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Abstract

Quantum mechanics, though empirically validated, confronts numer-
ous interpretative challenges, predominantly centered around the quan-
tum measurement problem. Addressing these challenges, we introduce
the ”Prescribed Measurement Problem,” which serves as an inversion to
the traditional wavefunction collapse problem. Rather than axiomatiz-
ing the entire framework, our approach emphasizes the axiomatization
of a sequence of prescribed measurements, highlighting their complex-
phase attributes and inherent linearity. Leveraging entropy maximization
techniques specific to these measurements, we recover the core elements
of quantum mechanics: the Schrodinger equation, Born rule, complex
Hilbert spaces, unitary evolution, and self-adjoint operators. Collectively,
this approach offers a comprehensive and equivalent formulation of quan-
tum mechanics that integrates measurement outcomes while sidestepping
the traditional measurement problem.

1 Introduction

The quest for a unified and coherent understanding of the natural world has
been a driving force in the evolution of physics. Through rigorous empiri-
cal observations and mathematical formalism, the field has created theoretical
frameworks that have profoundly advanced our grasp of the universe. These
successes, however, have not been without their challenges[1]. In constructing
these frameworks, the discipline has sometimes faced foundational debates, in-
consistencies, and paradoxes that pose questions about the conceptual integrity
of the established theories.

In striking contrast to the persistent debates surrounding the foundations of
quantum mechanics, the bedrock principles of statistical mechanics have gained
almost unanimous acceptance. One could argue that this consensus stems from
the theory’s direct empirical basis—a straightforward yet profound axiom[2].
This axiom is rooted in what we directly observe in the laboratory: a sequence
of energy measurements F1, Fa, ... that converge to an average value E. This
average, mirroring the unmistakable and direct empirical data we obtain from



repeated measurements, serves as an unwavering constraint within the theoret-
ical framework:

E=Y p(q)E(q) (1)

q€Q

To derive a probability distribution, p(q), that maximizes entropy while ad-
hering to this constraint, the theory employs a Lagrange multiplier equation|3].
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Solving this yields the well-established Gibbs measure.
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This axiomatic structure reflects our empirical observations and interactions
with the physical world. By beginning with a sequence of prescribed energy
measurements, the theory leverages rigorous mathematical techniques to de-
termine the least biased probability distribution. This mathematical structure
emerges naturally from a singular, empirically rooted constraint. This lends sta-
tistical mechanics a degree of coherence and conceptual clarity, differentiating
it from quantum mechanics, which, despite its empirical validity, offers multiple
contentious interpretations.

In stark contrast, quantum mechanics operates on a tapestry of abstract
mathematical axioms[4, 5]. These axioms encompass a variety of concepts that
form the theoretical skeleton of the discipline:

pq) = (3)

1. State spaces are described as complex Hilbert spaces.
2. Observables correspond to Hermitian operators within these Hilbert spaces.
3. Unit vectors in the Hilbert spaces represent physical states.

4. The evolution of these states follows the Schrodinger Equation.

To stitch these intricate mathematical axioms to empirical reality, the theory
resorts to ad hoc elements:

5. Probability outcomes use the Born Rule.

6. Wave function collapses via the Measurement Postulate.



While the foundation of statistical mechanics moves from the empirical (the
measurement constraint) to the theoretical (the probability measure), quan-
tum mechanics moves from a preconceived theoretical landscape (the wavefunc-
tion/complex Hilbert spaces) to an empirical endpoint (Born rule/measurements);
that is, in the opposite direction. This fundamental difference in direction may
account for the general consensus around the axiomatic structure of statistical
mechanics and the ongoing controversies in the foundations of quantum me-
chanics.

The central aim of this paper is to introduce and explore the ”Prescribed
Measurement Problem.” This new approach seeks to build quantum mechanics
based on a method similar to statistical mechanics: starting from prescribed
measurements and using them as the primary constraint. By then maximizing
the entropy, we aim to recover the full foundation of quantum mechanics not as
axioms, but as a central theorem.

The challenge of the wavefunction collapse problem lies in elucidating how
a deterministically evolving wavefunction can become non-deterministic upon
observation. In contrast, the prescribed measurement problem seeks to interpret
a series of non-deterministic measurements as a constraint to devise an optimal
theoretical framework. In this sense, the prescribed measurement problem is an
inversion of the wavefunction collapse problem.

Our endeavor is far more than a revision of existing theories; it calls for
a profound shift in the very philosophy underlying the foundations of physics.
In stark contrast to the prevalent view that the empirical validity of a set of
axioms is sufficient for their adoption, we argue that this is not nearly enough
to be free of contention. We assert that the only axioms capable of such must
themselves directly represent measurements made in nature—our unequivocal,
verifiable touchpoints with reality. It is not just that our axioms should align
with empirical data; rather, they should be the empirical data. Both our math-
ematical and empirical starting points should therefore focus on a prescribed
sequence of measurements. This not only forges a direct pathway from empir-
ical observation to theoretical formulation, but also aims to correct what we
identify as a departure from essential empiricism. This has led the field into
persistent ontological debates and interpretive challenges.

Should our framework achieve its objectives, the impact could extend beyond
a reevaluation of quantum mechanics, potentially establishing a new standard
for theoretical development in multiple scientific disciplines. At its core, our aim
is to restore the axiomatic foundation of physics to a state of empirical imme-
diacy, free from abstract mathematical detours, thereby enriching the discourse
on the empirical coherence and ontological validity of our scientific models.

2 Results

The primary aim of this section is to demonstrate how the ”Prescribed Mea-
surement Problem” can be adapted to the realm of quantum mechanics, offering
a new perspective on its foundational concepts.



In classical statistical mechanics, a sequence of prescribed measurements
typically converges to an average value, often represented by scalar energy values
in the domain of real numbers. This approach is adequate for generating the
Gibbs measure. However, it falls short when applied to quantum mechanics,
which requires two unique and fundamental attributes for energy measurements:
linearity and complex-phase invariance. These attributes are encapsulated in
the subsequent constraint equation (linearity from matrices, and complex-phase
invariance from the trace):

tr [% _ﬂ = nlg)tr {E(()q) _%(q)} (4)

q€Q

Upon establishing this constraint, we will demonstrate that it singularly
serves as the complete foundational basis for quantum mechanics, rendering
supplementary axioms superfluous. This formulation represents one of the most
parsimonious and efficient formulations of quantum mechanics to date.

Our next procedural step entails solving the corresponding Lagrange multi-
plier equation, a process that mirrors the methodology employed in statistical
mechanics. Ensuring the probability sums to unity, and utilizing the relative
Shannon entropy[6, 7] instead of the Boltzmann entropy, we deploy the follow-
ing Lagrange multiplier equation:
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where Z(7) is obtained as

L Also known as the Kullback-Leibler divergence.
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The final result is:

plq) = Dp(q) (14)

Although the result may not initially appear in its traditional guise, what
unfolds serves as an implementation of the Born rule within the context of
wavefunctions. This is the natural outcome of employing our unique constraint
and solving the corresponding Lagrange multiplier equation to maximize the
relative Shannon entropy.

By utilizing fundamental equivalences and substituting 7 = ¢/A in a manner
analogous to S = 1/(kpT), by noting that the trace drops down from the
exponential into the determinant, and that the determinant of such a matrix is
equivalent to a complex norm, we can rearticulate this into its more commonly
recognized form:
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Here, the role of time, t, emerges in resemblance to how temperature surfaces
in conventional statistical mechanics.

The wavefunction can be envisioned as a vector in a complex Hilbert space,
with the partition function acting as its inner product. Expressing this relation:

p(q) (15)
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and where ¢ = exp(—itE(q)/h).

With solutions already normalized by the entropy-maximization process,
physical states correlate with unit vectors. The probability for a particular
state becomes:
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Upon moving the solution out of its eigenbasis through unitary transfor-
mations, we find that energy, E(q), generally transforms as an Hamiltonian
operator:

[9(#)) = exp(—itH/h) [¢(0)) (18)

Any self-adjoint operator abides by the condition (Oy|¢) = (¥|O¢). Mea-
sured in its eigenbasis, it aligns with a real-valued observable in statistical me-
chanics for the given constraint.

The dynamics emerge from differentiating the solution with respect to the
Lagrange multiplier. This is manifested as:
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Which is the Schréodinger equation.

The measurement postulate is captured in p(g,7) being a probability mea-
sure. It gives the likelihood of finding the state at parameter ¢ upon observation.
The act of observation, then, associates to sampling from this distribution, and
the post-collapse state is merely the value of this sampling.

Revisiting quantum mechanics with this perspective offers a coherent and
unified narrative. Specifically, linear energy measurements, when endowed with
complex-phase invariance, are sufficient to entail the full foundations of quantum
mechanics through the principle of entropy maximization.

3 Discussion

The work presented herein introduces a new conceptual paradigm: the ”Pre-
scribed Measurement Problem,” aiming to align the foundation of quantum
mechanics with the same empirical immediacy enjoyed by statistical mechanics.
This approach has far-reaching implications that are not limited to resolving
controversies in the foundations of quantum mechanics, but potentially sets a
new standard for theoretical development across various scientific disciplines.
The fundamental shift we advocate for centers on the reconceptualization
of quantum mechanics’ foundational axioms. While abstract mathematical con-
structs hold intrinsic value in pure mathematics, in physics, the distance between



these constructs and direct empirical measurements can induce contention. We
contend that axioms should be more closely aligned with these empirical mea-
surements to reduce such gaps and the debates they spawn. By considering
the prescribed sequence of linear energy measurements endowed with complex-
phase invariance and axiomatizing it as a constraint, we establish a cornerstone
that not only offers an alternative to the ad hoc postulates that have tradition-
ally characterized quantum mechanics, but also reduces the mathematical gap
between the theoretical framework and empirical measurements to zero.

Our formulation demonstrates that this constraint, coupled with mathemat-
ical techniques of entropy maximization, is sufficient to yield the complete set
of principles governing quantum mechanics, including the Schrodinger equation
and the Born rule. Consequently, our framework argues for the elimination of
these traditional axioms, now rebranded as theorems, simplifying the conceptual
landscape of quantum mechanics.

In general, this new structure is mathematically encapsulated in the following
Lagrange equation formulation:
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This Lagrange equation formulation encapsulates the core principles of the
Prescribed Measurement Problem. Importantly, any physical theory that emerges
as a solution to such an equation is inherently consistent with both the prin-
ciples of the Prescribed Measurement Problem and the philosophy of essential
empiricism. Conversely, any theory that does not satisfy this criterion is not
in alignment with these foundational perspectives. By changing the natural
constraint, different frameworks can be obtained.

With this foundational shift in perspective, let’s explore the key insights and
findings our approach yields:

Key Findings:

1. Core Axioms Derived as a Central Theorem: Our work transcends the ax-
iomatic approach to quantum mechanics by successfully deriving all ax-
ioms as theorems from a single entropy-maximization principle. This de-
velopment offers a new perspective that seeks to disentangle quantum
mechanics from a posited formulation, recontextualizing these ”axioms”
as corollaries of a more primary theory. This paradigm shift not only
demystifies their origin but also opens the door for further investigations
into the foundational principles underlying quantum mechanics.

2. Harmonization of Classical and Quantum Probability: The boundary be-
tween classical and quantum probability has long been a subject of debate
and exploration. While our approach doesn’t entirely dissolve this bound-




ary, it does offer a compelling insight: both classical and quantum prob-
abilities can be derived from the same entropy-maximization procedure.
The key difference lies in the constraints applied to energy measurements.
In classical systems, scalar measurements are considered, while quantum
systems involve linear measurements endowed with phases. This distinc-
tion serves as the basis for the differing probabilities observed in classical
and quantum mechanics. Thus, the ”quantum character” of probabilities
isn’t an inherent feature; rather, it emerges naturally from the structure
of the measurements serving as constraints in entropy maximization prob-
lems.

. Rationalization of the Born Rule: The Born Rule has long been an un-
settling addition to quantum mechanics, introduced without a rigorous
theoretical basis. Our study provides that grounding by demonstrating
that the Born Rule is not an arbitrary insertion but rather an automatic
by-product of the entropy-maximization problem. This settles many the-
oretical apprehensions and provides a unified framework that incorporates
the Born Rule as an inevitable outcome, rather than an imposed feature.

. Ontological Status of the Wavefunction: Traditionally, the wavefunction’s
axiomatic foundation led to various interpretations that attribute to it
an ontological status. However, our research radically transforms this
perspective. We show that the wavefunction is no more ontological than
the Gibbs measure in statistical mechanics; it is merely a least-biased
probability measure for predicting outcomes of energy measurements.

. Unparalleled Conceptual and Mathematical Efficiency: One of the most
striking advantages of our formulation lies in its conceptual and mathe-
matical efficiency. By rooting the axioms in empirical measurements and
utilizing a prescribed sequence of measurements, our framework dramati-
cally simplifies the philosophical and theoretical underpinnings of quantum
mechanics. This leads to a more parsimonious set of principles that gov-
ern quantum behavior, significantly reducing the mathematical complex-
ity typically associated with traditional quantum mechanical frameworks.
This efficiency not only makes the theory more accessible but also lays a
solid foundation for future theoretical developments, encouraging deeper
inquiries into the fundamental nature of quantum systems.

. Addressing the Collapse Paradox and the Inversion Concept: Quantum me-
chanics has long grappled with the concept of the ’collapse’, a central
paradox wherein the deterministic evolution of a wavefunction appears to
become non-deterministic upon measurement. Before examining how our
framework provides a resolution, it’s essential to highlight the inversion
our approach represents, differentiating it from traditional perspectives:

(a) Wavefunction Collapse Problem: Traditionally, quantum me-
chanics has been plagued by the question: "How and why does



the wavefunction, which evolves deterministically, appear to collapse
non-deterministically upon measurement?”

(b) Prescribed Measurement Problem: Diverging from traditional
paradigms, our approach is rooted in empirical observations. Instead
of attempting to reconcile pre-established theoretical constructs with
observations, we derive the entire quantum mechanical framework
directly from these observations.

This paradigm shift is more than just a change in perspective. While
the wavefunction collapse problem grapples with reconciling theory with
measurement outcomes, the prescribed measurement problem constructs
the theory based on these outcomes.

Building on this inversion, we now examine the collapse issue in the light
of our framework...

Reassessing the Collapse Paradox:

Our approach revealed that quantum mechanics, like statistical mechan-
ics, is constrained by a foundational relation on average energy, and is
recovered from the same entropy maximization procedure. Consequently,
they share a conceptual basis, and as such, the problems of one ought to
be the problems of the other. Thus, if the wavefunction collapse is seen as
an issue in quantum mechanics, then, logically, the 'collapse’ of the Gibbs
measure in statistical mechanics should raise the same concerns. Yet, since
the latter isn’t a source of contention, it underscores that the wavefunction
collapse might not be the foundational issue it’s often perceived to be. .

In our formulation of quantum mechanics, the foundation is built not on
specific measurement outcomes, but on their collective average effect. This
means that the foundational framework lacks the information to specify
individual outcomes. To address this, we treat the sequence of prescribed
measurements as foundational axioms—unexplainable, but fundamental
truths. This approach seamlessly integrates these measurements as the
central tenet of the theory.

The Role of Information in Bridging Theory and Reality

Shannon entropy serves to quantify the information associated with the
random selection of an outcome from a set of potential results. Given
the probabilistic nature of quantum measurement outcomes, the theory
of quantum mechanics inherently lacks the information to specify any
individual outcomes.

The entropy in our approach measures the informational gap between
quantum theory and the measurement outcomes. This difference quan-
tifies the additional information an observer possesses beyond what is
provided by the quantum theory, as the result of measurements. While
the theory offers a broad probabilistic perspective on potential outcomes,
the observer’s reality is distinct, specific, and enriched with this supple-
mentary information.



Thus, the entropy can be viewed as representing the information necessary
to ”pin” the observer to the present universe, as selected from the set of all
possible measurement outcomes, providing specificity to their experience.

Crucially, an observed physical system isn’t defined merely by its wave-
function. A comprehensive specification demands that the wavefunction
be paired with the information associated with the prescribed measure-
ment, as quantified by the entropy. Our framework offers a unique perspec-
tive by quantifying the information necessary to complete this description.

7. Measurement Outcomes: The True Bedrock of Physical Reality

Positing the laws of physics as axioms has given rise to the view that
these laws are the foundational truths about the universe. However, it’s
typically appreciated within the physics community that the laws are de-
rived from and constrained by measurement outcomes and observations.
A cloud of points, each representing a distinct measurement outcome,
sets the boundaries and dictates the formulation of the laws of physics.
Our methodology, particularly the entropy maximization techniques, pro-
vides a unique mathematical formulation consistent with this perspective,
emphasizing that reality is fundamentally anchored in measurement out-
comes. Thus, the traditional laws of physics are not intrinsic truths but
frameworks derived to encapsulate and articulate these foundational mea-
surement outcomes.

These foundational insights collectively define a new interpretation of quan-
tum mechanics, termed the 'Prescribed Measurement Interpretation’.

4 Conclusion

In this investigation, we demonstrate the transformative potential of the Pre-
scribed Measurement Problem. Unlike traditional frameworks, this approach
insists that the axioms anchoring any physical theory should be direct mea-
surements made in nature—our irrefutable, empirically-validated touchpoints
with reality. The conceptual structure of quantum mechanics, under this new
paradigm, emerges not as a collection of theoretical constructs, but as a theorem
deduced from a singular, empirically-grounded constraint.

The constraint enforces linearity and complex-phase invariance in energy
measurements, attributes that have been empirically validated through a cen-
tury of quantum mechanics research. As such, the constraint—and by extension,
the entire theory—stands devoid of significant contention.

This paradigm challenges the existing methodologies in theoretical physics
by advocating for a return to essential empiricism. It aims to circumvent on-
tological debates and interpretive challenges, ultimately serving as a standard-
bearer for theoretical advancement across scientific disciplines. By centering
solely the empirical as the axiomatic, it promises to reduce the gap between
observation and theory, facilitating a more coherent and unified comprehension
of the natural world.
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