Double inequalities related to approximate formulas of
Euler-Mascheroni constant with continued fraction

JiSong Ro, Songll Kang, JinSong Yu, HyonChol Kim'
Faculty of Mathematics, Kim Il Sung University, Pyongyang, DPR Korea
ABSTRACT

In this paper, we present some new double inequalities starting from the approximate formula for
Euler-Mascheroni constant the newly obtained by us.
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1. Introduction

Double inequalities associated with approximate formulas of mathematical constants play an
important role in solving various scientific and technological problems.

Let a>0. Then the generalized Euler—Mascheroni constant y(a) is given by

y(a):nm[l+ Lo —1n“+”‘1j. (1.1)
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When a=1, (1.1) represents the classical Euler-Mascheroni constant, that is,

y=y() = lim(1+%+--- L nj = 0.5772156649 0115328 ---.
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Many mathematicians have focused on studying approximate formulas and inequalities associated
with the Euler-Mascheroni constant and the generalized Euler-Mascheroni constant; see, for
example, [1-3]. We enumerate some main results:
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In [4-6], the authors introduced the following double inequalities and the best possible constants.
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In this paper, we provide new inequalities concerning the Euler-Mascheroni constant.

2. Inequalities for the Euler-Mascheroni constant

Bell polynomials play important roles in our derivation, so we give the definition of Bell
polynomials and related polynomials and give some properties of them. The exponential partial
Bell polynomials are the polynomials B, =B, ,(x;,x,,:*,x, ;) in an infinite number of

variables x;,x,,--- defined by power series expansion
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Also, an alternative representation of Bell polynomials is
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the sum extending over all sequences j,,j,, ", j,_r, Of non-negative integers such that
JitJy ot g =k and i +2j, 4+ (n—k+1)j, 4, =n.

Related to Bell polynomials are logarithmic type Bell polynomials, or logarithmic polynomials in
short, L, =L, (x,x,, -,x,)defined by

ln(1+2xm %): 2@1 i
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The Logarithmic polynomials can be expressed in Bell polynomials:

L, (x,%5, 0, %,) = Z( D (k- DB, 4 (X1, %55, %, 441) 5

where
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The Bernoulli numbers B, are defined by
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For reader’s convenience, we record the first few terms of B, .
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The logarithmic derivative of the gamma function is called the psi or digamma function and is
symbolized as y(x), that is

w0 =L (nT(x).
dx

The psi function 7 has the recursive and asymptotic formulas as follows:

w1 =y ()~
X (1.2)
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4 (x > o).

We present an approximate formula for the generalized Euler-Mascheroni constant which contains
the continued fraction term.
Theorem 1. For any fixed /,s,b,,b, € N, where N is the set of positive integers, we have the

following sequence convergent to the generalized Euler-Mascheroni constant.
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To obtain double inequalities associated with this approximation formula, the following lemmas
are necessary.

Lemma 1. (see [7]) Let £ >1 and n>0 be integers. Then, for all real numbers x>0:
S, (2n;x) < (=) P (x) < S, (2n+1; x), (2.1)

where
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Bi(i=0,1,2,...) are Bernoulli number. It follows from (2.1) that, for x>0,
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from which it follows that
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Lemma 2. (see [7]) It is also known that
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Lemma 3. Let
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Then, forx>16,

(—v'(x)? <27v* (x). (2.4)

In case of b, =b, =1, we know that the fastest possible sequence is obtained only for /=1 and
¢ =1/2,¢,=1/12.. We have the following inequalities.

First, we give inequalities whena=5, =b, =1.
Theorem 2. For b =b, =1 and all integersn>1,
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The proof of Theorem 2 is similar to Theorem 3.

Second, we give inequalities, whenb, =b, =1,a=2. In this case, we know that the fastest
possible sequence is obtained only for /=1 andc¢, =1/2,4, =-1/12..



Theorem 3. For b, =b, =1 and all integersn>1,
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Proof. (2.6) is equivalent to the following inequality:
1
a, > f(n)= —(n+1)> B,
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We let v(x)= %(w(;w D—Inx-— ln(l + JJ in Lemma 3, then we obtain following

inequalities. Forx > 1,
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Consequently,

27v(x)* = (= (%)) = q(x) ,

)" ~(vix) 225782829593395200000000x%7

where

q(x) = (806511432759206697668686430713 + 3737478095261359869286206977229(x - 3)
+7701270516281610339355498650363(x - 3) +9401384497393676854552116830607 (x - 3)°
+7610303630824613327019013269408(x - 3)* + 4318542137335131906112415993616(x - 3)°
1+ 1766194544792250060876182027520(x - 3)° + 525728969689235608702754562816(x -3))  (2:8)
+113292083926228256583227817984(x - 3)° +17286119887670868371033788416(x - 3)°
+1781506646749844118904504320(x - 3)'° + 112777434463186185590145024(x - 3)'!
+3506898369871212812697600(x - 3)' + 20026936984934154240000 (x - 3)'%).

q(x) is polynomial with all positive coefficients, so ¢(x) >0 for x>3.

Therefore, the inequality holds for x>3 . From (2.8), we get that f(1)=-0.02316,
f(2)=-0.03033,---, we know that f{n) is strictly decreasing. This leads to
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We have that
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The proof of Theorem 3 is completed.
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