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Abstract

In this article, we prove the limit formula

lim
x→∞

|M(x)|
π(x)

= lim
x→∞

h

log(x)
= 0, h = a constant

for Mertens’ function M(x) using arithmetic and analytic arguments
based on theorems for the prime counting function π(x) and the se-

ries
∑ µ(k)

k . The formula is evaluated using limit theorems to give: an

alternative proof of limx→∞
|M(x)|
x = 0, a new disproof of Mertens’ con-

jecture, proof of the Odlyzko–te Riele conjecture and a disproof of the
Riemann hypothesis based on Littlewood’s equivalence theorem.
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1. Introduction

Mertens’ function, M(x), is an arithmetic function defined by the sum

M(x) = µ(1) + µ(2) + µ(3) + · · ·+ µ(n) =

n≤x∑
n=1

µ(n)

where n is an integer ≤ x and µ(n) is the Mobius function defined by
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µ(n) = 0 if n contains a square of a prime.
= +1 if n = 1 or is square-free and has an even number of primes.
= −1 if n is square-free and has an odd number of primes.

The Mertens function is of great interest because of its relation to the zeta
function,

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · =

∞∑
n=1

1

ns
, s = σ + it

and Euler’s product formula (Edwards [2001], p. 22, p. 260):

ζ(s)−1 =
∏(

1− 1

ps

)
=
∞∑
1

µ(n)

ns
= s

∫ ∞
0

M(x)x−s−1dx

And these equalities relate M(x) to the zeros of ζ(s), the distribution of primes
and Riemann’s hypothesis (RH) which has resisted resolution since 1859. We
refer the reader to Odlyzko and te Riele [1985, Sect. 1 and 2] for an in-depth
discussion of these relationships and some of the history. Here we state RH
and briefly discuss its relevance to prime number theory.

Riemann’s hypothesis can be stated as follows: All the “non-trivial” zeros
s = σ + it of the zeta function, ζ(s), have real part σ equal to 1

2
. The other

“trivial” or simple zeros of ζ(s) are derived from its functional equation

ζ(s) = 2sπs−1sin(sπ/2)
∏

(−s)ζ(1− s)]

proved by Riemann. These zeros occur at negative even integers due to the
zeros of the sine function at integer multiples of π.

Riemann did not explain his reasoning for making the conjecture; so his
rationale for it is unknown. However, it was found that if RH is true, improved
estimates of the error in the prime number theorem and of the difference
between primes could be obtained: If RH is true, Von Koch [1901; Edwards
2001, p. 90] proved the relative error in π(x) ∼ Li(x), where Li(x) =

∫
dt

log(t)
,

is less than a constant times (log x)2x−1/2 for sufficiently large x. On the other
hand if RH is not true, then the relative error does not grow less rapidly than
x1/2+ε.

Dudek [2014] proved that if RH is true there exists a prime in the interval
(x − 4

π

√
xlog(x), x) which is the latest improvement on results obtained by

Cramér [1920] and von Koch [1901]. Letting x = pn, where pn is the nth

prime implies there exists a prime in the interval (pn − 4
π

√
p
n
log(pn), pn) if n

is sufficiently large.
The RH is believed by many to be true and there are deep theoretical results

and a large body of computational data regarding the zeros that suggested it
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could be true [Edwards (2001) and Borwein et al. (2006)]. There also has
been a substantial amount of theoretical and computational work which has
called RH into question. Ivic’s paper in Borwein, et al. (ch. 11) cites results
to make a case against RH and includes a tentative proof RH is false. Edwards
(p. 164) has speculated on Riemann’s reasoning behind his hypothesis and he
concludes:

Even today . . . one cannot really give any solid reasons for saying
that the truth of the hypothesis is probable. The theorem of Bohr
and Landau . . . stating that for any δ > 0 all but an infinitesimal
portion of the roots ρ lie within δ of Re s = 1

2
is the only positive

result which lends real credence to the hypothesis. Also verifica-
tion of the hypothesis for the first three and a half million roots
. . . perhaps make it more “probable.” [The first 10 trillion zeros
have been confirmed to lie on the “critical line” x = 1

2
.] However

any real reason, any plausibility argument or heuristic basis for the
statement seems entirely lacking.

. . . unless some basic cause is operating which has eluded mathe-
maticians for 110 years, occasional roots ρ off the line are altogether
possible.

Littlewood (whose theorem motivated the research in this article) later in
life expressed sentiments about RH similar to those of Edwards:

I believe this to be false. There is no evidence whatever for it
(unless one counts that it is always nice when any function has
only real roots). . . . there is no imaginable reason why it should be
true. [Good (1963), p. 390]

Earlier in his career, Littlewood [1912] outlined a proof of a theorem that
states criteria for the Mertens function M(x) that are equivalent to RH. (Ed-
wards [2001, p. 261] later filled in details omitted from the proof.)

Theorem 1 (Littlewood). Riemann’s hypothesis is equivalent to the state-
ment: for every ε > 0 the function M(x)/x1/2+ε approaches zero as x→∞.

This statement can be expressed by the following limit:

lim
x→∞

M(x)

x1/2+ε
= 0 for every ε > 0

Littlewood’s theorem reduces the proof or disproof of RH to an equivalent
problem of finding the limit of an infinite series for M(x). This forms the
basis of the approach we take to resolve RH by writing M(x) as a new infinite
series and proving a formula for the series that allows evaluation of the above
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limit. We show the formula is sufficiently general to have applications to other
relations and conjectures involving M(x).

It has been known for over 100 years that M(x) does not oscillate within
finite limits (Fatou [1906]) and O(x) estimates of the function are well known
(Landau [1909, Vol. II p. 570 and p. 594]; see also Wei [2010]); however
no asymptotic or limit formula giving the rate of growth of M(x) has been
reported so far.

In this article a limit formula forM(x) is proved using arithmetic arguments
based on properties of M(x), the prime counting function π(x), prime number
theorem (and Sierpinski’s lemma) and theorems of Hall and Vallée Poussin for

Euler’s series
∑ µ(k)

k
which is equivalent to the prime number theorem (Landau

[1911]). We evaluate the formula using standard limit theorems to obtain an
alternative proof of

lim
x→∞

|M(x)|
x

= 0,

a new disproof of Mertens’ conjecture

lim
x→∞

|M(x)|
x1/2

< 1,

a proof of the Odlyzko–te Riele conjecture

lim
x→∞

sup
|M(x)|
x1/2

=∞

and a disproof of the Riemann hypothesis using the limit criteria in Little-
wood’s theorem.

Theorem 2.

lim
x→∞

|M(x)|
π(x)

= lim
x→∞

h

log(x)
= 0, h = a constant (1)

PROOF.

Theorem 3. When x tends to infinity

M(x) = −
[
π(x)−π

(x
2

)]
+ · · ·−µ(pi · · · )

[
π

(
x

pi · · ·

)
−π

(
x

2pi · · ·

)]
· · · (2)

where π(x), π(x
2
), π( x

pi···) and π( x
2pi···) is the prime counting function, pi · · ·

represents a square-free integer containing either one odd prime (3, 5, 7, . . . )
or the product of two or more distinct odd primes, µ(pi · · · ) is the Mobius
function and terms in the series are arranged in the order of square-free odd
integer divisors.
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Corollary 1. When x tends to infinity

M(x) =
k<x∑
k=1

−µ(k)

[
π

(
(−1)k−1 + 1

2k
x

)
− π

(
(−1)k−1 + 1

4k
x

)]
(3)

where k = 1, 2, 3, · · · < x tends to ∞ and terms in the series are non-zero and
square-free when k is odd and µ(k) 6= 0 (i.e., k = 1 or pi · · · ).

Proof of Theorem 3.

Lemma 1. For a number x ≥ 4, M(x) equals the sum of µ(n) of the square-
free odd integers n > x

2
and ≤ x.

Proof. Let x be ≥ 4, then by definition M(x) is the sum of µ(n) for all
integers n ≤ x; however, every square-free even integer ≤ x is a multiple of 2
of a square-free odd integer in the interval [1, x

2
]; therefore, they have opposite

signs for µ(n) since the even integer has one more prime divisor and cancel
in pairs to 0. Also for even or odd integers that contain a square of a prime
µ(n) = 0. So the only integers for which µ(n) has not been canceled to 0 are
the square-free odd integers > x

2
and ≤ x.

Corollary 2. M(x) equals the sum of the number of square-free odd integers
> x

2
and ≤ x containing 1, 3, 5, . . . prime factors multiplied by µ(n) = −1 and

the number containing 2, 4, 6, . . . prime factors multiplied by µ(n) = +1.

In what follows π(x), π(x
2
), π( x

pi···) and π( x/2
pi···) = π( x

2pi···) is the prime

counting function which equals the number of primes ≤ x, x
2
, x
pi··· and x/2

pi···
respectively; where pi · · · represents one or more odd primes <

√
x of a square-

free divisor ordered from smallest to largest. Using this function and Corollary
2 we are able to deduce the following conclusions and relations:

(1) For x ≥ 4, square-free odd integers > x
2

and ≤ x containing one prime
factor are the odd primes, pk, in the interval (x

2
, x] which equals the difference

between π(x), the total number of primes ≤ x, and π(x
2
), the number of primes

≤ x
2
. So µ(pk) times the number of primes > x

2
and ≤ x equals (−1)[π(x) −

π(x
2
)], the first term of the series for computing M(x).
(2a) The integer part of x

pi··· and x
2pi··· equals the number of multiples of

pi · · · ≤ x and x
2
; therefore, π( x

pi···) and π( x
2pi···) equal the number of prime

multiples of pi · · · ≤ x and x
2
.

(2b) Square-free odd integers ≤ x that contain two or more prime factors
must contain one or more odd primes <

√
x; otherwise, the product of two

prime divisors of a square-free integer would be > x. Therefore, for an odd
prime pi <

√
x the number of odd square-free integers > x

2
and ≤ x having

two prime factors of the form pipj, where pi < pj, equals [π( x
pi

) − π( x
2pi

)] if x

is sufficiently large (i.e., x
pi

and x
2pi
≥ pi). This condition on the size of x is
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necessary to exclude counting p2i (which is a multiple of pi < x) and to prevent
double counting other square-free integers that contain pi. When x tends to
infinity, clearly this condition will be satisfied for any pi.

If x is finite and x
pi
≥ pi but x

2pi
is not then there will be [π( x

pi
) − π(pi)]

integers pipj >
x
2

and ≤ x. So µ(pipj) = µ(pi)µ(pj) = −µ(pi) times the
number of square-free integers pipj >

x
2

and ≤ x equals −µ(pi)[π( x
pi

)− π( x
2pi

)]

or −µ(pi)[π( x
pi

) − π(pi)]; otherwise it is zero. This calculation is made for

all odd primes, pi <
√
x when x is finite. Similar considerations apply to

computations for square-free odd integers having three or more prime factors.
Therefore when x→∞ by summing all the terms generated by the above

procedures (in the order of square-free odd integer divisors) one obtains the
infinite sum (2) for M(x) in Theorem 3.

Proof of Corollary 1.

In the series of Corollary 1 when k is even terms in parentheses = 0; so non-
zero terms occur only if k is odd and their numerator (= 2) and denominator
cancel to become 1

k
and 1

2k
. Multiplying the term within brackets by −µ(k)

insures only odd divisors in which k = 1 or is square-free (= pi · · · ) occur in
the series. As in (2) the (−) sign adjusts for the fact that square-free integers
generated by a divisor k contain one more prime than k.

From equation (3) for M(x) we prove the following formula:

Theorem 4. When x tends to infinity,

lim
x→∞

M(x)

π(x)
= −

k<x∑
k=1

µ(k)

k
= 0 (4)

where k = 1, 2, 3, · · · < x tends to ∞.

Proof. For proof we use a lemma due to Sierpinski [1988].

Lemma 2 (Sierpinski). When x tends to infinity

lim
x→∞

π(ax)

π(bx)
=
a

b
(5)

where a and b are positive real numbers, 0 < a < b.

Let x → ∞, then dividing (3) by π(x), taking the limit and applying
Sierpinski’s lemma with b = 1 after combining terms we obtain

lim
x→∞

M(x)

π(x)
=

k<x∑
k=1

−µ(k)

[
(−1)k−1 + 1

4k

]
(6)
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where k = 1, 2, 3, · · · < x tends to ∞.
Equation (6) can be written as

lim
x→∞

M(x)

π(x)
= −1

4

[
k<x∑
1

(−1)k−1µ(k)

k
+

k<x∑
1

µ(k)

k

]
(7)

Hall [1972] and Apostol [1973] proved the following theorem:

Theorem (Hall).(
1− 1

2s

) ∞∑
1

(−1)n−1µ(n)

ns
=

(
1 +

1

2s

) ∞∑
1

µ(n)

ns
(8)

where s = σ + it and σ ≥ 1

Using Hall’s theorem with s = 1, (7) is written as

lim
x→∞

M(x)

π(x)
= −1

4

[
1 + 2−1

1− 2−1

k<x∑
1

µ(k)

k
+

k<x∑
1

µ(k)

k

]
(9)

then adding the two series within brackets and multiplying by 1
4

gives

lim
x→∞

M(x)

π(x)
= −

k<x∑
1

µ(k)

k
(10)

where k = 1, 2, 3, · · · < x tends to ∞.
Von Mangoldt [1897] and Landau [1899] proved the sum (10) converges to 0,
which proves Theorem 4.

Von Mangoldt’s and Landau’s proofs are indirect and only prove conver-
gence. Vallée Poussin [1899, p. 63] improved on their result by proving a
bound for the sum and a formula for its rate of convergence.

Theorem (Vallée Poussin). “The sum∑
k<x

µ(k)

k

tends to zero when x tends to infinity, and its absolute value remains less than
an expression of the form

h

lx

where h is a fixed number, which can be assigned a precise value.”

Vallée Poussin does not assign a precise value to h; therefore, below we only
refer to h symbolically.
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Since M(x) and π(x) are continuous functions, taking the absolute values
of the terms in (10) gives∣∣∣∣ lim

x→∞

M(x)

π(x)

∣∣∣∣ = lim
x→∞

|M(x)|
π(x)

=

∣∣∣∣∣
k<x∑
1

µ(k)

k

∣∣∣∣∣ (11)

Substituting Vallée Poussin’s formula for the sum in (11) we can write

lim
x→∞

|M(x)|
π(x)

= lim
x→∞

h

log(x)
= 0 (12)

This completes the proof of Theorem 2.

2. Applications and Results

2.1 Proof of lim
x→∞

|M(x)|
x

= 0 (13)

Von Mangoldt [1897] first proved this relation using a neat ε/δ type proof.
(See Landau [1899] for details and [1909, Vol. II, p. 588] for his own proof.
See also Kalecki [1967].) We prove it from Theorem 2 in two different ways by
applying limit theorems. The simplest proof of (13) comes from noting that
since x > π(x) for x > 0, the function

|M(x)|
x

≤ |M(x)|
π(x)

(14)

so by the limit theorems if

lim
x→∞

|M(x)|
π(x)

= 0, then lim
x→∞

|M(x)|
x

≤ 0 (15)

However, the limit cannot be negative; so it must = 0.
For our second proof we multiply both sides of (12) by limx→∞

π(x)
x

to obtain

lim
x→∞

|M(x)|
π(x)

lim
x→∞

π(x)

(x)
= lim

x→∞

h

log(x)
lim
x→∞

π(x)

x
(16)

Then using the limit theorems we can write (16) as

lim
x→∞

|M(x)|
π(x)

π(x)

x
= lim

x→∞

h

log(x)
lim
x→∞

π(x)

x

log(x)

log(x)
(17)

which implies

lim
x→∞

|M(x)|
x

= lim
x→∞

h

log(x)
lim
x→∞

π(x)log(x)

x
lim
x→∞

1

log(x)
(18)
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By the prime number theorem we have

lim
x→∞

π(x)

x/log(x)
= lim

x→∞

π(x)log(x)

x
= 1 (19)

Then using the prime number theorem (18) is simplified to give

lim
x→∞

|M(x)|
x

= lim
x→∞

h

log(x)
lim
x→∞

1

log(x)
= lim

x→∞

h

log2(x)
= 0 (20)

2.2 Disproof of lim
x→∞

|M(x)|
x1/2

< 1 (21)

This relation, conjectured by Mertens, was disproved first by Odlyzko and
te Riele [1985] using computational methods. Based on the techniques they
utilized and the trends in their data, they conjectured that it seemed very
probable that

lim
x→∞

sup
|M(x)|
x1/2

=∞ (22)

In what follows we apply Theorem 2 and limit theorems to give a new disproof
of Mertens’ conjecture and concurrently a proof of the Odlyzko–te Riele con-
jecture. We begin by multiplying both sides of (12) by limx→∞

π(x)

x1/2
to obtain

lim
x→∞

|M(x)|
π(x)

lim
x→∞

π(x)

x1/2
= lim

x→∞

h

log(x)
lim
x→∞

π(x)

x1/2
(23)

Then using the limit theorems (23) is written as

lim
x→∞

|M(x)|
π(x)

π(x)

x1/2
= lim

x→∞

h

log(x)
lim
x→∞

π(x)
x1/2

x

log(x)

log(x)
(24)

This gives the same setup to apply the prime number theorem as in the previous
proof. So we write (24) as

lim
x→∞

|M(x)|
x1/2

= lim
x→∞

h

log(x)
lim
x→∞

π(x)log(x)

x
lim
x→∞

x1/2

log(x)
(25)

and apply the prime number theorem and limit theorems to get

lim
x→∞

|M(x)|
x1/2

= lim
x→∞

hx1/2

log2(x)
(26)

Finally, to evaluate the limit on the right we apply L’Hospital’s rule by taking
the derivative of the numerator and denominator two times. This gives

lim
x→∞

|M(x)|
x1/2

= lim
x→∞

h

23
x1/2 =∞ (27)
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disproving Mertens’ conjecture and proving the Odlyzko–te Riele conjecture.

2.3 Disproof of lim
x→∞

|M(x)|
x1/2+ε

= 0, for every ε > 0 and RH (28)

In the Introduction it was stated that the limit (28) expresses Littlewood’s

theorem which is equivalent to RH. The previous result limx→∞
|M(x)|
x

= 0
proves the criteria for ε ≥ 1

2
, and since the theorem excludes ε = 0, the disproof

of Mertens’ conjecture and proof of the Odlyzko–te Riele conjecture do not
exclude the possibility for RH to be true. [Note that if Mertens’ conjecture
was true then RH would also be true.] So we are left with the case 0 < ε < 1

2
.

To evaluate the limit for this case we proceed as we did above by multiplying
both sides of (12) by limx→∞

π(x)

x1/2+ε
to obtain

lim
x→∞

|M(x)|
π(x)

lim
x→∞

π(x)

x1/2+ε
= lim

x→∞

h

log(x)
lim
x→∞

π(x)

x1/2+ε
(29)

Then using the limit theorems we can write (29) as

lim
x→∞

|M(x)|
π(x)

π(x)

x1/2+ε
= lim

x→∞

h

log(x)
lim
x→∞

π(x)
x1/2−ε

x

log(x)

log(x)
(30)

Applying limit theorems again, (30) is written as

lim
x→∞

|M(x)|
x1/2+ε

= lim
x→∞

h

log(x)
lim
x→∞

π(x)log(x)

x
lim
x→∞

x1/2−ε

log(x)
(31)

By the prime number theorem and limit theorems (31) is simplified to give

lim
x→∞

|M(x)|
x1/2+ε

= lim
x→∞

hx1/2−ε

log2(x)
(32)

Then applying L’Hospital’s rule to the limit on the right we obtain

lim
x→∞

|M(x)|
x1/2+ε

= lim
x→∞

h(1
2
− ε)2x1/2−ε

2
(33)

The term 1
2
− ε is positive for 0 < ε < 1

2
; so the limit is infinite for this case

since any positive power of x tends to infinity. This result proves an exception
to Littlewood’s criteria therefore disproving Riemann’s hypothesis.

Before ending we note that the limit relations proved earlier can be proved
using the formula in (33) by letting ε = 1

2
and 0; however the approach that

we have taken may be clearer and more informative.
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des nombres premiers inféieurs a une limite donnée, Mém. Courronnés
et Autres Mém. Publ. Acad. Roy. Sci., de Lettres Beaux-Arts Beig. 59
(1899).

[5] A. Dudek, On the Riemann hypothesis and the difference between primes,
Int. J. Number Theory, 11 (2015), no. 03, 771-778.
https://doi.org/10.1142/s1793042115500426

[6] H. M. Edwards, Riemann’s Zeta Function, Dover, Mineola, NY 2001.

[7] P. Fatou, Series Trigonometriques et Series de Taylor, Acta Mathematica,
30 (1906), 335-400. https://doi.org/10.1007/bf02418579

[8] I. J. Good, Ed., The Scientist Speculates, Basic Books, New York 1963.

[9] T. Hall, Nagra relationer i samband med Mobius µ-function, Nordisk Mat.
Tidskrift, 20 (1972), 34-36.

[10] M. Kalecki, A simple elementary proof M(x) =
∑
µ(n) = o(x), Acta

Arith., XIII (1967), 1 - 4.

[11] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol-
umes I and II, B. G. Teubner, Leipzig and Berlin, 1909.

[12] E. Landau, Uber die Equivalenz zweier Hauptsatze der analytische Zalen-
theorie, S.-B. Akad. Wiss. Wien Nat. Kl., 120 (1911), 973-988.

[13] E. Landau, Neuer Beweis der Gleichung
∑∞

k=1 µ(k)/k = 0; Inaugural
Dissertation, Friedrich Wilhelms Univ., zu Berlin, 1899.

[14] J. E. Littlewood, Quelques conséquences de l’hypothése que la fonction
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