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 Proof that the Center of Buoyancy is Equal to 

the Center of Hydrostatic Pressure 
 
 ( Part 2 : ) Semi - Submerged Circular Cylinder  

and Triangular Prism 
 
 
 

by Tsutomu HORI † and Manami HORI †† 
 
  

Summary 
 
 

We recently proved that “ the center of buoyancy of floating bodies is equal to the center of hydrostatic 

pressure ”.  This subject was an unsolved problem in physics and naval architecture, even though the 

buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic 

pressure.  Then we thought that the reason why the vertical position of the center of pressure could not 

be determined was that the horizontal force would be zero due to equilibrium in the upright state. 
 

As a breakthrough, we dared to assume the left  - right asymmetric pressure field by inclining the 

floating body with heel angle θ.  In that state, the force and moment due to hydrostatic pressure were 

calculated correctly with respect to the tilted coordinate system fixed to the body.  By doing so, we 

succeeded in determining the center of pressure.  Then, by setting the heel angle θ to zero in order to 

make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known 

center of buoyancy, i.e., the centroid of the cross - sectional area under the water surface. 
 

As noted above, we have already proved this problem for rectangular and arbitrarily shaped cross-

sections, and published them here on viXra.org in English.  Although the case of a semi-submerged 

circular cylinder and a triangular prism are also included in the proof of arbitrary shapes, we prove for 

each shape separately in this 2nd report, since they are two typical cross-sectional shapes along with 

rectangles.  However, there is an essential difference in the proof between the two shapes.  The reason 

is why the former does not change its underwater shape when inclined laterally, while the latter, like the 

rectangle, changes its cross-sectional shape when inclined.  The present paper provides clear proofs for 

both shapes. 
 
 
 

Keywords : Center of Buoyancy, Hydrostatic Pressure, Archimedes' Principle, 

Surface Integral, Semi - Submerged Circular Cylinder, Triangular Prism 
 
 
 

1.  Introduction 
 

It is a well-known fact in physics and naval architecture that the position of “ Center of Buoyancy ” 

acting on a ship is equal to the center of the volume of the geometric shape under the water surface. 
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The buoyancy taught by Archimedes' principle  (1) is clearly obtained by the surface integral of the 

hydrostatic pressure, but the position of the center of buoyancy is described in every textbook 

(on physics 
(2), fluid dynamics 

(3),(4), hydraulics 
(5), naval architecture 

(6),(7),(8),(9),(10),(11) and nautical mechanics (12), 

etc.) as the center of gravity where the volume under the water surface is replaced by water.  There is no 

explanation that it is the center of pressure due to hydrostatic pressure  (13),(14). 
 

Recently, Komatsu (15) raised the issue of “ the center of buoyancy ≠ the center of pressure ? ” at 2007 

in Japan, and it was actively discussed by Seto (16),(17), Suzuki (18), Yoshimura and Yasukawa (19), Komatsu (20), 

Yabushita and Watanabe (21) and others in research committees and academic meetings of the Japan 

Society of Naval Architects and Ocean Engineers ( hereinafter abbreviated as JASNAOE ).  At the same 

time, in Europe, the problem was studied in detail by Mégel and Kliava (22),(23) in terms of potential energy.  

However, no one was able to solve this issue. 
 

On the other hand, it is also an indisputable fact that the well-known center of buoyancy ( i.e. the 

volume center of the underwater portion) is correct from the viewpoint of ship’s hydrostatic stability (24)~(29) 

( that is to say, positioning of the metacenter by calculating the metacentric radius  (30)~(33)
 BM ). 

 

In response to this unsolved problem, we considered that the reason why the vertical center of pressure 

could not be determined was because the horizontal forces equilibrated to zero in the upright state.  To 

solve this problem, Hori (34),(35) attempted in 2018 to integrate the hydrostatic pressure acting on the ship 

surface at the inclined state with heel angle θ.  Then, the forces and moments acting on the ship were 

calculated with respect to a tilted coordinate system fixed to the ship.  In this case, both orthogonal 

components of the force acting on the ship are not zero.  Therefore, it was shown that the center of 

pressure at the inclined state can be determined.  By setting the heel angle θ to zero, we proved that the 

center of hydrostatic pressure coincides with the centroid of cross - sectional area under the water surface 

in the upright state, i.e., the well-known center of buoyancy.  First, a columnar ship with the rectangular 

cross - section (34) was proved and its proof is lectured (36),(37) to 2nd year students of the naval architectural 

engineering course (38),(39) in the “ Hydrostatics of Floating Bodies ” of the university where one of the 

authors (40) works.  And then an arbitrary cross-sectional shape (35) was proved and published in the 

Journal “ NAVIGATION ” of Japan Institute of Navigation ( hereinafter abbreviated as JIN ). 
 

In other way, as many researchers are studying this issue with various approaches  
(41)~(45), the 

discussions have deepened in JASNAOE.  To sublate these discussions, we have illustrated that “ the 

center of buoyancy is equal to the center of pressure ” for a semi-submerged circular cylinder 1st half of (46) 

and a submerged circular cylinder (47) which does not change its shape under the water even if it is inclined, 

and for a triangular prisms (48), using the same method (49). 
 

In order to put an end to the above discussions, we proved that “  the center of buoyancy ＝ the center 

of pressure ” for a submerged body with arbitrary shape 1st half of (50) using Gauss's integral theorem in 2021.  

Furthermore, it was published in the same journal “NAVIGATION ” of JIN that it is easier to prove for a 

floating body with arbitrary shape 2nd half of (50) than author’s previous paper (35) by using Gauss's theorem 

in the same way (51). 
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We subsequently summarized the proofs in English for the case of the rectangular cross-section (34), 

which is the easiest to understand, and for the floating body of arbitrary cross-sectional shape 2nd half of (50) 

by applying Gauss's integral theorem.  And we published them on this viXra.org (52) and in the bulletin 

of our university, Nagasaki Institute of Applied Science (53).  Furthermore, we showed an extension to the 

center of buoyancy for a 3-D floating body.  More recently, the authors have summarized the above as a 

new developments for the fundamental theory of hydrostatics of floating body and published it here on 

viXra.org (54). 
 

As noted above, we have already proved this problem for rectangular and arbitrarily shaped cross-

sections and published it here on viXra.org (52) in English.  Although the case of a semi-submerged 

circular cylinder and a triangular prism are also included in the proof of arbitrary shapes  (35),(49)~(54), we 

prove for each shape separately in this 2nd report, since they are two typical cross-sectional shapes along 

with rectangles.  However, there is an essential difference in the proof between the two shapes.  The 

reason is why the former does not change its underwater shape when inclined laterally, while the latter, 

like the rectangle (34),(36),(37),(49),(52)~(54), changes its cross-sectional shape when inclined.  The present paper 

provides clear proofs for both shapes. 
 

We would like to report all of you smart readers about the two proofs. 
 
 
 
 
 
 

2.  Positioning of the Center of Hydrostatic Pressure 
PC  

Acting on the Semi - Submerged Circular Cylinder 
 

Fig. 2. 1 shows that a cross-section of semi-submerged circular cylinder with radius R ( breadth 2 R and 

draft R ) inclines laterally with a heel angle   to the starboard side.  The origin o is placed at the center 

of the still water surface, and the coordinate system fixed in space with the z-axis pointing vertically 

downward is o y z , and that fixed to the inclined circular cylinder is –o  . 
 

If the argument measured counterclockwise from the  - axis is   as shown in Fig. 2. 1, then the 

argument of the water surface on the port side L  and on the starboard side R  can be written 

respectively, as follows : 

2

2

L

R





 

 


   


 


 ･･･････････････････････････････････････････････････････････(2.1) 

Here, the aerial part airC  and the submerged part 
waterC  can be written in terms of argument  , 

respectively, as follows : 

2 2

2 2

3
: 2

:

air R L

water L R

C

C

 

 
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     


        


       


 ････････････････････････(2.2) 

  

The water depth ( )z   on the cylinder surface ( , ) ( sin , cos )R R     is then obtained as : 
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( ) ( tan ) cos

(cos cos sin sin )

z

R

    

   

 

   

cos( )R     ･･･････････････････････････････････････････････････････(2.3) 
 

   Here, the notation in the 3rd line of the above equation is evident from Fig. 2. 1. 

 

And in the figure, the outward unit normal vector n , standing on the cylinder surface, can be written 

using the argument  , as follows : 

sin cos

n n 

 

 

 

n j k

j k  ････････････････････････････････････････････････････････(2.4) 
 

Here, n  and n  are the directional cosines in the   and   coordinates fixed to the cylinder, and j  

and k  are the basic vectors in the   and   directions, similarly. 
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Fig. 2. 1  Hydrostatic pressure and the center of pressure 

acting on the cross-section of an inclined semi-submerged circular cylinder. 
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In Fig. 2. 1, atmospheric pressure 0p  is shown as a dashed vector and hydrostatic pressure  z  as a 

solid vector, and all are acting on n  direction perpendicular to the cylinder surface.  Here,   is the 

specific gravity of water. 
 
 
 
 
 

2. 1  Forces F   and F   due to pressure in the   and   directions 

acting on the cylinder surface 
 

The force F   in   direction and the force F   in the   direction due to pressure p  acting on the 

cylinder surface are the sum of the force due to atmospheric pressure  0p  acting in the aerial part 
airC  

and the force due to hydrostatic pressure 0p z  acting in the submerged part 
waterC  respectively, and 

are obtained as follows : 

0 0

0 0

( )

( )

air water air water

air water air water

C C C C

C C C C

F p n d p n d p z n d

F p n d p n d p z n d

   

   











   


   


  

  
 ･････････････････(2.5) 

 

Here, on the cylinder surface ( 

2 2 R    ), the line element is d Rd , and the directional cosines 

in the   and   directions can be written as sin , cosn n     according to Eq. (2.4), so that for each 

part of 
airC  and 

waterC , both F   and F   can be expressed by integration with respect to the argument   

in the interval of Eq. (2.2). 
 

Therefore, F   acting in the   direction is expressed as : 
 

3

2 2
0 0

2 2

3

2 2
0

2 2

sin ( )sin

sin sin

F p Rd p z Rd

p R d R z d

 
 

 
 

 
 

 
 

    

    

 


  

 

   

    

 

 

 

 

2

2

( ) sinR z d







   


 
    ････････････････････････････････････････････････(2.6) 

Similarly, F   acting in the   direction is expressed as :  

3

2 2
0 0

2 2

3

2 2
0

2 2

cos ( )cos

cos cos

F p Rd p z Rd

p R d R z d

 
 

 
 

 
 

 
 

    

    

 


  

 

   

    

 

 

   

2

2

( )cosR z d







   


 
   ･････････････････････････････････････････････････(2.7) 

 
 
 

The results of the above equations for both F   and F   show that the integral over the entire 

circumference of cylinder with respect to the atmospheric pressure  0p  in the 1st term of 2nd line is zero 

and does not contribute to the force.  Therefore, we can calculate only the 2nd term by using Eq. (2.3) for 

the water depth ( )z  , so that F   is obtained as : 
 
 
 

https://vixra.org/abs/2308.0202
https://vixra.org/abs/2308.0202


  p. 6 / 27 
 

Tsutomu HORI and Manami HORI 

 

2 2

2

2 22 2

2 2

2 2 2 2

2 2 2
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  

     

 

 
  

 

   
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 
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2
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R
    ････････････････････････････････････････････････････････(2.8) 

 
 
 

And, F   is obtained as :  

2 2
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2 22 2
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2 2 2 2
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2
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These are because the integrals of sin 2  and cos2  are zero, and the integral value of 2nd term is π 

in the 3rd line of both equations above.  Both results indicate that F  and F   are obtained as   and 

  directional components of the buoyancy 

2

2

R
 , as shown by zF  of Eq. (2.10) in the next section. 

 
 
 
 
 

2. 2  Forces  yF  and 
zF  converted in the  y  and z  directions 

 

By using F   and F   obtained in Eqs. (2.8) and (2.9) of the previous section, the horizontal component 

yF  and the vertical component zF  are converted as follows : 
 
 

2

2 2

2 2

2

2 2

cos sin

(sin cos cos sin ) 0

cos sin

(cos sin )

y

z

R

R R

F F F

F F F

 

 



 

 

    

 

   

  

  

  

    



  

  


 ･･････････････････････････････(2.10) 

 

The above results show that the horizontal component yF  does not act as a combined force due to 

pressure integration.  The vertical component zF  is the product of the specific gravity    of water and 
 

the area 

2

2

R
 of semicircle below the water surface, and is indeed buoyant force itself acted vertically 

upward, as Archimedes' principle (1) teaches. 
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2. 3  Moments M   and M   due to pressure in the   and   directions 

 acting on the cylinder surface 
 

The clockwise moment M   about the origin o due to the pressure p  in the   direction acting on the 

cylinder surface and the counterclockwise moment M   due to the pressure in the   direction can be 

obtained by integrating Eq. (2.5) multiplied by   or   as the lever of the moment respectively, as follows : 
 

0 0

0 0

( )

( )

air water air water

air water air water

C C C C

C C C C

M p n d p n d p z n d

M p n d p n d p z n d

   

   

   

   





      


      


  

  
 ･････････(2.11) 

Here, if the above moments expressed in terms of integrals with respect to the argument  as in Eqs. 

(2.6) and (2.7) for F   and F   in the previous section, M   becomes as : 
 

3

2 2
0 0

2 2

3

2 22 2
0

2 2

1

2

sin cos ( )sin cos

sin 2 sin cos

M p R Rd p z R Rd

p R d R z d

 
 

 
 

 
 

 
 

      

     

 

  

 

   

      

 

 

   

2 2

2

( ) sin cosR z d







    


 
    ･････････････････････････････････････････(2.12) 

 
 

And, M   becomes as : 

3

2 2
0 0

2 2

3

2 22 2
0

2 2

1

2

cos sin ( )cos si n

sin 2 sin cos

M p R Rd p z R Rd

p R d R z d

 
 

 
 

 
 

 
 

      

     

 

  

 

   

      

 

 

 

 

2 2

2

( ) sin cosR z d







    


 
    ･････････････････････････････････････････(2.13) 

 
 
 
 

The above results show that both equations for M   and M   are equivalent.  Thus, the total 

counterclockwise moment 
oM  around the origin o due to pressure is zero as follows : 

 

0oM M M     ････････････････････････････････････････････････････(2.14) 

This is confirmed by the fact that the pressure acts perpendicular to the cylinder surface, so it is all 

directed toward the center of the circle. 
 

Then, in both Eqs. (2.12) and (2.13), the integration of sin 2  with respect to atmospheric pressure 0p  

in the 1st term of 2nd line is zero.  Hence, we can calculate only the 2nd term by using Eq. (2.3) for the 

water depth ( )z  , as follows : 
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3 2

2

3 2 22 2

2 2

(cos cos sin sin ) sin cos

cos sin cos sin sin cos

M M

R d

R d d

 







 
 

 
 

       

        



 

 

   



 

 
  

 



   ･･･････････････(2.15) 

 
 

So, if we put cosp   for the 1st term and sinq   for the 2nd term and do a substitution integral for 

each, we obtain by folding the integral interval in half, as follows : 
 

 
sin cos

3 2 2

0 0

3 3 3

3 2 2 3

1 1

3 3

2 2

3 3

2 cos sin

2 cos sin sin cos

sin cos (sin cos ) sin cos

M M

R p d p q d q

R

R R

 

 

  

    

       



 

 
    

 

  

 

 ･･･････････････････(2.16) 

 
 
 
 

2. 4  Positioning of the center of pressure 
P

C  

for the semi - submerged circular cylinder 
 

To locate the center of pressure PC  in o   coordinate system fixed to circular cylinder, the 

hydraulic method used in the authors' previous papers (34),(35),(46)~(54) is applied.  This method was used by 

Ohgushi (9) for an example problem of the rolling gate. 
 

Since the forces F   and F   due to the hydrostatic pressure obtained in Section 2.  1 act on the center 

of pressure 
PC ( , )P P  , the moments M   and M   due to the same pressure obtained in Section 2.  3 can 

be expressed respectively, as follows : 
 

P

P

M F

M F

 

 









 


 

 ･････････････････････････････････････････････････････････(2.17) 

 

Therefore, the unknown coordinate ( , )P P   of the center of pressure 
PC  can be determined by Eq. 

(2.17).  Here, the  - coordinate, P , can be calculated by using Eq. (2.9)  for F   and the Eq. (2.16)  for 

M   due to the hydrostatic pressure in the   direction, as follows : 
 

2

32

3

2

sin cos
4

sin
3

cos

P

R

M

F

R

R









  




 





   ････････････････････････････････････････(2.18) 

 

Similarly, the  - coordinate, P , can be calculated by using Eq. (2.8) for F   and Eq. (2.16) for M   

due to the hydrostatic pressure in the   direction, as follows : 

https://vixra.org/author/tsutomu_hori
https://vixra.org/author/manami_hori


p. 9 / 27 

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure 

( Part 2 : ) Semi-Submerged Circular Cylinder and Triangular Prism 

 

2

32

3

2

sin cos
4

cos
3

sin

P

R

M

F

R

R









  




 





   ････････････････････････････････････････(2.19) 

 

Let us consider the above equations.  For P  in Eq. (2.19), if we assume the upright state 0   from 

the beginning, sin  in the denominator F  and numerator M   will be zero, so the fraction becomes 

indeterminate forms and P  cannot be determined.  The reason is why we were able to locate the 

vertical component P  of the center of pressure, the semi-submerged cylinder was laterally inclined along 

with its  - coordinate axes, even though the shape did not change when inclined. 
 

On the other hand, for 
P  in Eq. (2.18), even if the heel angle is 0   from the beginning, the 

denominator F  can take a finite value because of cos 1  , and horizontal component 
P  can be 

determined. 
  

From the results of both equations above, the coordinates ( , )P P   of the center of pressure 
PC  are 

determined as : 

4 4
( , ) sin , cos

3 3
P P R R   

 

 
  
 

 ･･････････････････････････････････････(2.20) 
 
 
 
 

The above ( , )P P   coordinates fixed to the inclined cylinder are transformed to ( , )P Py z  coordinates 

fixed to space, as follows : 
 
 

2 2

cos sin

4
(sin cos cos sin ) 0

3

cos sin

4 4
(cos sin )

3 3

P P P

P P P

y

R

z

R R

   

   


   

 
 

  

    



  

  


 ････････････････････････････････(2.21) 

 

Therefore, the center of pressure 
PC  in the space - fixed coordinate is located as : 

4
( , ) 0,

3
P Py z R



 
  
 

 ･･･････････････････････････････････････････････････(2.22) 

This correctly indicates the figure centroid on the centerline ( i.e. z-axis ) of the semicircle below the 

water surface.  Hence, it is proved that the center of hydrostatic pressure is equal to the well-known 

center of buoyancy, even for the shape of a semi-submerged circular cylinder. 
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2. 5  Considerations  
 

In the case of the semi - submerged circular cylinder in this chapter, the situation differs from that of 

a rectangle or an arbitrary cross - sectional shape in authors’ previous papers (34),(35),(49)~(54) and of a 

triangular prism in the next chapter.  The reason is why its geometrical shape under the water surface 

does not change even when the circular cylinder is inclined laterally.  As a result, it is not necessary to 

determine the center of pressure in the upright position by setting the lateral inclination angle   to zero.  

So, its position can be computed by coordinate transformation, as shown in Eq. (2.21) of the previous 

section. 
 

Therefore, it was also found that the center of pressure can be positioned by tilting the coordinate 

system in a way that it is shifted from the vertical direction, without inclining the floating body as 

advocated by Yabushita et al. (42). 
 
      

3.  Positioning of the Center of Hydrostatic Pressure 
PC  

Acting on the Triangular Prism 
 

Fig. 3. 1 shows that a cross-section of triangular Prism ( breadth 2 b draft f, freeboard h, vertex angle 

2 ) inclines laterally with a heel angle   to the starboard side.  Here, the half breadth b of the waterline 

of the triangular prism in the upright state can be written, using the draft f and the half vertex angle  , 

as follows : 

tanb f  ･･･････････････････････････････････････････････････････････････(3.1) 
 

Here, the cross - section of this triangular prism is an isosceles triangle with base (  i.e. deck length ) 

2( ) tanf h , height f h , and both sides ( )secf h . 
 
 
 
 

3. 1  Preparation calculations, including wetted lengths 

 on both port and starboard sides 
 

Let's consider the exposed triangle (port side, L for short) 
L LoE T  and the immersed triangle 

(starboard side, R for short) R RoE T  near the waterline in Fig. 3. 1.  The heights L L Lq U T  and 

R R Rq U T  of each triangle can be expressed geometrically in two ways, using L L Lx U E  and R R Rx U E , 

as follows : 

( ) tan
tan

( ) tan
tan

L
L L

R
R R

x
q b x

x
q b x








   



  


 ････････････････････････････････････････････････(3.2) 

 
 
 
 
 

Thus, for Lx  and Rx , the following relations can be obtained respectively as : 
 

( ) tan tan

( ) tan tan

 

 

  


  

L L

R R

x b x

x b x
 ･･･････････････････････････････････････････････････(3.3) 

Therefore, Lx  and Rx  can be solved by using the relation in Eq. (3.1) for the half breadth b as follows : 
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tan
1
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1

L

R
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x f












  



 

 ････････････････････････････････････････････････････････(3.4) 

 

Here,   in the above equation is defined as the product of the tangent of the half vertex angle   and 

that of the heel angle  , as follows:  
 
 

tan tan    ････････････････････････････････････････････････････････････(3.5) 
 

Next, the decremental length 
Ls  and the incremental length 

Rs  of the wetted length on the port and 

starboard sides respectively, are written as : 
  

sec
sin 1

sec
sin 1

L
L

R
R

x
s f

x
s f




 




 


   


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 

 ･････････････････････････････････････････････････(3.6) 

 

Therefore, the wetted lengths 
L

 and 
R

 on the port and starboard sides are obtained as follows : 

1
sec sec

1

1
sec sec

1

L L

R R

f s f

f s f

 


 



    


  
 

 ･･･････････････････････････････････････････(3.7) 
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Fig. 3. 1  Cross - section of an inclined triangular prism. 

acting on the inclined semi-submerged circular cylinder. 
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The waterline widths Lb  and Rb  on both the port and starboard sides can be obtained by using Lx  

and 
Rx  in Eq. (3.3) as follows : 

  

1
( ) sec tan sec

1

1
( ) sec tan sec

1

L L

R R

b b x f

b b x f
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

  



    


  
 

 ･････････････････････････････････････(3.8) 

 

Thus, the total waterline breadth is written as : 
 

2

2
tan sec

1
L Rb b f  


 


 ･･･････････････････････････････････････････････(3.9) 

 

Therefore, the area A of triangle 
L RK T T  below the water surface of a triangular prism, which is 

inclined laterally with heel angle  , is obtained as follows : 
 

2

2

1 1
( ) cos tan

2 1
L RA b b f f 


   


 ･･････････････････････････････････(3.10) 

Since the underwater area 0A  in the upright state ( 0   i.e. 0   ) is shown below, the underwater 

area A in the above inclined state is increased by 

2

021
A




 from the upright state. 

 

 2

0 0
tanA A f





   ･･･････････････････････････････････････････････････(3.11) 

 
 
 
 

3. 2  Forces due to hydrostatic pressure 

acting on three surfaces around a triangular prism 
 

Fig. 3. 2 shows the pressure distribution and the forces generated by integrating it, acting on the cross-

section of the triangular prism drawn in Fig. 3. 1.  The coordinate systems are o y z  fixed in space with 

the z-axis pointing vertically downward, and o   fixed on the prism and tilted, both with the origin o 

at the center of still water surface. 
 

The atmospheric pressure is denoted by 0p  and the specific gravity of water is denoted by  .  The 

atmospheric pressure 0p  is shown as a dashed line, and the hydrostatic pressure z  as a solid line.   

The respective pressures are shown as thin vectors, and the forces as thick vectors.  Then, all are acting 

perpendicularly to the surface of the triangular prism. 
 

The depth fZ  at the vertex K of the triangle corresponding to the ship's bottom is denoted as : 
 

cosfZ f  ････････････････････････････････････････････････････････････(3.12) 
 

The forces LeftP  and RightP  acting on the port ( subscripts in Left ) and starboard ( subscripts in Right ) 

sides are obtained by summing the forces 
(0)

LeftP  , 
(0)

RightP  due to uniformly distributed atmospheric pressure 

acting on the entire port side and the forces 
(0)

LeftP  , 
(0)

RightP  due to the triangularly distributed hydrostatic 

pressure acting on the submerged part respectively, by using the wetted lengths L  , R  in Eq. (3.7), as 

follows : 
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Fig. 3. 2  Hydrostatic pressure and the center of pressure 

acting on the cross-section of an inclined triangular prism. 
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The force UpperP  acting on the deck ( subscripts in Upper ) is only 
(0)

UpperP  due to atmospheric pressure, so 

it is obtained as : 
 
 

(0)

02 ( ) tan

Upper UpperP P

p f h 



    ･････････････････････････････････････････････････(3.14) 
 
 
 
 
 

3. 3  Combined forces F   and F   in the   and   directions 

acting on the prism surface 
 

The combined forces F  and F  acting in the   and   directions fixed to the inclined floating 

prism are obtained by using LeftP  , RightP  and UpperP  in Eqs. (3.13) and (3.14), as follows : 
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 ･･････････(3.15) 

 

Here, F   and F   of the above are obtained as the sine and cosine components of the buoyant force 

A , as shown by zF  of Eq. (3.17) in the next section, with respect to the heel angle  .  This result 

indicates that the atmospheric pressure 0p  cancels out and does not contribute to the combined forces 

acting on the floating prism. 
 
 
 
 

3. 4  Forces  yF  and  zF  converted in the  y  and  z  directions 
 

The horizontal component ( in the y  direction ) yF  and the vertical component ( in the z  direction ) 

zF  are obtained by coordinate transformation of F   and F   in Eq. (3.15) of the previous section. 
 

Then, the horizontal component  yF  is transformed as : 
 

cos sin

(sin cos cos sin )

yF F F

A

  

    

   

    

0   ･･･････････････････････････････････････････････････････････････(3.16) 
 

From the above result, the horizontal component of the combined force does not generate even in an 

left-right asymmetric pressure field due to lateral inclination. 
 

And, the vertical component zF   is similarly transformed as : 

https://vixra.org/author/tsutomu_hori
https://vixra.org/author/manami_hori


p. 15 / 27 

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure 

( Part 2 : ) Semi-Submerged Circular Cylinder and Triangular Prism 

2 2

cos sin

(cos sin )

zF F F

A

  

  

   

   

A   ･･････････････････････････････････････････････････････････････(3.17) 
 

The above result shows that the vertical component is obtained by the product of the specific gravity  

  of water and the cross-sectional area A  under the water surface of the triangular prism shown in Eq. 

(3.10).  This indicates that 
zF 

 is the very buoyant force taught by Archimedes' principle (1). 
 
 

On the other hand, the 
 yF  and zF   can also be obtained directly from LeftP  , RightP  and UpperP  in Eqs. 

(3.13) and (3.14), as follows : 
  

First, the horizontal component  yF  is calculated as : 
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Next, the vertical component zF   is calculated as : 
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A   ･･････････････････････････････････････････････････････････････(3.19) 
 
 

Both of the above equations cancel out the atmospheric pressure  0p  and are identical to Eqs. (3.16) 

and (3.17) obtained by transforming the coordinates of F  and F .  This confirms that the forces due 

to pressure in Section 3.2 have been calculated correctly. 
 
 
 
 
 

3. 5  Moments M   and M   due to pressure in the   and   directions 

acting on the prism surface 
 

Consider the calculation of the moment M   about the origin o , generated by the  - directional 

components of the forces LeftP  and RightP  due to pressure acting perpendicularly on the sides of a triangular 

prism. 
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The levers 
(0)

Lv   and 
(0)

Rv   parallel to the  - axis on both the port and starboard sides by the 

atmospheric pressure components (0)
 of the uniform distribution are obtained as the same length on both 

sides, since the both side lengths including freeboard are ( ) secf h  , as follows : 
 

(0) (0) ( )sec
cos

2 2
L R

f h f h
v v f 


 

 
     ･････････････････････････････････(3.20) 
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  parallel to the  - axis on both port and starboard sides due to the 

hydrostatic components
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 of the triangular distribution are obtained by using the wetted lengths 
L

 and 

R  in Eq. (3.7) as follows : 
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By the above two equations, the clockwise moment M   due to pressure in the  - direction about the 

origin o  can be obtained independently of the atmospheric pressure  
0p , using Eqs. (3.13), (3.20) and 

(3.21), as follows : 
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Next, the moment M   around point o , generated by UpperP  and the  - directional components of 

LeftP  and RightP , is calculated. 
 

The levers 
(0)

Lv   and 
(0)

Rv   parallel to the  - axis due to the atmospheric pressure components
(0)

 are 

obtained as : 
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Here, the above equation, like Eq. (3.20), has the same length on both sides. 
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Therefore, the counterclockwise moment M   due to pressure in the  - direction about the origin o  

can be calculated by Eqs. (3.13), (3.23) and (3.24), as follows : 
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Here, M  , like M  , is obtained independently of the atmospheric pressure 0p . 
 
 
 
 
 

3. 6  Positioning of the center of pressure 
P

C  

for the triangular prism at lateral inclination 
 

The center of pressure PC  is located in o   coordinate system fixed to the inclined triangular 

prism, as in the case of the semi-submerged circular cylinder in Chapter 2.  According to the hydraulic 

method used by Ohgushi (9), the moments and forces due to pressure are related by Eq. (2.17), assuming 

the coordinates ( , )P P   of center of pressure. 
 

Therefore, the  - coordinate 
P  can be determined by the combined force F   and moment M   due 

to pressure in the  - direction, by using Eq. (3.25) and the latter in Eq. (3.15), as follows : 
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And, the  - coordinate 
P  can be determined by the combined force F   and moment M   due to 

pressure in the  - direction, by using Eq. (3.22) and the former in Eq. (3.15), as follows : 
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Considering the above, P  of vertical component can be obtained by offsetting the zero factor sin  at 

the heel angle 0  with the denominator and numerator, as shown in Eq. (3.27).  Here, if we start the 

calculation from the beginning as the upright state with 0  , both the denominator F  and the 

numerator M   are in equilibrium and become zero, so the fraction becomes indeterminate forms and P  

cannot be determined.  This is the reason why we were able to determine the position of the center of 

https://vixra.org/abs/2308.0202
https://vixra.org/abs/2308.0202


  p. 18 / 27 
 

Tsutomu HORI and Manami HORI 

 

pressure in the  - direction by inclining the floating body laterally. 
 

On the other hand, in the calculation of 
P  in Eq. (3.26), even if the heel angle is 0   from the 

beginning, the numerator M   is in equilibrium and zero, but the denominator F  takes a finite value 

as the cosine component of the buoyancy.  Therefore, the horizontal component  
P  can be determine, 

even if we start the calculation as the upright state. 
 
 
 

Let us now transform the resulting center of pressure ( , )P P PC    in the floating prism-fixed 

coordinates into the space-fixed coordinate system ( , )P Py z . 
 

First, Py  in the horizontal direction becomes as : 
 

2

2

cos sin

1 2 tan cos (1 3 )sin

3 1

P P Py

f

   

    



 

 



 

2 2

2

1 2 tan 3 1
sin

3 1
f

 




 



  ･･･････････････････････････････････････(3.28) 

 

Next, Pz  in the vertical direction becomes as : 
 

2

2

2 2

2

cos sin

1 (1 3 )cos 2 tan sin

3 1

1 (1 3 ) 2 1
cos cos

3 1 3

P P Pz

f

f f

   

    



 
 



 

 




 
 


  ･･････････････････････････････(3.29) 

  

From the above results, it is clear that the latter Pz  indicates the vertical position of figure centroid 

of a triangle of height cosf  , with the water surface as its base.  Hence, we will verify in the next 

section whether the former Py  also coincides with the horizontal position of figure centroid of underwater 

triangle. 
 
 
 
 

3. 7  Verification by the position of the figure centroid 

 of the triangle below the water surface  
 

Fig. 3. 3 shows an extract of the area under the water surface for the cross  - section of the triangular 

prism in Fig. 3. 2.  Let us divide the triangle L RK T T  into two parts by the z - axis connecting the vertex 

K  of the triangle and the origin o  taken vertically above the vertex K . 
 

For the Left triangle LK o T , the area is LA  and the base is Ly , and for the Right triangle RK o T , 

the area is RA  and the base is Ry .  And the height is the common on both left and right triangles, 

fo K Z  . 
 

In this case, the areas LA  and RA  of the left and right triangles respectively, are written as : 
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1

2

1

2

L f L

R f R

A Z y

A Z y


 






 ･････････････････････････････････････････････････････････(3.30) 

 

   The base of the triangle 
L RK T T  can be written in the following two ways, by using 

Ly  and Ry  in 

Fig. 3. 3 and 
Lb  and 

Rb  in Fig. 3. 1. 
 

( )L R L R L Ry y b b base of K T T     ･･･････････････････････････････････(3.31) 

Therefore, the area A  of 
L RK T T , which is the sum of LA  and RA  above, is expressed by Eq. (3.10) 

in Section 3.1, as follows : 
 

2

2

1
( )

2

1 1
cos ( ) tan

2 1

L R

f L R

L R

A A A

Z y y

f b b f 


 

 

  


 ･･･････････････････････････････････(3.32) 

 

And, Ly  and Ry , which correspond to the bases of the two halves of 
L RK T T , become respectively, 

using   and  , as follows : 
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 ････････････････････････････････････(3.33) 
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Fig. 3. 3  Figure centroid of triangular cross - section below the water surface. 

acting on the inclined semi-submerged circular cylinder. 
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The areal moment 
zM   of triangle 

L RK T T  about the z - axis can be obtained by using Eq. (3.30) for 

LA  and RA  as follows, since the horizontal distance from the z - axis to the figure centroids Lg  and Rg  

of the divided left and right triangles 
LK o T  and 

RK o T  respectively, is the lever of moment. 
 

2 2

3 3

1
( )

6

R L

z R L

f R L

y y
M A A

Z y y

    

  ･････････････････････････････････････････････････(3.34) 

 

Proceeding with the calculation, by using Eq. (3.33) for Ly  and Ry , Eq. (3.12) for fZ , and Eq. (3.5) for 

 , the moment 
zM   can be obtained in terms of A  in Eq. (3.32), as follows : 
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 
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

  
 

 
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  
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

 
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 ･･･････････････････････････(3.35) 

 
 

Therefore, the horizontal distance 
Gy   of the figure centroid G  of triangular 

L RK T T  from the z - 

axis is determined by dividing 
zM   in Eq. (3.35) by the area A  in Eq. (3.32), as follows : 
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2

2 sec
sin

3 1

z

G

M
y

A

f






 




 ･･････････････････････････････････････････････････(3.36) 

 
 

Finally, consider finding the horizontal distance Gy  of the figure centroid G  from the original z - axis. 

Here, the distance o o  between the two origin points becomes as follows, by using Fig. 3. 3 or the former 

part of Eqs. (3.8) and (3.33). 
 

sinL Lo o b y f      ･･･････････････････････････････････････････････････(3.37) 

 

Hence, Gy  is calculated by using Eqs. (3.36) and (3.37), as follows : 
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3 1 3 1

G G
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f f
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   
 

 
 ････････････(3.38) 

 

On the other hand, the vertical distance Gz  from the y - axis to the figure centroid G , need not be 

calculated, since 
L RK T T  is a triangle of height cosfZ f   whose base is the water surface ( i.e. y - 

axis ), and is obtained as : 
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1
cos

3
Gz f   ･･････････････････････････････････････････････････････････(3.39) 

 

Thus, by comparing Eqs. (3.28) and (3.38) and Eqs. (3.29) and (3.39), we find as follows : 
 

P G

P G

y y

z z

 


 

 ･･････････････････････････････････････････････････････････････(3.40) 

 

This result proves that the center of hydrostatic pressure is the well-known position of the center of 

buoyancy, since it indicates that the center of pressure of the asymmetrical triangular cross  - section at 

lateral inclination coincides with the figure centroid below the water surface. 
 
 
 
 
 

3. 8  Positioning of the center of pressure 
P

C  for the upright triangular prism 
 

In order to clarify the consequences obtained in Eq. (3.40) of the previous section, we find the position 

of the center of pressure PC  of the triangular prism in the upright state.  As a final step, let us set 0   

in the coordinates ( , )P P   of the center of pressure obtained for the inclined state.  
 

Here, if the heel angle   tends to zero,   in Eq. (3.5) becomes as : 
 

 
0 0

tan tan 0
 

  
 
   ･･･････････････････････････････････････････････(3.41) 

Thus, by Eqs. (3.26) and (3.27) in Section 3.6, PC  is determined as follows : 


0

( , ) 0 ,
3

P P P

f
C


 



 
  
 

 ･･･････････････････････････････････････････････(3.42) 

Alternatively, since the o   and o y z  coordinate systems coincide in the case of 0  , the 

following conclusion can be obtained by Eqs. (3.28) and (3.29) as well. 
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0
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3

P P P

f
C y z
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 
  
 

  ･･････････････････････････････････････････････(3.43) 

 

Since the both of Eqs. (3.42) and (3.43) above clearly show the position of the figure centroid of the 

isosceles triangle below the water surface, it is proved that the center of hydrostatic pressure is the well-

known center of buoyancy for the triangular prism. 
 
 
 
 
 

4.  Concluding Remarks 
 

In this 2nd report, we proved that the center of hydrostatic pressure is equal to the well-known center 

of buoyancy ( i.e. the figure centroid of the underwater area ) for the typical cross-sectional shapes of semi-

submerged circular cylinder and triangular prism, as in the case of the rectangular shape 1st half of (53) 

reported earlier. 
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Although these two shapes are included in the proof of arbitrary shapes 2nd half of (53), there is an essential 

difference between the two proofs.  The reason is why the former does not change its underwater shape 

when inclined laterally, while the latter, like the rectangle, changes its cross-sectional shape when 

inclined.  The present paper provided clear proofs for both shapes. 
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