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1. Introduction.

In this study we show the existence of three types of shifts in polynomial curves that will always
result in integer sequences: 1. "Eureka" shift, 2. Taylor shift, and 3. Offset.

Then, we demonstrate that every polynomial equation has a reference point that we call sp -
symmetry point.

From the symmetry point of any polynomial sequence of integers we can define two types of
symmetry and one type of asymmetry.

At the end, we name and define asymmetry, and the two types of symmetries.
Please, consult the last version of this study at:

https://www.facebook.com/groups/snypo/posts/421837489473196

Please, consult the last version of C000000 Conventions, notations, abbreviations, glossary, and
references at:

https://www.facebook.com/groups/snypo/posts/653023753021234/.

Please, consult some threads at:
https://www.mersenneforum.org/showthread.php?p=61883 7#post618837.

2. The “Eureka shift”.

Given the polynomial where the index y, the degree d, and the coefficients a,, are integers:
Yd[y]l = agy® + ag_1 v P+ ag_,y4  + o+ ayt +azyd +ay? + by + ¢

The curve shift is always continuous and can move the polynomial curve at any position
parallel to a chosen axis. There is no rotation of the curve when we do a shift.

If we shift the polynomial curve along the X-axis, we get:

Yd[yl+m =agy® + ag_1y* P+ ag_,y* %+ -+ ayy*+azy® +ay?  +by+c+m

Now, ¢’ = ¢ + m, and:

Yd[yl+ m=agy® + ag_1y* P+ ag_,y* %+ +ayt + azy® +ay®? + by + ¢

We propose to call this polynomial curve shift with integer steps m = integer as “Eureka
shift”. This way we can get a kind of "Eureka" polynomial sequences. We created the name
"Eureka  Shift" inspired by Neil Sloane video  available online at
https://www.youtube.com/watch?v=6X2D497is6Y .

3. The Taylor shift.

If we shift the polynomial curve
Yyl = aay® + aa-1y™" + aa2y*™* + -+ ayy* + asy® +ay? + by + ¢
along the Y-axis, we get a new expression:
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Yly+hl=asy+ D+ a1 (7 + W+ ag .0+ D72+ + a, (v + B)*
+as;(y+h)>P+aly+h)?*+bly+h)+c
This shift h of the polynomial curve along the Y-axis can be any Real value.
We can analyze this Y-axis shift using the Taylor expansion at the point y = h.

& Y [A]
Yyl =) — = - h"

n!
n=0
y2l[n YBl[h
VIV = VI + YRy — 1) + 2 = 2+ s
Y[d—3] [h] Y[d—z] [h] Y[d—l] [h]
- S (yv=—n@-3dp__ vy _p)@-2 4y k@D
Ty VT g Ty O A T O )
yldl[h]
d
o 0-h
Let us write the polynomial above reversing the direction of its terms:
yldl [h] yld-1] [h] yld-2] [h]
Y — —h d - v4 —h (d-1) - v4 —h (d-2)
[v] o v—h +(d_1)!(y ) +(d_2)!(y )
yld-3] [h] y 3] [h] yl2] [h]
- T (v—=h)d-3) 4 ... —BK)3 AV
+(d_3)!(y h) tot— y—h)+ T (y—h)
+ YU [R](y — h) + Y[h]
So,
yldl [h] yld-1] [h] yld-2] [h] yld-3] [h]
Y[v + h] = ayp W @y L M Gy I T sy
A e T A e TR A s T A o A
YBlrn vzl
+ %)ﬁ + %yz + YW [h]y + Y[h]
Let us say,
Y[y+hl=ayy%+a;_ 1y +ag_,y* 2+ -+ay>+a'y?+b’y+c’
Or,
Yly+hl=ay®+ag 1y +ag 2+ + a3y’ + ay® + a1y + ag
Then,
. _ Y1[h]
“a =g
., _ Y Un
Ga-1 =g 1)1
. _Yh
@42 =" =)
. YPI[h]
2=
a; = Y [A]
a, = Y[h]
Because,

Yyl = agy® + ag-1y* P +ag2y? 2+ +azy  + ay? + a1y + aq

Page 3 of 16



ay =Y[h] = agh® + ag_1h* '+ a4_,h% 2 + - + azh® + a;h? + a;h + a,
a; = Yd[h] = dagh® ™t + (d — 1)ag_1h% 2 + (d — 2)az_,h?*™3 + - + 3azh? + 2a,h
+ a4
. YRR dd-1agh® 2+ (d-1)(d—-2)ag_1h®3 + -+ 3.2.a3h + 2a,
az = =
2! 2!

Before we continue, please note that for any polynomial of the 2™ degree or higher, the 2"
derivative, or higher will always be an even number for the integers. All the next derivatives will
continue to be an even number for the integers.

. Y=l
%43 =g = 3)1
d(d —1)(d — 2 d—1)(d -2
= < ( 3)'( ) adh3 + ( )2( ) ad_1h2 + (d — Z)Cld_zh)
(d—3)'ag_s
(d—3)!
d(d —1)(d — 2 d—1)(d -2
= ( 3)'( )adh3 + ( )2( )ad_lhz + (d - Z)Cld_zh + Ag—3
|
oyl (@ +(d = 1)!ag1) h+ (d - 2)!aq-,
Ga-2=" g -2y ~ (d—2)!
dd-1)
= Tadh + (d — 1)ad_1h + Ag—2
. yla-i[p]  dlagzh+ (d — D!'ay_,
Ga-1= " 1y ~ d— 1) = dagh+aq-
. YU[n] dla,
G ="g T g T %

4. Offset in polynomials.

Let's define offset in a polynomial Y[y] as the Taylor shift Y[y + h] with h = integer.

5. Symmetry Point (sp) in polynomials

Let's define the symmetry point (sp) of a polynomial curve as the point on the polynomial
curve that divides the curve into 2 parts as symmetrically as possible.
In these studies, the coordinates of a symmetry point in the XY plane are x, and ys,. Also,

we denote a symmetry point as being the point sp = (Xsp, Vsp)-
To define the formula for the coordinates (x5, Ysp) of the symmetry point, we will use the
results obtained from the Taylor shift.
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5.1. Symmetry point coordinates

Notice that, if we want to have a symmetric polynomial, we just may do:

Y[y] = azy*
This means that any Taylor shift in this curve results in:
d(d—-1 d(d—1)(d -2
Y[y + h] = agy?® + daghy® ! + dd-1) 5 )adhzy"l‘2 + ( 3)|( )adh3yd‘3 + -
dd—-1)(d—-2 d(d—-1
+ ( 3)[( )adhd_3y3 + ( 2 )adhd—zyz + dadhd—lyl + adhd

These coefficients when integers are the Pascal’s triangle coefficients.

This is an important hint that we can get all coefficients of the Taylor shift from Pascal's
triangle. We will show how Shaw and Traub method for the Taylor shift is fully based on Pascal’s
triangle.

If h = integer the two expressions above represent the same sequence of integers. What
changes is only the displacement of the same curve along the Y-axis.

Then, if there is a symmetry point in each of the two curves, this point of symmetry is in the
same position with respect to the integer elements of the sequence or with respect to the infinite
points of the polynomial curve.

Because,

Y[y+h]l=aq(y+ )%+ a1y + ) +ag_,(y + )%+ +az(y + h)?
+aly+h)?+b(y+h)+c

Or,

Y[yl = agy® + ag_1y* 1+ ag_,y4 2+ -+ ayy* +azy> + ay? + by + ¢

Let us define sp; = (Xsp1, Ysp1) as the point of symmetry of Y[y] and sp, = (Xsp , Vsp2) as
the point of symmetry of Y[y + h].

To get an equation for the symmetry point in any polynomial, then two things must occur
when we perform a Taylor shift from Y[y] with sp; = (Xsp1,Ysp1) to Y[y + h] with sp, =

(xspZJ ysz ) :

Xsp2 = Xsp1
YVsp2 = Ysp +h
Then, we must define the Y-coordinate of the symmetry point as being the value of y when:
d-1
yld-t[y] = Gyt (YD =0

yie-Ulyl = dlagzy + (d — D'ay_,
And for y = yg,:
dlagysy + (d—1lagz_; =0

_ (d - 1)! ad_l
ySp - d! ag
Qg
Ysp = — day
And,
Ag—1
Xp =Y[ysp] =Y [_ dad]
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So,

a Ag—
symmetry point = sp = (xSp'ySp) = (Y - ddadl] T ddadl)

When the polynomial generates a symmetric integer sequence, then the symmetry point
coincides with one of the inflection points and/or with one of the Real roots.

When the polynomial generates an asymmetric integer sequence, then the point of symmetry
will be closer to the most central inflection point of the curve and/or the most central Real root,
if any.

6. Taylor shift, symmetry point (sp) and Pascal’s triangle

Let's better understand the dynamics of the symmetry point, the symmetry of the Taylor shift
equation, and the symmetry in Pascal’s triangle.

6.1. Taylor shift for 1* degree polynomials

Ylly]=by +c
Y1yl =b

Then,

Y1[y + h] = YU[h]y + Y[A]

Y1y + h] =by + bh + ¢

Doing h = f = integer, we have
be=bh b = b°
c2=bh+c ¢ =—bh+c®

Symmetry point:

_ 4441 _ ¢
Y= " a, T b
+

=11 =5(-9

SPyi[y] = (xsp; ysp) = (0; -

S a
~—

6.2. Taylor shift for 2"® degree polynomials

Y2[y] = ay?+ by +c
YH2[y] = 2ay + b
Y1212[y] = 2a
Then,
yl2l] [h]

Y2[y + h] = T

y? + YW[hly +Y[h]

2a
Y2[y + h] =?y2+(2ah+b)y+ah2+bh+c

Y2[y + h] = ay? + (2ah + b)y + ah®> + bh + ¢
Doing h = f = integer, we have
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aQ:a a:aQ

b% = b + 2ah b = b° — 2ah
c®=ah?+bh+c ¢ = a®h?® — b%h + c°
Symmetry point:
Ag_1 b
Ysp = da;  2a
b b\’ b b%? b2 —b? + 4ac
v =v2|-gl =a-gg) o) ve=qo-gore=—0—
b2 —4ac b
SPy2ly] = (xSp'ySp) = <_T' _E>

6.3. Taylor shift for 3 degree polynomials

Y3[y] = azy® + ay* + by +c

[

YH3[y] = 3a3y? + 2ay + b

Y[213[y] = 6asy + 2a

YEI3[y] = 6a;

3 2
Y3[y+h] = %)ﬁ + %yz + YW [h]y + v[h]
6a3. 6ash + 2a

Y3[y+h] = 30 y3 + 2T y? + (3ash? + 2ah + b)y + ash® + ah? + bh + ¢

Y3[y + h] = azy® + (3ash + a)y? + (3ash? + 2ah + b)y + azh® + ah? + bh + ¢
Doing h = f = integer, we have:
a?=3azh+a
a= a®—3azh
b = 3azh?* + 2ah + b
b = —3a3h? — 2ah + b°
b = —3azh? — 2(a® — 3azh)h + b°
b = —3ash? — 2a°h + 6azh? + b’
b = 3ash? — 2a°h + b°
c® = azh® + ah® + bh + ¢

¢ = —agh® — ah? — bh + ¢°
¢ = —azh® — (a® — 3azh)h? — (3a3h? — 2a°h + b*)h + c°
c = —azh® — a®h? + 3azh® — 3azh® + 2a°h? — b°h + c°
¢ = —azh® + a®h? —b°h + c®
Tley = (@l as = as
a® =3azh+a a= a®—3azh
b° = 3azh? + 2ah + b b = 3ash? — 2a°h + b°
c® = azh® +ah? + bh+ ¢ c = —azh® + a®h? — b°h + c°
Symmetry point:
Ag—_1 a
Vsp = — day = _3_613
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=v3[ga] = o (o5g) +alag) +o(50)*
Yoo = 3a;] s 3as 4 3a; 3a; ¢

Xsp = — + — +c
p 27a2  9a? 3as

a’ al ab a
Prapy = (¥oprYsp) = | = 2702 * 9a2  3as e " 3as

6.4. Taylor shift for 4™ degree polynomials

[
YH4[y] = 4a,y3 + 3azy? + 2ay + b
Y1214[y] = 12a,y? + 6a5y + 2a
YB3l4[y] = 24a,y + 6as
Y414[y] = 24aq,
Y4 [h YB3l[h Y[2l[h
Y4[y + h] = 4'[ ]y4+ 3|[ ]y3+ 2|[ ]y2+Y[1][h]y+Y[h]
24a 24a,h + 6a 12a,h? + 6azh + 2a
Y4[y+h]: 4|4—y4_+ 43| 3y3 4 - 3 2

+ (4a,h® + 3ash? + 2ah + b)y + a,h* + azh® + ah® + bh + ¢
Y4y + h] = a,y* + (4ash + a3)y® + (6a,h? + 3azh + a)y?
+ (4a,h® + 3a3h? + 2ah + b)y + a,h* + azh® + ah? + bh + ¢
as = 4a,h + a;
a; = —4a,h + a,
a® = 6a,h? + 3as;h +a
= a® — 6a,h? — 3azh
a® — 6a,h? — 3(a3 — 4azh)h
= a® — 6a,h? — 3azh + 12a,h?
a = 6azh? — 3azh + a®
b® = 4a,h® + 3azh? + 2ah + b
b = —4a,h® — 3ash? — 2ah + b°
b = —4a,h® — 3(—4ash + a3)h? — 2(6a,h? — 3azh + a®)h + b°
b = —4ay,h® + 12a,h® — 3a3h? — 12a,h® + 6a;h? — 2a%h + b°
b = —4a4h® + 3ash? — 2a°h + b°
c® = a,h* + azh® + ah? + bh + ¢
c = —ash* —azh® —ah? —bh + ¢’
¢ = —ayh* — (—4ash + a3)h® — (6a,h? — 3azh + a®)h?
— (—4ayh® + 3a5h? —2a®h + b )h + ¢°
c = —ayh* + 4a,h* — ash® — 6ayh* + 3ash® — ah? + 4ayh* — 3azh® + 2a°h? — b°h

Q Q& Q&
I

o]
+c
o o Qo Qo
c =ash* —azh®+a°h? —b'h+c
Ay = Ay Ay = Ay
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as = 4a,h + ag as; = —4ash + a;
a® = 6a,h? + 3ash + a a = 6a,h? — 3ash + a°
b° = 4a,h3 + 3azh? + 2ah + b b = —4a,h® + 3ash? — 2a°h + b°
c® = ash* + azh® + ah? + bh + ¢ c = a,h* — azh® + a®h? = b°h + ¢°
Symmetry point:
__%-1_ A4z
Ysp = da,  4a,
a as \* as \3 as \? a
Xsp = Y4 [—4—;4] = ay (—4—;) + a; (—4—;) + a<—4—;4> +b (—4—;4) +c
ai as asa asb

= - - +c
*sv = 25603 64a3 | 16a2  4a,

= ( ) = B G @ G, G
SPyaly] = Xsp) Ysp) = 256a3 64a3 16a; 4a, © 4a,

6.5. Taylor shift for 5™ degree polynomials

Y5[y] = asy® + ayy* + azy® +ay* + by + ¢
Y5yl = Sasy* + 4a,y3 + 3a3y% + 2ay + b
Y2I5[y] = 20a5y3 + 12a,y? + 6azy + 2a
YBI5[y] = 60asy? + 24a,y + 6a,
Y45[y] = 120asy + 24a,
YI5I5[y] = 120as
yIslTh vyl yBIth yl2ltp
YS5[y +h] = 5'[ ]y5 + 41[ ]y4 + 3|[ ]y3 + 2'[ ]y2 + Y[Ry + Y[h]
120a 120ash + 24a 60ash? + 24a,h + 6a
Y5[y + h] = ——y5 + > dytp —2 * 2 y3
5! 4! 3!
20ash® +12a,h” + 6azh + 2a
+ o y
+ (5ash* + 4a,h® + 3ash? + 2ah + b)y + ash® + ash* + azh® + ah? + bh
+c

Y5[y + h] = asy® + (5ash + a,)y* + (10ash? + 4a,h + a3)y?
+ (10ash® + 6a,h? + 3azh + a)y? + (5ash* + 4a,h® + 3azh? + 2ah + b)y
+ ash® + a,h* + azh® + ah? + bh + ¢

Ty = @ as = as
a, = 5ash + a, a, = —5azh + a,
as; = 10agh? + 4a,h + a; a; = 10azh? — 4a,h + a;
a® = 10ash® + 6a,h® + 3azh + a a = —10agh® + 6a,h? — 3azh + a’

b® = 5ash* + 4a,h® + 3azh* + 2ah+b | b = 5ash* — 4a,h® + 3azh? — 2a°h + b°

c® = ash® + a,h* + azh® + ah? + bh + ¢ c = —agh® + ayh* — azh® + a’h? — b°h
+c

Symmetry point:
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Yo = " da, T Sag
Ay
xsp=Y5[—5—
as
o) v o (se) rel-gm) +o(50)
—as(——) +as(——) +a3(——) +a(-—=) +b(-—)+
s ( 5a5 G 5a5 %3 5a5 ¢ 5a5 5a5 ¢
B a; N a; ala, +aﬁa a4b+
*sv = 7312542 T 62542  125a3 « 25aZ  5as @ -
5 5 3 2
a; a; a;as aza azb ay
=] , = | — + —_ + — + ,— =
Prsiy) = (XopYop) 3125a% * 625a% 12542 @ 2542 5as ' 5ag

6.6. The Taylor shift coefficients in the Pascal’s triangle

Because of the results above, see the summary of the Shaw and Traub method for the Taylor
shift based on Pascal’s triangle.
We start from:
Yd[y]l = agy® + ag_1y* P+ ag_,y4 + o+ ayt +azyd +ay? + by + ¢
And shift to:
Ydly + hl = agy® + ay_1y* P +ay_,y* 2 + -+ azy® + ayy? + ayy + a,
The new coefficients come from Pascal’s triangle, such as:

https://o https://o https://o https://o https://o https://o https://o https://o https://o https://o
eis.org/ eis.org/ eis.org/a eis.org/a eis.org/a eis.org/a eis.org/a eis.org/a eis.org/a eis.org/a
A000012 A256958 000217 000292 000332 000389 000579 000580 000581 000582

a%= 1a, 1 hay 1 h’a, 1 h%a, 1h'a, 1 hag 1 h®ag 1h’a, 1 haq 1 h’a,

a2,= 1a; 2 ha, 3 h233 5 h‘as 7 hsa7 8 h7a3 9 hsag 10 hsalo
3 ha; 28 h°ag 36 h'ag 45 h®ayo 55 hay;

120 h'ayo 165 h’ay; 220 h’ay,

70 h'ag 210 h®ay, 330 h'ay; 495 h'ay, 715 h’ay;

56 h’ag 126 h'aq 252 h%ay, 462 h®ay, 792 h’a;, 1287 h%a;; 2002 h’ay.

210 h'ayo 462 h’ay, 924 h%a;, 1716 h'a;; 3003 h%a. 5005 hajs

120 hay, 330 h'ay; 792 h*a;, 1716 h%a;; 3432 h7ay. 6435 h%ay;s 11440 hPaye

45 h%ayo 165 hay, 495 h%a;, 1287 h°a;; 3003 h%a,. 6435 h’a;s 12870 h'a; 24310 h’ay;

10 hayo 55 h’ay, 220 h’ay, 715 h'a;; 2002 h®a;; 5005 h%a;s 11440 h'ays 24310 h%ay; 48620 h'ayg

a2,5= 1ay 11 hay, 66 h’ay, 286 h’a;; 1001 h%a,, 3003 h°a;; 8008 h®a,; 19448 h'a,; 43758 h®a,; 92378 hayg
a2,,= 1ay, 12 ha;, 78 h’a;3 364 ha;; 1365 ha;s 4368 h°ay; 12376 h®ay; 31824 h'a;; 75582 hla;; 167960 h’ay,
a%,= 1ay, 13 hays 91 h%ay, 455 h’ay;; 1820 h'ay; 6188 h°a;; 18564 h®a;; 50388 h'ass 125970 hay, 293930 h’ay,
a2;;= 1a5 14 hay, 105 h’ays 560 h’a;s 2380 h'a;; 8568 h°a;; 27132 hfays 77520 h'ay, 203490 hla,, 497420 ha,,
a% 1ay, 15 hays 120 haye 680 h’a;; 3060 h'a;; 11628 h°a;; 38760 h%ay, 116280 h'ay; 319770 hay, 817190 h’ay;
a2,= 1a5 16 haye 136 hay; 816 h’a;; 3876 h'a;s 15504 h®ay, 54264 h®a,, 170544 h’a,, 490314 h%a,; 1307504 h’a,,

Figure 1 C001112 The Taylor shift coefficients a,, in function of the original coefficients a,,
where 0 < n < d.

We can get the value of each coefficient a,, by adding up the terms in its row.

Each row has an infinite number of terms.

The number of terms to be added in each row is limited by the diagonal corresponding to the
degree d of the polynomial. We sum the terms of a row up to the ladder-shaped line.

The number of terms of the sum of a,, of a polynomial of degree d is given by:

number of terms =d —n+1
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Where n is the coefficient number, and d is the polynomial degree.

7. Symmetry and asymmetry detection.

Because we have proven the existence of a point of symmetry in polynomial sequences above,
let us admit as a rule that every mathematical sequence has a symmetry point (sp) or point of
symmetry or point of reference.

Because of that, we will always analyze the symmetry or the asymmetry of a sequence using
the symmetry point as our referential.

Following this principle, the view of the sequence elements through the symmetry point does
not change with the offset. That is, to see all the sequence of elements of any sequence, we will
always see from the symmetry point as our referential.

Even preliminarily, every numerical sequence always has two directions. This is very evident
in polynomial sequences because in all of them we have two recurrence equations. One direction
is opposite to the other.

Because of this introduction, there is only three possibilities to check:

e [f the symmetry point is in one of the elements of the sequence, then it is a symmetric
sequence of type SUB. The name SUB comes from SUBmarine, one position in the battleship
game.

e [f the symmetry point is equidistant from all the elements of the sequence, then it is also a
symmetric sequence, but of type DES. The name DES comes from DEStroyer, two positions
in the battleship game.

e [fthe sequence is neither SUB nor DES, then it is an asymmetric sequence, and we call type
ACC. The name ACC comes from ACC-AirCraft Carrier, three positions in the battleship
game.

8. Bijection defines symmetry or asymmetry.

Let us assume that the reason for the symmetry or the asymmetry of any sequence is the result
of the certainty or uncertainty of how to apply the bijection property.

This is independent of whether the sequence is finite or infinite.

This way of thinking help to explain how it is possible to detect Ramanujan's "equivocation"
at  https://www.mersenneforum.org/showpost.php?p=620141&postcount=19  simply by
evaluating the shifts of the symmetry points of the polynomial sequences he created.

Because the bijection property always applies to pairs of elements of a sequence (one-to-one
correspondence), then each of the pairs forms a duet.

8.1. Definition 1: the bijection function.

Definition 1: The bijection function will occur if and only if exists a mathematical identity
between the two elements of all the duets using the symmetry point as the reference.
Consequence 1.1: The bijection function does not depend on the signs of the elements.

The criterion to apply the bijection property (one-to-one correspondence) is always solely
Page 11 of 16



the absolute value of the elements of the sequence. For bijection, we only consider the
absolute values of each element. This fully applies to polynomials of odd degree.
Consequence 1.2: The bijection function does not change when we offset a sequence.
Consequence 1.3: The bijection function does not change when we analyze a sequence
in ascending or descending order, direct or reverse.
Consequence 1.4: See that in this kind of definition, there is bijection even if the two
elements of the duets of the sequences are not of equal absolute value.
For example, the sequence of the positive divisors of the number 36 is a symmetric sequence
of type SUB, and the sequence of the positive divisors of the number 24 is also a symmetric
sequence, but of type DES.

8.2. Definition 2: the symmetric sequences.

Definition 2: We will define any finite or infinite sequence of numbers as a symmetric
sequence, if and only if we can apply the bijection property (one-to-one correspondence) to all
its elements precisely, without ambiguity.

Consequence 2.1: When we apply the bijection function to all pairs of elements with
the same absolute value or same mathematical property, and it is impossible to leave out
any element of the sequence, then this sequence is a DES type.

Examples: (1) the odd numbers, (2) the quadratics in the form of (oblong
numbers + an integer number), (3) the positive and negative divisors of the
positive square numbers, (4) the repetend of the inverse of some primes, (5) etc.

Consequence 2.2: When we apply the bijection function to all pairs of elements with
the same absolute value or same mathematical property, and it is imperative to leave out
of the bijection a unique single element of the sequence, then this sequence is a SUB type.

Examples: (1) the number line, (2) the even numbers, (3) the quadratics in the
form of (square numbers + an integer number), (4) the positive divisors of the
positive square numbers*, (5) etc.

* The number 1 is a square number with a single positive divisor and there is no duet of
divisors formed. It is a case of a sequence of type SUB of a single element.

In the context of symmetric sequences of integers there are two kinds of certainties of
application of the bijection function: DES type and SUB type.

8.3. Definition 3: the asymmetric sequences.

Definition 3: We will define any finite or infinite sequence of numbers as an asymmetric
sequence if and only if we can apply the bijection property (one-to-one correspondence) to all its
elements precisely, with ambiguity.

That is, in an asymmetric polynomial sequence we can apply the bijection property to all
elements either leaving only a single element without bijection, or equally it is possible to apply
the bijection property to all elements without leaving any element out.

There is no absolute value equality between all elements of the duets, and there is the
possibility of applying a mathematical identity between the elements in more than one form.
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In the case of asymmetric sequences of integers there is uncertainty about how to apply the
bijection function. Asymmetric sequences are ACC type.

8.4. Example of an asymmetric sequence.

For an asymmetric example, let's take the sequence https://oeis.org/A079588 or
https://oeis.org/A100147.

See C000446 https://www.facebook.com/groups/snypo/posts/287517449571868/ for the
sequence of data for the positive and negative indices, as well as the sequence of its elements in
the two possible directions.

See the summary here:

https://oeis.ors/A073588
hittps:/fwww.facebook.com/eroups/snypo/posts/2875174453571268

-7 -3255 3255 -2275 2275

-5 -2106 2106 -1386 1386

-5 -1265 1265 -765 765

- -584 E34 -364 364

-3 -315 -135 135

2
-1 -21

—
135 -135 -315
364 -364 EB4 -84
765 -7EB5 1265 -1265
1386 1386 2106 -2106
2275 -2275 3255 -3255
B N 7 T
5043 -5669
10 7030 -7030 2030 B9030

C000446 Table study of the sequence A079588 or A100147 x = 8y3-10y?2 + 3y.
For each equation of the same cubic sequence, we have a shift of the symmetry point as
below:
Y;[y] = 8y3-10y% + 3y sequence {...,—315,—110,—21,0, 1,30, 135, ... }.
a —-10

5 _
- - -2 _ 0416
Ysp1 = T35, T 738 12

'-ﬂhﬂ"dthu'l-hl-ulul—'l
I I
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“o(2) -10(2) +3(2) =2 = 0035
Ysp1=9\12) TH\12 12) " 54
315,110, 21,0,—1,—30, —135, ... }.

Y,[y] = —8y* + 10y* — 3y sequence ...,
a 10 5 —
Vsp2 = _3a3 = T3 —8) = IR = 0.416
54> 52 5 5
Yop =8 (12) +10 (12) -3 (12) 55 = 00925
Ys[y] = 8y® + 10y? + 3y sequence {..., —135,—-30,—1,0,21,110, 315, ... }.
a 10 5
ysp3:_3_a3:_3*8: 122—0416
—5\° —5\? -5 5
Xsp3 = 8(5) * 10(12) +3 (12) —gg = —0.0925
Yu[y] = —8y® — 10y* — 3y sequence {...,135,30,1,0,—21,—110, =315, ... }.
a —-10 5 _
= —— =-0416

Yspt T T30, T T3 (=8) 12
2

= 8<_5>3 10<_5) 3<_5) > .09
Ysp3 = T\ 73 12 12) " 54"

I
x=-0.0925925926 | X = 0.0925925926

y =0.4166666667

Y1:x-8y’+10y’-3y=0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N
sP3 |\,

y =-0.4166666667

C000446 Curves study of the sequence A079588 or A100147 x = 8y3-10y? + 3y. The
brown curves are reversal direction from green curves. The dashed curves are the negative
values of the non-dashed curves.
The criterion for applying the bijection function to the four sequence possibilities must be

absolutely the same.
That is, because of definition 1 above, the criterion for applying the bijection function between

b
pairs of elements cannot change when we see a sequence in one direction or the other, nor

changing the signal.
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In each of these four sequences, no element has an absolute value repeated. That is, among the
positive and negative elements, zero does not equally divide the two sides of the sequences.
This is the origin of the asymmetry and why we must define the symmetry point of any
polynomial at https://www.mersenneforum.org/showthread.php?t=28269.
First, let us use element 0 in the application of the bijection function. We have two alternatives:
{0; —21},{1; —110}, {30; —315}, ...

or else,
{0; —1},{21; —30},{110; —135}, ...
In either case, absolutely all elements of the sequences would correspond one-to-one. We call
this bijection DES type.
So, it is a valid possibility.
But we could push a little further and think that we can leave only the element 0 out of the
bijection. In this case we would have
{1, -21),{30; —110},{135; —315}, ...
or else,
{—1;21),{-30; 110},{—135; 315}, ...
Because only one single element (in this case element 0) is out of the bijection, then, this
bijection is a SUB type.
In this case, we can only think about the absolute values of the elements, then we can say that
in this last SUB type case we have only a single possibility of bijection.
Finally, because of definition 3 above in this sequence we can have the bijection function
applied between its elements in the two ways DES or SUB.
Because we do not know if we use DES or SUB, this is an asymmetric sequence, and there is
an ambiguity or an uncertainty in the application of the bijection function.
So, we classify as being an asymmetric sequence ACC type.

9. Conclusions

Along this line of reasoning, we can classify a sequence of integers as being symmetric (or
palindromic) if we can unambiguously apply the bijection property among all its elements.
Now, we can define the symmetry or asymmetry of a sequence as follows:

9.1. Definition of DES type of symmetric sequence

If we can perform the bijection directly and unambiguously by determining the one-to-one
correspondence among all its infinite duet elements without exception, then the sequence is
symmetric of type DES.

In this case, the symmetry point (sp) of the sequence is not an element of the sequence but lies
exactly in the middle between two adjacent elements of the sequence.

Mathematically, we define polynomial DES type of symmetry by Y[—y] = +Y[y + 1].

In this case, the symmetry point (sp) of the polynomial curve x = Y[y] has the Y-coordinate

in the XY plane y;, = £ %.
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If the polynomial curve has offset f = 0, then yg,, = %

9.2. Definition of SUB type of symmetric sequence

If we can perform the bijection directly and unambiguously by determining the one-to-one
correspondence among all its infinite duet elements except one single element without bijection,
then the sequence is also symmetric of type SUB.

In this case, the symmetry point (sp) of the sequence is an element of the sequence.

Mathematically, we define polynomial SUB type of symmetry by Y[y] = +Y[—y].

In this case, the symmetry point (sp) of the polynomial curve x = Y[y] has the Y-coordinate
in the XY plane y5, = tinteger.

If the polynomial curve has offset f = 0, then y,, = 0.

9.3. Definition of ACC type of asymmetry sequency

If we cannot perform the bijection directly and unambiguously by determining the one-to-one
correspondence among all its infinite elements, this means we do not know if we can leave or not
one single element without bijection. Consequently, the sequence is asymmetric of type ACC.

ACC type sequences are all the sequences that cannot be either DES type or SUB type
sequences.

In this case, also the symmetry point (sp) of the sequence is not an element of the sequence
but does not lie exactly in the middle between two adjacent elements of the sequence.

Mathematically, we define polynomial ACC type of symmetry by Y[—y] # +Y[y + 1] and
Y[yl # £Y[-y].

In this case, the symmetry point (sp) of the polynomial curve x = Y[y] has the Y-coordinate
in the XY plane y;, # tinteger and yg, # £ %.

If the polynomial curve has offset f = 0, then 0 <y, < 0.5 and in the reversal direction

—0.5<ys <0.
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