) produces one final equation: 

 
(2.1.11) 

1+ x x( ) ′′x − 2 x ′x ′x + 2 x = 0

(ds)2 = dx dx = ′x ′x (ds)2 ∴ ′x ′x = 1

′x ′′x = 0, ′′x ′′x + ′x ′′′x = 0

(1+ x x ) ′′′x − 2 x ′′x ′x = 0

′′x ′′′x = 0 ∴ ′′x ′′x = const

2 x ′′x
1+ x x

= − 1
R2
, ′′x ′′x ≡ 1

R2

′′′x + 1
R2

′x = 0
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This is the ‘genuine optical occurrence’, as it were, of a third order linear differential 

equation which is liable to describe the concept of Hooke’s light ray (see [35], §3.2, 

equation (3.2.14); for conformity see [28], pp. 55–65). However, more important for a 

theory of matter to which that old concept is referring, (2.1.11) describes the dynamical 

necessities of the regularization theory for the Kepler motion [see [35], §3.4, equations 

(3.4.9) and (3.4.18)]. This last instance comes down to considering the space occupied by 

the center of force in the Kepler dynamical problem as an optical medium of this sort. 

While these tasks will be gradually accomplished as we go along with our work, for 

now we have a general observation that needs to be made in order to properly guide the 

work itself. Namely, the optical medium described by the refraction index from equation 

(2.1.4) should be considered a Riemannian manifold which turns out to be of finite volume 

having positive curvature. Thus, it can play the part of a Wien-Lummer cavity in the 

thermodynamics of light studies: we have, therefore, a theoretical model of this 

experimental device, described as a Riemannian space. Recall, once again, that such a 

cavity was, and still is in fact, the device of experimental study of the light from a 

thermodynamic point of view, serving in obtaining the right laws of radiation. Modern 

high-tech researches point out to the important fact that the universe we inhabit can be 

taken as such a device [14]. 

Going for some details along the line pinpointed in the previous excerpt from Planck, 

the Planck’s ‘vacuum’ is represented here by a transparent continuum, having the 

refraction index given by the equation (2.1.4), counting geometrically as a Riemannian 

manifold of positive curvature. Indeed, the elementary optical path of this medium is 

conform-Euclidean, assuming that ádx|dxñ is Euclidean, as we did. When introducing two 

suitable parameters a, b in order to characterize the Euclidean shape of the piece of matter 

representing this medium, the regular geometric form of the metric becomes [6]: 

 
(2.1.12) 

Here we have used the equation (2.1.1), used to establish the optical path definition, 

in its infinitesimal instance, of course, so that ds is the elementary optical path. 

(ds)2 = 4a2b2
dx dx

(b2 + x x )2
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This is the metric of the realm called Maxwell fish-eye, and is especially interesting 

for us because it has circles as geodesics, with the property of an electric dipole’s lines of 

force: all the geodesics passing through any point of the realm in any one of its two-

dimensional sections, also pass through a point which is its transform by reciprocal radii 

with respect to an appropriate sphere. That is, optically speaking, the Maxwell fish-eye is 

a perfect device in which all light rays through a point have the properties of the lines of 

force of an electric dipole: circles passing through two fixed points representing the 

locations of the two component charges of the dipole (see [48], Chapter IV; [49], §§1.6, 

1.7 and 2.9). 

Should the necessity occur to operate an interpretation here, in the manner required 

by the wave theory of light [11], it obviously needs to be accomplished by particles having 

electric charges. However, these electric charges can have any values: they are not 

necessarily quantized. Case in point, they must have the Lorentz property, but in its 

utmost generality. To wit, in order to acquire a charge of opposite sign, a certain position 

from such a medium needs to be replicated by inversion with respect to a certain, locally 

spherical surface (see [32]; §§57 and 67; see also [34], §3.2 for details). That spherical 

surface is, according to Lorentz, the only ‘bearer’ of zero charge particles. In general, we 

can have here the property of a physical lens, as it were, characteristic to a portion of a 

surface, which can be differential, as well as fractal. 

Let us show some details of these statements, first because, physically speaking, the 

theory contains the fundamental structure required by Planck’s quantization procedure 

just naturally, but also because we need to be fairly familiar with the details of the 

procedure in view of its application in the theory of embeddings (we follow here [6], §73). 

These details involve the space embedding into a four-dimensional Euclidean manifold. 

Again, as we shall see here, this four-dimensional manifold is of essence in physics, in 

general. For a good guidance on the topic, so much the better as this guidance is offered 

in connection with classical non-Euclidean geometries, we recommend the exquisite 

work of Ruben Aldrovandi and José Geraldo Pereira on Geometrical Physics, especially 

the Chapter 23 of that work [1]. As, further on, the embedding procedure involves the 

stereographic projection, which is of essence in constructing the counterpart of Planck’s 
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resonator in matter – the Procopiu’s resonator, as we would like to call it – one may need 

a previous accommodation with this kind of projection. We recommend a geometrically 

thorough presentation of the stereographic projection method – analytic as well as 

synthetic geometry – which is made in the booklet [43]. Now, back to our line of discourse. 

According to Constantin Carathéodory, the parameters a and b, that we have 

introduced previously, have the following meaning: the metric (2.1.12) is the metric of a 

three-dimensional manifold in a four-dimensional space, analytically represented by a 

four-dimensional Euclidean sphere of radius a, projected stereographically onto a three-

dimensional Euclidean space at the distance b from the center of the projection. This can 

be shown by the following analytical procedure. Start with the observation that the 

equation of a Euclidean four-sphere in Cartesian coordinates x, h, z, t is, by analogy with 

the three-dimensional case: 

 (2.1.13) 

and the three-dimensional stereographic projection on one of its Euclidean tangent 

hyperplanes, from a point located at the distance b with respect to that hyperplane, is 

achieved by the formulas: 

 
(2.1.14) 

Introducing these coordinates in (2.1.13), we get an equation that can be solved right 

away, giving two values of n: 

 
(2.1.15) 

Here r2 º áx|xñ is the Euclidean norm of the position vector of the projected point from 

the tangent hyperplane. The first one of these values, t = -a, corresponds to the ‘south 

pole’ of the hypersphere (2.1.13) – the ‘north pole’, t = a, being the point of contact of 

the hyperplane (x, y, z) with the hypersphere – where the correspondence realized by 

equation (2.1.14) is singular. On the other hand, though, the second one of the values 

(2.1.15) corresponds to the projection of current point of coordinates (x, h, z, t), onto the 

‘north pole’ hyperplane, t = a, thus helping in representing the current point by a point in 

ξ 2 +η2 +ζ 2 +τ 2 = a2

ξ
x
= η
y
= ζ
z
= τ + a

b
=: n

n = 0, n = 2ab
b2 + r2
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the ‘tangent’ Euclidean space in coordinates (x, y, z). According to equation (2.1.14), this 

representation is provided by the formulas: 

 
(2.1.16) 

which can be readily solved for (x, y, z), and provide the Cartesian coordinates by the 

following ratios: 

 
(2.1.17) 

Now, using these last two equations, we can construct the four-dimensional Euclidean 

elementary distance of the ambient space, as an Euclidean metric: 

 (2.1.18) 

which turns out to be the metric (2.1.12). 

Going a little bit ahead of us here, we see these mathematical results the following 

way: the Maxwell fish-eye is an optical medium describing the matter in a three-

dimensional Euclidean space where the light dwells. The matter in this space is itself a 

Riemannian manifold, having the metric (2.1.18), which is conformal with the Euclidean 

metric in three-space of our experience, as in equation (2.1.12). The problem is not what 

the three-space represents, because we know this from that experience, but what the 

coordinates (x, h, z, t) are, and an answer presents itself right away: they are charges. 

This is a story first told to us by the geodesics of the conformal metric (2.1.12), which are 

lines characterizing the field of dipoles: either electric or magnetic. On the other hand, 

any two of the four coordinates (x, h, z, t) can be associated with each other, in order to 

give either the square of an electric charge or the square of a magnetic charge according 

to Katz’s natural philosophy (see [34], §3.1). The association is, a priori, a stochastic 

process and, as we shall show here, has everything in common with the stochastic type of 

processes once imagined by Carlton Frederick for the metric tensor of the spacetime [16]. 

So, we may say that, the equation (2.1.13) represents here, by and large, an 

electromagnetic continuum split into charges by the procedure of embedding a three-

dimensional Euclidean manifold. 

ξ = a 2bx
b2 + r2

, η = a 2by
b2 + r2

, ζ = a 2bz
b2 + r2

, τ = a b
2 − r2

b2 + r2

x = b ξ
a +τ

, y = b η
a +τ

, z = b ζ
a +τ

, r2 = b2 a −τ
a +τ

(ds)2 = (dξ )2 + (dη)2 + (dζ )2 + (dτ )2
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This is a ‘device’, realized, in the case of light, by a Wien-Lummer matter cavity 

enclosing light and matter – this last category in the form of a physical structure made of 

Planck’s resonators – in thermal equilibrium. In the case of matter, on the other hand, it 

should be realized by the ‘dual’ of this device, as it were: a vacuum-made cavity 

containing the matter to be quantized – a category that cannot have but a physical structure 

made of Procopiu resonators – in thermal equilibrium with light, which is a category that 

cannot have but a physical structure made out of dipoles, whose nature remains yet to be 

established. In any case, details aside, the quantization procedure must be that of Planck. 

It pays to notice the different roles played by light in the two situations: as we shall see, 

this is the reason for the fact that we have today the concept of Yang-Mills fields. 

2.2. THE WIEN-LUMMER ENCLOSURE FOR MATTER 

We will work here on some details of an example in three space coordinates, in order 

to get the grip on some well-known cases, which serve theoretically just for guiding 

purposes: afterwards, though, we can frame easier the previous four-dimensional case of 

the charges, which is of the same nature. Thus, we have a sphere centered in origin and 

radius R: 

 (2.2.1) 

to be projected onto the upper tangent plane x3 = R (the so-called north pole) from its 

center. If (x, y, R) are the coordinates of the point in plane upon which the point of 

coordinates (x1, x2, x3) of the sphere is projected from origin, then this projection is 

described by the system of equations: 

 
(2.2.2) 

where l is a parameter. Now, if the Euclidean metric of this continuum reproduces 

the signature of the quadratic form (2.2.1), then in terms of the coordinates of the plane 

we can write it as: 

 
(2.2.3) 

Using (2.2.1) and (2.2.2) for calculating l, we get: 

ξ1
2 + ξ2

2 + ξ3
2 = R2

ξ1
x
=
ξ2
y
=
ξ3
R
=:λ

(dξk )
2

k∑ = (x2 + y2 + R2 )(dλ)2 + λ 2 (dx)2 + (dy)2{ }
+2λdλ(xdx + ydy)
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(2.2.4) 

so that the metric (2.2.3) becomes: 

 
(2.2.5) 

Is this truly a metric in the geometrical sense, i.e. the elementary distance measure in 

space? The answer is affirmative: it is, indeed, the infinitesimal Euclidean distance in the 

three-dimensional space, calculated with the so-called Laguerre’s formula, involving the 

logarithm of a cross-ratio. It is, obviously, realized as a metric in the two-dimensional 

case, i.e. on a surface. Let us get into some details. 

To wit, if we denote by X a point in this space, then a coordinate representation is 

given by a triple of numbers representing the point in the sense of Cartan: memorize them 

somehow, and then carry them everywhere and realize the position in any place via an 

adequate reference frame [8]. A slight change in notation seems in order here, to the effect 

that the lower indices will be assigned to points, rather than to coordinates, which are to 

be taken as Cartesian coordinates: 

 
(2.2.6) 

Note, in this association, that X should not necessarily be taken as a vector: it is just 

a triple of numbers. This means that we shall build the geometry based on the properties 

of the quadratic form from the left hand side of equation (2.2.1), using, however, the 

properties of this quadratic form as we know them from the regular geometry: 

 (2.2.7) 

Thus, the condition to have X as a real point in space is (X, X) > 0, even if this quantity 

is unspecified by the metric idea of a sphere in space, or something like that. By contrast, 

the condition (X, X) < 0 defines, from a geometrical point of view some purely imaginary 

points. However, from a physical point of view, such points can be only ‘partially’ 

imaginary, so to speak. The physical interpretation depends on the condition (X, X) = 0, 

and this can always make sense in physics, pending a condition of quantization. For 

instance, it can represent the condition of equilibrium of Newtonian forces within the 

λ 2 = R2

x2 + y2 + R2
∴ 2λdλ = −2R2 xdx + ydy

(x2 + y2 + R2 )2

(dξk )
2

k∑ = R2 (dx)
2 + (dy)2

x2 + y2 + R2
− xdx + ydy
x2 + y2 + R2

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X =
def

(x, y, z)

(X ,X ) ≡ x2 + y2 + z2
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static ensembles of particles serving for interpretation. Then stochastic processes can be 

defined in order to assimilate the fundamental physical quantities generating the three 

forces with lengths, serving to realize the Cartanian program [8]. The stochastic processes 

are defined by specific Lewis-Lutzky invariants, and thus they realize the necessary 

memory serving for accomplishing the program. In this specific case only the mass can 

be imaginary, and in microcosmos, where the charges prevail by their Newtonian forces 

it is, indeed, always imaginary (see for details [34], §§3.1 and 4.3). 

In order to construct an absolute geometry based on these considerations (see for 

details and discussion [31]) we take the quadratic form (2.2.7) as a norm for the points in 

our space of points. It induces an internal multiplication of points (a dot-product, as it 

were) by the polarization process: 

 
(2.2.8) 

with an obvious correspondence between indices of points and indices of the 

corresponding coordinates. This dot-product, entirely analogous with the classical 

Euclidean dot-product, helps us in characterizing a straight line in space, which is the 

essential concept necessary in constructing a metric. The straight line joining two points 

X1 and X2 is, like in the regular Euclidean geometry, the locus of points: 

 (2.2.9) 

with λ and µ variable numbers representing the homogeneous parameters of points 

along the line. This straight line intersects the absolute (X, X) = 0 in two points, having 

the homogeneous parameters partially determined – meaning: up to an arbitrary factor – 

by the quadratic equation: 

 (2.2.10) 

That is, we can determine only the ratios of these two parameters – the non-

homogeneous coordinates along the line – as the roots of this equation, viz.: 

 
(2.2.11) 

As it turns out, these two ratios are enough for our purpose of building a metric of the 

space. 

(X
1
,X

2
) =
def

x
1
x
2
+ y

1
y
2
+ z

1
z
2

X = λX1 + µX2

(X ,X ) ≡ λ 2(X1,X1)+ 2λµ(X1,X2 )+ µ 2(X2 ,X2 ) = 0

t ≡ λ
µ
= −
(X1,X2 )
(X1,X1)

±
(X1,X2 )

2 − (X1,X1) ⋅(X2 ,X2 )
(X1,X1)
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Indeed, in geometry, a metric is, in fact, the distance between two infinitesimally close 

points, so that what we need first is to define a distance between points. Now, the quantity 

that reduces to distance between two points in the Euclidean case, turns out to be the cross 

ratio of four points on a straight line: two of these points are fixed and used as a reference 

frame on the line, while any other pair of points is the current pair of points between 

which we calculate the distance. With reference the the straight line defined by equation 

(2.2.9), the two points having the parameters from equation (2.2.11) can be taken as the 

reference frame. Then the distance between X1 and X2 is, up to a numerical factor, the 

logarithm of this cross ratio (the so-called Laguerre’s formula). For, given two points 

X1,2 the straight line joining them contains all points of the form X = tX1 + X2, forming 

the continuum whose geometrical form is that line. In order to define the distance between 

the two points, we can choose arbitrarily two other points, X3,4 say, to play the part of the 

reference frame on the straight line. Then the cross ratio of points on line is simply defined 

as the cross ratio of the corresponding non-homogeneous parameters t. So, we have: 

 
(2.2.12) 

The Laguerre distance is simply proportional to the logarithm of this quantity, the 

coefficient of proportionality being a universal constant for a given geometry. It depends, 

of course, on the second pair of points. which is also our choice, and therefore may be 

deemed as subjective on occasions – thus suggesting a possible ambiguity – but  this 

ambiguity can be substantially reduced if we refer the construction to the absolute of 

space: this is a sphere, and a straight line in space always intersects a sphere in two points. 

In this case, we notice first that according to equation (2.2.9), the parameter t has the 

values t2 = 0 for the point X2 (i.e. l = 0), and correspondingly, t1 = ∞ for the point X1 (i.e. 

µ = 0). In view of this, the cross ratio (2.2.12) takes the simple form of a ratio: 

 
(2.2.13) 

upon which our choice for the two points X3 and X4 reveals the advantage of allowing 

a standardization, as it were, of this construction. Namely, disregarding the algebraical 

nature of the two numbers t3,4, one can say that every pair of points in space has a 

(X1,X2;X3 ,X4 ) =
def t1 − t3
t1 − t4

:
t2 − t3
t2 − t4

(X1,X2;X3 ,X4 ) =
t4
t3
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corresponding pair of points on the absolute, these being the points where the 

corresponding straight line passing through those points intersects the absolute. These are 

real if the straight line meets the absolute, identical if the straight line is tangent to 

absolute, and complex if it does not touch the absolute. If the two points X1 and X2 are 

both inside the absolute, then the numbers t3,4 must be real, no question about that. Thus 

the corresponding parameters t3,4 are then given by the two ratios from the equation 

(2.2.11), so that equation (2.2.13) becomes: 

 
(2.2.14) 

This ratio, however, is complex of unit modulus so it cannot serve the intended 

purpose, which requires reality of the distance. The conclusion can be ascertained from 

the fact that the quantity under the sign of square root is always negative for real vectors 

in the Euclidean space. Nevertheless, according to Felix Klein, even with this cross-ratio, 

we can still construct a differential version of the distance by Cayley’s method, viz. a 

metric of space [31]. Indeed, the distance according to Laguerre’s formula is only 

proportional to the logarithm of the cross ratio, and therefore it involves an arbitrary 

constant. The logarithm of the cross ratio from equation (2.2.14) is a purely imaginary 

complex number, so that, if we choose the proportionality constant as an imaginary 

complex number the things are in order. Thus, the Laguerre distance given via the 

logarithm of the cross ratio (2.2.13) can be represented by the distance given via the 

logarithm of cross ratio (2.2.14), because the ratio of the two expressions involved in 

equation (2.2.14) is a purely imaginary complex number, and we are at liberty to choose 

an imaginary number as the constant defining the Laguerre distance. 

Assuming, therefore, that in order to define the metric the two points X1 and X2 are 

infinitesimally close X1 = X, X2 = X + dX, just like in the regular Euclidean geometry, we 

can calculate the necessary factors in equation (2.2.14) as: 

 (2.2.15) 

Now, in the real domain, we can accept that the quantity (X,dX)/(X,X) is an 

infinitesimal quantity of the first order, while (dX,dX)/(X,X) is an infinitesimal quantity 

(X1,X2;X3 ,X4 ) =
(X1,X2 )+ (X1,X2 )

2 − (X1,X1) ⋅(X2 ,X2 )

(X1,X2 )− (X1,X2 )
2 − (X1,X1) ⋅(X2 ,X2 )

(X1,X2 )
2 − (X1,X1) ⋅(X2 ,X2 ) = (X ,dX )

2 − (X ,X ) ⋅(dX ,dX )
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of the second order. Thus the cross ratio (2.2.14) can be expanded and, to first 

infinitesimal order it is: 

 
(2.2.16) 

The logarithm of this quantity is, to the same infinitesimal order, the second term 

from the right hand side, which is, of course, a purely imaginary number, as we just said. 

Then, we can set things in order by Klein’s recipe: multiply the logarithm with a purely 

imaginary constant quantity, iR say, in view of the fact that the metric per se is defined 

up to an arbitrary scale factor. Thus the Cayley-Klein – or absolute – metric of this 

geometry can be finally written in the form: 

 
(2.2.17) 

with R an arbitrary real quantity. This equation is a regularly considered form of the 

Cayley-Klein metric, with reference to any absolute of space. It turns out that this 

expression is also valid in larger conditions of space definition: complex points, general 

definition of the absolute as a quadric in this space, etc. Dan Barbilian, to mention a 

notable case, used it for the cases where (X,X) is a homogeneous polynomial of arbitrary 

degree – a quantic, in algebraic phraseology – thus generalizing the metric (2.2.17) even 

further [2]. 

However, as long as the absolute is a quadric – i.e., a general surface specified by an 

equation quadratic in the coordinates – using the properties of the dot and cross products 

of the real vectors in space, the metric (2.2.17) can be written in the form: 

 

(2.2.18) 

Notice that this metric reduces to that from equation (2.2.5), given by projection, for 

z = ±R. Therefore, the previous results – that is, the ones that we can get via the method 

of projection – are also obtainable as absolute geometrical results, just by assuming that 

(X1,X2;X3 ,X4 ) = 1+ 2i
(dX ,dX )
(X ,X )

− (X ,dX )
(X ,X )

⎛
⎝⎜

⎞
⎠⎟

2

ds
R

⎛
⎝⎜

⎞
⎠⎟

2

= (dX ,dX )
(X ,X )

− (X ,dX )
(X ,X )

⎛
⎝⎜

⎞
⎠⎟

2

ds
R
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⎞
⎠⎟

2
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def
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one of the coordinates – usually z – is constant: this time, though, the constant is not quite 

arbitrary, but needs to have specifically the value R. In such a case, we have: 

 
(2.2.19) 

and if we apply to this the formula (2.2.18), we get the result: 

 
(2.2.20) 

This result, no question, coincides with the one from equation (2.2.5) up to a factor, 

but reveals an interesting position of the metric of a Maxwell fish-eye (2.1.12), which is 

the three-dimensional extension of (2.2.20). This hints to the universality of such a metric, 

at least from a physical point of view. Discussing, however, on the two-dimensional case 

in hand, if we work on the last term of the expression from the right hand side of equation 

(2.2.20) we can write it in the form: 

 
(2.2.21) 

revealing a great advantage in the cases where the Kepler’s law of the areas is valid 

in the plane (x, y). However, regardless of such an occurrence, the equation (2.2.20) can 

then be written in the form: 

 
(2.2.22) 

showing that, in cases where f is constant, the Cayley-Klein metric basically differs 

by only the square of an exact differential from the Maxwell fish-eye metric. Therefore, 

in particular, this may be the case if have tanh2f×dq = constant times a differential, which 

can be seen as a second of the Kepler laws, as we said, defining the time scale in the sense 

of regularization theory (see [35], §3.4). Such a case will be discussed as we go along 

with our developments in this work. The transcription (2.2.22) has only the purpose of 

revealing the position of the Maxwell fish-eye metric in context, nothing else. For, if we 

homogenize the notation from equation (2.2.22), extending it also to the first term from 

the right hand side, we get the final form of the absolute metric as: 

X ∧ dX =
def

(−Rdy,Rdx,xdy − ydx)

ds
R

⎛
⎝⎜

⎞
⎠⎟

2

= R2 (dx)
2 + (dy)2

(x2 + y2 + R2 )2
+ xdy − ydx
x2 + y2 + R2

⎛
⎝⎜

⎞
⎠⎟

2

xdy − ydx
x2 + y2 + R2

= r2dθ
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, x = r cosθ , y = r sinθ

ds
R

⎛
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⎠⎟

2

= R2 (dx)
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(2.2.23) 

which, by itself, is liable to explain the Langevin statistics used in realizing the 

Procopiu’s procedure of quantization (see [35], §2.4 for details). 

It is, in this connection, worth disclosing right away the usefulness of the expression 

(2.2.23), if for nothing else, just for fostering the casual reader’s curiosity. Assume that, 

for some reason, the parameter q is constant indeed. We can realize the importance of 

such an occurrence in case this parameter is connected with a time scale change, as in the 

second of Kepler’s laws. Then, a reason presents itself immediately for such an 

occurrence, based on physical facts: the time ‘freezes’, as it were, and we have to deal 

with an enclosure containing simultaneous events. In other words, in this case, we have 

to deal with an instanton sui generis: a piece of matter, made of simultaneously existing 

physical structures. The metric (2.2.23) then reduces to an exact differential: 

 
(2.2.24) 

representing the elementary probability of a Hyperbolic Secant type ([35], §2.4). This 

type of probabilities is connected with the ‘magnetic’ Langevin statistics which is of 

essence in realizing the Procopiu’s quantization in matter, along the same lines of 

realization as those of the archetypal Planck’s quantization. The correlation function of 

their probability densities is the partition function of the Langevin distribution [loc. cit. 

ante, equations (2.3.7) and (2.3.10)]: 

 
(2.2.25) 

Therefore, according to Katz’s natural philosophy of charges, such an instanton can 

be described as a matter structure in equilibrium with light – this one being described by 

an ensemble of Procopiu resonators – isolated within a Wien-Lummer cavity ‘made’ of 

vacuum. One can say that the Cayley-Klein, or absolute geometry is the geometrical 

image of this physical situation, and this concept has a real advantage: the geometrical 

crossing of the absolute can be naturally viewed as a representation of the modern 

physical concept of vacuum tunneling [29]. 

ds
R
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2.3. THE FREQUENCY: A GENERAL DEFINITION OF HOLOGRAPHY 

The basis of Louis de Broglie’s result regarding the correlation between the amplitude 

of an optical signal and the density of the optical medium supporting it, in his case of 

interpretation of light (see [34], §2.1), is the fact that the optical amplitude of the wave 

equivalent with a particle is independent of time, and that the optical signal has a perfectly 

determined optical frequency, with a phase which is function only of space coordinates: 

 (2.3.1) 

[loc. cit. ante, equations (2.1.2) and (2.1.16)]. A case may be made then, based, 

however, on historical facts only, that the phenomenology of light involves four 

phenomena in order to construct the physics along the classical concept of the light ray. 

For, the classical light ray requires interpretation, and the interpretation needs a concept 

of particle, available to optics only by the idea of Louis de Broglie. 

Let us restate the problem again, this time just in order to create a perspective. The 

physical description of light is commonly presented as having started with a single one 

of the phenomena characteristic to the light. For instance, the initial properties of light 

were described based on reflection. Adding refraction led the intellect to appreciate the 

crystal physics, and made possible a quantitative characterization of Hooke’s idea of 

periodicity of the light phenomenon, by the concept of wavelength and associated 

frequency. This last concept, helped in characterizing the light when the addition of the 

diffraction phenomenon to the phenomenology of light became critical, in the times of 

Fresnel. More importantly though, the diffraction in the phenomenology of light led to 

the discovery of the fourth phenomenon of this specific experience: the holography. 

Indeed, if the diffraction was a known phenomenon – basically meant to be known in 

order to be avoided in the classical theory of light rays – we certainly cannot say the same 

about holography: the man was completely unaware of it before quantum theory surfaced 

for our intellect, so it was practically discovered. However, today we are forced to 

recognize that this phenomenon is, indeed, part and parcel of the phenomenology of light. 

Then we seem to be entitled to ask: what definition of the frequency should be used when 

starting with the holographic phenomenon instead of diffraction, or reflection, or 

refraction, in the physical description of the light? In answering this question, we have a 

u(x,t) = A(x)ei(ωt+φ ( x )) , ∇2 A = 0
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‘crossword clue’, as it were: certainly, the classical concept of frequency used the idea of 

wavelength in order to be defined, and this, in turn, was extracted from experiments with 

crystals, involving therefore the reflection and refraction phenomena in finite spaces. On 

the other hand, the idea of a hologram came to being also inspired by the physics of 

crystals [17]. This suggests that the concepts to be targeted by starting with holography 

in the physics of light are the wavelength and the frequency. However, the modern 

concept of light is, as a rule, theoretically explained based on the idea of harmonic 

oscillator, whereby the measurements results are represented by signals, mathematically 

thought of as functions of time. Within this circumstance, the concept of frequency can 

be understood from the perspective of holography, along the following lines. 

Like the classical velocity, that can be assigned only via the uniform motion of a 

material point, the frequency can only be assigned via the idea of a periodic motion. This 

means a spatially finite motion of a material point, which, therefore, cannot be free. 

Indeed, the physical prototype of a periodic motion – counting as the analogous of a free 

particle for the uniform motion, as it were – is the harmonic oscillator, mathematically 

described by an ordinary second-order differential equation: 

 (2.3.2) 

Thus, assigning a frequency to a signal that can be represented as a periodic function 

of time is a particularly simple task here, for it is provided by the above equation in the 

form: 

 
(2.3.3) 

suggesting a curvature-connected to the function x(t). This definition hardly satisfies 

the idea of uniqueness of the frequency. Besides, the overwhelming majority of physical 

cases of signals are, in fact, not so simple, in order to be represented directly as harmonic 

oscillators: a complex signal asks, for instance, to be modeled by a Fourier series of 

virtually an infinity of harmonic oscillators of different frequencies, in order to be 

physically described. As a matter of fact, this is the reason why the assumption of a direct 

time dependence of the coordinates created so much trouble along the history, up to the 

point of a change in physics. To wit, it is sufficient to recall that the idea of Fourier series 

!!x(t)+ω0
2x(t) = 0

ω0
2 =
def
−
!!x(t)
x(t)
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imposed an overturn of the established values of our intellect, by the emergence of the 

quantum mechanics [26]. 

In the case of light, though, the phenomenon of holography could not enter the 

phenomenology but only after admitting that the time dependence of the coordinates has 

to be mediated by a phase. Mention should be made of the significant circumstance, that 

the realization of importance of this decision – namely that the time dependence should 

be mediated by a phase – came long after the de Broglie’s realization of quantization in 

matter, and usually counts, for our intellect, as the most important consequence of the 

quantization procedure. However, the first incentives of the construction of a hologram 

are referring precisely to the concept of phase, not the frequency. Quoting: 

It is customary to explain this (the Bragg’s method of reconstruction of 
a lattice by diffraction, the source of Dennis Gabor’s inspiration in devising 
his method, a/n) by saying that the diffraction diagrams contain information 
on the intensities only, but not on the phases. The formulation is somewhat 
unlucky, as it suggests at once that since the phases are unobservables, this 
state of affairs must be accepted. In fact, not only that part of the phase 
which is unobservable drops out of conventional diffraction patterns, but 
also the part which corresponds to geometrical and optical properties of the 
object, and which in principle could be determined by comparison with a 
standard reference wave. It was this consideration which led me finally to 
the new method. ([18], our emphasis, a/n) 

That ‘standard reference wave’ had to have a different phase, but the very same 

frequency: with the expression of Gabor himself, it has to be ‘monochromatic coherent’. 

Without further ado about it, we see in the excerpt above the necessity of intervention of 

the phase in the expression of the amplitude: for, certainly, the measurements of light 

cannot be made but by the mediation of amplitude, once they are always based on the 

measurements of intensity. Then the basic principle of holography can be simply 

described mathematically as follows: it is the phenomenon occurring when we try to 

associate a time dependence to a physical process depending on time, however, not in an 

obvious periodic way, but implicitly, through the phase. The association of a frequency 

with light phenomenon then involves an ensemble of phases, which, from an optical point 
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of view means an ensemble of waves carrying the same information, in particular 

information about the same object. 

In order to make this statement more graspable, let us describe the way this 

association is done mathematically. In the general case, when suspecting a periodic 

behavior of the phenomenon, we can try to model it by an equation representing an a 

priori periodic form. This is certainly the general case of modeling via periodic functions, 

which comprises the oscillator as a particular. A typical signal of this type is: 

 (2.3.4) 

which involves a phase q and an amplitude A, both arbitrary functions of time. This 

process is, indeed, a priori periodical, i.e. periodic in the trigonometric sense, however 

not in time directly, as it has not an obvious frequency associated to it, as a periodic 

process of the oscillator kind has. If there is a frequency involved here, as Gabor’s idea 

of standard reference wave asks for, it can only be exhibited if q(t) represents a periodic 

motion of the kind described by equation (2.3.2). Assuming, therefore, such an equation 

for the signal q(t), leads us to some identifications: 

 

(2.3.5) 

The second one of these equations from the right hand side here, gives right away: 

 (2.3.6) 

which is a kind of Kepler’s second law, known as the area law, and suggesting a 

periodic motion for the amplitude itself, when compared with the details of the Kepler 

problem. Of course, here this means that we shall need a kind of interpretation of this 

amplitude, and such an interpretation involves the classical idea of free… oscillator. That 

this is the case can be shown right away, since in these conditions the first of the equations 

(2.3.5) gives an Ermakov-Pinney equation for the amplitude: 

 
(2.3.7) 

q(t) = A(t)eiθ (t )

!!q +ω0
2q = 0 ∴

!!A
A
+ω0

2 = !θ 2
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!!A +ω0
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where R0 is a real constant. The connection with the periodic motion per se is then 

the following. Let A be the composite amplitude of a two-dimensional harmonic oscillator, 

described by a quadratic form in the partial amplitudes of component signals varying in 

time according to the equation of q(t) from (2.3.5), i.e., in particular: 

 
(2.3.8) 

This amplitude satisfies the equation (2.3.7) with R0 the constant from (2.3.6). Thus, 

the frequency w0 is asociated to the components of the vector |Añ in an obvious way, 

inasmuch as they are oscillators. In these conditions, though, one can calculate right away 

that the square of amplitude – that is, the intensity of signal in optical terms – from 

equation (2.3.4) satisfies a linear third-order differential equation of known type: 

 
(2.3.9) 

Comparing this equation with the one of a ray from (2.1.11) a conclusion imposes by 

itself, namely that Louis de Broglie was right after all: the equation characterizing an 

optical ray is referring, indeed, to the square of the amplitude of an optical signal. Then, 

because the square of the amplitude of recorded signal is, according to de Broglie, the 

numerical density necessary for an incidental interpretation, the equation (2.3.9) should 

also be taken as an equation for that density. 

It may appear that, with this conclusion, we are rushing in a little, ‘where angels fear 

to tread’, as they say. For once, the kind of ray described by a refraction index (2.1.4), 

which asks for an equation like (2.1.11) or (2.3.9), may not be universal, at least not to 

the same degree as the equation (2.3.4) for the mathematical model of a signal appears to 

be. The optical medium, described by a particular refraction index, as given in equation 

(2.1.4) may be very particular indeed. However, it is worth recalling that this kind of 

‘particular’ is just mathematical here: from a physical point of view it may prove to be 

universal. A warning sign on this issue is the existence Hanbury Brown-Twiss effect: there 

are intensity correlations of the rays issuing from the same distant source of light [23], 

[24]. Indeed, the square of the amplitude means, as we repeated quite a few times by now, 

an intensity in the optical realm. And, if an equation like (2.3.9) proves to be universal 

according to the general mathematical structure of a signal, then we can take that the 

A2 = A1
2 + A2

2, !!A1 +ω0
2A1 = 0, !!A2 +ω0

2A2 = 0

d3

dt 3
A2 + 4ω0

2 d
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medium of refraction index (2.1.4) is that necessary all-pervading medium of the classical 

ether type, support of every phenomenon in the world we inhabit. Anyway, at least we 

have guidance in our proceedings. To wit: we need to follow the idea of the meaning of 

a refraction index as the one suggested by this ray optics, and then, more importantly, to 

follow the track of an equation like (2.1.11) or (2.3.9). It is particularly important to know 

if such an equation appears anywhere else in physics at all, and in what conditions. As 

we have shown previously ([35], Chapter 3, §3.4), this equation is of essence in the 

regularization theory of Kepler motion. One thus can say that it is of essence in the 

problem of interpretation, securing the invariance to the scale transition of this 

interpretation. 

A major problem still remains to be solved here, though, for it is directly connected 

to the equation (2.3.8), which, in turn, is conditioning any result declared thus far: how 

can we define the frequency in a proper way, that is, in such a way as to include the 

phenomenon of holography from the very beginning?! A sound solution imposes by itself 

through the idea of coherence, and can be obtained using the ‘Kepler’s second law’ (2.3.6), 

which seems to be an apt universal mathematical fact, endorsed by the theory of 

regularization ([34], §3.4). Taking, therefore, for the amplitude as a function of phase, the 

definition provided by the Kepler’s law (2.3.6), will be consistent with the holographic 

principle defined according to Dennis Gabor’s ideas. For once, this definition would 

mean that the time variation of phase must be physically recognizable in the intensity of 

a certain wave. Then, proceeding just mathematically, we are able to transform the 

Keplerian condition (2.3.6) into a second-order differential equation for the amplitude of 

the complex signal: 

 
(2.3.10) 

where C is a constant, and the notation: 

 
(2.3.11) 

represents the Schwarzian derivative of the phase with respect to time. In equation 

(2.3.10) the definition of a frequency is conspicuous, by comparison with the equation of 
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motion of a simple harmonic oscillator (2.3.3). Indeed, this defines the frequency in terms 

of the phase of the general signal (2.3.4) by the equation: 

 (2.3.12) 

which allows for a plus of mathematical precision in formulating the holographic 

principle. For once, the Schwarzian derivative is a curvature [15] but let us show what we 

mean by this kind of precision, in some specific details. 

Everything revolves now around the definition of the Schwarzian derivative [see, for 

the relevant details and a comprehensive presentation of this operation ([37], Chapter 5, 

§§X, XI, XII). One property is striking in this definition, of which we shall make much 

use in this work: any solution of the equation (2.3.12) is defined up to a homographic 

transformation. This would mean that the manifold of solution of equation (2.3.12) is 

three-dimensional, not in the sense of the linear superposition rule, though, but in the 

sense that it can be surveyed by locating its points with three parameters. In the 

superposition rules’ phrasing, we rather have here a nonlinear superposition rule with 

three basic solutions of the equation [see [7], §§2, 3, especially equations (3.51–53)]. 

More precisely, knowing three solutions of the equation (2.3.12), a fourth one can be 

found right away, without any integration, because it must have a constant cross ratio 

with those three. In order to prove this statement, we use the general relation of 

transformation of the Schwarzian [see [37], especially Chapter 5, §XII, Ex. 19(iii)]: 

 (2.3.13) 

where {q,f} is the Schwarzian derivative of the phase q with respect to the phase f. 

If this derivative is null, the two phases are connected by a homographic relation [ibidem, 

Ex. 19(v)], i.e.: 

 
(2.3.14) 

so that we have: 

 (2.3.15) 

telling us that the homographic action of the matrices 2´2 can cover the whole 

ensemble of solutions of the equation (2.3.12). According to this theorem, the general 

θ ,t{ } = 2ω0
2

θ ,t{ } = φ,t{ }+ θ ,φ{ } ⋅ !φ 2

θ ,φ{ } = 0 ∴ θ(φ) = αφ + β
γφ +δ
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form of the solution of equation (2.3.12) depends on three parameters: it can be obtained 

from any particular solution by the group formula (2.3.14). In other words, we can 

construct the whole system of phases of a signal having a definite frequency, starting from 

a particular one: the system of phases corresponding to the same frequency – this one 

being defined by the equation (2.3.12), with an amplitude as in equation (2.3.10) – is the 

orbit through a particular phase q of the group of real homographies. This is a continuous 

group with three infinitesimal generators, locally described as a sl(2, R) Riemannian space. 

This Riemannian space is the local expression of the holographic phenomenon, which 

here has a precise meaning: the whole system of phases corresponding to the same 

frequency. This gives us a possibility of interpretation – and speaking of interpretation 

here, we mean interpretation in the wave-mechanical sense, whereby the phase can be 

associated to a particle [11] – mathematically describable in the terms that follow. 

The hard part of the mathematical description of the holographic phenomenon 

according to the previous definition, would be to find the ‘seed’ phase, the phase whose 

information is carried in any other phase. Let us assume that we have found it, and denote 

it by q. The whole sistem of phases f carrying this information is described by equation 

(2.3.14), with q = constant. Thus, any phase f is mathematically describable by the 

solutions of a differential equation of Riccati type: 

 (2.3.16) 

correlating the variation of phase with the variations of the three parameters 

describing the holography. Here, the differentials (w k) are the components of the standard 

sl(2,R) coframe [see [35], equation (4.4.3)]. If we are able to transform this equation into 

an ordinary differential equation with respect to a certain ‘time parameter’, then it gives 

us an expression of the phase rate to be used in equation (2.3.10), in order to define the 

amplitude. 

Now, in most cases we have encountered thus far in our study, this is an easy task 

facilitated by the metrics of the sl(2,R)-type: as a rule, these possess three Killing vectors, 

for which the dual rates (w k/dt) are constants along their geodesics (see e.g. [45], for 

mathematical details). It is known, indeed – and we shall repeat the procedure here for a 

typical case of interest, in the due time, when the occasion will call for it – that the 

dφ =ω 1φ 2 +ω 2φ +ω 3
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differential forms of the sl(2,R)-type coframe are projections of the momentum forms 

generated via the metric Lagrangian, along the Killing vectors. Therefore, in such cases, 

the equation (2.3.16) becomes an ordinary Riccati differential equation along the 

geodesics: 

 (2.3.17) 

where (a1, a2, a3) are three constants characterizing the sl(2,R)-type geodesics in 

question, and a dot over means differentiation with respect to the arclength of the 

geodesics. This means that a geodesic becomes a point in the sl(2,R)-type Riemannian 

space. So, according to the holographic principle, only along such geodesics the physical 

theory may happen to be interpretable in the wave-mechanical sense. Of course, the 

process asks for an inversion of the amplitude defined by the rate of phase (2.3.17), so 

that the inverse of the amplitude will appear as describing a free particle. Indeed, using 

the combination of the Kepler law (2.3.6) with the equation (2.3.17) gives: 

 
(2.3.18) 

which represents the radial motion of a free particle, whose kinematics is described 

in a time provided by the phase f. 

Again, we have strong clues to believe that, physically speaking, this should be the 

case: according to Wagner’s theorem (see [34], Chapter 4, §4.3) this holographic space 

is the realm of the free particles realizing the oscillators. The most important of these 

clues is the fact that the holographic definition of the frequency characterizes indeed the 

nucleus of a planetary atom. This statement seems to us sufficiently proven as a 

consequence of the classical dynamical problem associated to Kepler problem [36]. 

However, in the theory of nuclear matter per se, this idea comes associated with an idea 

of interpretation via the concept of collective coordinates [20]. So, we need to insist on 

the physical aspect of the problem from the perspective of these two natural philosophical 

concepts. For this we need first some special geometrical considerations. 

 

 

 

!φ = a1φ 2 + 2a2φ + a3

r2

a1φ 2 + 2a2φ + a3
= const, A2 = r−2



Nicolae Mazilu, PhD 
 
 
 
 
 

 
 
 
 
 
 

32 

2.4. SOME DIFFERENTIAL-GEOMETRIC PREREQUISITES 

The mathematical method itself, for carrying out the task of introducing the physics 

into natural philosophy is, in this specific case, based on some almost trivial statements 

regarding the foundations of the mathematics necessary in building a differential 

geometry. These statements emerged by and large apparently unnoticed or, even if 

noticed, they have not been properly used in their capacity; at least not for physical 

purposes, anyway. In order to make our statement more obvious, we reproduce here two 

of these statements, in the form of Élie Cartan’s ‘algebraical’ theorems which are 

recognized to form the ground of his remarkable mathematical approach to differential 

geometry involving the so-called moving frames (for a clear description of the idea, from 

the point of view we adopt here, see, for instance, [47], Volume II, Chapter 7). Afterwards, 

these theorems will be used in a short description of the Cartan’s method for the classical 

case of the differential geometry of surfaces. 

The theorems in question are drawn here directly from one of Cartan’s courses, 

published via the Russian geometrical school of S. P. Finikov (see [9]; pp. 16 – 17, 

Theorems 7 and 9). We appropriate them for our purposes here under the name of Cartan 

Lemmas 1 and 2, only in order to be suitably used in making our point as explicit as 

possible. Here they are: 

Lemma 1. Suppose that s1, s2,…, sp is a set of linearly independent 
exterior 1-forms. Then there exists a convenient symmetric matrix, a say, 
such that: 

 
(2.4.1) 

where f1, f2,…, fp is another set of linearly independent 1-forms and a 
summation over repeated indices is understood. 

Lemma 2. Suppose the basic differential elements du1, du2, …, dun are 
connected by a system of equations: 

 
(2.4.2) 

where ωa, a = 1, 2, …, p are linearly independent 1-forms. In this case 
the 2-form f constructed with the differentials du1, du2, …, dun vanishes as 

sα ∧φα = 0 ⇔ φα = aαβs
β with aαβ = aβα

ω 1 = 0, ω 2 = 0, ... ω p = 0
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a consequence of this system of equations if, and only if, f can be written as 
the sum of exterior products: 

 (2.4.3) 

where, again, summation over a is understood, and fa are p 
conveniently chosen 1-forms. 

The first one of these theorems is, by and large, known as Cartan’s Lemma proper in 

the specialty literature, being routinely used, so to speak. As to the second one of these 

theorems, it carries no special name in the literature, being in fact used only occasionally. 

What appears to be essential in these lemmas, and is almost always stressed mainly 

in old treatises of geometry, but apparently forgotten lately – perhaps due only to the 

exclusive mathematical applications – is the fact that the symmetric matrix a from Lemma 

1, as well as the 1-forms fa from Lemma 2, are things external to the geometrical problem 

at hand, and, moreover, can be conveniently chosen. We take these attributions as 

meaning that they can be things geometrical, as originally intended, of course. However, 

for our purposes they can also be things physical as well, i.e. things through which the 

physics can be naturally introduced into geometrical theory, or vice versa: the geometry 

can be introduced into physical theory. 

A case in point: we need to introduce the physics in the theory of surfaces, in order 

to make it physical, as Louis de Broglie intended, and thus suitable to serve his idea in 

constructing the light ray, or a ray in general for that matter. When concentrating on the 

local geometry around a position on a certain surface, without being interested of the 

global aspects of that surface, as it is almost always the case in physics, especially in the 

de Broglie’s physical optics, this observation becomes essential. Consequently, we can 

use the above two lemmas, primarily in order to implement physical properties 

compatible with the geometrical ones or geometrical properties compatible with physical 

ones. We need to mention though, that there are a great many problems that the 

differential geometry allows us to solve using them. In fact, we simply can state that the 

wave mechanics per se would not be possible without these mathematical possibilities. 

With this task in mind, and before continuing any further, let us recall once again the 

convention referring to our use of numerical indices: insofar as either the space or the 

f =ωα ∧φα
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matter, contemplated as environments in the embedding problem necessary to physical 

interpretation, are apparently always three-dimensional, we reserve the Latin indices 

exclusively for this case. The Greek indices are used for any other dimension, as in the 

case of lemmas above, but especially for dimension two, in the case of surfaces, and 

dimension four in the case of the manifold of events, viz. the spacetime. 

One of the most instructive examples of using the calculus with exterior differential 

forms, of which we shall have to avail plentifully in the present work, is the differential 

theory of surfaces. The Louis de Broglie’s example of construction of a physical ray, the 

structure of the Ampère current elements and the physical description of Thomson’s tubes 

(see [34], Chapters 2, 5 and 6), are all guiding examples showing the points where we 

need to intervene by ‘inserting’ physical conditions in a local theory of surfaces. In 

particular, the definition of the local curvature of a surface in space, and of its variation 

is a consequence of the Cartan’s Lemmas just presented above. Inasmuch as these 

mathematical tools allow us to attach physical reasons to the variation of curvature of 

surfaces, this makes the fact obvious that this geometric concept has always a physical 

origin, at least partially anyway, and we shall use it explicitly here. In a historically 

significant note, for instance, the surfaces were first made known by human senses as 

space limits of material bodies. More than that, it is, again, highly significant that when 

the matter was first made unambiguously responsible for the curvature of space [10], only 

the surfaces were taken into consideration for analogy, not the space itself. 

We need, therefore, an appropriate way of describing the local situations in the case 

of surfaces – this is what counts most in the case of a theory of rays anyway – as well as 

some mathematical connection between these situations, which, for rational explanation, 

can be turned to physical descriptions. To wit, we first need to focus on the local situation, 

by performing the analysis in terms of the components of the position vector on a surface 

[22]. In a Cartanian version of the local geometry of a surface, we use two coordinate 

lines with parameters (u1, u2), and take the unit vector ê1 of the reference frame on surface 

along the lines of coordinates u2 = constant, and the unit vector ê2 along the coordinate 

lines u1 = constant, while ê3 is the local normal to surface. Occasionally, this normal 

direction is also denoted by â, the letter suggesting an oriented area, therefore a limited 
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portion of surface. Obviously, u1,2 denote the parameters on the surface, as we said, but 

this requirement involves physically special precautions, as we shall soon encounter. 

Assume that (ê1,ê2) is a reference frame on the surface: any physical vector referred to the 

surface can be written in the form: 

 (2.4.4) 

where we apply the rule, already announced above, about indices. In the case here the 

Greek indices take the two values 1 and 2, for they are referring to a two-dimensional 

space form: the surface. Four values of indices are reserved for relativity, while five 

values are usually considered for Kaluza-Klein type physical theories, for instance. 

Let us present now the way of writing the absolute derivative of a vector, defined as 

a vector field on the surface. This derivative is itself a vector, as a rule. The differentia 

‘absolute’, added to the presentation of the concept of derivative, is taken here in the sense 

that it contains both the intrinsic variation of the given vector – which, by its definition 

needs to be physical – and its variation due to the fact that it is connected to surface, and 

the surface itself changes its profile in the neighborhood of any one of its points. This is, 

of course the notorious case of the propagation of a wave. In order to reveal the necessity 

and significance of any one of these components of the variation of a vector, let us take 

notice that using equation (2.4.4) we can write, using in a first instance the usual rules of 

differentiation (viz. the ‘Newtonian’ rules): 

 (2.4.5) 

The components of the vector in the left-hand side of this equation are not simply the 

differentials of the components of V, insofar as these last ones need to be ‘updated’, so to 

speak, with the contribution of the variation of the reference frame itself. This reference 

frame varies on the surface in concordance with its local topography and, being involved 

in physical problems connected with interpretation concept, even in concordance with the 

instantaneous topography. 

We shall denote the reference frame in a point on surface by the symbol |êñ, as in 

equation (2.4.5). When discussing the intrinsic geometry of the surface this ‘ket’ has only 

two components – the two unit vectors of the reference frame on the surface – but in 

general we need to maintain three components in order to account for the connection of 

V ≡V k êk =V
α êα +V

3ê3

dV = (dV k )êk +V
k (dêk )
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the surface with the ambient space. The gist of this approach rests upon the simple 

observation that the concept of surface does not come to our intellect but only mediated 

through the existence of the matter in space. So, equations: 

 

(2.4.6) 

are taken to mean that the Frenet-Serret equations on surface are in connection with 

the 3´3 matrix Ω describing the variation of the reference frame in space. In (2.4.6) we 

have used the orthonormality of the reference frame in order to split the matrix Ω. This 

equation further suggests the way to introduce the idea that the reference frame needs to 

be considered according to its physical origin, a fact which will be properly explained as 

we go on with our presentation. 

The equation (2.4.6) summarizes the system of Frenet-Serret equations describing a 

moving frame on the surface. This system is quite sufficient for writing down the equation 

(2.4.5) explicitly, in the details needed for the variation of a vector. The feasibility of this 

construction is assured by the fact that in an Euclidean geometry the reference frame in a 

point in space is only defined up to an arbitrary rotation, which, as always, secures its 

possibility as a choice. Thus, in the presence of surface, the three-dimensional equations 

from (2.4.5) can be written in the following form that accounts explicitly for the existence 

of the surface: 

 (2.4.7) 

where our convention for indices was used. One can see that, even if the vector V 

would not have itself a component normal to surface, its differential, which is the one 

usually called absolute, has such a component due to the participation of the surface itself. 

It is important to take notice that the differential component in question is the same even 

in cases where the vector itself has a constant normal component to surface: in such a 

case only the intrinsic components of the differential are changing. Let us get into the 

details of the very differentials, but this time using the point of view of the surface in 

describing the space. 

dê = Ω ⋅ ê ∴
dêα =Ωα

β ⋅ êβ +Ωα
3 ⋅ ê3

dê3 =Ω3
β ⋅ êβ

dV = (dV α +V kΩk
α )êα + (dV

3 +V βΩβ
3 )ê3 ≡ v

α êα + v
3ê3



The Physical Basis of Procopiu’s Quantization 

 
 
 
 

 
 
 
 
 
 

37 

The Cartan’s approach to geometry is particularly appealing to physics by the fact 

that we can make the surface meaningful in the definition of the local geometry of the 

space. This means an explicit construction of the matrix Ω with its relationship to the 

metric of surface. Start with the observation that the differential vector dr º sk|êkñ. The 

components of this vector are differentials, and so are the components of the variations 

of the reference frame |dêkñ. Exterior differentiation and use of Frene-Serret equations 

provide the compatibility and structural equations, that can be symbolically written as: 

 
(2.4.8) 

These equations are basic equations for the local geometry of space. If, in order to get 

them, we only need to adapt the space reference frame to the surface, then the matrix Ω 

for surface may be simply identified with a 2´2 submatrix of matrix Ω for space. 

Therefore, the best instructive case would be the one in which the space reference frame 

is orthonormal itself: starting from this case, it will be more obvious where to go on with 

the physics, when guided only by the rules of calculus. In an extended form, the equation 

(2.4.8) provides the system: 

 

 

Now, assume that dr is an intrinsic surface vector. This occurrence can be expressed 

as the vanishing of its normal component s3, which brings this system to the form that 

should be valid on the surface: 

 
(2.4.9) 

Thus, as we said, we take a first instance of the matrix Ω characteristic to surface, as 

the 2´2 submatrix of the matrix Ω for space: 

 
(2.4.10) 

with a proper identification of this submatrix and of the other entries as functions of 

the position on surface. Actually, this would be more profitable for the construction of a 

geometry of the ambient space given the surface as reference, than the other way around. 

d ∧ s + s ∧Ω = 0 and d ∧Ω +Ω ∧Ω = 0

d ∧ s1 +Ω2
1 ∧ s2 +Ω3

1 ∧ s3 = 0,

d ∧ s2 +Ω1
2 ∧ s1 +Ω3

2 ∧ s3 = 0,

d ∧ s3 +Ω1
3 ∧ s1 +Ω2

3 ∧ s2 = 0

d ∧ s1 +Ω2
1 ∧ s2 = 0 d ∧ s2 +Ω1

2 ∧ s1 = 0, Ω1
3 ∧ s1 +Ω2

3 ∧ s2 = 0

(Ωs )α
β =
def

Ωα
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Now, we start using the Cartan’s Lemmas as presented in the beginning of this section. 

Start with the last one of the equations (2.4.9): according to Cartan’s Lemma 1, the entries 

Ω 31 and Ω 32 of the matrix Ω, should be the components of a ket vector |Ω 3ñ, that can be 

expressed linearly in terms of s1 and s2, by a homogeneous relation, realized via a 

conveniently chosen symmetric matrix: 

 
(2.4.11) 

where the upper index ‘T’ stands for ‘transposed’. 

The symmetric matrix b is the matrix of the quadratic form commonly known as the 

second fundamental form of surface in the classical theory of surfaces. This quadratic 

form describes the local shape of the surface, measuring its ‘departure from flatness’, so 

to speak, therefore, implicitly, the ‘curvature’ of the surface in any direction. In order to 

make this obvious and, alongside, to exemplify once again the essential distinction 

between the usual differentiation and exterior differentiation, we shall express now the 

second symmetric differential of the position vector on the surface. Physically speaking, 

this is the differential that matters: when referred to an appropriate time as a continuity 

parameter of a motion, arranged, say, with a clock in a convenient order, it offers the 

acceleration field that plays the part of field intensity of the forces responsible for the 

physics of a problem involving the presence of a surface. Cases in point: from practical 

point of view, the surface of Earth, and from purely theoretical point of view, the horizon 

of black holes. Historically, the first case helped in characterizing the gravitational field, 

all the way starting from Galilei and, through Newton, reaching Einstein’s relativity that, 

in turn, created the concept of black hole. The second case, properly developed into a 

‘membrane paradigm’ [41] gave us the possibility to figure out how the matter per se may 

act in generating a reality – accessible either directly or via the intercession of some 

devices – to our senses. 

The second differential of the position vector is, in view of (2.4.6): 

 (2.4.12) 

and, obviously, it is only a particular case of the equation (2.4.7): this last one is 

particularly applied to the vector dr. The equation (2.4.12) makes it quite obvious that, 

Ωα
3 = bαβs

β , bαβ = bβα ↔ Ω 3 = b ⋅ s , b = bT

d2r ≡ dsα êα + s
αdêα = (dsα +Ωβ

αsβ )êα + (Ωβ
3sβ )ê3
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unlike dr, which is an intrinsic vector of surface, the second differential d2r has also a 

component normal to surface, as a consequence of the evolution of the reference frame in 

space. Obviously, this kind of evolution brings in the properties of the surface as 

components of the differential variation of the vectors. Using the equation (2.4.11) this 

component is the quadratic form we called before the second fundamental form of surface: 

 (2.4.13) 

where the first identity is due to the fact that, by definition, dr×ê3 = 0, while in the last 

equality we used the equation (2.4.11). On this occasion it is also worth considering the 

first fundamental form of the surface, which represents the square of the length of dr: 

 
(2.4.14) 

Here h is the metric tensor of the surface, and, in only in order to define its concept, 

we assumed here the general case of a surface reference frame which, while being 

‘normal’, is however not ‘orthonormal’ in general. In this case we obviously assume that 

the third vector of the space frame is perpendicular to the plane (ê1,ê2). If in reality this is 

not the case, we can construct easily a vector satisfying the condition as the exterior 

product (ê1´ê2). Using the metric tensor h, we can raise and lower the indices of vector 

components and matrix indices, in case these are tensors, as it happens to be the case with 

the matrix b. Thus, we have, denoting, as commonly done, by upper indices the 

contravariant components of the vectors and tensors, a ‘mixed’ matrix b, of entries: 

 (2.4.15) 

Using this equation, we define the mean curvature and the Gaussian curvature of the 

surface: 

 
(2.4.16) 

Now, using the fact that the contravariant metric tensor is simply the inverse matrix 

of the covariant one, we can write the two measures of curvature in the form they are 

usually taken in the classical differential geometry of surfaces: 

ê3 ⋅d
2r ≡ −dr ⋅dê3 =Ωβ

3sβ = bαβs
αsβ

(ds)2 ≡ dr ⋅dr = (êα ⋅ êβ )s
αsβ =

def

hαβs
αsβ

bα
β = hβνbνα

2H =
def

bα
α , K =

def

det(bα
β )



Nicolae Mazilu, PhD 
 
 
 
 
 

 
 
 
 
 
 

40 

 
(2.4.17) 

When the reference frame on the surface is also ortogonal, the metric tensor in 

equation (2.4.14) is the identity matrix up to a factor, and the relations from equation 

(2.4.17) become simpler: 

 
(2.4.18) 

It is, however, worth keeping in mind the general case where the metric of surface is 

a general quadratic form, not a Euclidean one. First of all, by itself, this does not upset 

the general conclusions above: because the metric tensor is a symmetric matrix, we can 

always construct a local orthonormal reference frame by its eigendirections. The 

discussion above runs in exactly the same way, with s1 and s2 the two components of the 

metric written as a sum of squares. Secondly, there are distinct advantages of the general 

approach, when the geometry starts being complicated by issues of physics, which is, in 

fact, our task here. To start with just an observation to be later on elaborated into a full-

fledged theory, notice that the second of the equations (2.4.17) roughly offers the ratio 

between two areas: the ‘deformed’ local area, with the ‘deformation’ due to curvature, 

and the ‘global’ area, as represented locally by the determinant of the metric tensor of the 

surface. This property can further offer a general gauging possibility, valid for any 

dimension, using the concept of curvature [44]. 

While we are on this subject, let us take notice of the fact that there is also, within the 

framework of the very same Euclidean theory, a third fundamental form of the surface, 

defined by the square of the matrix b. To wit, dê3 is an intrinsic vector to surface, just like 

dr itself, and, according to equation (2.4.6) its square is, again, a quadratic form. In the 

Euclidean differential geometry of surfaces this is commonly termed as the third 

fundamental form of the surface: 

 (2.4.19) 

Mention should be made, that there are cases where this quadratic form must be taken 

as a metric of surface when constructing the geometry of space with reference to that 

surface [42]. 

2H =
h11b22 + h22b11 − 2h12b12

h11h22 − h12
2 , K =

b11b22 − b12
2

h11h22 − h12
2

2H = b11 + b22 ≡ tr(b), K = b11b22 − b12
2 ≡ det(b)

dê3 ⋅dê3 = (b
2 )αβ s

αsβ
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3. THE CATEGORY OF MATTER 

According to the definition from §2.3, the local holographic property of a medium 

entertaining waves is decided by its fundamental physical structure: the resonator. On the 

other hand, concurring with its definition by Planck, this fundamental physical structure 

can only be physically accomplished in a special optical medium: the Maxwell fish-eye. 

Indeed, the Riemannian geometry of the optical paths – apparently, the only mathematics 

that serves our intellect in judgments regarding this issue of natural philosophy – indicates 

that only such a medium can accommodate dipoles internally connected by geodesics that 

are light rays. And as we are used – since Einstein’s times leastways – to think that the 

geodesics are associated with free particles, a first instance of the free particle in the case 

of a dipole, would be the light coming with the optical device represented by the Maxwell 

fish-eye. Of course, this kind of light needs an apropriate interpretation: it cannot be 

always that electromagnetic light suggested by the initial Planck’s definition of the 

resonator. As we have seen thus far, a resonator in the case of quantization of matter – a 

Procopiu resonator – must be realized, according to Katz natural philosophy of charges, 

by a magnetic dipole: a piece of matter ending in magnetic charges. 

Accepting the concept of interpretation, a holographic property of such an optical 

medium can be expressed by the homographic action of 2´2 matrices, over the one-

dimensional system of phases. These phases can be arbitrary functions of coordinates in 

space: the linear phases of the classical plane waves are just particular cases. The 

homographic action of the matrices is, in our opinion, expressly required by the very 

Dennis Gabor’s definition of the holographic property, as a condition of coherence of the 

phases, which has as a first consequence the fixed value of the frequency. As we said, the 

definition can be applied to a general concept of phase, not just the one connected with 

the classical idea of plane waves. As we shall show in this chapter, the general idea 

regarding the space dependence of phases is via harmonic mappings. The holography 

offers possibility of interpretation, with a rational definition of general free particles. 
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3.1. THE CHARGE AND THE SURFACE DEFORMATION 

The definition of a physical surface is made possible by the concept of curvature (see 

§2.4 above), according to the physical idea of capillary action advanced by Louis de 

Broglie. Namely, in the case of a capillary tube, an already existing surface is deformed 

on a portion of surface inside the tube: that portion is the surface of a fluid. Thus, the first 

order of things from the point of view of a mathematics serving the physics here, should 

be the description of such a deformation. The Cartanian approach delineated in §2.4 

allows us a concept of deformation that fits the physical-theoretical needs the best 

possible way: the infinitesimal deformation (see [22], §10-4). Accordingly, we define the 

two surfaces of a de Broglie region we have called ‘strange’ (see [34], §2.1) limiting this 

region longitudinally, as two surfaces having a have a common infinitesimally deformed 

surface that can play the part of Lorentz neutral surface for this element. Let us start with 

the mathematical presentation of the idea. 

Consider the surface as a horizon of the kind serving to make the case for ‘membrane 

paradigm’ in the matters of blackholes, but take the matters in the inverse order: we need 

to describe an infinitesimal deformation of it, destined to serve in the introduction of 

physics in the manner of introduction of the electromagnetic fields in the membrane 

paradigm [40], [41]. What one further needs, is the construction of a function z(u,v), 

describing the deformation according to equation: 

 (3.1.1) 

where x is the position on a reference surface that goes by deformation into position 

r of the deformed surface. For the construction of z, we use the metric form of the surface. 

In this case, the deformation is infinitesimal if: 

 
(3.1.2) 

where e is a parameter. According to (3.1.1), we can write the deformed metric as: 

 (3.1.3) 

and then the deformation is infinitesimal in the sense of (3.1.2) if: 

 (3.1.4) 

r(ε ) = x + εz

ds2 (r,dr)− ds2 (x,dx)
ε ε→0⎯ →⎯ 0

ds2 (r,dr) = ds2 (x,dx)+ 2ε (dx ⋅dz)+ ε 2 (dz ⋅dz)

dx ⋅dz = 0
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In other words, in the first order of the parameter e, the infinitesimal deformation is 

not even ‘felt’ in the surface by its metric: what we need, in order to ‘feel’ it, is a finer 

perception, reaching into the second order in the parameter e. Assuming an Euclidean 

mentality, there is always an arbitrary vector q, serving in writing dz in the form: 

 (3.1.5) 

which satisfies the condition (3.1.4) just naturally. The arbitrariness of q may be 

significantly reduced – and we shall explain what ‘significantly’ means right away – if 

we take notice that dz has to be an exact differential, for then we must have: 

 
(3.1.6) 

Here ‘´Ù’ means that in the monomials of the vector product, the usual multiplication 

needs to be replaced by an exterior multiplication of differentials. Using the notation: 

 
(3.1.7) 

the condition (3.1.6) can be transcribed in the form: 

  

which, in turn, comes down to the system of equations: 

 
(3.1.8) 

The first two of these equations show, according to the rules of the exterior 

differential calculus, that j 3 = 0 on the surface, because s1 and s2 are independent exterior 

differentials of the first degree in the geometry of a surface described by them. According 

to the definition equation (3.1.7), this means that the vector dq is situated in the tangent 

plane of the surface, i.e. it can be taken as an intrinsic vector with respect to surface, just 

like dx or dr. On the other hand, the last equation from (3.1.8) says something more. First, 

by the Cartan’s Lemma 1, it can be transliterated into a matrix equation: 

dz = q × dx

d ∧ dz = 0 → dq ×∧ dx = 0

dq =
def

jk êk

(− j3 ∧ s2 )ê1 + ( j
3 ∧ s1)ê2 + ( j

1 ∧ s2 − j2 ∧ s1)ê3 = 0

j3 ∧ s1 = j3 ∧ s2 = 0, j1 ∧ s2 − j2 ∧ s1 = 0
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(3.1.9) 

According to its ‘intrinsic’ property, the vector dq looks like a sort of ‘complement’ 

of the infinitesimal displacements dx on the surface as described in the previous §2.4. The 

similarity goes even deeper: the conditions for integrability of dq are: 

 
(3.1.10) 

and, obviously, replicate the similar ones for the components of dx given in equation 

(2.4.9). Using the equation (3.1.9), the third one of these conditions amounts to: 

 (3.1.11) 

which means that the infinitesimal deformation adds to the support function of the 

surface a quadratic component, apolar to the second fundamental form. Consequently, 

this new intrinsic vector |jñ offers, in fact, a description of the deformation by an ‘update’, 

as it were, of the second fundamental form of the surface. This is, actually, a natural 

consequence of the surface deformation, in the first place. Still natural should then be an 

update of the curvature matrix. Let us see how this can be mathematically inferred. 

Assuming that the curvature of the surface is essential in its physics, especially in the 

physics of electricity, we are free to choose to read the third of the equations (3.1.10) as 

determining the ancillary vector |jñ in terms of the curvature, according to the Cartan’s 

Lemma 1, so that there is a convenient symmetric matrix A, such that: 

 (3.1.12) 

Now, the previous theory of infinitesimal deformation helps us in establishing a 

special structure of the matrix A, in terms of the variation of curvature. First, when we 

use the last of equations (3.1.10), in conjunction with the geometrical definition of |W 3ñ 

from equation (2.4.11) and with equation (3.1.9), both written formally as: 

− j2
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⎜
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⎠
⎟

d ∧ j1 +Ω2
1 ∧ j2 = 0, d ∧ j2 +Ω1
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3 ∧ j1 +Ω2

3 ∧ j2 = 0

αc + γ a − 2βb = 0

j = A ⋅ Ω3
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we get from (3.1.12) the following local relation defining the matrix A: 

 (3.1.13) 

Here, i is the 2´2 fundamental skew-symmetric matrix, as usual: our notation only 

suggests the obvious fact that it is the matrix replica of the imaginary unit from the case 

of complex numbers. The relation (3.1.13) is not universally independent of the portion 

of surface around a certain position. However, it is certainly locally useful, if we are able 

to detect the possible mechanisms of changing the surface profile. 

If the matrix a is determined such that |W 3ñ is a constant vector – a condition 

equivalent to the conservation of the normal vector of the portion of surface, which can 

be taken as a natural definition of a ‘portion of surface’ necessary in the physics of the de 

Broglie’s ray – then A does not depend, indeed, but only on the existing curvature and its 

differential variation. This can be seen as follows: according to the definition (2.4.11) of 

the vector |W 3ñ, its condition of being constant comes down to: 

 
(3.1.14) 

Assuming therefore, the component of vector |jñ strictly measured by the variation of 

curvature, we can take a = -b–1×db, so that equation (3.1.13) can be formally rewritten as: 

 (3.1.15) 

and the equation (3.1.12) becomes: 

 

(3.1.16) 

where (w1, w2, w3) is the sl(2, R) coframe constructed on the matrix b, and dn is an 

exact differential. In other words, by infinitesimal deformation as it is defined in this 

section, the curvature matrix gathers a differential component also containing a skew-

symmetric part in need to be interpreted. Classical-type consideration point out toward a 

connection of this part with a surface torsion represented by a ‘twist’ [33]. 

Ω3 = b ⋅ s , i ⋅ j = a ⋅ s

a = i ⋅ A ⋅b ∴ A = −i ⋅a ⋅b−1

d(b ⋅ s ) = 0 ∴ ds = −(b−1 ⋅db) ⋅ s

A = i ⋅b−1 ⋅db ⋅b−1

i ≡ δb ⋅ s where δb ≡ −
ω 1 1

2ω
2 + dn

1
2ω

2 − dn ω 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Consider now the differential 1-form |x,q,dq| representing the volume of the cuboid 

constructed on the three vectors entering its expression. Insofar as all three vectors are 

variable, we may need the variation of this volume. This is also physically significant and 

needs to be calculated. The exterior differential of it is a 2-form, just like the electric 

induction or magnetic flux in electrodynamics. This 2-form can be calculated, and we do 

this job by first rearranging the elementary volume 1-form such that it appears as: 

  

Then its exterior differential is simply the exterior product of two differentials: 

 (3.1.17) 

where the symbol ‘Ù×’ means that in the exterior product the usual multiplication of 

numbers is replaced with the dot product of the vectors. Now, because, according to the 

usual rules of differentiation, the first factor here can be written as: 

  

one can transcribe (3.1.17) as: 

  

In the right hand side the first paranthesis is zero by (3.1.11); calculating the 

remaining term by using the equation (3.1.12), we can finally wrap up the calculation of 

(3.1.17) in the form: 

 (3.1.18) 

Locally, x3 is the support function of the surface, which can be used as a space 

coordinate in case we use the local patch as reference.  

In order to realize the importance of this definition of the infinitesimal deformation, 

we relate it to the Lorentz’s definition of the electric matter. So, we have a charge vector 

q, to be understood as a triad of numbers (q1, q2, q3) independently of any reference frame: 

in short, a ket |qñ. Likewise, the vector dq, effectively characterizing the infinitesimal 

deformation, has to be understood as a ket |jñ representing the intensity of the charge 

current, having the entries (j1, j2, j3). This current has only in-surface components, for by 

the first two conditions (3.1.6) the third component of charge namely j3 = 0, and thus q3 

x,q,dq = dq ⋅(x × q)

d ∧ x,q,dq = d(x × q)∧i dq

d(x × q) = (q3s2 − x3 j2 )ê1 + (x
3 j1 − q3s1)ê2 + (x

1 j2 − x2 j1 + q2s1 − q1s2 )ê3

d ∧ x,q,dq = q3(− j1 ∧ s2 + j2 ∧ s1)+ 2x3( j1 ∧ j2 )

d ∧ x,q,dq = 2x3(ac − b2 )(s1 ∧ s2 )
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can be taken as a constant. Apparently, this is the constant alluded to by the definition of 

Lorentz for the charge. In order to keep this idea fresh, it is worth reproducing, once again, 

the very words of Lorentz himself. Quoting, therefore: 

If, after arbitrary movements, the matter is reduced to its primitive 
configuration, and if, during these movements, every element of a surface 
which is steadfastly attached to the matter was traversed by equal quantities 
of electricity in opposite directions, all of the points of system will be found 
in their primitive positions ([32], §57; our translation and emphasis) 

The infinitesimal deformation presented above seems to express mathematically the 

very essence of this physical point of view. The only new twist we give to this 

mathematics is that the charge, as a property of matter, becomes the generator of this 

deformation. We only need to define more precisely what is a surface ‘steadfastly 

attached to matter’, and afterwards to realize that ‘traversing’ and ‘primitive positions’ 

have special meaning related to the geometry of motions. 

In this connection, another quotation of the great theorist should be clarified based on 

the geometrical theory of deformation. Once we accept the idea that the infinitesimal 

deformation is connected to the existence of charge, we need to assume further some 

difference between a deformed surface and a surface ‘steadfastly attached to matter’. To 

wit, such a surface cannot be taken as a support of transporting charge: there is a 

difference between the surface transporting the matter per se – the matter ‘steadfastly 

attached to surface’, as it were – and the surface containing electricity. There is a 

difference between the two fluids – electric and inertial – to be recognized in the fact that 

the static forces generated by charges prevail ofer those generated by gravitation. But 

Lorentz takes the ordinary inertial fluid as a model for any fluid. Quoting: 

If this hypothesis cannot be admitted in the case of an ordinary fluid, it 
could not be applied to the electric fluid either. However, this fact does not 
prevent our equations of motion from being accurate. Indeed, the mass of 
this last fluid was supposed to be negligible, and in calculating the variation 
dT (kinetic energy, n/a) only that kinetic energy was considered which is 
specific to the electromagnetic movements; it will suffice therefore that the 
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material points liable of these motions, and which are not to be confused 
with the electricity itself, enjoy the property of returning to the same 
positions if for each surface element the algebraic sum of the quantities of 
electricity by which it has been crossed, is 0. 

Now, one is entirely free to try on the mechanism that produces the 
electromagnetic phenomena any convenient assumption, and while 
recognizing the difficulty of imagining a mechanism that possesses the 
desired property, it seems to me that we do not have the right to deny its 
possibility. ([32], §67; our translation and Italics) 

In order to clearly delineate the physical concepts here, we follow the idea of 

infinitesimal deformation closely. And this idea takes a positive turn, based on classical 

considerations: there should be an electrically neutral deformed surface, for any pair of 

surfaces ‘steadfastly attached to matter’. 

Indeed, in matters physical, the Ampère current element connected to electricity (see 

[34], Chapter 5, passim) should not be a line element as usually considered in the classical 

electrodynamics. Closer to a reality, it should rather be a cylindrical portion of matter 

included in a portion of tube, in order to support the different physical requirements. The 

first of these, and foremost we should say, is the finiteness of a physical conductor: the 

way it apears to our senses, it is not a line, but a solid. Then the idea of de Broglie’s ray 

comes just naturally when describing such a conductor: the classical current element is 

simply a matter tube, inside which the electricity propagates. Leaving aside, for the 

moment, the side cylindrical portion of surface delimiting the element like a ring, the 

classical theory of surfaces allows us, via the concept of infinitesimal deformation, to 

characterize the Ampère element thus conceived, longitudinally, as it were. And, when 

we say longitudinally, we mean in the direction of the currents passing through it. It is the 

direction along which the element extends infinitesimally, just like its classical 

counterpart. However, unlike that classical ancestor, this Ampère current element has 

sideways extension that may be characterized by a measure – either finite or infinitesimal 

– just like the longitudinal extension, which, however, is exclusively infinitesimal. 
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3.2. A PROCOPIU RESONATOR 

Now, we can go for a proper update of the definition of an Ampère element. It seems 

to be the best candidate for what one can think as a Procopiu resonator: a piece of matter 

limited by two magnetic charges. The hard part of the problem here is the definition of 

the magnetic charge, but the infinitesimal deformation allows us to define it. It is in this 

spirit, that the theory we just presented above assigns the infinitesimal deformation to the 

existing charge from an all-pervading sea of charge in the form of neutral vacuum, 

perceived by matter via a portion of a surface locally described by the parameters (a, b, 

g) characterizing its curvature. This can be, for instance, a typical portion of the wave 

surface delimited by a de Broglie tube representing a light ray. 

Once again, our use of symbols q, dq, j1,2,3 in the previous mathematics is entirely 

intentional: q represents a charge vector, as usual, while |jñ represents a vector intensity 

of charge current. The charge and its current help us interpret the infinitesimal 

deformation in terms of the concept of charge as a vector. In other words, if the 

mathematical condition ‘there is always a vector q serving in writing the deformation’ 

according to equation (3.1.5), is to be backed physically up, this vector should be existent 

virtually everywhere in the realm thus described mathematically. 

The concept of vector charge has entered our intellect ever since the charge was 

approached in physics from the perspective of quantization in matter (see [12] and the 

literature cited there). Its vectorial character was almost explicit to Julian Schwinger, but 

we think it was Daniel Zwanziger who can rightfully be credited with a systematization 

of the concept as a geometrical one (see [55] and the literature cited there). Fact is that, 

results of the regularization procedure, especially those regarding the so-called focal 

regularization (see [35], §3.4), encourage us into using the concepts of classical dynamics 

in explaining the geometry of the space containing the center of force of the classical 

Kepler problem. Therefore, such results can be used in order to explain older concepts, 

like the Lorentz’s matter and the Thomson’s realm with its mandatory sideways action of 

force ([34], §6.2). 

Now, regarding the physical structure of currents of this Ampère current element, we 

assume an interpretation at our disposal. This allows us to define the two portions of 
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surface delimiting the element longitudinally, by ‘pegging them out’ as it were, with 

particles’ positions. The essential condition for the possibility of such a definition is that 

the matter inside the current element should be a Maxwell fish-eye medium. The general 

philosophy is then simple: any point within such a medium is the location of entrance and 

exit of an ensemble of geodesics. The two portions of surface delimiting an Ampère 

element are ‘pegged out’ by particles serving for interpretation, located in points from the 

medium. These are corresponding to one another via the geodesics of the medium: there 

are geodesics exiting from one particle located on one of the two surfaces, and entering 

another particle located on the other surface, so that the Lorentz’s condition is satisfied 

for such a ‘dipole’. By itself, the dipole is then a resonator, of either Planck or Procopiu 

type. According to Katz natural philosophy of charges, this last type of resonator is 

obtained if particles do not have the possibility to move along the line joining them, the 

matter being rigid. This condition must be retained in order to properly define a magnetic 

dipole. For now we are limiting ourselves to a few qualitative observations. 

The remaining problem is the construction of the mid-surface, satisfying the 

Lorentz’s condition of neutrality. Let us reproduce here, for convenience, a final part of 

the Lorentz’s natural philosophy of defining the electric matter, which appears as the 

crowning point of a long series of works on electricity in the 19th century. These started 

with Ampère himself, who defined the classical current element, and includes the names 

of Gauss, Riemann, Maxwell, Betti, Beltrami and many other coryphaei of the classical 

physics and mathematics (see [34] and the literature cited there). Lorentz’s definition, 

succinctly contained in the excerpts above, seems to cumulate all the opportune 

conclusions of this line of physical thinking, and we intend to follow it further here in 

order to characterize the Ampère current element. Thus, quoting again: 

Here is now a system of hypotheses that give the value 0 for this 
variation (of the kinetic energy of the system, a/n): 

a. There are two systems of particles participating in electromagnetic 
motions, systems that will be indicated by the letters N and N¢. 

b. Any time a certain particle pertaining to one of these systems, is to 
be found in the immediate vicinity of a particle of equal mass pertaining to 
the other system. 
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c. The two systems always have equal movements inversely oriented or, 
stating it more exactly: 

If two movements of the same duration start with the same initial 
positions and do not differ but by the sign of the components of the electric 
current, and if P and P¢ are points pertaining to systems N and N¢ that 
coincide in the initial configuration, the point P¢ will reach, in the second 
mouvement, the same final position the point P reaches in the first 
movement. 

This obviously implies that at the time of coincidence the points P and 
P¢ have equal and opposite velocities. Indeed, changing the signs (of the 
components of current, a/n) will reverse the velocity of the point P; but, 
according to the last hypothesis, this velocity must then become equal to 
that which the point P¢ had previously. 

Notice again that, in the course of a certain movement, a new particle 
P¢ will coincide with a given particle P. Two juxtaposed wheels, having 
equal and opposed rotations of the same axis, may serve as an example. 
([32], §69; our translation and emphasis, a/n) 

Thus, with no more ado about it, we see the Lorentz program satisfied along the 

following lines. First, we assume the matter interpreted by ensembles of Hertz material 

particles in static equilibrium under the three forces generated by their physical 

differentiae: gravitational mass and the two charges, electric and magnetic. These 

particles do not exist freely, they are figments of our imagination, just like any physical 

invention serving our knowledge: material point, dipole and such. The reality is that such 

an equilibrium does not even exist in our experience: depending on the space scale one 

Newtonian force prevails over the others in a perpetual nonequilibrium. At the scale of 

the universe at large, the gravitation prevails, while in microcosmos the electric and 

magnetic forces prevail. It is starting from this fact of experience that we are able to infer 

the theoretical necessity of existence of a static equilibrium. Inasmuch as this state of the 

matter is inexistent in our experience, then, naturally, we need to invent it, in the good 

habit of the classical natural philosophy, or fo any human philosophy, for that matter. 

Now, once we have at our disposal an interpretation, we can imagine a surface 

‘marked’ by material particles serving for interpretation, and take it as a ‘surface 

steadfastly attached to matter’, according to Lorentz’s expression. A ‘portion of this 
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surface’ is then primarily defined by the values of the entries of matrix b from equation 

(2.4.11), representing the curvature properties. An infinitesimal deformation, as in the 

classical capillary tube, will add to this matrix a contribution as in equation (3.1.16). Let 

us do some calculations: if the matrix b has the entries a, b, g so that it can be written as: 

 
(3.2.1) 

so that if we assume the condition (3.1.14) in defining the element of surface, we end 

up with the conclusion that the infinitesimal deformation adds to the curvature matrix the 

contribution (3.1.16), where: 

 
(3.2.2) 

and: 

 (3.2.3) 

According to equation (3.1.16) the curvature of this surface should be expressed by 

the matrix: 

 
(3.2.4) 

This surface also corresponds via the same process of infinitesimal deformation to a 

surface steadfastly attached to matter having the curvature parameters: 

 
(3.2.5) 

Thus if the surface characterized by (3.2.1) and that characterized by (3.2.4) are taken 

as delimiting an Ampère element, the measure of the longitudinal extension of this 

element should be somehow connected to the metric properties of the mid-surface 

characterized by the differential forms (3.2.2). As we see them, these metric properties 

are of a statistical nature (see [36], Chapter 9, §5), along with the curvatures of the 

surfaces delimiting the element. What we have to retain for now is that a Procopiu 

resonator can be seen as a special Ampère element of current. 

b =
def α β

β γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ω 1 = αdβ − βdα
αγ − β 2

, ω 2 = αdγ − γ dα
αγ − β 2

, ω 3 = βdγ − γ dβ
αγ − β 2

2n = ln(αγ − β 2 )

b =
α −ω 1 β − 1

2ω
2 − dn

β − 1
2ω

2 + dn γ −ω 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

b + db =
def α + dα β + dβ

β + dβ γ + dγ

⎛
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⎜⎜

⎞

⎠
⎟⎟
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3.3. PHASES AND CHARGES IN A HOLOGRAPHIC UNIVERSE 

The holographic principle presented by us in the §2.3 involves the homographic 

action of the 2´2 matrices on the phases. It can, therefore, be inferred that, as long as a 

surface is not steadfastly attached to matter, it cannot carry matter by transport, but can 

carry out just phases. As the phenomenon of holography can be described by the 

homographic action of the matrices, it is expected that the way to describe physically the 

transport of phases, can be mathematically represented by the elements of the actions of 

matrices. Let us expound on the meaning of this statement. 

Naturally, in this context, our first issue here should be the most complete 

characterization of the 2´2 matrices by their homographic and linear actions on phases 

in general. After all, these are the only possible actions that can be defined for the matrices 

of this kind. Every such matrix, assumed with real entries (a, b, g, d) – the notation is 

chosen in order to be in line with that of the previous work on whose calculations we 

intend to rely [see [35], equation (4.4.3)] – has two of its elements strictly determined by 

the three independent ratios of its entries. These are the fixed phases of its homographic 

action satisfying the condition: 

 
(3.3.1) 

There are two fixed phases, viz. the roots of the quadratic equation just written down 

here. Within the idea of a holographic property of an optical medium, as described §2.3, 

they play a central part in the theory, so we can assume that knowing them is an essential 

point of understanding of the phenomenon of holography. Our first task here is finding 

those homographies strictly determined only by the knowledge of their fixed phases. 

A first move, is to exploit the relation between roots and coefficients in equation 

(3.3.1), and thereby construct a matrix whose linear action is determined exclusively by 

its homographic action. The way this statement can be understood will be obvious as we 

go on with our construction. If we know the fixed phases in the holographic process, f1 

φ = αφ + β
γφ +δ

∴ γφ 2 + (δ −α )φ − β = 0
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and f2 say, then by equation (3.3.1) two of the entries of the matrix are known alongside, 

so that the resulting matrix contains two arbitrary parameters besides the fixed phases: 

 
(3.3.2) 

In this approach, the only matrix strictly determined by the knowledge of the fixed 

phases must be of the form: 

 
(3.3.3) 

up to a multiplicative constant. Denoting this matrix by F – suggesting the idea of 

‘phases’ in the construction of a matrix – the most general matrix (3.3.2) having the two 

fixed points can be formally written as: 

 (3.3.4) 

In other words, in determining a matrix by its homographic action, results in a family 

of two-parameter commuting matrices having the same fixed phases. This is a general 

property: any two commuting matrices have the same fixed phases; reciprocally, the 

matrices having the same fixed phases commute with each other. There are notable 

exceptions from this general rule, but they are not concerning us just yet. 

The main point of interest in the holographic phenomenon here is that, in any 

homographic action of one of the matrices from the family (3.3.4) the two fixed phases, 

f1 and f2, are preserved, and they can represent the essential information constant during 

this phenomenon. This information is preserved in any phase M(f), where M(f) is the 

homographic action of the matrix M. 

Now, regarding the linear action of the matrix (3.3.4), it is also characterized by its 

two fixed elements: the eigenvalues. As known, there are two of them, and they reproduce 

the linear structure of the matrix as given the equation (3.3.4), that is they are linear in the 

fixed phases, involving the same two arbitrary parameters: 

 (3.3.5) 

Notice, now, that the matrix from equation (3.3.3) has eigenvalues f1 and f2, so that 

this particular case can be characterized by a matrix F whose eigenvalues and fixed 

δ + γ (φ1 +φ2 ) −γ ⋅φ1φ2
γ δ

⎛

⎝
⎜

⎞

⎠
⎟ ≡ δ

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
+ γ φ1 +φ2 −φ1φ2

1 0

⎛

⎝
⎜

⎞

⎠
⎟

φ1 +φ2 −φ1φ2
1 0

⎛

⎝
⎜

⎞

⎠
⎟

M = δ ⋅1+ γ ⋅Φ

m1 = δ + γ ⋅φ1, m2 = δ + γ ⋅φ2
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phases are identical. This is what we understand when we say that the linear action is 

determined by the homographic action. Of course, the statement can be also taken in the 

reverse for this case: the homographic action is determined by linear action. 

As the measurement results are usually represented by eigenvalues, especially in the 

modern physics, one can see that the results (3.3.5) are not pure measurements: they 

depend here on the fixed phases. In fact, the reckoning can be very well reversed here, in 

order to make the two fixed phases dependent on measurement results, as it were: the two 

fixed phases are depending linearly on eigenvalues. This is actually the historical order 

of things measured in general: an experimental setup must exist in order to execute a 

measurement. The things holographic just follow this path in a specific way, that is all: 

record two images of an object in two different phases, and then bring them together into 

a hologram [19]. A 2´2 family of matrices representing a hologram must reproduce this 

universal situation revealed to our intellect by Dennis Gabor. And it can be understood, 

indeed, if we attach to a phase the idea of surface, in the manner of Louis de Broglie (see 

[34], passim). 

In order to take this opportunity and insert it into a descriptive physical theory, one 

needs first to proceed to another construction of the previous matrix, for a case entirely 

opposite to the previous one. This will consist of the construction of the 2´2 matrix 

strictly depending on phases, but with the fixed phases independent of the eigenvalues. 

The general idea, in keeping with the historical order, is to separate issues when 

determining a general matrix. And we have a remarkable case for inspiration, that came 

with the discovery of spin phenomenon of the electrons. Namely, the idea of spin ½ 

generated the idea of isospin, and we need to go along with this last idea when it comes 

to introducing the charges. This can be done as follows: build out of two given phases, f1 

and f2, a matrix having them as fixed phases, but having the eigenvalues ±1. These two 

eigenvalues can very well be the two fundamental charges of our world, or the two values 

of the half-spin of particles, for instance [46]. In any case, such a matrix would have the 

structure: 
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(3.3.6) 

Like the previous matrix, constructed exclusively on the fixed phases as in equation 

(3.3.3), this matrix has also the fixed phases f1 and f2, indeed, but unlike that version of 

such a matrix, it has the eigenvalues ±1. Then a linear combination with arbitrary 

coefficients, counterpart of that from equation (3.3.4), say of the form: 

 (3.3.7) 

with the matrix F given in equation (3.3.6), has the eigenvalues (l ± µ) independently 

of the two fixed phases. However, as in the previous construction, these eigenvalues can 

also be taken as phases. 

Concentrating on this last manner of construction, the matrix F is our channel of 

introducing the concept of surface in physics. The manner of doing this is simple, and 

even presents itself quite simply to our intellect: consider the two fixed phases as 

coordinates on a surface. The suggestion comes from the ‘classical’ – we may be allowed 

to use this suggestive word here – eigenvalue problem of half-unit spin [46]. In that case 

the surface is the regular unit sphere in space, and we have: 

 
(3.3.8) 

where q is the angle of colatitude on the unit sphere, and j is the angle of longitude. 

The matrix F, constructed according to the recipe from equation (3.3.6), is therefore given 

by the 2´2 table: 

 
(3.3.9) 

and has the eigenvalues ±1, indeed, as can be easily verified. However, we have a 

potential situation here, if we continue to see the values of spin in the eigenvalues of a 

matrix like (3.3.7) constructed with the matrix from (3.3.9). To wit, any other spin should 

then be represented by the eigenvalues of the corresponding matrix M. But these 

Φ =
def 2
φ1 −φ2

φ1 +φ2
2

−φ1φ2

1 −φ1 +φ2
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

M = λ ⋅1+ µ ⋅Φ

φ1 = cot
θ
2
⋅eiϕ φ2 = − tanθ

2
⋅eiϕ

Φ = cosθ sinθ ⋅eiϕ
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⎟
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eigenvalues are a priori arbitrary, with no selection rules to apply: if such rules exist, they 

must come out from other considerations. 

There is, however, an area of application of this scheme of holography, where this 

arbitrariness may prove beneficial: the case of a resonator. Regarding this as a case of 

charge measurement, it means the measurement of two charges equal in value and 

opposite as sign: ±e, where e is the quantum of electric charge, or ±g, where g is the 

quantum of magnetic charge. These two eigenvalues are independent of the phases of the 

two kinds of charges, just like in the case of half-spin measurements. Any other case of 

resonator must come out with the eigenvalues of the corresponding general matrix M, viz. 

(l ± µ×e) or (l ± µ×g), independently of the two phases of the charges. Notice, however, 

that these ‘measurements’ provide a priori arbitrary charges, either magnetic or electric, 

and that the two phases switch their roles in the matrices (3.3.9) describing the two 

measurements. 

Regarding the arbitrariness of the results of charge measurements, the theoretical 

physics invented the idea of confinement in order to appease the things in this case: the 

elementary particles carrying such charges are confined into physical structures, so that 

they are not natural in the finite universe of our experience, and cannot be observed in a 

free state. In a holographic universe, though, this fact appears as quite natural: the charges 

are only phases to be associated to different surfaces in matter by, say, the Lorentz’s 

procedure [see (Lorentz, 1892); §§57 and 67; see also the previous §§3.1. and 3.2. for 

details], and they are manifested, indeed, in a universe defined as such by the matrix M: 

the quantization procedure is therefore to be defined here accordingly. Such a universe, 

presents itself naturally, where it was indeed signaled for the first time: it is the nucleus 

of the planetary model, described as a dynamical Kepler problem [36]. The rest of this 

work is dedicated to characterizing this realm as a holographic universe: optically 

speaking, it is a Maxwell fish-eye medium. 

3.4. THE RESONATOR WITHIN THE ATOMIC NUCLEUS 

Having at our disposal a matrix like that from equation (3.3.6) the holographic 

phenomenon can be described as in equation (2.3.16), because the three components of 

the sl(2,R) coframe are readily available. Based on this observation we will develop here 
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a model of the nuclear matter based on the idea of resonator. What we understand by 

nuclear matter is an optical medium delimited around the center of force in the classical 

dynamics describing the Kepler motion by the natural condition of existence of closed 

orbits. This medium is known to be an sl(2, R) metric space, with a metric that can be 

constructed a priori by the methods of absolute geometry as in the §2.2 above [36]. The 

fixed phases to be used in construction of the matrix F from equation (3.3.6) are complex, 

z and z* say, so that the resulting matrix is: 

 

(3.4.1) 

The complex number z has an algebraical form that includes the initial velocity of the 

motion, so that we can say that the condition of existence of the closed orbits is of a 

holographic nature, to start with. The second of the two fixed phases is given by its 

complex conjugate z*. Let us work in real phases, for the results are more suggestive: the 

matrix F from equation (3.4.1) is, in real phases, u and v say: 

 
(3.4.2) 

where the imaginary unit i is maintained into the picture in order to make the 

determinant of the matrix –1, as in the cases where the two fixed phases are real, and the 

two eigenvalues are ±1; otherwise, these would be ±i. In general, though, we can dispense 

with the factor i in the theory, with no significant consequences. 

The coefficients of the Riccati equation (2.3.16) representing the set of phases 

associated with a given hologram generated by matrix F from equation (3.4.2), are [see 

[35], equation (4.4.3)]: 

 
(3.4.3) 

The Cayley-Klein metric of this algebra is, up to a sign, the Beltrami-Poincaré 

classical metric of the unit disk, given by: 

Φ =
def 2
z − z∗

z − z∗

2
−z ⋅ z∗

1 − z − z
∗
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⎜
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⎟
⎟
⎟

Φ = 1
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(3.4.4) 

where s, representing the geometrical arclength, is, again, a phase. The geodesics of 

this metric can be simply calculated by considering it a Lagrangian, and then solving the 

Euler-Lagrange equations. These are: 

 
(3.4.5) 

where the accent means derivative on s. One can verify right away that the solutions 

of these equations are given by cycles, which we write in both the parametric form, as 

well as in the implicit form: 

 

(3.4.6) 

Along these geodesics the differential forms (3.4.3) become: 

 
(3.4.7) 

and along them the equation (2.3.16) is simply an ordinary Riccati equation with 

constant coefficients. We stop here for now, as we need to discuss the position of equation 

(3.4.5) and (3.4.7) regarding the connection between the phase and the host space of the 

matter. 

The parameter s can be taken as a phase, provided it satisfies the Laplace equation in 

space. This can be shown as follows [3] (see also [4] for the description of the method in 

a particular case): the problem of interpretation in the case of holography is pending on a 

particle moving on the geodesics (3.4.6). The interpretation per se is given by the 

harmonic mappings from the matter to space. Proceeding as usual [36], we need to 

construct the energy functional of the metric (3.4.4), which is the integral: 

 
(3.4.8) 

The Euler-Lagrange problem for extremizing this functional, provides the equations: 

 
(3.4.9) 

ω 1 ⋅ω 3 − (ω 2 2)2 = (du)
2 + (dv)2

v2
≡ (ds)2

v ′′u − 2 ′u ′v = 0 and v ′′v + ( ′u )2 − ( ′v )2 = 0

u = u0 + v0 tanh s

v =
v0
cosh s

∴ (u − u0 )
2 + v2 = v0

2

ω 1 = − 1
v0
ds, ω 2 = 2 u0

v0
ds, ω 3 = − u0

2 − v0
2

v0
ds

1
2

(∇u)2 + (∇v)2

v2
d(volume)

Volume∫∫∫

v∇2u − 2∇u ⋅∇v = 0 and v∇2v + (∇u)2 − (∇v)2 = 0
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These equations look like the equations of the geodesics (3.4.5). The resemblance is 

becoming an identity if we assume that they represent waves with particles moving 

collectively but along separate geodesics, like the light does along straight lines, in our 

experience. Indeed, this means that the parameter s of the geodesics needs to be taken as 

a wave phase: a function in space associated to the particles moving along the geodesics. 

In this case the equation (3.4.9) can be written as: 

 
(3.4.10) 

which reduces to (3.4.5) if s is a solution of the Laplace equation: 

 (3.4.11) 

The identity in question takes place only for phases that are solutions of the Laplace 

equation. The equation (3.4.7) associates with one of these geodesics a matrix analogous 

to the one from equation (3.4.2): 

 
(3.4.12) 

corresponding to the values u0 and v0 of the parameters. One can say that a geodesic 

maintains two phases constant along it: u ± v. These are the fixed phases of the matrix 

(3.4.12), and they are the same all along a given geodesic. This is, in fact, the method of 

associating a phase to a moving particle: the free particle moves along a geodesic, and 

has two real phases constant along that geodesic. But the whole advantage of associating 

phases to motion this way, comes with another, by far more important observation. 

If a geodesic (3.4.6) is uniquely characterized by a matrix like (3.4.12), this means 

that the correspondence between two geodesics can be related to the variation of such a 

matrix. A rational model of such a variation presents itself via the differential of the 

matrix: 

 (3.4.13) 

Let us calculate the matrix F-1×dF, using equation (3.4.12). The result is: 

 
(3.4.14) 

v ′′u − 2 ′u ′v = −v ′u ∇2s
(∇s)2

, v ′′v + ( ′u )2 − ( ′v )2 = −v ′v ∇2s
(∇s)2

∇2s = 0

Φ = 1
v

u −u2 + v2

1 −u
⎛

⎝⎜
⎞

⎠⎟
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where the entries are the following differential 1-forms: 

 
(3.4.15) 

This is an sl(2, R) coframe, seeing its structural equations: 

 
(3.4.16) 

The Killing-Cartan metric of the coframe (3.4.15) is conform-Lorentzian: 

 
(3.4.17) 

The geodesics of this metric are given parametrically as: 

 
(3.4.18) 

where j is the arclength along this metric. In other words, going along the geodesics 

of the metric (3.4.17), the geodesics (3.4.6) of the metric (3.4.4) must be located as: 

 
(3.4.19) 

We have here a family of cycles through two fixed points u0 ± v0: these two phases 

represent two locations satisfying the essential requirement of the Maxwell fish-eye 

optical medium. Thus, they reproduce the structure of a resonator, and it remains to be 

decided what kind of resonator it is: Planck’s or Procopiu’s!? 

The answer that we find the most rational of them all is based on the observation that 

the metrics (3.4.4) and (3.4.17) satisfy to a kind of ‘duality’, if we may be allowed to say 

so. As we have seen thus far, the parameters u0 and v0 of the geodesics (3.4.6) follow the 

Riemannian geometry of the metric (3.4.17). Let us see, what geometry follow the 

parameters u0 and v0 of the geodesics of the metric (3.4.17), in their turn. Just as in the 

first of these cases, we just need to calculate the differential forms (3.4.15) along the 

geodesics (3.4.18). The result is: 

 
(3.4.20) 

ω 1 = du
v2
, ω 2 = 2 udu − vdv

v2
, ω 3 = (u

2 + v2 )du − 2uvdv
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cosϕ
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In other words, a geodesic of the metric (3.4.17) is uniquely associated with a matrix 

(3.4.14) of the form (3.4.2): 

 
(3.4.21) 

This time we have a resonator with two complex locations: u ± iv, prone to be 

associated with charges in the nucleus of the planetary model, judging by the realm to 

which the metric (3.4.4) applies. 

The bottom line is that there are, indeed, two kinds of resonators inside the nuclear 

matter thus understood, and deciding which is which takes more than a simple 

mathematical observation. Our thesis is that it takes a constitutive law of the optical 

medium in question, and this can be decided only by a physical characterization of the 

other category involved in the equilibrium within a Wien-Lummer enclosure: the light. 

Up to this point we discussed only the matter: let us, therefore, turn to the light. 

4. THE CATEGORY OF LIGHT 

The physical theory of light constructed by Augustin Fresnel had many connotations 

of quite different sorts. For once, it meant a severance of the theory of light from the old 

classical phenomenology involving only the phenomena of reflection and refraction. For, 

by concentrating on the diffraction phenomenon, as it did, Fresnel’s theory added, 

actually, the diffraction to that old phenomenology, thus creating a new phenomenology 

of light, destined to make the theory depend exclusively on a technology of 

experimentation. In turn, this new phenomenology had to wait for another century or so, 

in order to be again ‘updated’, so to speak, with the phenomenon of holography, which 

can be safely connected with the name of Louis de Broglie, once it is based on 

quantization [19]. However, the one connotation of Fresnel’s theory we are considering 

now means a generalization of the theory of light, far and beyond its electromagnetic 

stance, in fact well into the modern theory of particles and fields. In time, this was 

achieved, first via the Yang-Mills generalization of Maxwell electrodynamics and, 

secondly, via the Willem de Sitter’s generalization of the concept of free spacetime, 

setting the Einstein’s ideas on relativity in order. 

Φ −1 ⋅dΦ = 1
v

u −u2 − v2

1 −u
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This capability of the Fresnel’s theory of being so versatile is due to the fact that it 

has strong ties with two classical ideas of a general natural philosophical class: the 

concept of Ampère element, as involved in the description of a kind of Lorentz matter and, 

above all, the concept of de Broglie’s surface as the one involved in the classical theory 

of light. In order to document this statement, we start by quoting the great Henri Poincaré, 

who once aptly summarized what we think is the essential point of the Fresnel’s physical 

theory of light: 

This is, in a nutshell, the theory of Fresnel. It is in every respect in 
conformity with the experimental laws; but we notice that it rests upon two 
hypotheses demanding closer examination. These two hypotheses can be 
enunciated as: 

1° The elastic force arisen by the motion of a plane wave is independent 
of the direction of the plane of wave, it depends only on the direction of the 
vibrations of the molecules, and is proportional to the force developed by 
an isolated molecule, the other molecules from the plane of the wave 
remaining at rest. 

2° The only effectual component of the elastic force is the component 
parallel to the wave plane. 

The first of these hypotheses, which Fresnel vainly tried to justify, is 
entirely arbitrary, but nothing precludes its acceptance (…) 

As to the second one, it is an immediate consequence of the 
incompressibility of the ether. We already stated that, in his calculations, 
Fresnel admitted, often implicitly, sometimes that the resistance of the ether 
to compression would be null, sometimes that it would be infinite. In these 
lessons we have situated ourselves, up to this point, in the first of these 
hypotheses; let us look now for the equations of motion within the 
hypothesis that the resistance to compression is infinite, that is the elastic 
medium is incompressible. [(Poincaré, 1889), pp. 229 – 230; our translation 
and emphasis, n/a] 

We used this ‘second hand’, as it were, quotation on the Fresnel’s original concepts 

(Fresnel, 1821, 1827), because it is the clearest one when it comes to the physics involved 

into description of the light phenomenon. As these few phrases of the illustrious Henri 

Poincaré suggest themselves, the original expression of the Fresnel’s ideas is, inherently 

we should say, in view of the novelty of the concepts it introduces, a little confusing. This 
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is why we preferred the clarity of this quotation, brought by at least fifty years of 

theoretical physics’ contemplation of the initial concepts. Notice that Fresnel implicitly 

considered the concept of surface in its utmost generality – once he used the idea of wave 

plane – which, for once, compels us into construction of an adequate theory, accounting 

explicitly for this concept. The problem of Fresnel inconsistency regarding the description 

of behavior of the ether to compression, needs also to be undertaken from a modern 

perspective, for it is connected with a fundamental way of thinking that led in time to the 

Maxwellian theory of light. 

Indeed, it seems to us that the two apparently conflicting physical properties of the 

ether – sometimes resistance to compression null, sometimes infinite – cannot describe 

the same physical entity, for, according to the common experience, such an entity can 

possess either one or another of them, but not both properties at once. As one can clearly 

understand from the above excerpt, the strategy of physics was always to see to what each 

one of the properties leads in terms of the perceived properties of the ether, and then 

decide what this medium should really be, in order to check experimentally if true. 

Useless to say, what the ether actually is has not been decided even to this day, so that, in 

a way, we are presently giving a reason to this very fact: the two mutually exclusive 

properties are only a natural philosophical consequence of the mechanical constitutive 

characterization of a material continuum, and as long as the ether is considered material, 

it cannot be but an electromagnetic ether. 

4.1. CONSTITUTIVE CHARACTERIZATION OF RESONATOR ENSEMBLES 

In the mechanics of continua, one works, as a rule, with second order tensors or, more 

general, 3´3 matrices, in order to represent stresses and deformations of continua. Unlike 

the central forces, these are strongly non-polar mathematical things, at least as long as we 

do not specify them in terms of fields of displacements and forces. Furthermore, when it 

comes to the reality of these things, it is only guaranteed by the so-called constitutive law. 

Let us elaborate a little on this concept. In broad terms, the mechanical constitutive law 

is a relationship between stresses and the strains they induce – the measures of 

deformation – during the process of deformation. As our representations of these concepts 

is usually by matrices, the most general constitutive law is simply a mathematical relation 
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– algebraic or analytic – between two 3´3 matrices. If we denote by t the matrix of 

tensions (stresses) and by d the matrix of deformations (strains), representing, then a 

constitutive law is a relation of the form t = C(d) where the matrix function C is accessible 

to experimental evaluation. Here we insist on the meaning according to which t is the 

applied stress on a continuum, while d is the resulting strain. 

The reality we just mentioned above is then connected to the identity of the material 

characterized by the constitutive law. For, it is claimed, in the modern science of materials, 

that the stress and strain matrices are universal mathematical tools while the function C 

is a specific feature of the material upon which the stresses are applied. One can see in 

the concept of stress, extended beyond the applied stress, a mean to eliminate the force in 

general from the mechanics of continua. Indeed, it is only the applied stress that is 

intimately tied up with the idea of force. Otherwise, the stress can be thought of as a 

density of energy describing the matter, in general even independently of the applied force. 

Therefore, if it is to extend natural philosophical conclusions – which, by their very nature, 

carry entirely the mark of our senses – onto the description of a fictitious matter, as in the 

case of ether, for instance, then it is more appropriate to accept the idea that the ether of 

space deforms in any conditions, and if the ether of matter is acted upon in any way, it 

responds by deformation which we describe by a matrix designated d. Thus, we are bound 

to find a function C that implicitly contains the physical nature of this continuum. 

Now, a deeper insight into this problem shows a specific feature of it, that goes 

beyond the physics of central forces: one has to deal here with uncontrollable 

manifestations of the matter. This is perhaps the main deep reason of maintaining the 

mechanical manner of thinking in physics. It is, indeed, true that every one of our physical 

actions is associated with forces. In other words, in doing experiments we need control. 

However, we cannot control but forces and, if anything else, through forces. It is seldom 

noticed that in the framework of mechanics, as long as we are maintaining the forces as 

essential theoretical tools, there can be no room for uncontrollable quantities. This is 

exactly what has happened with the ether theories along the time: nothing uncontrollable 

has been admitted in its physics. We think that an ether theory is a critical field where we 

must recognize the existence of uncontrollable quantities and, most importantly, we must 
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not describe them in the manner we describe the controllable quantities. If the ether exists, 

the free motion of the bodies through it is enough proof that we cannot control its 

deformations. 

It just happens that the most general idea of uncontrollability comes quite intuitively 

with what we would like to call a natural constitutive law. Indeed, a constitutive law 

relating the applied stress to a resulting strain experimentally recorded, usually by a 

measured length, must be of the form: 

 (4.1.1) 

where 1 is the identity 3´3 matrix. We call this equation a natural constitutive law, 

on the grounds that it can be derived from the very basic considerations on our 

representations of stresses and strains. Indeed, if our models of stress and strain are 3´3 

matrices, and if the constitutive law should be analytic, the equation (4.1.1) must be 

automatically in effect. For, then, the relation between the two matrices can be 

represented by a formal series reducible to a second order polynomial via Hamilton-

Cayley theorem. By the same token, that relation can just as well be written with the 

places of stress and strain matrices interchanged. Thus, the strain matrix as a function of 

stress matrix is also a quadratic function, only with some other coefficients. 

Now, the deforming medium is supposed to have here a precise identity, for we can 

identify it by the coefficients (p0, p1, p2) which are accessible to experiment, and there are 

indications that these coefficients are different for different materials. Their values offer 

what is actually meant by a ‘material characterization’. Often times in the actual 

engineering practice these coefficients are considered pure material properties, but this 

restriction confuses the issues, sometimes with serious consequences, mostly in 

engineering problems. Let us make this statement a little more precise. No matter what 

the material properties ‘incarnated’, as it were, into the coefficients p0,1,2 are, we can 

imagine the following experimental approach to constitutive equation (4.1.1). Consider 

that in each and every one of the loading experiments involving a stress incurred to a body 

like the confined ether, a system of tensions can be defined, the principal directions of 

which coincide with the principal directions of resulting measurable strain. In this case, 

if t1,2,3 are the principal values of this stress matrix, and d1,2,3 those of the strain matrix, 

t = p0 ⋅1+ p1 ⋅d + p2 ⋅d
2
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according to the constitutive law (4.1.1) we must have satisfied the system of three 

equations: 

 

(4.1.2) 

This system can be considered as a linear algebraic system in the three parameters (p) 

describing the very material. Nothing hinders us then, in assuming that we are able to 

perform such experiments allowing us to measure all three principal values of strain 

corresponding to the three principal values of stress at once. For, to be sure, we can always 

control a state of applied stress, but can only ‘watch’ the resultant strains, and measure 

them at most. The outcome of experiments – whereby the stresses are controlled, and the 

strains are only observed, at the very best measured – will then allow us to calculate the 

material properties embodied in the coefficients p0,1,2 from the system (4.1.1). This system 

has a nontrivial unique solution for these coefficients – a solution of the kind required by 

the uniqueness of the physical properties to be used in the description of the material upon 

which the loading experiments are performed – if, and only if, the principal determinant 

of the system (4.1.2): 

 

(4.1.3) 

is non-null. Thus, the parameters p0, p1, p2 are uniquely determined, regardless of the 

character of imposed stress, by the solutions of the system (4.1.2) if, and only if, the 

resulting principal deformations are all different from one another. We have nonetheless 

to notice, that in such a situation the stresses defined by (4.1.2) are hardly controlled like 

in an actual experiment: they are, in fact, totally uncontrolled. Now, coming back to our 

experimental considerations, no matter how unique, and thereby well suited for 

characterizing the deforming medium physically, the coefficients thus obtained are by no 

means pure material properties, inasmuch as they all depend on the impressed state of 

stress. Therefore, we are further required to make more precise what we understand by 

pure material properties, and this is, and indeed always was, a big issue. 

t1 = p0 + p1 ⋅d1 + p2 ⋅d1
2,

t2 = p0 + p1 ⋅d2 + p2 ⋅d2
2,

t3 = p0 + p1 ⋅d3 + p2 ⋅d3
2

1 d1 d1
2

1 d2 d2
2

1 d3 d3
2

≡ (d2 − d3 ) ⋅(d3 − d1) ⋅(d1 − d2 )
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We can address this issue by noticing that there are deformations even in case where 

there are no impressed stresses acting on our material. The propagation of waves is a case 

in point, but we do not need to go quite that far, for the gravity makes a very good and 

comprehensible case: our experience is simply determined in a background dominated by 

gravity. Based on the discussion above we can further argue that any field must have this 

essential property. More to the point, as long as we do not know their mechanical origin, 

such deformations can be considered as some intrinsic properties of the deforming 

medium in question. If it is to extend our experience beyond observations, then such 

intrinsic properties can be supposed to be generated by forces on whose presence we have 

momentarily no idea, therefore by those forces assumed to exist inside interpretative 

ensembles of the matter. Limiting, at least when it comes to the description of ether, the 

mechanics only to external or impressed forces, i.e. accepting that there is no possibility 

to describe the action upon continuous parts by forces, leaves no alternative but to 

consider them as intrinsic properties of the continuum. In terms of system (4.1.2) they 

can be described by the system of equations: 

 

(4.1.4) 

Then, the matter description by experiment is transferred into finding the solutions of 

this homogeneous linear system, in case they exist. As a matter of fact they always exist, 

we have to decide just how many of them, and this fact depends on what we can always 

really measure. If we are able to always measure three different deformations in three 

different directions in space, in the case of no apparent action on the medium, then this 

medium is not responsive to any impressed stresses (p0,1,2 = 0). That much we know from 

our historical experience: the possibility of bodies to move unobstructed through ether, is 

the main quality of the ether that propagates light and this is why Fresnel ‘had sometimes’ 

to assume it! 

However, there are also possibilities of solutions in which the ether may be 

responsive to external stresses, in other words its deformation can be associated with 

stresses definable according to equation (4.1.4) for the material. These possibilities are 

0 = p0 + p1 ⋅d1 + p2 ⋅d1
2,

0 = p0 + p1 ⋅d2 + p2 ⋅d2
2,

0 = p0 + p1 ⋅d3 + p2 ⋅d3
2
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given by the nontrivial solutions of the system (4.1.4), and they are made possible only 

in those cases where there are less than three measured strains. Thus, if we measure one 

and the same strain value in any direction – the material is isotropic from the point of 

view of deformation – we can have a double infinity of states of stress of ether, depending 

on two matter parameters. If we measure two strain values, and only two, in a direction 

and its perpendicular plane for instance, then we have states of stress of the ether 

depending on one matter parameter. Granting that we can include one of the matter 

parameters into a measurable quantity, the most general constitutive law satisfied by the 

ether exhibiting definable stresses corresponding to a measured strain will be given by a 

constitutive law involving three determinable parameters in the form: 

 (4.1.5) 

where K is an arbitrary constant. One can say that such a material has three 

uncontrollable quantities, out of which two are measurable: the constant K and the two 

eigenvalues of deformations. 

In closing here, notice that as long as we are interested in just the measurable 

quantities in characterizing the ether, there is a convenient way to do this. Namely, we 

just have to construct a characteristic deformation matrix of the deforming medium, using 

the two uncontrollable strains measured under no apparent mechanical action upon the 

medium in order to form a special tensor having the entries: 

 
(4.1.6) 

where l is the unit eigenvector corresponding to the eigenvalue d1. Such a medium 

has distinguished directional properties, with respect to the direction l, and these 

properties are given by the eigenvalues d1 and d2. As a matter of fact, the equation (4.1.6) 

does contain both of the previous two cases as particulars, if we agree to characterize the 

intrinsic material properties as deformations. Notice that this is an assumption 

independent of the constitutive description, and must be secured only by our measurement 

capabilities. Thus we have this general conclusion: whenever the medium deforms freely, 

i.e. under no noticeable actions on it, its deformation matrix must be of the form given by 

equation (4.1.6), all the particular cases included. The deformations as well as the 

t = K(d − d11)(d − d21)

dij = d2δ ij + (d1 − d2 ) ⋅ lil j , i, j = 1,2,3
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stresses are then manifestly tensors. This is the case of the ether in space: the medium 

through which the bodies move freely. 

Notice now that the quadric associated to the tensor (4.1.6) is a spheroid, prolate or 

oblate, depending on the ratio of the two eigenvalues d1 and d2. This is the general 

geometrical form associated with a dipole. Consequently, we can assume that this kind of 

ether is simply one of the category supporting the rays described by us in §2.1. 

By the same token we can discuss the ether in matter: that category of ether capable 

of sustaining stresses and exhibit no strain. It is indeed by this essential property of matter 

that comes first to our senses in the form of incompressibility. For this, the converse 

constitutive law must be taken in consideration, namely: 

 (4.1.7) 

This time, however, t may be abusively called stress, if we define the stress by 

controllability: let us just say that it is a tensor representing the internal energy in matter. 

Then the defining state of such an ether will be characterized by the system of equations: 

 

(4.1.8) 

corresponding to no strain response. Again, the characterization of this ether depends 

upon the number of solutions of this system: if one can always measure three different 

stresses in three different directions then the ether has no deformational response to any 

stresses (q0,1,2 = 0). This is, again, the case ‘sometimes’ considered by Fresnel, i.e., the 

incompressible case. And the most general strain this kind of ether can exhibit is of the 

form: 

 (4.1.9) 

where the constant K1 has dimensions of stress. It is perhaps of some gnoseological 

significance – at least for guiding our natural-philosophical reasoning, if nothing else – 

that the relation (4.1.9) with t1 + t2 = 0 has been found to be characteristic for metals, in 

large as well as small deformations: metals always struck our senses by their hardness. 

Again, as long as we are interested in just measurable quantities characterizing such 

a material, then its intrinsic stress tensor assumes a convenient representation, similar to 

d = q0 ⋅1+ q1 ⋅ t + q2 ⋅ t
2

0 = q0 + q1 ⋅ t1 + q2 ⋅ t1
2,

0 = q0 + q1 ⋅ t2 + q2 ⋅ t2
2,

0 = q0 + q1 ⋅ t3 + q2 ⋅ t3
2

d = K1
−1(t − t11)(t − t21)
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(4.1.6). However, this time we are compelled to assume further that the eigenvalues of t, 

whatever this physical magnitude may be, are measurable. All we know about them is 

that they are ‘stress-like’ as it were, i.e., they must have the physical dimensions of the 

energy density. Inside a material these can be realized only by interpretation, for instance 

by fluxes of intermolecular forces, as once posited by Augustin Cauchy. Thus, the 

counterpart of (4.1.6) is here: 

 
(4.1.10) 

where m is a unit vector corresponding to the eigenvalue t1. One can say that the 

general characteristic of materials exhibiting no deformation under stress is of the form 

(4.1.9), all particular cases included. 

A digression is now in order, for better understanding of the issues of this 

characterization of matter. It involves either the constitutive relations (4.1.6) or those from 

the equation (4.1.10). However, while the first of these descriptions of matter asks only 

for properties of a continuum – one needs to measure just strains – the second one, 

involving the equation (4.1.10) asks for more. Namely, as the case of Cauchy stresses 

shows it, here we need an interpretation of the matter. It pays for later developments to 

notice that, while in the first case the matter, as a continuum, is described by a Newtonian 

density, in the second case the description needs an Einsteinian density of numerical type. 

Interestingly enough, the electromagnetism seems to cumulate the two descriptions of the 

ether, into the so-called electromagnetic ether, as we shall see right away. 

The case of equations (4.1.6) and (4.1.10) is specific for matrices that we would like 

to call as ‘equivalent’ to a vector field: they characterize dipoles of two different kinds. 

We understand this equivalence in the following way: having a vector field v, we can 

construct the following matrix using two parameters a and b: 

 (4.1.11) 

Now, it is clear that, because vk are the components of a vector, and supposing α and 

β scalars, gives vij the components of a tensor. One of the eigenvalues of this tensor, 

namely α, is double. The other eigenvalue, different from α, is given by: 

 (4.1.12) 

tij = t2δ ij + (t1 − t2 ) ⋅mimj , i, j = 1,2,3

vij =αδ ij + βvivj

′α =α + βv2
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Notice some interesting features of this kind of tensor. First of all, if either β or vk is 

null, vij is a purely spherical tensor. Secondly, if we calculate the eigenvector of the tensor 

v, corresponding to the eigenvalue (4.1.12), we find out that this eigenvector is just the 

vector v º |vñ, up to a normalization factor. This property is independent of the parameter 

α, and this is what we mean by the above mentioned equivalence: given the vector |vñ we 

can directly construct the tensor v as a family of two-parameter tensor matrices having it 

as an eigenvector. One can say that v represents a kind of action that points in the general 

direction of |vñ, as it were, not exactly in that direction. 

One way to get the characterization of fundamental structure of ether, compatible 

with the category of vacuum – considered as matter, but missing the interpretation – is by 

admitting that this structure is described not by one tensor of the general type (4.1.11) but 

by two, with two characteristic vectors, u and v say. According to such a logic, the tensor 

describing the complete fundamental structure of ether would then have entries depending 

on three parameters: 

 (4.1.13) 

This line of ideas is, of course, inspired by the electromagnetic theory of light where 

the tensor: 

 
(4.1.14) 

represents the so-called Maxwell stresses of the ether. Here λ and µ are some real 

parameters, describing the ‘degrees of light and matter’ into this ether, with the matrices 

u and v defined as the tensors: 

 
(4.1.15) 

where u and v also denote the vectors generating the corresponding matrices 

according to equation (4.1.11). The tensor (4.1.14) contains eight measurable quantities: 

λ, µ, and the two intrinsic vectors. Written at length, the entries of this tensor are of the 

form: 

wij =αδ ij + βuiu j + γ vivj

wij = λuij + µvij ∴ w =
def
λu + µv

uij =
def
uiu j −

1
2
u2δ ij , u2 ≡ u ⋅u, vij =

def
vivj −

1
2
v2δ ij , v2 ≡ v ⋅ v
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(4.1.16) 

where u and v are vectors, and we used the following notations: 

 
(4.1.17) 

It is easy to see that this tensor has three real eigenvalues, in general distinct. Indeed, 

its orthogonal invariants are: 

 
(4.1.18) 

so that the eigenvalues of tensor w can then be calculated as the roots of the 

corresponding characteristic equation – the cubic equation having the invariants (4.1.18) 

as coefficients – and they are: 

 
(4.1.19) 

It turns out that the pair from equation (4.1.17) gives one eigenvalue of w and the 

corresponding eigenvector. The other two eigenvectors of w are orthogonal, and located 

in the plane of the vectors u and v: they are linear combinations of these two vectors. 

At this point we have to give an explanation. Indeed, the general definition (4.1.13) 

of the tensor w involves quite a few quantities in order to be established by measurement: 

the constants α, β, γ, the lengths of the two vectors and their orientations, a total of nine 

quantities. However, this fact is only apparent, for we deal here with a symmetric matrix, 

having therefore only six independent components. As a matter of fact the representation 

in equation (4.1.16) has only eight quantities. As the three eigenvalues seem to be 

mandatory no matter how we proceed, for the two vectors only remains a need for only 

three quantities, leading us to the idea that three of the nine parameters are redundant. 

The problem popped up even from the pioneering works of Fresnel, in the form of 

representability of the elliptically polarized light. Its solution took different forms along 

the time leading eventually to the science of ellipsometry, whose first champions were 

apparently Stokes and Verdet [51]. Especially Émile Verdet insisted at length upon 

wij = λuiu j + µvivj −
1
2
(λu2 + µv2 )δ ij

or, symbolically

w = λu⊗u + µv ⊗ v − e1

e =
def 1
2
(λu2 + µv2 ) and g =

def
λµ ⋅(u × v)

I1 = −e, I2 = −e2 + g 2, I3 = −e(e2 − g 2 )

w1 = e and w2,3 = ± e2 − g 2
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statistical aspect of the problem which, according to any imaginable criterion, seems to 

be indeed its essential nature [50]. Here we give an inedited shade to this statistical aspect. 

According to the above theory, the eigenvalues of our tensor w, given in equation 

(4.1.19) are already statistical expressions based, like any such expressions, on some 

statistics in continua, called the Novozhilov’s averages ([36], Chapter 7, §7.5; see, for 

conformity, [38]): 

 

(4.1.20) 

The first of these statistics represent the projection of the vector having the 

components given by the eigenvalues áw| º (w1, w2, w3) along the diagonal of an octant in 

a local reference frame, which is also the normal to the octahedral plane of the octant. As 

to the second statistic, it represents, up to the numerical factor, of course, the length of 

the component of the vector |wñ in this octahedral plane. It is perhaps worth taking notice, 

while it is fresh here, of the fact that this statistical characterization is eightfold, for there 

are eight octants of the reference frame, with different signs of the components of the 

vector |wñ. This simply means that the linear coupling between the two resonators in order 

to offer the tensor w describing the light is eightfold. It might be refreshing for a classical 

physicist to learn that the classical physics of light established by Fresnel, naturally 

contains the modern eightfold way of the structure of matter: perhaps the quarks are not 

quite so strange after all, and they are, indeed, constructions of the mind allowing us to 

connect the observables, as one can often hear. 

Using the eigenvalues (4.1.19), the two measurable statistical components of the 

tensor w from equations (4.1.20) are [36]: 

 

(4.1.21) 

wn =
1
3
(w1 +w2 +w3 )

and

wt
2 = 1

15
[(w2 −w3 )

2 + (w3 −w1)
2 + (w1 −w2 )

2 ]

w n = − 2
3
e, wt = 2

3

−2e
e+ 3 e2 − g 2

e− 3 e2 − g 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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As long as only the values (4.1.20) are measured, the orientation of the vector from 

(4.1.21) in the octahedral plane always remains undecided. This orientation is, again, out 

of our control per se, but it can be measured. It can be accounted for by an angle easy to 

measure in case we have a reference direction in the octahedral plane at our disposal. 

Assume, indeed, that we have such a reference, as given by a particular tensor of the form 

given in equation (4.1.15) with the characteristic vector x say. Then, for this tensor we 

have, with obvious notations: 

 

(4.1.22) 

If the vector |xñ is perpendicular on both |uñ and |vñ then the tensors w and ξ commute. 

Thus, they have a common reference frame and it can be arranged that their octahedral 

planes coincide. It is in this case that the direction of the vector from equation (4.1.22), 

which is fixed, can be correctly chosen as a reference direction in the octahedral plane. 

Then the angle f of the vector (4.1.21) with respect to this fixed direction in the common 

octahedral plane can be calculated from a geometrical formula (loc. cit. ante), which here 

amounts to: 

 
(4.1.23) 

This shows that, under specified conditions, the angle f is independent of the 

reference vector. With a proper choice of sign for the square root, the origin f = 0(mod2p) 

of this angle occurs only for the cases where e = g. This condition means, in turn, that the 

angle, q say, between the vectors |uñ and |vñ, calculated on the basis of the quantities from 

equation (4.1.17), is given by equation: 

 
(4.1.24) 

As the quantity from the right-hand side here is always greater than or equal to 1, the 

angle between vectors |uñ and |vñ cannot be but 90°. Thus, the initial condition for the 

characteristic angle of tensor w in the octahedral plane takes place when the vector |uñ is 

ξ n = − 1
3
ξ 2, ξt = 2

3
ξ 2

2
−1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

cosφ = − e
4e2 − 3g 2

sinθ = 1
2
λu2 + µv2

uv λµ
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perpendicular to |vñ and their plane is perpendicular to vector |xñ. If this last vector is given 

by a ray for instance, we have the classical image of the propagation according to Fresnel. 

One has to notice, however, that the price paid here for avoiding the classical kinematics 

in describing the vibratory motion, is accepting from the very beginning the planar 

description of the wave by two vectors whose physical meaning may be a challenge. 

Regarding the problem of measurement, one can notice that it refers actually to just 

two quantities and an angle: anything else seems to be inference from these three 

quantities. The redundancy is due, as always in physics, to our geometrical models of 

reality: vectors and tensors. Mention should be made of the important fact that the 

perpendicularity of the vectors u and v is not a purely geometrical property, but the 

consequence of some preexistent statistics. 

4.2. THE ELECTROMAGNETIC LIGHT 

There is nothing more to say in order to see that the previous point of view was indeed 

‘incarnated’, as it were, in the ideas of James Clerk Maxwell: the tensor from equation 

(4.1.16) is plainly a classical Maxwell stress tensor, if for u and v we take the classical 

electromagnetic fields e and respectively b. Then the parameters l and µ can be taken to 

represent some measures which would indicate how much of this ether is space and how 

much is matter. At least this seems to be the conclusion of an exhaustive analysis [13], 

showing that at least one of these parameters has to be taken as a density. In a word, 

classically speaking, the equation (4.1.16) represents an ether: a state of field cumulating 

matter and light properties. 

Now, if the light remains the same through vacuum, and one can imagine that the 

light is due to the motion, we have in the tensor (4.1.16) a representative of this light. The 

problem then arises as to uniqueness of that tensor. We can formulate this issue as a 

problem: find the most general linear transformation of the vector fields e and b in their 

plane: 

 (4.2.1) ′e =αe + βb, ′b = γ e +δb
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which preserves the Maxwell stress tensor. Here the notations e and b aim to suggest 

that we have to do with a kind of electromagnetic fields as in the classical case. Rewriting 

the tensor of Maxwell stresses in this connotation, we have: 

 
(4.2.2) 

Any kind of invariance of this tensor would necessarily lead to a connection between 

the parameters λ, µ and the entries of the matrix from equation (4.2.1), which allow us a 

concrete description – and a solution, hopefully – of the modern problem of vacuum 

tunneling [29]: the fields are changed by the presence of matter in ether, in order to adapt 

themselves to the different local properties represented by the parameters λ and µ. What 

remains to be decided is how do we define the invariance of the tensor (4.2.2), and a 

proposal presents itself just naturally: the entries of the matrix t have to remain unchanged. 

Then, a fortiori all of the invariants of this tensor remain the same and, therefore, what is 

measured out of it has the same value for the whole coordinate space of definition for this 

tensor. 

This proposal comes out from a twofold suggestion: first, is the importance of the 

tensor t in general relativity, and, secondly, we entertain the belief that what we are locally 

recording, is what has been happening far away in our space and, therefore, our 

conclusions regarding the structure of this universe, based on this recording, are the right 

ones. There is, however, a more subtle reason for this kind of ‘conservation law’: if the 

background radiation has a Planck spectrum [14], then we can say that the part of the 

universe we inhabit is a Wien-Lummer cavity. In view of the scale invariance of the 

Planck’s spectrum, each and every one of these cavities should behave the same way, and 

the conservation of the tensor t appears as the only possibility of defining the equilibrium 

temperature for radiation, according to the Planck’s idea. Implicitly then, the conclusion 

is valid for the Procopiu’s quantization procedure. 

Thus, if by the transformation (4.2.1) the fields (e¢,b¢) are to be found in an 

environment described by (l¢, µ¢), then the conservation: tij = t¢ij can be transcribed as: 

 
(4.2.3) 

tij = λeij + µbij , eij =
def
eiej −

1
2
e2δ ij , bij =

def
bibj −

1
2
b2δ ij

(αδ − βγ ) λµ = ′λ ′µ , αβλ + γδµ = 0

α 2λ + γ 2µ = ′λ , β 2λ +δ 2µ = ′µ
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In order to learn how to use these equations, let us just find some particular solutions 

of the system (4.2.3). 

For the special case of homogeneity of the vacuum we have: λ = l¢, µ = µ¢. The first 

of the equations (4.2.3) then shows that the transformation (4.2.1) is unimodular. From 

algebraic point of view, the last three equations then form a separate homogeneous system, 

and thus the system (4.2.3) is equivalent to: 

 
(4.2.4) 

The last of these equations shows that we can express the two entries a and g 

trigonometrically, via an arbitrary phase parameter, f say, in the form: 

 
(4.2.5) 

In these cases, the transformation (4.2.1) that does not change the Maxwell stress 

tensor is realized by the matrix of unit determinant: 

 

(4.2.6) 

In general, we may accept a more relaxed condition for the vacuum, equivalent, in a 

way, with the fact that the ‘refraction index’ is constant. Such a condition amounts to: 

 
(4.2.7) 

It means matter non-homogeneity in regards to physical properties, although when 

the physics is referred to a ‘refraction index’ n, the matter is actually homogeneous. In 

this case, the system (4.2.3) gives the matrix of transformation in equation (4.2.1) as: 

 

(4.2.8) 

Formally, this matrix is not different from that gotten in equation (4.2.6): it is only 

that it does not have unit determinant. Let us work on this last matrix, in order to build a 

significant geometry here. Operating the transformation of parameters: 

α = δ , β = − µ
λ
γ , α 2 + µ

λ
γ 2 = 1

α = cosφ, γ = λ
µ
sinφ

cosφ −nsinφ
sinφ / n cosφ

⎛

⎝
⎜

⎞

⎠
⎟ , n ≡ µ

λ

µ
λ
= ′µ

′λ
≡ n2

m ⋅
cosφ −nsinφ
sinφ / n cosφ

⎛

⎝
⎜

⎞

⎠
⎟ , m ≡ ′λ

λ
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(4.2.9) 

we can cast the matrix into the parametric form: 

 
(4.2.10) 

In order to reckon what to make out of this matrix, we need to know what to make 

out of the transformation (4.2.1) itself. Thus, if we differentiate that equation, we get: 

 
(4.2.11) 

On this occasion it is worth our while simplifying the notation, by adopting one which 

is kind of self-explanatory when we avail ourselves of a Dirac’s notation. So, we are 

transcribing the equation (4.2.11) as: 

 
(4.2.12) 

Assume a state of the fields where |deñ = |0ñ: we take it as a static state, if the time is 

encompassing all the possible variations of a field magnitude. This static state is 

‘propagated’ as in transformation (4.2.1), and the medium transforms it into a dynamic 

state, just by adding a contribution to field, generated by the matrix of propagation m. 

This contribution amounts to m–1×dm×|eñ, where: 

 

(4.2.13) 

Here w1,2,3 the three differential 1-forms, components of the sl(2,R) coframe which 

describes an instanton [see [35]; §4.4, equation (4.4.3)], and we used the notation: 2x = 

ln(det m). So, the fields m–1×|de¢ñ must be considered as ‘instantaneous fields’ obtained 

from the static ones just by propagation. A classical counterpart of them is known in a 

particular illuminating occurrence. 

Assuming here an interpretation by static ensembles, made possible as ensembles of 

equilibrium with static Newtonian force fields, the suggestion presents itself that the 

motion of matter through ether brings a rotation acting upon these force fields [25]. It is 

u = ncotφ, v = n
sinφ

m ≡ m
v

u u2 − v2

1 u
⎛

⎝⎜
⎞

⎠⎟

d ′e
d ′b

⎛
⎝⎜

⎞
⎠⎟
=

α β
γ δ

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

de
db

⎛
⎝⎜

⎞
⎠⎟
+

dα dβ
dγ dδ

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

e
b

⎛
⎝⎜

⎞
⎠⎟

d ′e = m ⋅ de + dm ⋅ e ∴ m−1 ⋅ d ′e = de +m−1 ⋅dm ⋅ e

m−1 ⋅dm = dξ ⋅1+ω , ω = −ω 2 / 2 −ω 3

ω 1 ω 2 / 2

⎛

⎝
⎜

⎞

⎠
⎟
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this experience which further shows that the electric and magnetic static forces act in a 

‘tandem’, so to speak, as a force whose expression is linear in the electric and magnetic 

fields, involving also linearly the two kinds of charges, electric and magnetic: 

 (4.2.14) 

These forces characterize equilibrium ensembles, whereby the particles possessing 

charges are in a stationary state. Assume, then, that a state of motion is described by a 

‘Lorentz-transformed force’, involving the static force from (4.2.14) and a rotated 

counterpart, with the rotation defined by the static charges: 

 
(4.2.15) 

while the equations describing the fields are ‘symmetric’, i.e., according to the 

Maxwell’s idea, we have: 

 

(4.2.16) 

Here, r is the numerical density of particles, while j is their current. These equations 

have the virtue of reducing themselves to the usual Maxwell equations for either qm = 0 

or qe = 0. Notice, however, that with no such quantitative consideration on charges – 

which is quite particular, and, therefore, from Katz’s natural-philosophical point of view 

regarding the charges themselves, should be, in a way, irrelevant – we can define two new 

field variables via the genuine rotation generated by the two charges: 

 
(4.2.17) 

and with these fields the force (4.2.15) becomes the Lorentz force as we usually know 

it from classical electrodynamics: 

 
(4.2.18) 

while the Maxwell equations become those we know from the textbooks: 

Fst = qee + qmb

F = qee + qmb +
1
c
v × (qeb − qme)

∇⋅e = 4πqeρ, ∇× e = − 1
c
∂b
∂t

− 4π
c
qm j

∇⋅b = 4πqmρ, ∇× b = 1
c
∂e
∂t

+ 4π
c
qe j

eE = qee + qmb, eB = −qme + qeb, e
2 = qe

2 + qm
2

F = e E + 1
c
v × B

⎛
⎝⎜

⎞
⎠⎟
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(4.2.19) 

However, while in the first symmetric version, the rotation is determined by the ratio 

of charges, which in turn needs a special natural philosophy involving these charges (see 

[30]; see also [34], §3.1), in the Lorentz version, the theory is pending on a genuine space 

rotation that needs central forces acting sideways. This notion may seem contradictory, 

but we use it nevertheless in order to pinpoint a fact of which we need to account 

theoretically. 

Namely, insofar as a force is created by a physical characteristic of a particle – 

specifically, mass and charges – it is, no doubt, central: the particle creating it is the 

obvious center of force. On the other hand, when it comes to the action of such a force, it 

can be twofold: the force can act along the direction to the particle that created it, or across 

this direction, i.e. sideways, with an expression of J. J. Thomson. Besides the fact that, at 

the first sight, this concept appears as strange by itself, from the point of view of motion 

it requires a special arena where the forces have to be logarithmic (see [34]; Chapter 6, 

§6.2). This arena cannot be but the Louis de Broglie’s region that we have found ‘strange’ 

([34], Chapter 2), which is an expression of the holographic property of light. This 

requirement leads to the necessity of a wave image, as de Broglie’s theory stipulates, but 

it turns out to be valid along with the Maxwellian electrodynamics, just as Lorentz 

intended to show in the first place. The bottom line, then, is that the relativity, as an 

expression of the necessity of interpretation, needed the concept of wave: otherwise, the 

interpretation itself, as a necessary step in the construction of a theory of physical 

structures, could not be a full concept. 

The fields defined by equation (4.2.12), starting from a static state which reflects the 

equilibrium of the ensembles of particles, are generalization of those obtained by the 

above charge-induced pure rotation in the classical electrodynamics. Thus, the matrix 

(4.2.13) accomplishes a genuine duality transformation of the static fields, not just a 

duality rotation, but a more involved transformation that can be written in the form: 

∇⋅E = 4πeρ, ∇× E = − 1
c
∂B
∂t

∇⋅B = 0, ∇× B = 1
c
∂E
∂t

+ 4π
c
e ⋅ j
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(4.2.20) 

In calculating these fields for the matrix m given in equation (4.2.10), we just have 

to calculate the matrix from (4.2.20). 

The bottom line here is that the category of light, unlike the category of matter, is 

physically called to decide on the phases in matter: the matrix m from equation (4.2.10) 

is the one serving in indexing the geodesics in the nuclear matter (§3.4) 

5. CONCLUSIONS 

The resonator is a universal fundamental structure entering the physical structures of 

the two categories involved in the quantization process: the light and the matter. It is a 

dipole of charges, defined first by Max Planck in order to carry out the quantization of 

light. The Planck’s resonator is electric dipole. In order to carry on the quantization in 

matter, the only existing procedure coping with that of Planck is the Procopiu quantization 

and asks for a resonator defined as a magnetic dipole. Our results can be summarized as 

follows: 

1) the optical medium accepting dipoles as fundamental constitutive structures is the 

so-called Maxwell fish-eye. This structure can be gotten as a Cayley-Klein, or absolute 

geometry, describing a charge continuum according to Katz’s natural philosophy of 

charge. 

2) the Maxwell fish-eye is a holographic universe, assuming the holography defined 

by coherence properties in the spirit of initial ideas of Dennis Gabor. 

3) the nuclear matter can be described as a holographic universe that can be realized 

as such only with the help of the properties of light. The fields characterizing light are 

generalizing the classical Maxwellian fields and are close to the modern Yang-Mills fields. 

4) our analysis indicates that the eightfold way is a universal idea in theoretical 

physics. In order to understand the deep meaning of this statement, an observation may 

be in order: the very Fresnel’s physical theory of light is an expression of the eightfold 

way. 

Acknowledgments. Thanks are kindly due to Mrs. Cristina Irimia for gracefully handling the 
editing issues, which sometimes come so hard on an author. 

dE = (m−1 ⋅dm) ⋅ e ∴ dE = (dξ ) ⋅ e +ω ⋅ e
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