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ABSTRACT 

In this paper, we present some new double inequalities starting from the approximate formula for 

Euler-Mascheroni constant the newly obtained by us. 
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1. Introduction 

Double inequalities associated with approximate formulas of mathematical constants play an 

important role in solving various scientific and technological problems. 

Let a>0. Then the generalized Euler–Mascheroni constant γ(a) is given by 
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When a=1, (1.1) represents the classical Euler-Mascheroni constant, that is,  
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Many mathematicians have focused on studying approximate formulas and inequalities associated 

with the Euler-Mascheroni constant and the generalized Euler-Mascheroni constant; see, for 

example, [1-3]. We enumerate some main results: 
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In [4-6], the authors introduced the following double inequalities and the best possible constants. 
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In this paper, we provide new inequalities concerning the Euler-Mascheroni constant. 

2. Inequalities for the Euler-Mascheroni constant 

Bell polynomials play important roles in our derivation, so we give the definition of Bell 
polynomials and related polynomials and give some properties of them. The exponential partial 

Bell polynomials are the polynomials ),,,(: 121,,  knknkn xxxBB L  in an infinite number of 

variables L,, 21 xx  defined by power series expansion 
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Also, an alternative representation of Bell polynomials is 
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the sum extending over all sequences 121 ,,, knjjj L  of non-negative integers such that 

kjjj kn   121 L  and njknjj kn   121 )1(2 L . 

Related to Bell polynomials are logarithmic type Bell polynomials, or logarithmic polynomials in 

short, ),,,(: 21 nnn xxxLL L defined by 
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The Logarithmic polynomials can be expressed in Bell polynomials: 
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The Bernoulli numbers kB are defined by 
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For reader’s convenience, we record the first few terms of kB . 
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The logarithmic derivative of the gamma function is called the psi or digamma function and is 

symbolized as ψ(x), that is 

)).((ln)( x
dx

d
x   

The psi function   has the recursive and asymptotic formulas as follows: 
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We present an approximate formula for the generalized Euler-Mascheroni constant which contains 

the continued fraction term. 

Theorem 1. For any fixed 21,,, bbsl ℕ, where ℕ is the set of positive integers, we have the 

following sequence convergent to the generalized Euler-Mascheroni constant. 
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To obtain double inequalities associated with this approximation formula, the following lemmas 

are necessary. 

Lemma 1. (see [7]) Let 1k  and 0n  be integers. Then, for all real numbers :0x  
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Bi(i=0,1,2,…) are Bernoulli number. It follows from (2.1) that, for x>0,  
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from which it follows that  
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Lemma 2. (see [7]) It is also known that 
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Lemma 3. Let  
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Then, for 16x , 
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In case of 121  bb , we know that the fastest possible sequence is obtained only for 1l  and 

.12/1,2/1 21  cc . We have the following inequalities. 

First, we give inequalities when 121  bba .  

Theorem 2. For 121  bb  and all integers 1n ,  
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with the best possible constants 
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The proof of Theorem 2 is similar to Theorem 3. 

Second, we give inequalities, when 121  bb , 2a . In this case, we know that the fastest

 possible sequence is obtained only for 1l  and .12/1,2/1 21  Ac . 



Theorem 3. For 121  bb  and all integers 1n ,  
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with the best possible constants 
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Proof. (2.6) is equivalent to the following inequality: 
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We let 
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inequalities. For 1x , 
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Consequently, 
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)(xq  is polynomial with all positive coefficients, so 0)( xq  for 3x . 

Therefore, the inequality holds for 3x . From (2.8), we get that ,02316.0)1( f

,,03033.0)2( Lf  we know that f(n) is strictly decreasing. This leads to 
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We have that 
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The proof of Theorem 3 is completed. 
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