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Abstract

The aim of this article is to provide proofs for theorems and proposi-
tions found in [1] and [2].

Definition 1. The function f is said to be V-continuous if for any x ∈ X there
is a neighbourhood U of x and V ∈ V such that f(U) ⊆ V .

Definition 2. U refines V if for any U ∈ U there exists a V ∈ V such that
U ⊆ V (this is denoted by U ≺ V ).

Definition 3. A chain in U that joins x and y is a finite sequence U1, U2, . . . , Un

of elements in U such that x ∈ U1, y ∈ Un and Ui∩Ui+1 ̸= ∅, ∀ i ∈ {1, 2, . . . , n−
1}.

Proposition 4. If f : X → Y is V-continuous, g : Y → Z is W-continuous
and g(V) ≺ W, then g ◦ f : X → Z is W-continuous.

Proof. Because f is V-continuous, there exist a neighbourhood U of x ∈ X
such that, for a neighbourhood V of y ∈ Y , f−1(V ) ⊆ U . Similarly, because
g is W-continuous, there exists a neighbourhood V of y ∈ Y such that, for a
neighbourhood W of z ∈ Z, g−1(W ) ⊆ V (because g(V) ≺ W). Therefore
f(U) ⊆ V , which leads to g(f(U)) ⊆ g(V ) ⊆ W . Therefore g ◦ f : X → Z must
be W-continuous.

Theorem 5. The topological space X is connected if and only if it is chain
connected in X.

Proof. ( =⇒ ) BWOC, If X is not chain connected then for x ∈ U1, y ∈ Un ∃
i ∈ {1, 2, . . . , n − 1} such that Ui ∩ Ui+1 = 0. If this is true for all x, y ∈ X
then this implies a disconnected space (contradicting the connectedness of the
topological space).
( ⇐= ) If X is chain connected if for every x, y ∈ X there exists a chain
connecting x with y. If the topological space is not connected then ∃ U, V ⊂ X
such that U ∩ V̄ = ∅, Ū ∩ V = ∅ and U ∪ V = X. If x ∈ U and y ∈ V , it is
impossible to find a chain connecting x with y, so it must be the case that a
chain connected set implies a connected topological space.

∗pfrejituh@gmail.com

1

mailto:pfrejituh@gmail.com


Corollary 6. If topological space X is chain connected that it is also path
connected.

Proof. If x, y are chain connected inX there there’s a chain of open sets connect-
ing x to y, where x ∈ U1 and y ∈ Un and, ∀ i ∈ {1, 2, . . . , n− 1}, Ui ∩Ui+1 ̸= 0.
This means that a path can be connected from x to a point in U1 ∩ U2, and so
on, until y is reached.

Theorem 7. If f : X → Y is a continuous function and C ⊆ X is chain
connected in X, then f(C) is chain connected in Y .

Proof. Because C ⊆ X is connected, this implies ∀ x, y ∈ C, x ∈ U1, y ∈ Un

and, ∀ i ∈ {1, 2, . . . , n− 1}, Ui ∩Ui+1 ̸= 0. This means that, for a V-continuous
function f , f(x) ⊆ V1 and f(y) ⊆ Vn. Thus x ⊆ f−1(V1) and y ⊆ f−1(Vn).
If Y is a disjointed topological space then f(C) ⊆ Y = A ∪ B, Ā ∩ B = ∅,
and A ∩ B̄ = ∅; A and B are nonempty open sets in Y . Let G = C ∩ f−1(A)
and H = C ∩ f−1(B). Because C is chain connected, it must be the case that
G ∩ H ̸= ∅. But f(G) = f(C) ∩ A ⊆ A and f(H) = f(C) ∩ B ⊆ B. Hence
G∩H ⊆ f−1(A)∩f−1(B) = f−1(A∩B) ⊂ f−1(Ā∩B) = f−1(∅) = ∅. Therefore
G ∩H = ∅. This is a contradiction.

Corollary 8. If f : X → Y is a homeomorphism, then C ⊆ X is chain
connected in Xif and only if f(C) is chain connected in Y.

Proof. If f(C) is chain connected then this implies ∀ y1, y2 ∈ f(C), y1 ∈ V1, y2 ∈
Vn and, ∀ i ∈ {1, 2, . . . , n−1}, Vi∩Vi+1 ̸= 0. Therefore, if f is a homeomorphism
(which means that X and Y are homeomorphic), this means that there’s a one-
to-one correspondence between elements of X and elements of Y . This means
that if elements y1 and y2 are connected in Y then it must be the case that
elements f−1(y1) = x1 ∈ U1 and f−1(y2) = x2 ∈ U2 [∀ i ∈ {1, 2, . . . , n −
1}, f−1(Vi) ∩ f−1(Vi+1) ̸= 0] are also chain connected (neighbourhoods are
preserved).

Theorem 9. If Ci are chain connected sets in Xi, ∀i ∈ I , then
∏

i∈I Ci is a
chain connected set in

∏
j∈I Xj equipped with the product topology.

Proof. Let pi :
∏

j∈I Xj → Xi be the i-th canonical projection. This is continu-
ous for all Xj . Let h : Xi → Yi be a continuous function and Ci ⊆ Xi be chain
continuous. If h ◦ pi is not chain continuous then, it must be the case, that h is
not chain continuous, which is a contradiction.

Definition 10. The star of the set A with respect to the covering U of X in X
is the set

st(A,U) =
⋃

{U ∈ U | U ∩A ̸= ∅}.

The infinite star of the set A with respect to the covering U of X in X is the
set

st∞(A,U) = ∪∞
n=1st

n(A,U).
If A = {x}, st({x},U) = st(x,U). The star degree of n > 1 of A and U in X is
stn(A,U) = st(stn−1(A,U)).
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Theorem 11. The set C is chain connected in X if and only if for every x ∈ C
and every covering U of X, C ⊆ st∞(x,U).

Proof. ( =⇒ ) If C is chain connected then there exist open sets connecting
x ∈ C ⊆ X to y ∈ C ⊆ X, where x ∈ U1 and y ∈ Un and, ∀ i ∈ {1, 2, . . . , n−1},
Ui∩Ui+1 ̸= 0. Therefore ∃ U ∈ U such that U∩x ̸= ∅. Therefore C ⊆ st(x,U) ⊆
st∞(x,U).
( ⇐= ) If C ∈ stn(x,U) ⊆ st∞(x,U) then ∃ U1 ∈ U such that U1 ∩ x ̸= ∅. By
definition, stn(x,U) = st(stn−1(A,U)). When n = 2, st2(A,U) = st(st1(x,U))
- this means that that ∃ U2 ∈ U such that U2 ∩ U1 ̸= ∅. Continuing in this
way will lead to a finite sequence U1, U2, . . . , Un of elements in U such that
Ui ∩ Ui+1 ̸= ∅, ∀ i ∈ {1, 2, . . . , n− 1}.

Definition 12. Let X be a topological space and x ∈ Y ⊆ X. The chain
connected component of the point x of Y in X, denoted by VY X(x), is the
biggest chain connected subset of Y in X that contains x.

Theorem 13. Let Ci, i ∈ I , be a family of chain connected subspaces of X. If
there exists i0 ∈ I such that for every i ∈ I , C̄i0 ∩ C̄i ̸= ∅, then the union ∪i∈I C̄i

is chain connected in X.

Proof. The proof of this can be found in [1].

Proposition 14. The set of all chain connected subsets of Y in X consist of
all of chain connected components of Y in X and their subsets.

Proof. A = AY X(x) denotes the set of all points y ∈ Y such that for every
covering U of X there exists a chain in U that connects x and y. A is a partially
ordered set because if there exists an A1 ∈ ∪Ci and A2 ∈ ∪Ci (i ∈ I ) such that,
for every covering U of X, there exists a chain in U that connects x and y, then
it’s necessarily the case that either A1 ⊆ A2 or A2 ⊆ A1.
I will use Zorn’s lemma for this proof. AY X(x) is always nonempty because
{x} ∈ AY X(x) (this is true because x ∼

U
x). It is known that for every two

points y, z ∈ AY X(x), and for every covering U of X, there exist chains in U
from y to x and from x to z. It follows that their union is a chain in U from
y to z. Therefore take VY X(x) (the maximal element) to be the union of all
AY X(x) in U .

Proposition 15. For every x ∈ Y , one have VY Y (x) ⊆ VY X(x)
= ∪y∈VY X(x)VY Y (y).

Proof. The proof of this can be found in [1].

Proposition 16. For every x ∈ Y , VY X(x) = Y ∩ VXX(x). Each chain con-
nected component of X in X contains at most one chain connected component
of Y in X.
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Proof. The initial and terminal points of the chain VXX(x) must be the elements
x ∈ X and x′ ∈ X, respectively. Therefore, the longest chain, denoted by
Y ∩VXX(x), must have at least one point y ∈ Y that isn’t the initial or terminal
point of the chain.
Suppose that we have a choice function f : Y ∩ VXX(x) → ∪AXX(x) that
picks the largest chain - with at least one point in Y that isn’t the initial point,
x, or terminal point of the chain, x′. This choice function cannot pick two
chain connected components, because the longest chain will be a member of
the union of all chains from x to x′ (with at least one point y ∈ Y in the
chain that isn’t the initial or terminal point in the chain) that have a non-
zero overlap (based on Lemma 3.1 from [1]). It should be noted that Y ∩
VXX(x) ⊆ AXX(x). The function f is a choice function because for every
C ∈ Y ∩ VXX(x) ⊆ AXX(x), f(C) ∈ Y ∩ VXX(x). It should be noted that, by
construction, Y ∩ VXX(x) = VY X ⊆ ∪AXX(x), but it must also be the case
that ∪AXX(x) ⊆ VY X(x), due to the maximality of VY X(x) in U . Therefore
∪AXX(x) = VY X(x). Therefore each chain connected component of X in X
contains at most one chain connected component of Y in X.

Proposition 17. The chain connected components of X are closed sets, i.e.,
for every x ∈ X, V (x) = V̄ (x).

Proof. If V̄ (x) is connected then obviously V (x) ⊆ V̄ (x) is also connected.
But V (x) is the largest connected chain, thus it must also be the case that
V̄ (x) ⊆ V (x). Therefore V (x) = V̄ (x).

Proposition 18. Let x ∈ X and C(x) be a connected component of X. Then
C(x) ⊆ V (x).

Proof. This is trivially true because V (x) is the largest chain connected subset
of Y in X that contains x.

Theorem 19. Quasicomponents and chain connected components in a topolog-
ical space X coincide, i.e., for every x ∈ X, QX(x) = VXX(x).

Proof. The proof of this can be found in [1].

Combining proposition 15, proposition 16 and theorem 19 leads to

Proposition 20. For every x ∈ Y , we have QY (x) = VY Y (x) ⊆ ∪y∈VY X
VY Y (y)

= VY X(x) ⊆ VXX(x) = QX(x).

Proof. We know that Y ⊆ X. From theorem 19, we know that QX(x) =
VXX(x). For x ∈ Y , it is obviously the case that QY (x) = VY Y (x). By propo-
sition 15, VY Y (x) is a subset of the union of all elements y ∈ VY Y (x) - this
union is equal to VY X(x). Obviously (because Y ⊆ X) it must be the case that
VY X(x) ⊆ VXX(x) = QX(x).
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