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Abstract

We determine the Compton effect from the Volkov solution of the Dirac equation
for a process in medium with the index of refraction n. Volkov solution involves the
mass shift, or, the mass renormalization of an electron. We determine the modified
Compton formula for the considered physical situation. The index of refraction
causes that the wave lengths of the scattered photons are shorter for some angles
than the wave lengths of the original photons. This is anomalous Compton effect.
Since the wave length shift for the visible light is only 0,01 percent, it means that
the Compton effect for the visible light in the dielectric medium can be performed
by the well educated experimenters.

PACS: 12.20Ds, 13.60Fz
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1 Introduction

The process of the photon scattering on electron is called the Compton process after
Arthur Compton who made the first measurement of photon-electron scattering in 1922.
He used the monochromatic X-rays for the determination of their scattering on the free
electrons in a block of graphite. He observed that the scattered beam consisted of X-
rays is of the longer wavelengths in addition to the original beam. This was explained
successfully by applying the laws of conservation of energy and momentum in the collision
between X-ray photon and free electron inside graphite block. Compton was awarded in
1927 Nobel Prize in Physics for his discovery.

He derived the equation
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λ′ − λ =
h

mc
(1− cos θ), (1)

where λ′ is wavelength of the scattered X-ray and θ is the angle between the incident and
scattered X-ray. The scattering was considered in the laboratory frame where electron
was at rest. The considered process was so called one photon process with the symbolic
equation

γ + e→ γ + e. (2)

At present time with the high power lasers there is possible to realize so called the
multiphoton scattering according to equation:

Nγ + e→ γ + e, (3)

or,

Nγ + e→Mγ + e, (4)

where N and M are numbers of photons participating in the scattering.
The equation (3) is the symbolic expression of the two different physical processes.

One process is the nonlinear Compton effect in which several photons are absorbed at a
single point, but only single high-energy photon is emitted. The second process is the
interaction where electron scatters twice or more as it traverses the laser focus. Similar
interpretation is valid for equation (4).

In our article, the attention is concentrated to the situation where the Compton process
is considered in dielectric medium with index of refraction n. The index of refraction
is generated microscopically by the system of bound electrons and this system forms
a medium called dielectric which enables transmitting of electromagnetic waves in this
medium. There are also free electrons in this medium. The scattering of photons of the
medium on free electrons in this medium then can occur. At present time, the beam of
photons can be realized by lasers which play prestige role in all physical laboratories.

Our aim is to determine the Compton process in the dielectric medium as a result
of the Volkov solution of the Dirac equation. The Volkov solution involves not only the
one-photon scattering but also the multiphoton scattering of photons on electron. In time
of Compton experiment in 1922, the Volkov solution was not known, because the Dirac
equation was published in 1928 and the Volkov solution in 1935 (Volkov, 1935).

To be pedagogically clear, we remember in the next section some known ideas
concerning the Volkov solution of the Dirac equation.

2 Volkov solution of the Dirac equation in vacuum

Let us remember the derivation of the Volkov solution of the Dirac equation in vacuum.
We use here the method of derivation and metric convention by Berestetzkii et al. (1989):

(γ(p− eA)−m)ψ = 0, (5)

where
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Aµ = Aµ(ϕ); ϕ = kx. (6)

We suppose that the four-potential satisfies the Lorentz gauge condition

∂µA
µ = kµ (Aµ)′ = (kµA

µ)′ = 0, (7)

where the prime denotes derivation with regard to ϕ. From the last equation follows

kA = const = 0, (8)

because we can put the constant to zero. The tensor of electromagnetic field is

Fµν = kµA
′
ν − kνA′µ. (9)

Instead of the linear Dirac equation (5), we consider the quadratical equation, which
we get by multiplication of the linear equation by operator (γ(p− eA) +m), (Berestetzkii
et al., 1989). We get: [

(p− eA)2 −m2 − i

2
eFµνσ

µν
]
ψ = 0. (10)

Using ∂µ(Aµψ) = Aµ∂µψ, which follows from eq. (7), and ∂µ∂
µ = ∂2 = −p2, with

pµ = i(∂/∂xµ) = i∂µ, we get the quadratical Dirac equation for the four potential of the
plane wave:

[−∂2 − 2i(A∂) + e2A2 −m2 − ie(γk)(γA′)]ψ = 0. (11)

We are looking for the solution of the last equation in the form:

ψ = e−ipxF (ϕ). (12)

After insertion of this relation into (11), we get with (k2 = 0)

∂µF = kµF ′, ∂µ∂
µF = k2F ′′ = 0, (13)

the following equation for F (ϕ)

2i(kp)F ′ + [−2e(pA) + e2A2 − ie(γk)(γA′)]F = 0. (14)

The integral of the last equation is of the form:

F = exp

{
−i
∫ kx

0

[
e(pA)

(kp)
− e2

2(kp)
A2

]
dϕ+

e(γk)(γA)

2(kp)

}
u√
2p0

, (15)

where u/
√

2p0 is the arbitrary constant bispinor.
Al powers of (γk)(γA) above the first are equal to zero, since

(γk)(γA)(γk)(γA) = −(γk)(γk)(γA)(γA) + 2(kA)(γk)(γA) = −k2A2 = 0. (16)

Then we can write:
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exp

{
e

(γk)(γA)

2(kp)

}
= 1 +

e(γk)(γA)

2(kp)
. (17)

So, the solution is of the form:

ψp = R
u√
2p0

eiS =

[
1 +

e

2kp
(γk)(γA)

]
u√
2p0

eiS, (18)

where u is an electron bispinor of the corresponding Dirac equation

(γp−m)u = 0, (19)

with the normalization condition ūu = 2m
The mathematical object S is the classical Hamilton-Jacobi function, which was

determined in the form:

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
(A)2

]
dϕ. (20)

The current density is

jµ = ψ̄pγ
µψp, (21)

where ψ̄p is defined as the transposition of (18), or,

ψ̄p =
ū√
2p0

[
1 +

e

2kp
(γA)(γk)

]
e−iS. (22)

After insertion of ψp and ψ̄p into the current density, we have:

jµ =
1

p0

{
pµ − eAµ + kµ

(
e(pA)

(kp)
− e2A2

2(kp)

)}
. (23)

which is in agreement with formula in the Meyer article (Meyer, 1971).
If Aµ(ϕ) are periodic functions, and their time-average value is zero, then the mean

value of the current density is

jµ =
1

p0

(
pµ − e2

2(kp)
A2kµ

)
=
qµ

p0
. (24)

3 Volkov solution of the Dirac equation for plane

wave in a dielectric medium

The mathematical approach to the situation where we consider plane wave solution in a
medium is the same, only with the difference that the Lorentz condition must be replaced
by the following one (Schwinger et al., 1976):

∂µA
µ = kA′ = (µε− 1)(η∂)(ηA) = (µε− 1)(ηk)(ηA′) (25)

with the specification ηµ = (1,0) as the unit time-like vector in the rest frame of the
medium (Schwinger et al., 1976).
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For periodic potential Aµ we then get from equation (25) instead of kA = 0 the
following equation:

kA = (µε− 1)(ηk)(ηA). (26)

Then, we get instead of equation (14) the following equation for function F (ϕ):

2i(kp)F ′ + [−2e(pA) + e2A2 − ie(γk)(γA′)− ie(µε− 1)(ηk)(ηA′)]F = 0. (27)

The solution of the last equation is the solution of the linear equation of the form
y′+Py = 0 and it means it is of the form y = C exp(−

∫
Pdx), where C is some constant.

So, we can write the solution as follows:

F = exp

{
−i
∫ kx

0

[
e

(kp)
(pA)− e2

2(kp)
A2

]
dϕ+

e(γk)(γA)

2(kp)
+

e

2(kp)
α

}
u√
2p0

, (28)

where

α = (µε− 1)(ηk)(ηA) (29)

The wave function ψ is then the modified wave function (18), which we can write in
te form

ψp =

[
1 +

∞∑
n=1

(
e

2(kp)

)n
(2α)n(γk)(γA)

]
u√
2p0

eiSeT , (30)

where

T =
e

2(kp)
(µε− 1)(ηk)(ηA), (31)

and where we used in the last formula the following relation

[(γk)(γA)]n = (2α)n(γk)(γA). (32)

So, we see that the influence of the medium on the Volkov solution is involved in
exp(T ), where T is given by equation (31) and in the new term which involves sum of the
infinite number of coefficients.

4 Compton emission of photons by electron

Now, let us consider electromagnetic monochromatic plane wave which is polarized in
circle. We write the four-potential in the form:

A = a1 cosϕ+ a2 sinϕ, (33)

where the amplitudes ai are the same and mutually perpendicular, or,

a21 = a22 = a2, a1a2 = 0. (34)
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If we use the derived solution (30) of the Dirac equation in a medium, we get very
complicated formalism. To avoid such complications we use the original Volkov approach
and then we introduce index of refraction into definition of a photon in a medium. Such
approach was used in the similar form by Schwinger et al. (Schwinger et al., 1976) in case
of the description of the Čerenkov radiation with massless photons and by author (Pardy,
1994) in case of the Čerenkov effect with radiative corrections and of the Čerenkov effect
with massive photons (Pardy, 2002). We hope, that this simple method can be used also
in case of the application of the Volkov solution for photons in medium.

Volkov solution for the standard vacuum situation is of the form:

ψp =

{
1 +

(
e

2(kp)

)
[(γk)(γa1) cosϕ+ (γk)(γa2) sinϕ]

}
u(p)√

2q0
×

exp

{
−ie(a1p)

(kp)
sinϕ+ ie

(a2p)

(kp)
cosϕ− iqx

}
, (35)

where

qµ = pµ − e2 a2

2(kp)
kµ. (36)

because it follows from eq. (24).
We know that the matrix element M corresponding to the emission of photon by

electron in the electromagnetic field is as follows (Berestetzkii et al., 1989):

Sfi = −ie2
∫
d4xψ̄p′(γe

′∗)ψp
eik

′x

√
2ω′

, (37)

where ψp is the wave function of an electron before interaction with the laser pulse and ψp′

is the wave function of electron after emission of photon with components k′µ = (ω′,k′).
The quantity e′∗ is the four polarization vector of emitted photon.

Then, we get the following linear combination in the matrix element:

e−iα1 sinϕ+iα2 cosϕ (38)

e−iα1 sinϕ+iα2 cosϕ cosϕ (39)

e−iα1 sinϕ+iα2 cosϕ sinϕ. (40)

where

α1 = e

(
a1p

kp
− a2p

′

kp′

)
, (41)

and

α2 = e

(
a2p

kp
− a2p

′

kp′

)
. (42)
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Now, we can expand exponential function into the Fourier transformation where the
coefficients of the expansion will be Bs, B1s, B2s. So we write:

e−iα1 sinϕ+iα2 cosϕ = e−i
√
α2
1+α

2
2 sin(ϕ−ϕ0) =

∞∑
s=−∞

Bse
−isϕ (43)

e−iα1 sinϕ+iα2 cosϕ cosϕ = e−i
√
α2
1+α

2
2 sin(ϕ−ϕ0) cosϕ =

∞∑
s=−∞

B1se
−isϕ (44)

e−iα1 sinϕ+iα2 cosϕ sinϕ = e−i
√
α2
1+α

2
2 sin(ϕ−ϕ0) sinϕ =

∞∑
s=−∞

B2se
−isϕ. (45)

The Coefficients Bs, B1s, B2s can be expressed by means of the Bessel function as
follows (Berestetzkii et al., 1989):

Bs = Js(z)eisϕ0 (46)

B1s =
1

2

[
Js+1(z)ei(s+1)ϕ0 + Js−1(z)ei(s−1)ϕ0

]
(47)

B2s =
1

2i

[
Js+1(z)ei(s+1)ϕ0 − Js−1(z)ei(s−1)ϕ0

]
, (48)

where the quantity z is defined in (Berestetzkii et al., 1989) through α components as
follows:

z =
√
α2
1 + α2

2 (49)

and

cosϕ0 =
α1

z
; sinϕ0 =

α2

z
(50)

Functions Bs, B1s, B2s are related one to another as follows:

α1B1s + α2B2s = sBs, (51)

which follows from the well known relation for Bessel functions:

Js−1(z) + Js+1(z) =
2s

z
Js(z) (52)

The matrix element (37) can be written in the form (Berestetzkii et al., 1989):

Sfi =
1√

2ω′2q02q′0

∑
s

M
(s)
fi (2π)4iδ(4)(sk + q − q′ − k′), (53)

where the δ-function involves the law of conservation in the form

sk + q = q′ + k′, (54)

where, respecting eq. (24)
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qµ = pµ − e2

2(kp)
A2kµ. (55)

Using the last equation we can introduce the so called ”effective mass” of electron
immersed in the periodic wave potential as follows:

q2 = m2
∗; m∗ = m

√√√√(1− e2

m2
A2

)
(56)

Formula (56) represents the mass renormalization of an electron mass in the field A.
In other words the mass renormalization is defined by the equation

mphys = mbare + δm (57)

where δm follows from eq. (56). The quantity mphys is the physical mass that an
experimenter would measure if the particle were subject to Newton’s law F = mphysa. In
case of the periodic field of laser, the quantity δm has the finite value. The renormalization
is not introduced here ” by hands ” but it follows immediately from the formulation of the
problem of electron in the wave field. We know the general opinion that renormalization
is unavoidable in the quantum field theory (’t Hooft, 200), (Veltman, 2000). On the other
hand Schwinger source theory works without renormalization at all (Dittrich, 1978).

We can write

q2 = q′2 = m2(1 + ξ2) ≡ m2
∗, (58)

where for plane wave (35) with relations (36)

ξ =
e

m

√
−a2. (59)

According to (Berestetzkii et al., 1989) the matrix element in (53) is of the form:

M
(s)
fi = −e

√
4πū(p′)

{(
(γe′)− e2a2 (ke′)

2(kp)

(γk)

(kp′)

)
Bs+

e

(
(γa1)(γk)(γe′)

2(kp′)
+

(γe′)(γk)(γa1)

2(kp)

)
B1s+

e

(
(γa2)(γk)(γe′)

2(kp′)
+

(γe′)(γk)(γa2)

2(kp)

)
B2s

}
u(p) (60)

It is possible to show, that the total probability of the emission of photons from unit
volume in unit time is (Berestetzkii et al., 1989):

W =
e2m2

4q0

∞∑
s=1

∫ du

(1 + u)2
×

{
−4J2

s (z) + ξ2
(

2 +
u2

1 + u

)(
J2
s+1(z) + J2

s−1(z)− 2J2
s (z)

)}
, (61)

where
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u =
(kk′)

(kp′)
, us =

2s(kp)

m2
∗
, z = 2sm2 ξ√

1 + ξ2

√
u

us

(
1− u

us

)
. (62)

Variables α1,2 are to be expressed in terms of variables u and us from the equation
(62).

When ξ � 1 (the condition for perturbation theory to be valid), the integrand (61)
can be expanded in powers of ξ. For the first term of the sum W1, we get

W1 ≈
e2m2

4p0
ξ2
∫ u1

0

[
2 +

u2

1 + u
− 4

u

u1

(
1− u

u1

)]
du =

e2m2

4p0
ξ2
[(

1− 4

u1
− 8

u21

)
ln (1 + u1) +

1

2
+

8

u1
− 1

2(1 + u1)2

]
(63)

with

u1 ≈
2(kp)

m2
. (64)

It is possible to determine the second and the next harmonics as an analogy with the
Berestetzkii approach, however the aim of this article was only to illustrate the influence
of the dielectric medium on the Compton effect.

Let us consider the equation (54) in the form:

sk + q − k′ = q′. (65)

The equation (65) has physical meaning for s = 1, 2, ...n, n being positive integer. For
s = 1 it has meaning of the conservation of energy momentum of the one-photon Compton
process, s = 2 has meaning of the two-photon Compton process and s = n has meaning
of the multiphoton interaction with n photons of laser beam with an electron. The
multiphoton interaction is nonlinear and differs from the situation where electron scatters
twice or more as it traverses the laser focus. It also means that the original Einstein
photoelectric equation can be replaced by the more general multiphoton photoelectric
equation in the form:

nh̄ω =
1

2
mv2 + Ei, (66)

where Ei is the binding energy of the outermost electron in the atomic system . It means
(Delone et al., 2000) that the ionization effect occurs also in the case that h̄ω < Ei in
case that number of participating photons is n > Ei/h̄ω. We will not solve furthermore
this specific problem.

We introduce the scattering angle θ between k and k′. In other words, The scattering
angle θ is measured with respect to the incident photon direction. Then, with |k| = nω

and |k′| = nω′, where n is index of refraction of the dielectric, we get from the squared
equation (65) in the rest system of electron, where q = (m∗, 0), the following equation:

s
1

ω′
− 1

ω
=

s

m∗
(1− n2 cos θ), (67)

which is modification of the original equation for the Compton process
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1

ω′
− 1

ω
=

1

m
(1− cos θ). (68)

So, we see that Compton effect described by the Volkov solution of the Dirac equation
differs from the original Compton formula only by the existence of the renormalized mass
and the presentation of index of refraction.

We know that the last formula of the original Compton effect can be written in the
form suitable for the experimental verification, namely:

∆λ = 4π
h̄

mc
sin2 θ

2
, (69)

which was used by Compton for the verification of the quantum nature of light (Rohlf,
1994).

If we consider the Compton process in dielectric, then the last formula goes to the
following form:

∆λ = 2π
h̄

mc
(1− n2 cos θ). (70)

It is evident that relation λ′ − λ ≥ 0 follows from eq. (1). However, if we put

1− n2 cos θ ≤ 0 (71),

or, equivalently

1

n2
≤ cos θ ≤ 1, (72)

then, we see that for some angles determined by eq. (72) the relation λ′ − λ ≤ 0 follows.
This surprising result is the anomalous Compton effect which is caused by the index of
refraction of the medium. To our knowledge, it was not published in the optical or particle
journals.

The equation sk + q = q′ + k′ is the symbolic expression of the nonlinear Compton
effect in which several photons are absorbed at a single point, but only single high-energy
photon is emitted. The second process where electron scatters twice or more as it traverses
the laser focus is not considered here. The nonlinear Compton process was experimentally
confirmed for instance by Bulla et al. (Bulla et al., 1996).

The formula (67) can be also expressed in terms of λ as follows:

sλ′ − λ =
2πs

m∗
(1− n2 cos θ) (73)

where we have put h̄ = c = 1.
Formula (73) can be use for the verification of the Compton effect in a dielectric

medium and on the other hand the index refraction follows from it in the following form:

n2 =
1

cos θ

[
1− m∗

2πs
(sλ′ − λ)

]
. (74)

It means, if we know the θ, λ, λ′, s,m∗, we are able to determine index of refraction
of some dielectric medium from the Compton effect. To our knowledge, this method was
not published in the optical journals.
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5 Discussion

We have considered the Compton effect in the framework of the Volkov solution of the
Dirac equation assuming that the process occurred in medium with the index of refraction
n. We have determined the Compton formula for such physical situation, and we have got
the formula from which we can determine the index of refraction of a dielectric medium.
While the Compton was awarded in 1927 Nobel Prize in Physics, it is not excluded, the
Compton effect in dielectric medium is in the state of preparation.

The index of refraction which is substantial in the considered process, is effective
quantity which was introduced into physics from experiment. Following Lorentz, the
contributions of large numbers of atoms can be averaged to represent the behavior of an
isotropic dielectric medium with the index of refraction n. We know that the introducing
the index of refraction as a constant physical quantity is inadequate, because it fails to
account for the decomposition of white light in prism. In other words index of refraction
depends on frequency. We can understand it only by learning more about the optical
properties of matter. We know that the electric composition of matter is, that every
atom of matter consists of positive nucleus and negative electrons. After application of
the electric field, the polarization of the system occurs (Sommerfeld, 1954).

The electron charge is separated from the ion charge after application of electric
field. The phenomenon is called polarization. In other words polarization means that
the electric field displaces the electrons from their rest position. In the elementary theory
of polarization it is supposed that electrons are bound elastically to their rest position. So,
their motion can be described by the equation for harmonic oscillator with frequency ω0 in
the most simple case. Using some elementary physics and mathematics of the dispersion
theory, we can derive the known formula for the index of refraction of matter.

n2 = 1 +
Ne2

mε0

1

ω2
0 − ω2

, (75)

where N is the number of dispersion electrons per unit volume, ε0 is the dielectric constant
of matter.

Let us remark that the above definition of the index of refraction is the classical one.
On the other hand, there is the quantum theory of the dispersion and of the index of
refraction. It is described in many textbooks of quantum mechanics and quantum optics.
The modern aspects can be found in the article of Crenshaw (1989).

It is substantial of our approach that electromagnetic wave is transmitted by the bound
electrons and not by the free electrons. In such a way the process can exist in matter
where the electromagnetic wave is diffracted by existing free electrons. And this is the
Compton effect.

In particle physics, we know the processes at the finite temperature where the medium
is usually formed by the electron-positron pairs and photon gas at finite temperature
(Ternov et al., 1986). Formulation and solution of the Compton process at finite
temperature is, of course, possible, however we solve the problem Compton process in
dielectric medium. We have proved that this problem is physically meaningful, because
of the existence electromagnetic waves in medium and free electrons in medium. Free
electrons in medium contribute also at the index of refraction, however this contribution
is considered here as very small.
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The interesting result of our article is the derivation that for some scattering angles
given by eq. (73) there exist the so called anomalous Compton effect, where the wave
lengths of scattered photons are shorter than the wave lengths of the original photons.
To our knowledge this effect was not published in the physical journals.

The present article is continuation of the author discussion on laser problems (Pardy,
1998; Pardy, 2001; Pardy, 2003; Pardy, 2004), where the discussion of the Compton
process in the model of the laser acceleration was considered.

It is obvious that the Compton scattering is, at the present time, the elementary
laboratory problem because for the monochromatic X-rays for λ = 1Å the shift of wave
length is several percent. This is quantity which can be easily measured. On the other
hand the Compton wave length shift for the visible light is only 0,01 percent. It means
that the measurement of the Compton effect for the visible light in the dielectric medium
involves some obstacles and it means that this problem can be solved only by the well
educated experimenters.
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Volkov, D. M. (1935).Über eine Klasse von Lösungen der Diracschen Gleichung, Zeitschrift
für Physik, 94, 250.

13


