The Structured Vacuum Theory

Part I: Brief exposition of the Structured Vacuum Theory (STV)

A. Axelrod

Contacts: e-mail Alex@Remot.Energy

DOI: 10.13140/RG.2.2.11112.24329

Keywords: Structured matter, Vacuum lattice, Fractal's physics, Elementary particles, High-energy physics

The presented in this paper model sheds light on the matter spatiotemporal organization in the universe and mechanisms standing behind physical laws. The model describes origins of such basic phenomena as inertial and gravitational masses, electrical charge, and magnetic momentum. The model provides geometrical interpretation of traditional physical concepts. Brief exposition of the proposed by the SVT model of the universe organization appears in the following table. Detailed discussion of the matter spontaneous evolution from complete disorder to the structured universe may be found in the chapter entitled "Chain of the superfluid flow transformations and the vacuum lattice genesis" in Axelrod (2023).

Physical concept	The model interpretation of the concept
The universe	The entire energy of the universe is stored in perpetual streamline flows of the inviscid
energy	incompressible superfluid substance. The substance flows form 3D structure known as
	physical vacuum and occupying the entire volume of the universe. Actually, the
	structured matter forms a space in which physical laws are observed. The process of the
	space genesis and the inner logic of this process are exposed below in this section in
	greater details.
Algorithm of the	Adopting as an axiom the energy conservation principle and its supreme role in the
superfluid flow	entire physics, we may logically come to the conclusion that the primary goal of the
dynamical	universe existence is efficient conservation of the stored in it energy. The universe
evolution	system is in permanent process of self-optimization. Recognition of the energy
	conservation law primacy leads to logical conclusion that the optimized parameter is the
	energy storage efficiency. In Axelrod (2023a) the traditional Lagrange-Hamilton
	optimization principle is reformulated as the steepest ascent of the system to the state
	of its optimally high quality factor, $Q = \frac{P_{TOT}}{P_{LOSS}}$. Here P_{TOT} is the reactive power of all

inner oscillations comprising the physical system, and P_{LOSS} is the active power of the
system radiation losses. The commandment of the steepest quality factor maximization
may be interpreted as the system behavioral algorithm leading to the following actions:
 a) pursuit to storage of maximum possible amount of the total power P_{TOT} of its inner oscillations, and b) diminishing efflux of the stored power through its boundaries, i.e. minimization of its radiation losses P_{LOSS}.
The novel formulation of the system dynamics algorithm allows us to take a fresh look at the system organization and leads us to the clue on the optimal way to accomplishment of the energy conservation task. The new formulation of the Lagrange-Hamilton principle appears to be very fruitful since it reveals the real motivation standing behind several well-known phenomena:
a) spontaneous generation of natural harmonic oscillators: resonance is the basic method to bind some amount of free <i>kinetic</i> energy, either gravitational or electromagnetic, to the same amount of <i>potential</i> energy, either gravitational or electromagnetic, forming basic harmonic oscillator. In the SVT kinetic and potential energy components have physical meaning of energy carried by longitudinal and transverse velocity components in helical flows of the superfluid substance. Resonance features equal division of the oscillation energy between kinetic and potential components, averaged along the oscillation period. The SVT interprets such a behavior as an attempt to share the total energy of the superfluid stream between all available degrees of freedom: translational and rotational. Isolated resonant massive physical objects are shaped as tori with large aspect ratio of toroidal and poloidal radii of rotation. As will be explained below, this curved shape plays the key role in the resonant process of energy exchange.
b) abundance of coherent collective oscillations in the nature: global coherent oscillations is the optimal modus operandi for creation of the optimally stable systems. Coherent oscillations of a large system of coupled oscillators prevent collisions within the system and diminishes generation of free randomized energy;
c) the systems strive to generation of clustered resonant structures, including lattices: the agglomeration proved to be very efficient algorithm for the long-range energy storage and attraction in a broad frequency spectrum of oscillations. Lattices are the ultimate form of the agglomeration of a large number of identical objects. Quantum-scale lattices have crystalline structure with hexagonal symmetry. The hexagon shape is the result of topological constraint of isolated ring resonators agglomeration into the lattice. In a course of the agglomeration, curved double-helical streams are straightened, but the curvature is relocated into vortex sites at the hexagon's corners. Lattices of coherent oscillators are systems with enhanced stability (Q-factors) and optimally large number of degrees of freedom of their inner coherent oscillations;
d) abundance of systems with multiple-scale hierarchal nested architecture: nesting is the optimal strategy for complex physical system to reach the highest possible Q-factor. Fractal architecture of nested systems features maximal energy density and minimal losses. Fractals are multidimensional objects with self-similar detail across

	size and/or time scales. Visualization of a fractal structure requires the creation in our imagination of a new axis, along which we will place objects of different sizes. Thinking of fractals in categories of this new axis, gives birth in your imagination to a multiple-scale architecture with the series of discrete rigid ordered structures building the system backbone. The nested ordered structures of different scales occupy the same volume. Gaps along this axis of spatial dimensions are filled by the material medium which motion carries the fraction of randomized energy. In this image, the coherent areas of the ordered structures are intermitted with apparently randomized medium. The impression is that the backbone of discrete ordered structures is immersed in the continuous amorphous and vibrant medium (see Fig. 1):
	This randomized fraction energetically interconnects the rigid ordered structures of different dimensions granting to the entire system its vitality and ability for adaptive variations. Such architecture appears to be the optimal solution for stable energy storage since energy losses of objects of one scale are consumed by the objects of the other scale, saving the total system losses. Effective energy coupling between objects of different scales is done by the method of <i>spatial resonance</i> . The spatial resonance employs the technique of complete potential-to-kinetic (and vice versa) energy exchange between two stable states of the system belong to two different adjacent spatial scales. For instance, the high-Q <i>toroidal resonance</i> in double-helical torus structure with high aspect ratio is the private case of spatial resonance. The toroidal rotations, whereas the poloidal rotation represents fine-scale structure compared with the much larger spatial scale of toroidal rotation. In summary, multi-scaling is the optimal method of energy compression and long-term storage.
Vacuum	The vacuum structure was generated as the system response to the demand for
quantization to	confinement and storage of certain amount of energy in some limited space. Such vision
discrete plurality of	does not exclude and even invites the hypothesis on existence of some larger supreme
lattices.	structure in which the universe is just one of its ordinary members, and is the result of
Vacuum lattice of	some larger-scale energy quantization to multiple universes. But this issue is out of
Planck scale	scope of this paper limited by the scale of a single universe.
	The vacuum is the dominant holder of the universe energy and has fractal multiple-
	scales hierarchal structure quantized to nested 3D sub-lattices of different spatial scales.
	The 3D sub-lattice of each scale is composed of four sets of parallel 2D honeycomb
	sheets (see Fig.2). A relatively recent work (Bos, James, M., et.al. (2018)) is devoted to
	the collective behavior in a two-dimensional system of a self-propelled active fluid, the
	elements of which were given the initial energy of chaotic motion. Computer simulation
	showed a transient process accompanied by multiple collisions of fluid elements
	culminated by spontaneous generation of a hexagonal lattice structure of vortices. The
	authors of the paper come to the conclusion that "the emergence of a dynamic
	hexagonal vortex lattice state after an extended turbulent transient, can only be

	of where the kinetic energy of the initially chaotic motion of the superfluid elements
	went, the authors answer that as a result of the transition process, this energy is
	concentrated in the motion within the vortex sites.
	At each given location, honeycomb sheets belonging to different sets intercept, and
	have relative orientation of 120° (see Fig. 3). In the dimension of spatial scales, the
	vacuum lattice is the boundary sub-lattice of the largest spatial scale and of the lowest
	(among other sub-lattices) frequency and energy density. It is composed of hexagonal
	cells with perimeters equal to the Planck wavelength, all involved in coherent oscillation
	at the Planck frequency $F_{PL}=2.952\cdot 10^{42}$ Hz. The vacuum lattice plays a special role in
	our physical reality.
	All together, the hierarchy of 3D sub-lattices of all spatial scales smaller and including
	the Planck scale, form the entire vacuum multiple-scale fabric storing the dominant
	amount of the universe energy within the frequency band $[f \ge F_{PL}]$. Geometry of the
	vacuum lattice is given in Fig. 3 and its pivotal role in the hierarchy of spatial scales of
	the matter organization is illustrated on Fig.1.
The matter	Each sub-lattice of any spatial scale may be presented as a 3D lattice of identical
quantization to	hexagonal vortices tightly energetically coupled by straight filament sections of double-
tightly coupled	helices (see Fig.4). The vortex site also has the hexagonal shape and belongs to the sub-
vortices	lattice of the next smaller scale. The geometry shown in Fig.4 explains the energy
	coupling mechanism. In cases of abnormally high or abnormally low energy level in one
	scale, the self-regulation takes place, and the energy flows between sub-lattices of
	different scales until the balance in all lattices is restored. This mechanism enables also
	periodical nonlinear anharmonic energy oscillations, in which are involved sub-lattices of
	several spatial scales.
Quantization of the	In alternative presentation, the same 2D honeycomb lattices may be viewed as
lattice of each	composed of numerous tightly coupled identical hexagonal cells with superfluid
scale to identical	bidirectional circulations around each cell. Both presentations of the lattice are
hexagonal cells.	equivalent. Ayzenberg-Stepanenko, M., et.al. (2008) demonstrated for the 2D case that
Curvilinear	monochromatic excitations of frequencies close to the lattice resonance frequency
trajectories of	propagate along the straight beam trajectories, and that the beams are directed along
monochromatic	the lattice axes of symmetry.
excitations in the	In the vacuum lattice the resonance frequency corresponds to F_{PL} , and the Planck-
3D vacuum lattice.	frequency waves propagate strictly along three axes of symmetry without dispersion.
	This effect is equivalent to superconductivity of the vacuum lattice at this specific

	frequency (*). These waves serve as the energy carriers for all observable excitations in
	the universe. All observable reality is the result of the Planck carriers modulations by
	frequencies $\Omega \ll F_{PL}$. The modulation frequencies are usually named the De Broglie
	frequency. These excitations occupy side harmonics located on the frequency axis very
	close to the F_{PL} . Hence the detectable excitations should propagate <i>nearly</i> strictly along
	the straight trajectories coinciding with axes of symmetry and should exhibit small
	energy dispersion effect. The dispersion effect steadily grows at larger modulation
	frequency Ω . Any monochromatic excitations may be viewed as low-frequency
	modulation $[f < F_{PL}]$ of the carrier wave oscillating with the Planck frequency, and
	spectral component corresponding the excitation is very close to the Planck frequency
	since $(F_{PL} - f)/F_{PL} \approx 1$. Hence all monochromatic excitations carrying energy of any
	elementary particle propagate along 1D curvilinear trajectories. This result supports the
	basic axiom of the String Theory.
	(*) The superconductivity Type II effect was revealed for Bose-Einstein condensate (BEC) lattices of much
	larger spatial scales, but the dispersionless energy propagation mechanism is the same Abrikosov A. A.
	(2003).
Stable vs. unstable	All physical objects including lattices may be characterized by the parameter of temporal
physical objects	stability, i.e. longevity. The objects stability makes them abundant, and we may assert
	that they belong to the category of <i>really existing</i> . In contrast, the unstable object may
	be ad-hoc generated due to sporadic contribution of random energy, but is so short-
	living that it is not detectable. Within the structure of any temporarily stable object
	belonging to any spatial scale, is satisfied the resonant condition of full exchange
	between equal amounts of energies of symmetric and anti-symmetric propagation
	modes in a course of the modes circulation along the perimeter of the object structure
	or, if we observe the lattice stability, along the perimeter of each cell of the lattice. The
	necessity to comply with this resonance condition stands behind existence of the
	discrete frequency (or energy) spectrum of the universal vacuum structure and behind
	the phenomenon of matter structuring to energetically separated series of nested
	spatial scales.
The object	The temporal stability of each physical object may be characterized by its Q factor. The
temporal stability	most important for our physical reality object is the Planck-scale vacuum lattice, the
	largest-scale among the plurality of lattices exhausting the universe's free energy. The
	undetectable unperturbed vacuum lattice is much more stable compared with
	detectable objects, particles. The lattice is the energetic backbone of our reality. It
	provides mechanisms for all observable by us energy transformations and gives birth to

	all elementary particles in the form of its own phononic excitations. The energy remnant
	after the vacuum lattice generation is stored within the massive particles and is
	redistributed to long ranges mainly by means of zero-rest-mass particles, like photons
	and their analogs carrying gravitational energy, gravitons.
The mechanism of	The curved geometry of the double-helical ring resonators breaks the double-helical
energy exchange	symmetry and enables mutual transformation between anti-symmetric (gravitational
between objects of	energy) and symmetric (electromagnetic energy) propagation modes.
different scales	
Mechanisms of	In the case of 3D lattices small deviation Ω from the Planck frequency also causes the
conservation of	energy dispersion. The dispersion broadens the propagation path, which becomes
linear and rotation	broader, and appears a mechanism of gradual switching of the excitation energy from
momenta in 3D	one axis of symmetry to the other, gradually changing the direction by 60°. Eventually,
vacuum lattice	small sections directed along the symmetry axes, comprise propagation along the
	straight axis of arbitrary direction in space. For the large-scale observer the propagation
	propagates along the straight line of arbitrary direction, which is in line with the
	principle of linear momentum conservation. Such behavior is typical for propagation of
	photon excitation along the vacuum lattice.
	In the vacuum lattice areas with abnormally increased (or decreased) energy density,
	the system finds another ingenious way to compress (or dilute) the energy density in
	confined structures with abnormally high (or low) energy density. The lattice ability to
	change the direction of propagation for monochromatic excitation is employs in these
	cases for spontaneous generation of closed ring resonators tuned to the resonant
	frequency equal to the excitation frequency Ω . This effect is akin to the formation of
	tobacco smoke rings by an initially linear fast flow in a viscous medium. This effect is of
	special significance, since it is the basis for generation of massive particles with either
	positive or negative masses. In the nonlinear crystalline structures this effect is
	responsible for generation of rotating bright (or dark) solitons of circular shape
	possessing topological charge, e.g. Afanasjev, V. V. (1995). As it will be discussed in
	length below, in the SVT this mechanism explains generation of mass and electrical
	charge effects. Both effects are due to creation of ring resonant structures with
	abnormally large energy densities.
Creation of helical	In addition to the nonlinear effect of circular structures generation, the linear
trajectories of	Mechanism A of energy conversion shown in Fig.3 performs gradual transition of the
monochromatic	excitation energy from one 2D lattice to the other, oriented by 120°. In these sites two

excitations with	energy flows belonging to two different sets of 2D lattices intercent at 90° angle. Such
$f \ll F_{\rm DV}$	intercention site does not violate symmetry of the intercenting double-belical flows but
$p \propto P_L$	is able to couple some amount of the excitation energy from the excitation in one 2D
the vacuum lattice	hency some lattice to the other 2D lattice relatively evidented by the angle of 120°. This
	noneycomb lattice to the other 2D lattice, relatively oriented by the angle of 120. This
	lattice-to-lattice coupling mechanism is akin the worm-gear mechanism, transmitting
	motion from one plane to a perpendicular plane. Eventually, the excitation energy
	transfers from the longitudinal to transverse rotation and the originally linear trajectory
	of the excitation is converted to helical. This means that the excitation switches from
	one Planck-frequency carrier to the other (*).
	(*) Alike vacuum lattice, structures of wave-like and particle-like excitation, e.g. photons, are also composed of helices of much larger spatial scales. Actually, they are replicas of the vacuum lattice helical or double-helical architectures, but of much larger scale. The following figure shows the fine structure of large helix composed of thin elements belonging to the fine scale. Actually, the thin lines comprising the large-scale helix are also double-helices supporting oscillations of Planck frequency. This image was generated by numerical simulations of Nonlinear Schrödinger Equation (NLSE), copied from the paper by Nore, C., et.al.(2006), reproducing the instabilities of non rotating and rotating cylindrical jets confirm the author's hypothesis on helical-shaped photons. The authors performed numerical simulations of the NLSE, and studied a swirling jet of liquid. The ARGLE software converged solution consists in locked-up helices. Under NLSE dynamics, the helices undergo a cork-screw like motion, with little acoustic emission. The dynamics corresponding to an helix with a (small) random perturbation is rich and complex and includes reconnection
	phenomena.
Energy exchange	Besides changing the shape of the excitation structure, the mechanism A gradually
between	converts energy of linear motion along the propagation axis to energy of the transverse
longitudinal and	rotation. Eventually, the energy exchange between longitudinal and transverse velocity
transverse velocity	components is complete, and the entire excitation energy is concentrated in the
components	transverse rotation. This process is bidirectional, and there are areas of high energy
	density of longitudinal component intermittent with areas of high energy of transverse
	velocity component. For the large-scale observer this is equivalent to generation of
	orbital momentum, experimentally observed phenomenon of the photon propagation

	with De Broglie frequency much smaller than F_{PL} .
Different behavior	Above discussion focused by two alternative scenarios of monochromatic excitation in
patterns of	the vacuum lattice. The excitation frequency was assumed to be Ω , and we assumed
monochromatic	that the excitation is in a form of modulated Planck-frequency carrier. We assumed that
excitations below	the spectral line is below the F_{PL} . We may assert that the Planck frequency is the
and beyond the	highest frequency of the vacuum lattice conductance band. In the stop band above the
Planck frequency	boundary Planck frequency, the excitation energy stops its longitudinal propagation
	along the vacuum lattice and starts the immersion process deeper into the cascade of
	discrete sub-lattices with resonance frequencies $[f \ge F_{PL}]$ thus feeding fractal vacuum
	structure. The Fig.6 provides pictorial illustration of the vacuum structure, including
	excitations behavior below and beyond the Planck frequency.
Hidden energy of	Due to its ideal anti-symmetry of streamline shapes, the entire unperturbed vacuum
the anti-	structure is not experimentally detectable. All structural elements comprising the
symmetrical	vacuum lattice, including straight sections and vortex sites, are either straight or curved
structures. Anti-	ideally anti-symmetric double-helices.
symmetric double-	In our experiments we are able to detect only the result of broken symmetry in the
helical flows.	double-helical vortex structures. In the Fig.4 we showed the hexagonal shape of the
	vortex sites, which leads to conclusion that areas with broken symmetry of double-
	helices are confined in corners of hexagons. Asymmetric elements in the vacuum lattice
	are able to emit energy into the surrounding vacuum lattice, which is mostly ordered
	structure featuring the property of perfect energy attractor. The attraction mechanism
	is straightforward: (a) the radiated energy spectrum occupies frequency band with the
	upper frequency much smaller than the Planck frequency, (b) the random excitation is
	the phononic excitation modulating the Planck-frequency carrier waves, propagating
	along the curvilinear trajectories, (c) the Planck-scale cells located along these
	trajectories form finite-length sections of curvilinear transmission lines of practically
	arbitrary length, which resonate with practically any wavelength of the randomized
	spectrum, (d) these spontaneously generated curvilinear sections attract the energy of
	the resonating spectral component, (e) the attracted to the lattice randomized energy is
	condensed to observable stable resonant structures of elementary massive particles and
	to photons forming background electromagnetic radiation, known as relict radiation.
The anti-symmetric	The only energy resource of the superfluid flows is its velocity. In the unperturbed
excitation mode is	vacuum, the longitudinal velocity is limited by the light velocity c and the total velocity is
the major energy	$c\sqrt{2}$. Within the structure of massive particle energies of the flows are increased by

holder in the	amplitude modulation of the velocity and may reach the peak value of $2c\sqrt{2}$.
universe	It may be easily shown that the anti-symmetric excitation mode is the preferable energy
	carrier as compared with the symmetric mode. Let us add the same amount v of the
	longitudinal component of the excitation velocity of the unperturbed vacuum. First let
	us do this in the anti-symmetric way:
	$v_{(1)exc}^{\parallel} = c + v$, $v_{(2)exc}^{\parallel} = -c - v$. This operation led to the change of the kinetic
	gravitational energy carried by the longitudinal component by an amount equal to
	$\Delta E_a = (c+v)^2 + (-c-v)^2 - 2c^2 = 4cv + 2v^2$. If the same velocity v is added in the
	anti-symmetric way, taking into account that in the unperturbed vacuum the symmetric
	velocity component is zero, the added kinetic electromagnetic energy will be
	$\Delta E_s = v^2 + v^2 = 2v^2.$
	Obviously, the amount stored in the anti-symmetrical excitation mode is greater by an
	amount of $\Delta E_a - \Delta E_s = 4cv$. In addition, the radiation losses of the anti-symmetric
	component in curved double-helical flows are much less than of the symmetric
	component. This leads us to conclusion that the energy storage with the highest Q-
	factor may be achieved in anti-symmetric flows of anti-symmetric excitations of the
	vacuum lattice. We can observe manifestation of this in all surrounding us reality, where
	the dominant portion of the observable physical objects is stored in the anti-symmetric
	flow of gravitational masses. In the universe, the electromagnetic excitation plays only
	secondary role of long-range energy transmission and of the binding additive of energy
	needed for binding gravitational energy to confined structures of quark particles. In the
	ideally ordered fraction of the unperturbed vacuum the energy of anti-symmetrical flow
	is due to radiation losses, and constitutes miserably small part of the total stored
	energy.
The Matter and	The double-helices may be either right-hand, in areas of the universe occupied by the
Anti-Matter	Matter, or left-hand in the areas occupied by the anti-Matter. The following discussion is
	limited by the case of Matter dominant in our area of the universe and featuring the
	right-handed chirality. It is logical to speculate that both types of chirality have equal
	right to exist in the universe, but most probably that our local area has some preferable
	type of chirality. At least the Matter is much more abundant in our local area than the
	anti-Matter.
The light velocity	Refer to Fig.5a and Fig. 5b. The helical flow may be decomposed to longitudinal and
	transverse velocity components. Correspondingly, energy storage is implemented by
	means of longitudinal and transverse flow motions. In the SVT model, members of this

	decomposition are distinguished as carriers of kinetic and potential energies,
	respectively.
	Fig.5b. shows only one of two elementary helices comprising the double-helix.
	Elementary infinitesimally small section δl performs 360° azimuthal rotation and
	simultaneous translational motion along central axis $\hat{m{z}}_0$. As shows the picture, superfluid
	flows are assumed to be stream-like. All streams comprising the Planck-scale lattice
	have uniform cross-section S_0 and constant per-unit-length superfluid density $ ho_0$. In the
	unperturbed state, the helical streams' velocity vector has transverse and longitudinal
	components, each equal to $c = 3 \cdot 10^8 m/sec$, known as the light velocity. The c value
	depends on the local energy density in the universe and may be nonuniform in
	structures of galactic scales.
The lattice	Straight and curved double-helical filaments operate simultaneously as energetic
excitations and	backbones of 3D sub-lattices of each spatial scale and as transmission lines supporting
their division to	wavelike propagation of the lattice excitations. All physical objects, the traditional
symmetric and	object of the physics science, are just different types of the vacuum lattice phononic
anti-symmetric	excitation. The excitation waves in double-helical transmission lines may be
propagation	decomposed to two propagation modes: anti-symmetric and symmetric. The SVT
modes.	postulates that the anti-symmetric excitations are perceived by us as carrying the
	gravitational energy, while the symmetric excitation mode carries the energy of
	electromagnetic excitations.
The role of straight	Six straight sections of each hexagonal cell are shaped as straight double-helical
double-helical	filaments operating as transmission lines. These sections serve as energy highways
sections	within the lattice, or within the excitation objects of the same spatial scale. Within these
	straight sections, symmetric and anti-symmetric excitation modes are decoupled, and
	exchange between gravity and electromagnetic energies is not feasible.
The role of vortex	The hexagon corner sites are occupied by vortices. In lattice of any scale, each vortex is
sites	composed of nested double-helices curled to hexagons (see Fig.4) and belonging to the
	lattice of smaller spatial scale. Hexagon vortices of nested spatial scales collectively form
	the vortex site. Each hexagon of each scale is composed of clockwise and
	counterclockwise right-hand helical flows forming double-helical ring resonators. The
	hexagon-shaped ring resonators of different scales are energetically coupled by
	randomized energy of the radiation (or dispersion) losses of curved structures of all
	scales. As a result, vortices operate as multiple-scale multiple-frequency resonators with
	discrete resonant spectrum. The entire frequency spectrum of the vortices is a

	combination of randomized broadband background and discrete spectrum of resonant
	frequencies of lattices of a variety of spatial scales. The vortices energetically couple a
	discrete plurality of 2D lattices of all spatial scales and serve as highways for the flow of
	excitation energy from scale to scale.
	In summary, the vortex site has two additional functions (a) of the energy storage site,
	and (b) of the structural element enabling spectrum broadening which is critically
	important for the processes of energy exchange between lattices of different scales.
Phase delay	The phase delay is the parameter traditionally used as the qualitative indicator of stage
	of the process of energy exchange between kinetic and potential energies. In the SVT
	model, all energy exchange processes take place in a course of excitation wave
	propagation along double-helical transmission lines. Hence the large-scale observer may
	use the phase delay as an averaged parameter. In classical electrodynamics phase delay
	is perceived as the inherent feature of the empty space. The SVT model teaches us that
	the energy exchange takes place exclusively within the vortex sites, and is the process
	occurring in discrete steps. The phase delay may be assigned to energy transformation
	processes within the same spatial scale, or for the energy transformation in a course of
	energy exchange between lattices of different scales.
Two facets of the	In classical mechanics and Maxwell's electromagnetic theory phase delay is associated
phase delay	with energy exchange between kinetic and potential energies of the wave propagation
concept	process. In quantum mechanical treatment of the superfluid dynamics, the superfluid
	has the special property of having phase parameter. The superfluid is
	deemed irrotational; however, if the enclosed region actually contains a smaller region
	with an absence of superfluid, for example a rod through the superfluid or a vortex, then
	the circulation is
	$\int_{C} \vec{\boldsymbol{v}} \cdot d\vec{\boldsymbol{l}} = \frac{\hbar}{m} \int_{C} \nabla \phi_{v} \cdot d\vec{\boldsymbol{l}} = \frac{\hbar}{m} \Delta^{tot} \phi_{v}$
	, where \hbar is Planck's constant divided by $2\pi,\ m$ is the mass of the superfluid particle,
	and $\Delta^{tot} \phi_v$ is the total phase difference around the vortex (see Wikipedia chapter on
	Quantum Vortex).
	Formally, the phase is contributed by the wavefunction describing the superfluid matter
	that obeys the Schrödinger wave equation. In the presented in this paper SVT model,
	there are two categories of exchange between kinetic and potential energies: (a) within
	the linear wave processes occurring within the same spatial scale, and (b) within the
	nonlinear wave process of energy exchange between lattices of different spatial scales.

	The energy exchange sites of both categories are marked in the Fig.3 as points A and B,
	respectively. Correspondingly, the phase delay concept is twofold. For instance, in the
	linear electromagnetic wave processes the phase delay reflects the status of energy
	exchange between the electrical and magnetic modalities of electromagnetic energies.
	In contrast, in the nonlinear wave process of energy exchange between lattices of two
	adjacent spatial scales, the phase delay is the measure of energy exchange between
	kinetic/potential energy components of symmetric and anti-symmetric constituents of
	the curled double-helical flow. The phase delay is developed along the superfluid flows
	at any spatial scale, and is specific for each given scale: there are many periods of small-
	scale oscillations in a single oscillation periods of the large-scale propagation process.
	Phase delay is the inherent attribute of the wavelike bidirectional motion of the
	superfluid substance. In each spatial scale, the energy exchange, and correspondingly
	phase delay, are both attributes of the curved sections (a part of the multi-scale vortex
	sites) and is not present in straight sections of the same spatial scale. Nevertheless, the
	large-scale observer belonging to the much larger spatial scale than the Planck lattice,
	cannot distinguish the wave process with the fine-scale resolution, and experiences an
	illusory impression that phase delay phenomenon is continuously distributed property
	of any wave process of his macroscopic scale. Moreover, such observer is unable to
	observe the wave process of energy exchange between different scales of the matter
	organization. This is the major difficulty of experimental exploration of the Planck-scale
	mechanism of energy exchange between electromagnetic and gravitational phenomena.
The role of broken	In the SVT, any detectable physical phenomenon is either the consequence of broken
symmetry	symmetry in the vacuum lattice, or due to existence of confined area with abnormally
	large energy density. Closer observation reveals that the abnormally large energy
	density is also the result of the broken symmetry in curved (typically ring) double-
	helices. In other words, in our physical reality we are aware only of the result of the
	broken symmetry, but have no experimental information on the presence of the
	absolutely balanced vacuum structure, symmetry of which is broken. Paradoxically, in
	our traditional physics models we take into account any slight ripple of the broken
	symmetry of a big whole, but neglect the big whole itself! As a result, we count all
	energies not from the absolute zero level of motionless superfluid matter, but from the
	average energy level of the unperturbed vacuum, in which matter streamlines move
	with the velocity equal to $c\sqrt{2}$. The broken symmetry of the vacuum structure is (a) the
	source of the free energy involved in wave processes taking place within structures of
1	

	ordered stable physical objects of any spatial scale, and (b) the source of wideband
	randomized energy necessary for energy exchange between objects belonging to
	different spatial scales.
Order vs. chaos in	Stable physical objects store in their resonant structures the ordered fraction of the
the universe	universe energy, while the randomized energy is released by the ordered fraction and is
	the origin of random events, chaos.
	The ordered and the randomized fractions are in permanent dynamic energy exchange.
	Due to the wideband randomized free energy emitted from the vortex sites, any lattice
	within the multiple-scale vacuum structure behaves as an active medium. The emitted
	free energy with spectral components below the Planck frequency, induces excitations
	propagating exclusively along 1D curvilinear trajectories traced in the vacuum lattice.
	Excitation energy of each wavelength is stored in coherent motions of chained cells of
	the vacuum lattice located along the excitation 1D propagation path. Collectively, the
	chained vacuum cells constitute the structured body of the monochromatic excitation.
	Traditionally, in quantum mechanics, the monochromatic excitation and its
	spatiotemporal distribution are solutions of Schrödinger equation, but the concept of
	continuous particle's structure with finite length is denied. In the STV model, the
	Schrödinger equation survives, but the interpretation of its solutions is quite different.
	The matter restructuring process is going on also for monochromatic excitations within
	the frequency spectrum above the Planck frequency. The beyond-the-Planck-scale sub-
	lattices operate as energy attractors restructuring the released randomized energy.
	Similarly, the Planck-scale vacuum lattice, representing the largest boundary scale of the
	vacuum hierarchal structure, is the energy attractor restructuring the randomized free
	energy within the frequency band below the Planck frequency.
Elementary	The randomized energy released by the Planck-scale vacuum lattice is sufficient only for
particles	structuring of discrete spatially isolated resonant 1D curvilinear structures, known as
	particles. In parallel to the chaos condensation to the ordered particles, there is a
	reverse process of the particles decay due to inherent dispersion radiation losses. The
	lossy mechanisms are inherently built into the curved structures of the double-helical
	ring resonators representing massive particles, and into helical structures of photons
	and gravitons. Energy of active losses is released by the ordered particles in a form of
	randomized phononic excitation of the vacuum lattice. As a result of this bidirectional
	process of condensation and dispersion, the vacuum and the particles are in permanent
	balanced dynamical energy exchange.

Particles asEach stable elementary particle may be addressed as the resonant phononic excitationphononicof the vacuum crystalline structure. The utmost elementary massive objects, quarks, areexcitations of theshaped as double-helical ring resonators. Remarkably, experimental investigation,vacuum latticeMichel Hehn, et.al. (1996), of 3D lattices revealed two types of stable phononicstructures, one shaped as ring, and the other shaped as helical spiral. The ringresonators correspond to fermionic massive particles, whereas the photon bosonparticle is the excitation shaped as helical spiral.

Photon Photons are phononic excitation generated by means of *phase modulation* of the Planck-frequency carriers comprising the vacuum lattice. The photon generation is equivalent to creation of specific phase distribution along the chain of vacuum cells constituting the curvilinear photon's structure. It never changes the total velocity of the superfluid stream, and just dynamically redistributes the total energy between potential (transverse velocity) and kinetic (longitudinal velocity) components. The phase modulation does not require investment of additional energy. Hence, the total energy density within the structure of photon excitation is identical to that of the unperturbed vacuum, and this is the reason of its zero rest mass. Nevertheless, the photon possesses momentum vector, longitudinal part of which points towards the direction of its propagation. All its energy is confined in the linear and rotational motion momenta. Hence photon may be viewed as severe violation of symmetry of the original doublehelical flow. In photon excitation having the shape of a single helix, one of helical flows comprising the double-helix simply does not exist. Photons are employed by the universe system for energy redistribution in space.

> The helical boson structure of photon has 2π phase delay at its De Broglie frequency along its structure. In each given moment of time, the helical photon excitation of the vacuum lattice may be formally decomposed to symmetric and anti-symmetric excitations carrying equal amounts of energy. The symmetric part of the photon excitation carries equal amounts of positive and negative electric/magnetic energies, and this makes it electrically/magnetically neutral.

> Photon excitation possesses the same energy density as the unperturbed vacuum. Hence it does not experience Newton's gravity force. Nevertheless, due to the antisymmetric part of its energy, the photon excitation reacts to vacuum lattice antisymmetric polarizations. In the vicinity of massive body it moves along geodesic surfaces featuring the same amount of the gravity polarization energy. This effect is predicted by the Einstein's General Relativity Theory.

Massive particles	Unlike photons, massive particles are phononic amplitude modulation of the Planck-
	frequency carriers, and its creation needs energy investment. The extra energy required
	for its creation is taken by one (e.g. symmetrical) propagation mode from the other (e.g.
	anti-symmetrical) propagation mode. Both propagation modes share the common
	structure along which takes place the energy exchange between the modes. Massive
	particles are generated as a system response to abnormally large local energy density
	imposed by some external excitation. Their existence is justified by the fact that the
	massive particle is perfect implementation of an additional and very efficient method of
	high-Q energy storage. The massive particle structure resolves the problem of the
	steepest spatial confinement of the local excessive energy density.
	The confined structures of massive particles may stay motionless relatively the
	surrounding vacuum lattice and may store all its energy in its inner oscillations at its De
	Broglie frequency. The abnormally large local energy density within the structure of the
	massive particle yields such universal-scale phenomena as static gravity and electrical
	polarizations of the surrounding vacuum lattice. Traditionally, these vacuum polarization
	phenomena are described, respectively, by the Newton's Gravity Law and the Coulomb
	Law.
Energy conversion	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms:
Energy conversion mechanisms, built	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity
Energy conversion mechanisms, built into the vacuum	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried
Energy conversion mechanisms, built into the vacuum lattice, standing	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type (b) transformations occur in sites B also shown in Fig.3.
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type (b) transformations occur in sites B also shown in Fig.3. In the SVT model, energy of the longitudinal velocity components is associated with
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type (b) transformations occur in sites B also shown in Fig.3. In the SVT model, energy of the longitudinal velocity components is associated with kinetic energy, whereas the transverse velocity components carry the potential energy.
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type (b) transformations occur in sites B also shown in Fig.3. In the SVT model, energy of the longitudinal velocity components is associated with kinetic energy, whereas the transverse velocity components carry the potential energy. This conclusion is valid for gravitational and electromagnetic excitations of the vacuum
Energy conversion mechanisms, built into the vacuum lattice, standing behind traditional physics laws.	The vacuum lattice possesses two types of Planck-scale energy conversion mechanisms: (a) bidirectional energy conversions between longitudinal and transverse velocity components of the same (either symmetric or anti-symmetric) excitation mode carried by double-helical flows comprising the vacuum lattice, and (b) bidirectional energy conversions between the anti-symmetric (gravitational) and symmetric (electromagnetic) excitations of the same double-helical transmission lines. The latter conversion mechanisms exist only in curved double-helical structures, and are of special interest since they are responsible for hardly explored bidirectional conversions of electromagnetic and gravity energies. This phenomenon is known as direct and reverse Gertsenshtein effects, Gertsenshtein, M. E. (1962) & (1962a). Fig.3 shows locations A within the vacuum lattice where energy transformations of type (a) take place. The type (b) transformations occur in sites B also shown in Fig.3. In the SVT model, energy of the longitudinal velocity components is associated with kinetic energy, whereas the transverse velocity components carry the potential energy. This conclusion is valid for gravitational and electromagnetic excitations of the vacuum lattice, as well as for the superfluid streams comprising the vacuum lattice itself.

Fundamental	As a result of above classification, the following four fundamental categories of energy
categories of	may be distinguished:
energy in the	a) E_g^k , kinetic gravitational energy giving birth to macroscopic effects of inert mass;
universe	b) E_g^p , potential gravitational energy associated with the gravity mass;
	c) E_e^k , kinetic electromagnetic energy, known as magnetic energy, and
	d) E_e^p , potential electromagnetic energy responsible for electric polarization
	effects, including electric charge phenomenon.
	The chart in Fig.7 illustrates division of the total energy to four fundamental categories
	and shows a variety of energy transformations performed by the vacuum lattice by
	means of Planck scale mechanisms.
	The SVT model does not need introduction of some other independent categories of
	energy for explanation of weak and strong nuclear interactions. Above four fundamental
	energy categories are deemed to be sufficient to explain energy transformations
	occurring in a course of quarks agglomeration into protons and neutrons, as well as the
	higher-scale agglomeration of nucleon to the nucleus.
Geometrical	Each fundamental energy category has its geometrical interpretation in terms of the
interpretation of	superfluid velocity components: $\vec{v}_a^p, \vec{v}_a^k, \vec{v}_s^p$ and \vec{v}_s^k , where the index "a" stands for the
four fundamental	anti-symmetric (gravity) excitation mode, and the index "s" – for the symmetric
energies in terms	(electromagnetic) excitation mode. The indices " p " and " k " symbolize potential and
of the superfluid	kinetic energy components, respectively. Each energy category corresponds to some
velocity	specific degree of freedom in the double-helical flows. In the unperturbed vacuum two
components	degrees of freedom existing in the helical flow belong to the anti-symmetric mode. Both
	velocity components of helices in the anti-symmetrical double-helical flow carry the
	same amount of energy: $ \vec{v}_{a0}^p = \vec{v}_{a0}^k = c$, whereas the symmetrical mode does not
	exist: $ \vec{\boldsymbol{v}}_{s0}^p = \vec{\boldsymbol{v}}_{s0}^k = 0.$
Stable physical	Structure of each stable physical object is the agglomerate of elementary particles. Each
objects	particle supports resonant oscillation at its De Broglie frequency, in which are
	exchanged optimally balanced amounts of kinetic and potential energies. Energy of any
	phononic quasi-particle is directly proportional to its resonance frequency. In the SVT,
	elementary particles are also phononic excitations of the vacuum crystalline structure.
	Hence the energy stored in the elementary particle should be in accordance with the
	E = hv the Planck equation, where v is the De Broglie frequency of its inner oscillations.
The principle of	The energy content of any physical object or physical event can be represented using
the steepest	Fourier spectral decomposition of inner resonant oscillations. At any frequency (or

maximization of	wavelength) component of this Fourier expansion, the physical object tends to perform
the quality factor	the steepest descent of its free energy content, namely, the system strives to perfect
(the Q-factor).	balance between kinetic and potential energies of its inner oscillations. The Lagrange
	principle calling for the steepest descent of the system free energy appears to be
	equivalent to the principle of the steepest maximization of the ratio between the
	reactive power of inner oscillations and the object's active losses. We shall name this
	ratio as a quality (Q) factor.
Conditions for	In spatial resonance, full power exchange between the stimulus and the system occurs
spatial resonances	due to spatial matching instead a time period matching as in the conventional frequency
between	resonance. For instance, Zhenyu Wang et. al. (2017) revealed a creation of spatial
symmetric and	resonance when the stimulus matches the space pattern of a normal mode in an
anti-symmetric	oscillating system.
excitation modes,	The spatial resonance may be generated between two oscillation modes of the system if
known also as	there is some coupling mechanism between the modes. Such conditions exist between
toroidal	symmetric and anti-symmetric propagation modes in the double-helical structure. The
resonances.	spatial resonance in double-helical ring structure may occur if one of two conditions are
	satisfied:
	Condition A: Within curved double-helical structure of any massive particle takes place
	full exchange between the kinetic energy of large-scale symmetric excitation and the
	potential energy of the smaller-scale anti-symmetric excitation, creating a phenomenon
	of spatial resonance.
	Condition B: similarly, the same structure is able to support full exchange between the
	potential energy of large-scale symmetric excitation and the kinetic energy of the
	smaller-scale anti-symmetric excitation.
	These two conditions may serve as definitions of spatial resonance in double-helical
	structures. Structures supporting spatial resonance exhibit enhanced stability and have
	the optimally large value of quality factor. Category of physical objects generated due to
	the spatial resonance in double-helices includes all massive elementary particles, quarks,
	and complex clusters of different spatial scales up to objects of cosmic scales.
Special role of	When considering quark, the smallest elementary massive object, it turned out that the
toroidal shape	conditions of spatial resonance are realized in objects having the form of a double helix
	curled into a torus. Such structure may also be named as double-helical ring resonator.
	Similar resonant behavior may also characterize a wide range of stable physical objects

	from elementary particles and up to objects of cosmic scale, including black holes and
	even the entire universe.
Hypothetical quark structure	Structure of electrically charged massive particle, e.g. quark, supports spatial resonance based on full exchange between kinetic and potential energies of gravity and electromagnetic excitations. This observation is in line with the Glashow-Salam- Weinberg electroweak theory and experimentally verified by (Noecker M.C., et.al., 1988). The double-helical ring structure simultaneously performs two types of resonant transformations:
	 a) Kinetic gravity energy (the energy of inert mass) is exchanging with potential electromagnetic energy (electric charge), and b) Potential gravity energy (the energy of gravity mass) is exchanging with kinetic electromagnetic energy (magnetic moment).
	Remarkably, both spatial resonances take place along the same particle structure created by the dominant energy of the gravity resonance. Bending of double-helices to the closed-loop contour violates symmetry of the structure. Both types of spatial resonance generate areas with abnormally high densities of gravitational and electromagnetic energies. These energy density abnormalities are confined in two poles on opposite sides of the ring structure (see Fig.10). There are three possibilities following from the two options of spatial resonances described above:
	 a) Quark type #1 possessing one pole with ¹/₂e electric charge (abnormally large density of potential electromagnetic energy) and the other pole hosting the inert mass (abnormally large density of kinetic gravitational energy). The kinetic mass pole enforces both poles rotation around the ring structure; b) Quark type #2 possessing one pole with ¹/₂ ħ magnetic moment (abnormally large density of kinetic electromagnetic energy) and the other pole with gravity mass (abnormally large density of potential gravitational energy); c) Quark type #3 hosting both types of spatial resonances in its structure.
	Additional three possibilities exist for the cases when spatial resonances drive one of poles of the ring structure to abnormally high and the other to abnormally low energy densities of electromagnetic and gravitational energies. This completes the total number of quark's types to six.
	Different types of the quark structure are either electrical or magnetic monopoles. As such, they mutually attract each other forming much more stable nucleons, like proton and neutron.
	This simple model promises to explain the phenomena of electrical charge and magnetic moment generation in quark particles. Both phenomena are electromagnetic, but are generated at the expense of the much greater amount of gravity energies stored in the quark structure. Energy of the anti-symmetrical mode is confined in the inner volume between two helices and is just slightly open for interactions with the symmetric mode of the electromagnetic excitation, which occupies mostly the outer areas of the double-helical hydrodynamic structure. Amounts of gravitational and electromagnetic energies involved in the spatial resonance exchange are equal, but this amount is only a small

Fractal structure of The entire observable part of the universe stores energy	of the spectrum band
the detectable $[F_{PL} > f > 0]$. It appears to be a fractal each spatial scale of	of which is populated by
universe. Spatial numerous massive physical objects united by collective coherei	nt oscillations. The scaling
scaling concept is the embodiment of the idea that originated	with the ancient Greek
phenomenon. philosophers that "big thing consists of many small things". N	ow we can rephrase it as
"each object belonging to some macroscopic scale consists of	many small objects, each
of which, in turn, consists of many more subtle objects, etc.".	In the observable part of
the universe we witness apparently isolated physical objects. T	his is the evidence of the
depleted vacuum energy unable to generate continuous lattic	ce, similar to the vacuum
lattice. All observable physical objects are condensates of the	random energy released
by the vacuum lattice.	
The first impression is that observable objects are isolated. T	This impression is illusory
since apparently isolated objects are coupled by long-	range gravitational and
electromagnetic interaction mechanisms, and are involved	d in collective coherent
oscillations. The mutual interaction effect is observable in the r	ealm of objects of cosmic
scales, where each object possesses maximum degrees of	freedom. Actually, each
spatial scale is a network spread over the entire universe, exa	actly like the Planck-scale
vacuum lattice. The special role of the vacuum lattice is that its	structure is composed of
tiny hydrodynamic mechanisms responsible for all energy tr	ansformations which are
necessary for generation of larger-scale networks. The other r	najor difference between
the vacuum lattice and the matter organizations of larger sc	ales is the bandwidth of
coherent oscillations. Bandwidths of oscillations supported b	y objects of larger scales
are much broader than of the vacuum lattice, and this e	enriches the larger-scale
networks with the diversity of physical phenomena.	
In certain sense, the words "lattice" and "scale network" a	re synonyms. The lattice
spontaneous generation proved to be the best way to produ	ce the system possessing
the optimally large quality factor. According to performance	criterion of the optimally
large quality factor, lattices (or scale networks) are the best-pe	erforming creations in the
entire nature, and among them, the most successful object	is the vacuum lattice. All
other utmost stable objects are more or less successful imi	tations of a perfect and
unsurpassed vacuum: crystals, gaseous and liquid media,	biological systems and

	eventually the cosmic web.
	Two alternative conditions A & B of spatial resonance are satisfied at discrete
	opportunities of very specific ratios of toroidal-to-poloidal rotation radii of toroidal
	structures of double-helical ring resonators, named the torus aspect ratio. Each such
	opportunity is created for ring structures of different spatial scales. Actually, the scaling
	phenomenon itself is the result of spatial resonance. When applied to the double-helical
	torus structure, the spatial resonance may also be named as the toroidal resonance. The
	spatial resonance phenomenon is responsible for creation of smallest massive particles,
	quarks, which are continuous ring structures. At larger scales, the spatial resonance
	unites spatially isolated physical objects, like in the case of cosmic web. Any given scale
	network within the fractal serves as an energy attractor and is relatively densely
	populated by a variety of stable physical objects of similar spatial scales. Densely
	populated zones are separated by wide not populated spectral gaps. In accordance with
	the SVT, each spatial resonance is due to exchange of equal amounts of kinetic/potential
	electromagnetic energy and potential/kinetic gravitational energy. At the Planck scale,
	the energy exchange is between symmetrical and anti-symmetric excitations, whereas
	the anti-symmetrical counterpart are the vacuum lattice oscillations of much higher
	frequency and of much finer spatial scale of the matter organization. Hence the energy
	exchange during the spatial resonance takes place within the structure supporting some
	small frequency and some large frequency. In the case of spatial resonance occurring in
	double-helix curled to torus (see Fig.9), the ratio of anti-symmetrical resonant oscillation
	frequency to the symmetrical mode resonant oscillation frequency is the universal
	constant for all scales. Hence the De Broglie frequencies of the nested spatial
	resonances are likely to constitute geometrical progression.
Quarks	Tree quarks clustering to protons and neutrons forms massive structures of enhanced
agglomeration to	stability. As illustrated in the Fig.8a, clustering of two ring resonators yields straightening
proton and	of their common border and generation of two vortices. This in turn, reduces the
neutron	circumference of each quark involved in the agglomerate and limits its ability to
	generate mass, electric charge and magnetic moment effects. Hence the quark involved
	in the cluster has non-integer electric charge. The lost in the agglomeration process free
	energy is reduced from the agglomerate total free energy and is the guarantee of its
	stability. This also explains why break of the neutron or proton nucleons consumes so
	much energy. This investment of external energy is absorbed in increased masses of the
	isolated (and less stable) quarks, which are generated as a result of the nucleons

	disintegration.
Bonded electron	The model exposition is culminated by a short description of the bonded electron
	phenomenon. It may be shown how free (not compensated) quark's energy of inert and
	gravity masses, electric charge and magnetic moment generate the phenomenon of
	bonded electron orbits. The orbital structure is a planar ring resonator located on a
	sphere concentric with the atom's nucleus. Some specific proton, a part of the nucleus
	cluster, induces co-centric gravity and electric potentials. This is equivalent to vacuum
	gravitational and electric polarization. Simultaneously, the vacuum lattice surrounding
	the nucleus reacts to inert mass and to magnetic energy stored in the proton by
	rotations. All four vacuum excitations induced by the proton generate the conditions for
	spatial resonances of the types A and B, and both resonant conditions are satisfied when
	the excitations encircle the orbital structure of the bonded electron. The bonded
	electron is just the energy of these spatial resonances. The energy of electric
	polarization constitutes the negative electric charge, the energy of induced magnetic
	moment is the electron's spin energy, the potential component of the gravitational
	vacuum polarization constitutes the energy of electron's gravitational mass, while the
	gravitational kinetic momentum creates the electron's orbiting around the circular
	trajectory. Alike proton, the resonant induced excitation has double-helical structure.
	The double-helical flow maybe decomposed to two helices which correspond to two
	electrons with oppositely directed spins but occupying the same orbit.
	Each bonded electron and the associated with it proton form nonlinear vortex resonator
	with conical shape. The cone apex is located at the nucleus location, and the cone basis
	coincides with the plane of the electron circular orbit. The electrically neutral atomic
	structure may be presented as an agglomerate of several conical vortex structures
	produced by several spatial resonances of gravitational and electromagnetic
	polarizations in the vacuum lattice surrounding the positively charged massive nucleus.
	The conical resonator exists due to energy exchange between a single nucleon and two
	associated bonded electrons occupying the same stationary orbit.

References:

Abrikosov A. A. (2003), Type II Superconductors and the vortex lattice, Nobel Lecture, December 8, 2003 Afanasjev, V. V. (1995), Rotating ring-shaped bright solitons, Phys. Rev. E 52, 3153 Axelrod, A. (2023), The structured vacuum theory,

https://www.researchgate.net/publication/370776659_The_structured_vacuum_theory#fullTextFileContent , May 15, 2023

Axelrod, A. (2023a), On the primacy of the energy conservation principle and some of its consequences, <u>https://www.researchgate.net/publication/370073926_On_the_primacy_of_the_energy_conservation_prin</u> <u>ciple_and_some_of_its_consequences</u>, April 19, 2023

Ayzenberg-Stepanenko, M., & Slepyan, L. (2008). Resonant-frequency primitive waveforms and star waves in lattices. Journal of Sound and Vibration, 313, 812-821

Bos, James, M., et.al. (2018). Turbulence and turbulent pattern formation in a minimal model for active fluids. arXiv preprint arXiv:1711.10865v2 [physics.flu-dyn]. https://arxiv.org/pdf/1711.10865.pdf

Chen, Pisin (1994), Resonant Photon-Graviton Conversion and Cosmic Microwave Background Fluctuations, SLAC-PUB-6494, July 1994

Gertsenshtein, M. E. (1962), Wave resonance of light and gravitational waves. J. Exptl. Theoret. Phys., 41:113–114, 1 1962

Gertsenshtein M. E., et.al., (1962a), On the Detection of Low Frequency Gravitational Waves. Sov. Phys. JETP, 16:433, 1962

Glashow, S.L., Partial Symmetries of Weak Interactions, Nucl. Phys. 22(1961) 579-588

Goldstone, J., Salam, A., Weinberg, S., Broken Symmetries, Phys. Rev. 127(1962) 965-970

Ejlli Damian, et,al. (2019), Graviton-photon mixing, Phys. Rev. D, 99(4):044022

Feynman, R. P. (1955). "Application of quantum mechanics to liquid helium". Progress in Low Temperature Physics. 1: 17–53. doi:10.1016/S0079-6417(08)60077-3. ISBN 978-0-444-53307-4.

Hehn, Michel et.al. (1996), Nanoscale Magnetic Domains in Mesoscopic Magnets, Jul 1996, Science 272(5269):1782-5 DOI: 10.1126/science.272.5269.1782

Jin Dai, **et.al. (2023)**, Graviton-Photon Conversion in Atoms and the Detection of Gravitons, arXiv:2302.07044v3 [gr-qc], 18 May 2023, https://arxiv.org/pdf/2302.07044.pdf

Noecker M.C., Masterson B.P., Wieman C.E., (1988) Precision measurement of parity nonconservation in atomic cesium: A low-energy test of the electroweak theory, Phys Rev Lett. 1988 Jul 18;61(3):310-313. doi: 10.1103/PhysRevLett.61.310.

Nore C., et.al. (2006), Nonlinear Schrödinger Equation: An Hydrodynamical Tool?, pp.105-112, Note Lecture Physics, Series Vol. 462, <u>https://link.springer.com/content/pdf/10.1007%2FBFb0102405.pdf</u>

Olsen, K. et.al. (2012). Geometry of the toroidal N-helix: optimal-packing and zero-twist, New Journal of Physics 14 (2012) 023063

Onsager, L. (1949). "Statistical Hydrodynamics". Il Nuovo Cimento. 6(Suppl 2) (2): 279–287. Bibcode:1949NCim....6S.279O. doi:10.1007/BF02780991. ISSN 1827-6121. S2CID 186224016

Palessandro, Andrea et.al. (2023), A simple derivation of the Gertsenshtein effect, Physics of the Dark Universe, Volume 40, May 2023, 101187

Savinov, V. et. al. (2014). Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials, Physical Review, B 89, 205112

Wikipedia, Quantum vortex,

https://en.wikipedia.org/wiki/Quantum_vortex#:~:text=The%20existence%20of%20quantum%20vortices,as %20a%20spatially%20continuous%20wavefunction

Zhenyu Wang et. al. (2017). Resonance beyond frequency-matching: multidimensional resonance, New J. Phys. 19 033012

Zhou, Y., et.al. (2022). Methodology for formulating dynamical equations in analytical mechanics based on the principle of energy conservation. Journal of Physics Communications, 6, 035006

Figure 1: Illustration of the universe quantization to physical objects of different scales

Figure 2: Example of nested honeycomb lattices, in which only two scales of quantization are shown.

Figure 3: Illustration of the vacuum lattice structure geometry

Four sets of parallel planar honeycomb lattices with a relative orientation of 120° fill the entire volume of the universe. All hexagonal contours are produced by double-helices of the superfluid flows. Perimeters of elementary hexagons tiling the vacuum lattice are known as Planck's length, and equal to $\lambda_P = 1.616 \times 10^{-35} m$.

The vacuum lattice performs several functions for the universe activity below the Planck frequency barrier and beyond it. Some of its mechanisms performing these functions are listed below.

Elements A: of this structure perform the function of energy conversion within the same spatial scale. This mechanism is responsible for propagation of electromagnetic and gravitational excitations.

Elements B: perform energy transmission between a variety of spatial scales, and this function is required for energy compression and decompression.

Elements C: are responsible for providing the trafficking path for the excitation energy for its propagation along the double-helical structures, as required for energy redistribution in space.

Figure 4: Illustration of resonant coupling between hexagon structures of two adjacent spatial scales. Each solid line in this image is double-helical superfluid flow. Straight sections of each scale are double-helical flows. The coupling sites are red-colored hexagonal vortices along which are satisfied conditions of spatial resonance. The spatial resonance is due to full exchange between kinetic and potential energies of symmetric and anti-symmetric propagation modes of double-helices of different scales.

Figure 5: (a) Double-helical geometry of straight sections and definition of the symmetrical (the Common-Mode) and anti-symmetrical (the Differential-Mode) components of superfluid streams; (b) The one-turn section of helical steam-line as the most primitive resonant structure carrying equal amounts of kinetic and potential energies. The kinetic and potential energies are carried by the longitudinal and transverse velocity components, respectively.

Note: Graph showing the ratio 2a/D as a function of pitch angle, $v \perp$ [deg.], where *a* is the helix radius and *D* the diameter of the helical tubes. The tightly packed double helix has a pitch angle of 45°; it is the helix with the smallest pitch angle obeying the criterion that 2a = D. Geometrically, the double helix is given by two tubes of diameter D, whose centerline defines two helices with simple parametric equations. A helix is a curve of constant curvature, κ , and torsion, τ , and it can be specified by two parameters, for example a and H, where a is the helix radius (the radius of the cylinder hosting the helical lines) and H the helical pitch (the raise of the helix for each 2π rotation).

Courtesy of Kasper Olsen and Jakob Bohr, The geometrical origin of the strain-twist coupling in double helices, arXiv:1003.5358v2 [physics.bio-ph] 7 May 2010

Figure 6: Illustration of fractal multi-scale architecture of the vacuum structure.

Figure 7: Assignment of four fundamental energy categories to different velocity components & mechanisms of resonant energy exchange between a variety of energy categories

Figure 8: Clustering of three helical ring resonators to a single particle

Figure 9: The circular double helix, Courtesy of Olsen, K. et.al. (2012)

Figure 10: Two possible energy distributions along the ring structure of massive particle, result of two spatial resonances