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Abstract

This article presents a new reinterpretation of the curved geometry of spacetime, where it is considered that spacetime
undergoes longitudinal contraction. This effect is manifested in changes in the spacetime metric that determine how
distances and temporal intervals are measured in that region. In other words, a variation in the scale, size, or apparent
length of spacetime. This reinterpretation is compatible with Einstein’s field equations and Maxwell’s equations. The
universal gravitational constant of Newton, GN , the Hubble constant for the accelerated expansion of the universe, H(0),
and the cosmological constant associated with hypothetical dark energy, Λ±, can be obtained and approximated using
this new approach, where the mass of the Higgs boson with its unique and privileged characteristics plays a crucial role in
addressing numerous open questions in physics and modern cosmology. The reinterpretation of curved geometry through
spacetime contraction provides a new framework for better understanding gravity. By obtaining very close values of
the universal gravitational constant, it is possible to determine the inverse force to gravity responsible for the accelerated
expansion of the universe. This is achievable through Gauss’s divergence theorem, where the charge distribution determined
by the Coulomb constant within the framework of multipolar expansion defined by electromagnetism constitutes a quite
solid analogy, being inversely proportional to gravity. This allows for the precise calculation of the value of the Hubble
constant, H(0). The cosmological constant Λ±, considered as a potential dark energy driving the accelerated expansion of
the universe, can also be obtained and explained through this new approach. The reinterpretation of the curved geometry
of gravity as spacetime contraction would affect the properties of spacetime expansion, where the interpretation of the
universe’s contraction described by General Relativity must be reinterpreted, understood, and accepted as gravity itself
at any scale..
Key words and phrases: Universal constants, Higgs boson, General Relativity, Hubble stress, cosmological constant.

1 Introduction

The longitudinal contraction of space-time emerges as a bold proposal in the field of theoretical physics and cosmology, chal-
lenging conventional concepts of space-time geometry that try to describe gravity. And the proposal that is postulated in
this work, describes a revolutionary fundamental reinterpretation of space-time, in which, the slightest presence of mass and
energy, gives rise to a space-time contraction around this mass and energy, both at astronomical levels and from its nature at
the quantum level. In this context, a strong connection and similarity arises, with the longitudinal contraction experienced
by objects in situations of high speeds close to light, which is inversely proportional and analogous to the spatiotemporal
contraction proposed in this work.

We know very well that the theory of Special Relativity masterfully proposed by A. Einstein [1], establishes that as an
object approaches at speeds close to that of light, its length in the direction of movement experiences a contraction relative
to an observer at rest. This contraction known as “Lorentz Contraction” [2], is in fact analogous and inversely proportional
to the space-time contraction that bodies generate at any quantum or astronomical level to create gravity. The similarity
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between the contraction of Lorentz and the longitudinal space-time contraction proposed, opens the doors to a deep explo-
ration of the physical and geometric implications associated with external phenomena of movement, speed and energy that
describe the gravitational field.

In this work, the convergence between the longitudinal contraction of space-time and the Lorentz contraction will be
shown in detail, to mathematically approximate the values of the three most fundamental constants from a technical and
rigorous perspective. The implications of this similarity in the conceptual framework of fundamental physics will be analyzed,
from which its culmination arises in the global and relevant theoretical set that experimentally demonstrates the standard
model of particles, by being able to consider the foundations of space-time geometry, as a result in its vehicular relationship
through the interaction of the Higgs mechanism [3] and the percentage difference between the mass of the proton and its
constituents, the quarks, proposed in this study supported by experimental results, as the most suitable candidates. solid,
responsible for gravity.

The reasoning behind the concepts proposed here emerges from a new perspective in the Michelson-Morley experiment
[4]. An unprecedented historical milestone, which once again opens the doors to a deeper understanding of the intrinsic
properties between matter, energy, space-time and their connection with the fundamental laws and constants of nature.
From which, through this analysis, it is hoped to shed light on the essential nature of space-time and the possibility of a
solid fundamental reinterpretation of geometry, at the extreme limits of physics.

2 Curvature scalar: When the line element for a Rindler-Minkowski space-
time depends on the mass.

In a uniformly accelerated reference frame in Rindler-Minkowski space-time [5], it is possible to obtain an expression for the
mass-dependent Laplacian. In this context, the relationship between the gravitational field and the mass, completes in a
different way, what is found in General Relativity, where the slightest presence of mass and energy should describe the space-
time contraction (gravity) of proportional to any level, then this contraction may be at quantum levels as well as astronomical
levels. That is, whatever the mass and minimum energy levels, Newton’s universal constant must arise logically and naturally.

Rindler-Minkowski spacetime, where spacetime is supposed to be flat and not curved, is used to describe a uniformly
accelerated reference frame in Special Relativity. In this accelerated system, the concept of a gravitational field can be
approximated and modeled through a uniform acceleration. But it is not a real gravitational field generated by the mass
distribution, rather it is a solid analogy of the true meaning of the weak equivalence principle.

Taking into account a Rindler-Minkowski space-time, we can make an approximation within another approximation,
expressing it by making the Newtonian limit by this line element: [6]

ds2 = −
(
1 + 2Φ̂

)
c2 dt2 + dx2 + dy2 + dz2 (2.1)

Where Φ̂ =
Φ

mc2
and proposing that Φ = m2

ϕϕ
2, we can calculate the Ricci tensor of the line element, but first, it is

necessary to compute the Christoffel symbols for the following metric:
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g00 = −1− 2mϕϕ
2

c2
g11 = 1 g22 = 1 g33 = 1 (2.2)

Now, using the formula:

Γα
βγ =

1

2
gαµ (∂γgβµ + ∂βgγµ − ∂µgβγ) (2.3)

Where, for the term Γα
00, we have:

Γα
00 =

1

2
gαµ (∂0g0µ + ∂0g0µ − ∂µg00)

=
1

2
gαµ∂µ

(
−1− 2mϕϕ

2

c2

)
=

1

2
gαµ∂µ

2mϕϕ
2

c2
(2.4)

So, we simplify and rearrange to get the Christoffel symbol for Γα
00, as:

Γα
00 =

mϕ

c2
gβµ∂µϕ

2 (2.5)

Calculating the same for the term Γ0
β0, we have that:

Γ0
β0 =

1

2
g0µ (∂0gβµ + ∂βg0µ − ∂µgβ0)

=
1

2
g00 (∂βg00 − ∂0gβ0) =

1

2
g00∂µg00

=
1

2

1

g00
∂β

(
−1− 2mϕϕ

2

c2

)
= −mϕ

c2
1

g00
∂βϕ

2 (2.6)

So, substituting g00, we have:

Γ0
β0 =

mϕ

c2
1

1 +
2mϕϕ

2

c2

∂βϕ
2 (2.7)
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Now, we can calculate the Ricci tensor:

Rσν = ∂µΓ
µ
νσ − ∂νΓ

µ
µσ + ΓΓ− ΓΓ (2.8)

In the approximation for a weak field in Rindler-Minkowski spacetime, we can dispense with the components ΓΓ − ΓΓ.
Being the Ricci tensor, for weak fields, in this way:

Rσν ≃ ∂µΓ
µ
νσ − ∂νΓ

µ
µσ (2.9)

Then, to calculate the component R00 of the Ricci tensor, we have:

R00 = ∂βΓ
µ
00 = ∂µ

(mϕ

c2
gβµ∂µϕ

2
)

(2.10)

Where:

R00 =
mϕ

c2
[
∂0

(
g0µ∂µϕ

2
)
+ ∂1

(
g1µ∂µϕ

2
)
+ ∂2

(
g2µ∂µϕ

2
)
+ ∂3

(
g3µ∂µϕ

2
)]

=
mϕ

c2
[
∂1

(
g11∂1ϕ

2
)
+ ∂2

(
g22∂2ϕ

2
)
+ ∂3

(
g33∂3ϕ

2
)]

=
mϕ

c2
[
∂2
1ϕ

2 + ∂2
2ϕ

2 + ∂2
3ϕ

2
]

(2.11)

And finally, we have that the result for R00 of the Ricci tensor is:

R00 =
mϕ

c2
∇2ϕ2 (2.12)

Here, the Laplacian scalar ϕ2 in Rindler-Minkowski spacetime can effectively depend on mass via the term
mϕ

c2
for a very

large gravitational field. weak or practically none. However, at quantum scales, the intensity of the gravitational field will
be proportional to the energy or mass of the particle. In this context, the Higgs boson (without spin and without charge)
could be the perfect candidate to explain gravity.
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It is important to note that this idea is related to a specific model of approximation and uniform acceleration in Special
Relativity. By incorporating even the smallest amount of mass and energy, a strong relationship emerges. By considering
the mass of the Higgs boson as a solution of Einstein’s field equations and incorporating the tensor of the electromagnetic
field, it is possible to approximate the values of the three most fundamental constants.

2.1 Chiral symmetry breaking

It is an example of spontaneous symmetry breaking that affects the chiral symmetry of strong interactions in particle physics.
It is a property of quantum chromodynamics, the quantum field theory that describes these interactions, being responsible
for most of the mass (more than 99%) of nucleons, and therefore of all ordinary matter, since which converts very light
quarks that are bound as constituents into 100 times heavier among the [7] baryons.

As a consequence, the effective theory of QCD bound states, such as baryons, must now include a mass term for these
states, ostensibly prohibited by unbroken chiral symmetry. Therefore, chiral symmetry breaking induces most of the mass
of baryons, such as nucleons, and explains the origin of most of all the mass that makes up visible matter [8].

3 Electromagnetic energy density: Momentum energy tensor of the electro-
magnetic field

Consider the energy-momentum tensor Tµν in an electromagnetic field. In the static and uniform case, the only nonzero
components of the tensor are T 00 and T ij , but this time we will focus only on the T 00 component. For a static and uniform
electromagnetic field, the energy-momentum tensor takes the following form:

T 00 =
1

8π

(
E2 + c2B2

)
(3.1)

In a vacuum, with no free charges or currents (ρ = 0 and J = 0), Maxwell’s equations are further simplified:

∇ ·E = 0; ∇ ·B = 0; ∇×E = 0; ∇×B = 0; (3.2)

Given that ∇ × E = 0 and ∇ × B = 0, we can conclude that the electric and magnetic fields are conservative, that is,
they can be expressed as the gradient of some scalar potential ϕ and vector A:

E = −∇ϕ B = ∇×A (3.3)
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Gauss’s law for the electric field ∇ · E = 0 implies that the Laplacian of the electric potential ϕ is zero:

∇2ϕ = 0 (3.4)

Now, using the vector potential A, the Ampère-Maxwell law ∇×B = 0 becomes:

∇×∇×A = 0 (3.5)

Applying the vector identity ∇×∇×A = ∇ (∇ ·A)−∇2A, and given that ∇2A = 0 due to ∇ ·B = 0, we get:

∇2A = −∇(∇ ·A) = 0 (3.6)

Therefore, we can also state that the vector potential A satisfies Laplace’s equation ∇2A = 0. In the static and uniform
case, we can assume that the electric and magnetic fields do not depend on time and are constant in space. If we take the
limit as c → ∞, the terms proportional to c2 in the energy-momentum tensor T 00 become negligible. Then, the energy-
momentum tensor simplifies to:

T 00 =
1

8π
E2 (3.7)

In the static case ∇ · E = 0, we can ensure that the scalar potential ϕ is simply a constant. By convention, we can take
ϕ = 0, which leads to:

E = −∇ϕ = 0 (3.8)

This implies that the static and uniform electric field is zero.

Now, let’s consider a specific case. Suppose there is a point charge q located at the origin of the coordinate system. The
charge density ρ associated with the point charge is:

E(r) = qδ3(r) (3.9)

6



Where δ3 (r) is the Dirac delta in three dimensions. The electric field E due to a point charge is given by Coulomb’s law:

E(r) =
q

4πϵ0

r

r3
(3.10)

To calculate the energy-momentum tensor in this case, we need to calculate the square of the electric field E2. Taking
the coordinate system as (x,y,z) and the position vector r = (x, y, z), we obtain:

E2 = (E)2 =

(
q

4πϵ0

)2
(r)2

r6
(3.11)

Since there is spherical symmetry in the system, we can write xixi = r2, and the square of the electric field simplifies to:

E2 =

(
q

4πϵ0

)2
r2

r6
=

(
q

4πϵ0

)2
1

r4
(3.12)

Substituting the component T 00 of the energy-momentum tensor, we obtain:

T 00 =
1

8π
E2 =

1

8π

(
q

4πϵ0

)2
1

r4
=

q2

32π3ϵ20

1

r4
(3.13)

So, always considering the case of a static and uniform electromagnetic field for a point charge at the origin of the
coordinate system, and so that this equation maintains its form and physical meaning in the framework of special relativity,
we include the term c0 to be able to express the electromagnetic energy-momentum tensor in this way:

T 00 = − 1

32π3ϵ20c0
(3.14)

Where, we can highlight that this equation has fundamental applications in electromagnetic theory and particle physics.
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4 Variational principle of the actions of coupled gravitational and electro-
magnetic theory.

Einstein’s equations are an improvement on Newton’s equations. So, we can appreciate this difference in a very notable way,
when gravity is intense and for speeds comparable to light. But when gravity is not strong and speeds are not very high, we
clearly recover Newton’s equations. Now, if we accept that gravity exists in an infinitesimal region for a Rindler-Minkowski
space-time, where the intensity of the gravitational field is very weak, being practically negligible, then, gravity being an
effect of deformation and contraction of space -time, and although the intensity is very negligible at quantum levels, gravity
exists proportionally to the mass and energy of the particle. And if the deformation due to space-time contraction is propor-
tional at quantum levels, the only candidate particle due to its special characteristics with a solid connection so that energy
and mass proportionally can have a close relationship to deform space-time, is the Higgs boson.

And if we consider that at quantum levels where the gravitational field is infinitely weak or practically very negligible,
then the same equations that are derived from the actions of the gravitational field must perfectly describe the approximate
values of the three most fundamental constants of physics. .

So, to achieve this, we are going to calculate the variation of the Hilbert-Einstein action and the action of matter given
by the energy-momentum tensor, but coupling in between, the action of the electromagnetic field in this way:

S [g] =

∫
d4x

√
−gR+

∫
d4x

√
−gLem +

∫
d4x

√
−gLmatt (4.1)

We multiply the first two terms of the action by an unknown constant λ:

S [g] = λ

[∫
d4x

√
−gR+

∫
d4x

√
−gLem

]
+

∫
d4x

√
−gLmatt (4.2)

Next, we first perform the variation with respect to the metric gµν :

δS [g]

gµν
= λ

[
δ

δgµν

∫
d4x

√
−gR+

δ

δgµν

∫
d4x

√
−gLem

]
+

δ

δgµν

∫
d4x

√
−gLmatt (4.3)

The variation of the metric in the first integral affects the curvature R, considering at all times an infinitely weak or
practically negligible gravitational field, and in the second integral, it affects the electromagnetic tensor FµνF

µν .

Continuing with the variation with respect to gµν , we obtain:

δ

δgµν

∫
d4x

√
−gR =

√
−gGµν (4.4)

8



Where we know perfectly well that Gµν is the Einstein tensor:

Gµν ≡ Rµν − 1

2
gµνR (4.5)

The variation of the electromagnetic term is as follows:

δ

δgµν

∫
d4x

√
−gLem = −1

4

√
−gFµνF

µν (4.6)

And the variation of the matter term that we know perfectly well is given by the energy-momentum tensor:

δ

δgµν

∫
d4x

√
−gLmatt =

1

2

√
−gTµν (4.7)

Putting all the contributions together and setting the variance equal to zero, we can rewrite the action like this:

δS [g] = λ

[
Rµν − 1

2
gµνR− 1

4
gµνFµνF

µν

]
+

1

2
Tµν = 0 (4.8)

Finally we rearrange terms to arrive at the following equation:

Rµν − 1

2
gµνR− 1

4
gµνFµνF

µν = − 1

2λ
Tµν (4.9)

With these equations, we can represent the coupled gravitational and electromagnetic field equations.

4.1 Calculation of the trace for the coupling between the gravitational and electromagnetic
field.

To calculate the trace of the equation [4.9], we do the following:
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gµνRµν − 1

2
gµνgµνR− 1

4
gµνgµνg

µνFµνg
µνFµν = − 1

2λ
gµνTµν (4.10)

Being the values for gµνgµν = 4 both for the Einstein tensor and for the electromagnetic tensor and for gµνFµ nug
µνFµν =

0 since one is the inverse of the other, then we have:

R− 2R = − 1

2λ
gµνTµν =⇒ R =

1

2λ
gµνTµν (4.11)

We simplify by taking gµνTµν = g00T00, we can rewrite it like this:

R00 =
1

2λ
g00T00 (4.12)

We copy the equation [4.9] again, rearranging and simplifying, being interested at all times in the 00 components of the
equation:

R00 = − 1

2λ
T00 +

[
1

2
+

1

4

]
1

2λ
T00 (4.13)

So, we are left with:

R00 = − 1

8λ
T00 (4.14)

We know that the calculation of the line element for a weak or practically negligible gravitational field, for a Rindler-

Minkowski space-time within the framework of General Relativity R00 =
1

c2
nabla2V . But accepting the calculation of the

scalar Laplacian ϕ2 of the equation [2.12], we have:

mϕϕ
2

c2
= − 1

8λ
T00 =⇒ − c4

8λmϕϕ2
(4.15)

If we first equate the result with that obtained in the equation [3.14]:
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− c4

8λmϕϕ2
= − 1

32π3ϵ20c
=⇒ −32π3ϵ20c

5

8λmϕϕ2
(4.16)

And then, this same result, we equalize it by the Einstein constant 8πG, taking into account that c4 already appears
in the calculations, and since the objective of this article is to obtain the approximate value of GN and from two other
constants, we finally have the value of lambda λ:

λ = −4π2ϵ20c
3

8mϕ/c2
(4.17)

Substitute λ in the equation [4.9] and simplify, leaving as follows:

Rµν − 1

2
gµνR− 1

4
gµνFµνF

µν =
mϕ/c

2

π2ϵ20c
3

(4.18)

And finally, if we accept that mϕ/c
2 = mH = 125Gev/c2 [9], then, knowing the most exact value of the boson mass of

Higgs, we can greatly approximate the value of GN :

GNewton ≈ 125Gev/c2

π2ϵ20c
3

= 6.6712819049× 10−11 (4.19)

5 The cosmological constant, the Higgs boson and the accelerated expansion
of the universe.

That the Higgs boson is related to the accelerated expansion of the universe may seem impossible to prove, but if we have
shown the relationship with gravity, it makes all the possible sense that it is also related to the cosmological constant and
the accelerated expansion of the universe. This relationship exists inversely proportional to gravity and to demonstrate
it it is necessary to make use of the results of the Michelson-Morley experiment, since it is the true precursor to firmly
believe that the longitudinal contraction suffered by the arms of the interferometer is analogous to to reinterpret gravity as
a spatiotemporal contraction effect, a much more intuitive and physically correct interpretation.

The time lag calculated and expected by Michelson and Morley for the speed of light relative to the Aether, was to be a
non-zero ∆t ̸= 0 result.[10]
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∆t =
2 (L1 + L2)

c

[
1

1− V 2/c2
− 1√

1− V 2/c2

]
(5.1)

Obtaining in all the attempts, a result opposite to what was expected, and therefore ∆t = 0, meant that the experiment was
a total failure. But a solution to the problem, the Dutch Lorentz and the Irish George Francis Fitz-Gerald came up with
independently, consisted of contracting the arm of the interferometer in the direction of movement just the right amount to
obtain a result ∆ t = 0.

So for this to be true:

[
1

1− V 2/c2
− 1√

1− V 2/c2

]
= 0 (5.2)

The length of the interferometer arm in the direction of motion should contract by a factor
√
1− V 2/c2, leaving ∆t

expressed in this way:

∆t =
2 (L1 + L2)

c

[
1√

1− V 2/c2
− 1√

1− V 2/c2

]
(5.3)

Now if we equate ∆t with the result of the equation [4.19], we can obtain an approximate value to associate it with the
cosmological constant, then:

2 (L1 + L2)

c∆t
=

125Gev/c2

π2ϵ20c
3

=⇒ (L1 + L2)

∆t
=

125Gev/c2

2π2ϵ20c
2

≃ 0.01 (5.4)

6 Theoretical model of space-time contraction deformation inversely pro-
portional to the density of a planet: An analogous approach based on
General Relativity

Let us consider a hypothetical model in which the maximum density of a planet causes a contraction warp of space-time in
its surroundings. Suppose that the deformation of space-time is inversely proportional to the density of the total volume of
the planet.

The density of the planet is inversely related to the contraction or curvature of space-time that is generated around
it. Being zero gravity at the planet’s core, where its maximum density is found, the space-time contraction becomes more
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pronounced near the planet’s surface. This inverse relationship can be defined simply by a mathematical function that
describes the percentage relationship between the density of the planet and the space-time contraction.

The mathematical function used in this approach models the inverse relationship between the density of the planet and
the contraction of space-time. It can be a function like f(k) = 1/d, where f(k) represents the contraction of space-time
at a given point, d is the total volume percent density of the planet at that point for all scales of deformation. That is,
f(K) = 1/100.

In this model, 1% of the planet’s total volume marks the maximum point of space-time contraction. That is to say, that
the density of the planet, which corresponds to 1% of the total volume, contracts space-time in an inversely proportional
way at that point.

If we consider this approach as real and possible, then we can think that the maximum density of the planet and its
inverse percentage relationship with the contraction or curvature of space-time, can be described by a mathematical function
that models the space-time warp inversely proportional.

Assuming this approach, it is possible to mathematically define the approximate value of Newton’s universal gravitational
constant G, where inversely and proportionally, introducing the constant of multipole expansion and charge distribution of
electromagnetism, is also It is possible to define the approximate value of the Hubble constant H(0) for the accelerated
expansion of the universe. And if we consider that G and H(0) must be inversely proportional, then Λ− must not describe
the contraction of the universe, but the contraction of space time: gravity. And on the other hand Λ+, should describe the
accelerated expansion of the universe.

Now, assuming that Λ± is a constant that has two components whose values are inversely proportional to each other, we
will impose exact values of Λ± to calculate G, Λ+ = 102 and H(0). Only assuming this, it is possible to arrive at a solution
to answer about dark matter, dark energy and gravity itself, where it is believed in the existence of an ordinary gravitational
force that results from passing particles and anti-particles with mass, which slow down the expansion of the Universe and
the repulsive force that results from the dark energy of the vacuum, which is believed to be responsible for the accelerated
expansion of the universe.

Λ = Λ− + Λ+ = 10−53m−2 ≈ 0 (6.1)

Paul Davies, an internationally recognized British physicist, writer and broadcaster. He speculates that the ordinary grav-
itational force resulting from the transient existence of particles and anti-particles with ordinary mass has the following value:

Λ+ ≈ 10−53(1 + 1051) ≈ 10−51 + 10−2 = (1 + 10−51)∗10−2m−2 (6.2)

And in the following equation, speculate by defining the contribution of the repulsive component Λ− and mϕ as the mass
of the Higgs boson.[11]
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Λ− = −πGm2
ϕ/

√
2c4gw = −10−2m−2 (6.3)

Λ± =
Λ−

Λ+
=

Λ− Λ−

Λ+
=

10−53 − (−10−2)

1 + 10−51(10−2)
= 0.01 (6.4)

Thus, assuming approximate values for Λ± such as Λ− = 10−2 and Λ+ = 102, we can find solutions for the metric in
cosmological measurements as well as for the tensor metric that defines gravity.

6.1 Hubble Stress and Gravity, a Surprising Relationship: Exploring the Fundamental
Constants and the Metric of the Universe

The Hubble Stress refers to the discrepancy observed in the measurement of the constant H(0), which represents the ex-
pansion rate of the universe, using two different methods. One method suggests faster expansion, while another indicates
slower expansion. Although the numerical difference might seem insignificant, its astronomical and cosmological importance
is crucial for the study of the universe.

If we consider gravity, the most fundamental force of nature, as a convergent attraction towards the center of mass of a
massive object, we can imagine that the force that accelerates and expands the universe has done so divergently in all three
spatial dimensions since a starting point. Under this perspective, it is feasible to consider that the force that drives the
expansion of the universe and gravity are inversely proportional forces. This means that the Hubble constant H(0) and the
Newtonian universal gravitational constant GN could be inversely related, as long as a sense for the difference in magnitudes
is established.

To arrive at this surprising relationship, it is necessary to describe and relate the parallax metric used in astronomy
and cosmology, which uses units of measurement such as the “Parsec” and the astronomical unit “AU”, with the SI unit of
measure, the “Meter”, but in a particularly unique way.

Then we know that 1 Parsec = 206264.80624548031ua = 3.2616 light years = 3.0857×1016m, that is:

1pc =
1

Tan(1′′)
= 206264.80624548031UA (6.5)

And now transforming the tangent for a value at Λ− = 0.01, we have the following:

1

Tan(0.01′′)
≃ 100pc → 1

Tan(Λ′′
−)

= Λ+pc (6.6)
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Then we can also say that 1meter = 3.241× 10−17parsecs, where also 1parsec = 3.0857× 1016meters, and exchanging
the magnitudes we have:

3.0857× 1017 × 3.241× 10−16 ≃ 100 (6.7)

Where the result of Λ+ ≃ 100 can be units in Parsecs or Meters, depending on the interest of our measure.

So, if we take the equation [4.8] to add by adding another unknown constant λ, we can write the equation like this:
magnitudes we have:

δS [g] = λ

[
Rµν − 1

2
gµνR− 1

4
gµνFµνF

µν

]
+ λ+

1

2
Tµν = 0 (6.8)

We rearrange and simplify terms to arrive at the following equation:

Gµν − Fµν − λ

4
+

1

2
Tµν = 0 =⇒ Gµν − Fµν − 1

4
= − 1

2λ
Tµν (6.9)

Now, considering the propagation of an electromagnetic wave in a vacuum, where there is neither charge density nor
current, then we can equate the equation Gµν − Fµν − 1

4 like this:

Gµν − Fµν − 1

4
=

4πϵ0
c

=⇒ Gµν − Fµν − c

16πϵ0
(6.10)

So, we can perfectly write the equation this way:

Gµν − Fµν − c

16πϵ0
= − 1

2λ
c2 → Gµν − Fµν = 8πϵ0c (6.11)

7 Challenge to the measurements on the accelerated expansion of the uni-
verse: Approximate value for the Hubble constant.

The measurements made by the team led by Adam G.Riess, Nobel Prize winner in the discovery of the accelerated expansion
of the universe together with Saul Perlmutter and Brian P.Schmindt, obtained a value of H(0) = 73.02± 1.79 Km/s/Mcf
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with an uncertainty of 2.4%. The WFC3 (Wide Field Camera 3) camera of NASA’s Hubble telescope was used for the
measurement. The importance of this value differs by 3 sigmas from that obtained thanks to the microwave background:[12].

H(0) = 67, 6± 0, 6 Km/s/Mpc

(PlanckΠ+ LowP +BA0)

Results obtained in 2015, but subsequent estimates obtained by SPT-3G, allow us to estimate the Hubble constant at:

H(0) = 67, 24± 0, 54 Km/s/Mpc

Now, considering the accelerated expansion of the universe inversely proportional to gravity, and taking into account said
expansion in all spatial directions, then we write the result as:

Gµν − Fµν = 8πϵ0cΛ
3
+ =

2c

ke
Λ3
+ =

2c (100)
3

1/4πϵ0
≃ 66, 71281903495602 Km/s/Mpc (7.1)

To give consistency to these results and taking into account that there is a close inversely proportional relationship

between Hubble’s constant and Newton’s universal constant, we can equate the term
1

16πϵ0c
with the magnetic constant of

the Biot-Savart law in this way:

− 1

16πϵ0c
= −µ0

4π
=⇒ Gµν − Fµν = 2µ0ϵ0cΛ− =

2 (0.01)

c
≃ GNewton (7.2)
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8 Conclusions

The gravitational field equations, which are described by General Relativity, are presented as highly complex nonlinear
differential equations both in the mathematical and physical fields. This historically unprecedented complexity poses a
fundamental challenge: the unification of gravity with quantum mechanics. The exploration that we have presented in this
article opens doors of immense dimensions to shed light on the most transcendental questions of modern physics.

Our approach opens the possibility of interpreting dark energy as a manifestation of the universe in a multidirectional
free fall in space-time. In addition, we propose that dark matter, although difficult to develop a theory consistent with
observations, could be explained by the constant compression of space-time from the center to the outside of galaxies. This
space-time compression, a phenomenon described by General Relativity, could be driving the movement of matter in galaxies,
eliminating the need to resort to inert and invisible dark matter.

The presence of black holes in the nuclei of most galaxies becomes relevant in this context. The rotation of these black
holes may be compressing space-time in a way that simulates the existence of dark matter, thus offering an alternative
explanation for the constant rotation curve observed in galaxies. This interpretation stands in stark contrast to the fruitless
search for elusive dark matter.

It is crucial to recognize that the rotations of planetary systems, such as our own, are not adequate analogues to justify
the existence of dark matter. Rotation patterns in planetary systems differ significantly from galaxies, where space-time
compression is a dominant factor.

We encourage the scientific community to explore and develop equations that support this innovative perspective. Our
unwavering commitment to this new research direction drives us to seek a deeper understanding of physics, including the
puzzle of quantum entanglement. We encourage collaboration and discussion around these ideas, in the hope that our work
will inspire significant advances in our understanding of the fundamental nature of the universe.

In short, our research presents a provocative approach that invites a reconsideration of the nature of energy and dark
matter, challenging conventional assumptions and opening new avenues for scientific exploration at the intersection of gravity,
quantum mechanics, and General Relativity.
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