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Abstract

This paper explores ideas for new physics at both quantum and cosmological levels. It
begins with proposals for building the fundamental particles from infinite
superpositions that fit the SM, apart from infinitesimal differences, with possibly
profound consequences including the possibility of both massive and infinitesimal
mass spin 2 gravitons. All fundamental particles have at least an infinitesimal mass
always proportional to the inverse horizon radius times the the Hubble flow velocity.
The symmetry breaking of the SM remains essentially valid because, with masses
almost zero and nearly light velocity, helicity is virtually fixed. Cosmic wavelength
(kmin) gravitons vastly outnumber all other particles and the invariant action they
require comes from the expansion of space inside the horizon. When mass is
distributed evenly as dust, gravitons have uniform spatial density. To maintain Kmyin
action density invariance, the metric changes around mass concentrations in agreement
with Einstein’s equations, apart from infinitesimal differences at small cosmic radii,
becoming very significant at large radii. Over large regions of space this difference
makes the values of the Einstein tensor components in the Freidman equations average
zero. Space is always flat, and Quantum Mechanics (QM) controls the expansion of
space regardless of Omega, with or without inflation. The scale factors in the radiation
era, and the start of the matter era, are similar to Lambda-CDM cosmology. Massive
spin 2 gravitons have galactic radii Compton wavelengths and spherically symmetric
wavefunctions with inverse radius squared mass density, just as the proposed dark
matter properties that give galaxies their observed behaviour. The rate at which
massive gravitons form inside the cosmic horizon is related to the clustering of matter
into galaxies and controls both the scale factor and accelerating space expansion.
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1 Introduction

The current formulation of the Standard Model (SM) of particle physics was finalised in the
mid-1970s. However, although extremely successful in providing testable experimental
predictions and currently the best description we have of the subatomic world, the theory still
leaves a significant number of phenomena unexplained. In the last forty years or so there have
been a number of theories seeking to move physics beyond the SM, including supersymmetry
and string theory. However, none of the particles predicted by supersymmetry have yet been
found, despite a decade of work at CERN’s Large Hadron Collider (LHC), and string theory,
widely considered the most likely path for including gravity in the SM, is not yet supported by
any direct empirical evidence. Further, dark matter has yet to be directly detected, and dark
energy remains elusive. In contrast to these disappointments however, the ATLAS and CMS
experiments at CERN's LHC announced in 2012 that they had each observed a new particle in
the mass region around 126 GeV; a particle consistent with the Higgs boson predicted by the
SM.

String theory has been strongly criticised over its inability to make testable predictions [1-6].
However, along with the multiverse theory, it has generated intense and important debate over
the scientific standing of non-testable theories in physics. In 2009 Dawid, a theoretical
physicist turned philosopher, noted substantial conflict between supporters and critics of
string theory in assessing its status and success [7]. Dawid argued that this disagreement could
best be understood in terms of a paradigmatic rift between the two sides over their
understandings of theory assessment. Critics on the one hand believed that “it is a core
principle that scientific theories must face continuous empirical testing [emphasis added] to
avoid going astray” (p988). In contrast, supporters of string theory placed importance on
theoretical criteria for theory assessment. In an interview several years later Dawid [8]
suggested this emergence of non-empirical theory assessment, or post-empirical science,
represented a Kuhnian paradigm shift in physics and that it would become increasingly
important due to the difficulties associated with experimentally testing new theories. In
Nature, Ellis and Silk in 2014 [9] made an appeal to “Defend the integrity of physics.” They
expressed concern that when faced with the difficulties of applying fundamental theories to
the observed universe, some researchers had begun explicitly advocating a change to how
theories should be assessed, viz., if deemed sufficiently elegant and explanatory, experimental
testing was unnecessary. Ellis and Silk disagreed, insisting that empirical testability is a
necessary condition for a theory to be considered scientific, and concurred with Hossenfelder
[10] that the concept of post-empirical science was an oxymoron.

Another important issue relating to the testability of theories in physics has been highlighted
recently by the astrophysicist David Merritt [11]. In regard to the lambda cold dark matter
model (ACDM ), which contains Einstein’s theory of gravity, Merritt notes that dark matter,
dark energy and inflation were all added to the theory in response to observations that would
falsify it, i.e. they are ad hoc, or auxiliary hypotheses. Further, he argues that they are
conventionalist hypotheses in that they add no empirical content and hence are unfalsifiable in
the sense defined by the philosopher Karl Popper. Popper had set specific criteria for
preserving falsifiability (or testability) when such “conventionalist stratagems” are employed,
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i.e., the modified theory had to make some new, testable predictions, and at least some of the
new predictions should be verified. Further, Popper’s student Imre Lakatos, tested and
refined these criteria to distinguish between “progressive” and “degenerating” research
programs. A progressive research program is one in which “its theoretical growth anticipates
its empirical growth, that is, as long as it keeps predicting novel facts with some success.” The
ACDM , according to Merritt, fails to meet such requirements as the auxiliary hypotheses
(dark matter, dark energy and inflation) have yet to be confirmed, and the ACDM is notably
lacking in successful predictions. Steinhardt [12] one of the founders of inflationary
cosmology, now also views that theory untestable and has become one of its sharpest critics.
The failure to progress significantly beyond the SM during the past four decades, the
increasing prominence of highly theoretical, mathematically elegant but difficult to test or
untestable theories, and threats to undermine testability as a sine qua non for a theory to be
considered scientific, all appear responsible for a succession of popular books expressing
concern at the current state of physics [1-5]. In her recently published Lost in Math: How
Beauty Leads Physics Astray, Hossenfelder [3] contends that the search for beauty has led
physicists astray, giving wonderful mathematics but bad science; belief that the best theories
are beautiful, natural and elegant has resulted in theories that are untestable. Lamenting the
lack of a major breakthrough in the foundations of physics during the last forty years, she
advocates physicists need to rethink their methods. In reviewing her book Wilczec [13]
contends that Hossenfelder presents an overly pessimistic view, but concedes that “the
malaise expressed...is not baseless and is widely shared among physicists” (p57).

In view of these concerns over the current state of physics we offer an alternative approach,
but one which still uses very simple basic principles of quantum mechanics (QM) and special
relativity (SR). Apart from infinitesimal differences it is (almost) consistent with the SM. It
suggests the possibility of massive spin 2 gravitons emitted by baryons, with galactic radii
Compton wavelength spherically symmetric wavefunctions, causing similar effects in the
metric as dark matter. It proposes that the acompanying massive gravitons control both the
scale factor and cosmic acceleration.

We contend our theory is both simple and capable of making testable predictions; at the
cosmological level, if not the quantum level. It is, however, radical in its proposals and
implications. Consequently, it will require a significant shift in thinking, not only in regard to
the fundamental particles, but also the evolution of the cosmos. Such a shift, however, may
facilitate progress beyond the SM and/or the ACDM .

Because these proposed ideas are so radical, we start with some preliminary explanatory
notes. Part 1 of the paper follows and includes the forming of fundamental particles from
infinite superpositions (section 2), their properties (section 3), and high energy superposition
cutoffs (section 4). Part 2 looks at the cosmological consequences of these infinite
superpositions. We end with a discussion about the overall implications of this paper,
particularly the possibility of massive virtual gravitons forming galaxy halos consistent with
the counter intuitive behaviour of QM, and the slightly different way of looking at the
warping of spacetime which could lead to a QM expansion model as an alternative to the
ACDM.



1.1 List of Some Abbreviations, Acronyms and Symbols Used in the

Text
ACDM  The Lambda Cold Dark Matter Model of Cosmology.
CMB Cosmic Microwave Background.
EM Electromagnetic.
FLRW  Friedmann-Lemaitre-Robertson-Walker metrics.
GR General Relativity.
ICM Intracluster Medium.
MOND  Modified Newtonian Dynamics.
SM Standard Model.
SR Special Relativity.

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QM Quantum Mechanics.

N, n &s. Integers n=3,4,5,6 & 7 are used in y, =C,_r’exp(-n’k’r? /18)Y (8, ¢) virtual

[sN -dk |
k

primary (I =3) wavefunctions at wavenumber k. Their probability is L J where s is

spin, and N =1 for all massive s=1/2 fermions, aswell as s=1 and s=2 massive bosons.
N =2 for all spin 1 and spin 2 infinitesimal mass bosons.

Zc is the primary to secondary coupling ratio = «," at the Planck energy superposition cutoff.
K.in 1S the wavenumber of the maximum cosmic wavelength but cuts off exponentially.

R,y 1S the observable horizon radius.

Y =K, Ry, radians.

Pecmin 18 the normal three dimensional density of k., gravitons

Kermn 1S the K., graviton invariant as in pg, ... = Keymin 0K, Where Kg, .. ~ 0.458¢.

Aemin The maximum or k. wavelength.

m, is the symbol used for massive gravitons.

a,,c 1S the coupling constant between Planck masses for massive gravitons.

a; =~ 0.004 is the graviton coupling constant between Planck masses used in our models.

a with no subscript is the usual electromagnetic coupling constant.

p, 1s the average density of both baryonic and massive graviton mass/energy in the universe.

T, is the infinitesimally modified Einstein tensor where T, =T, (Local) -T, (Cosmos).

T,,(Cosmos) is the Einstein tensor averaged over the whole universe.
Q=1 inthe ACDM at critical density for flatness.



1.2 Preliminary Explanatory Notes

1.2.1 Summary flow chart

This paper starts with the assumption that all “fundamental particles” are built from combinations of
“virtual preons”. There are three preons, coloured red, green and blue, and their antiparticles. All preons
are spin zero and electrically charged.

A\

Different groups of 8 preons (with no weak charge) couple to the electromagnetic and 8 colour ground
state fields, forming | =3 spatially dependant wave functions. Infinite superpositions of these wave
functions form all the spin %2 & spin 1 standard model particles, as well as spin 2 gravitons. The
frequencies of these wavefunctions start at kmwOn radius) * —> up to Planck scale maximum.

——— —-
Cosmic wavelength zero point densities are very limited. Because High frequency coupling is
spin zero preons are born with zero momentum and infinite to local ground state fields
wavelength they can couple to modes anywhere inside the extra where the available densities
space generated by the expanding Hubble flow horizon. are plentiful.

v

Low frequency coupling controls the average universe density p, o ﬁ in Planck units, where R, Is
OH

the observable horizon radius, V' is the Hubble flow velocity.

When mass is distributed evenly as a dust there is a uniform density of k_. gravitons throughout a

horizon radius sphere, space and spacetime is flat everywhere. If any of this mass is moved to a central
location it increases the spatial density of k. gravitons surrounding it, distorting spacetime locally, and

min

restoring density in agreement with Einstein’s equations, but with infinitesimal differences effective at

o 1 872G
cosmic radii: GW=RW—EQWR= )~ [

87G
T, (Local) =T, (Cosmos) | = = T/,. In large regions

MU y

of space the average values of T, =0=G, . Space is flat and the Freidman equation components

MO
average zero. QM controls the expansion of space regardless of Q. with or without inflation. Writing
the scale factor as a(t) «ct”; in the radiation era p=1/2, the horizon velocity V =2; the matter era
startsat p=2/3 and V =3, all as in current cosmology when Q =1.

ra

Massive spin 2 gravitons are emitted by baryons with a mass that is always~10° times the mass of
infinitesimal mass gravitons and always proportional to the inverse horizon radius. They currently have
galactic radii Compton wavelengths and spherically symmetric wavefunctions mimicking dark matter
p oc r? radial density behaviour. They give galaxies their observed MOND-like behaviour, and control

both the scale factor and acceleration of spatial expansion. The domain in which GR is true, is retricted
to the spatial location in which it is applied.




1.2.2 General relativity as an initial guide

GR informs us that all forms of mass, energy and pressure are sources of the gravitational
field. Thus to create gravitational fields, all spin ¥ leptons & quarks, spin 1 gluons, photons,
W* & Z%particles etc. emit virtual gravitons, except possibly gravitons themselves (section
6.2.6), as gravitational energy is not part of the Einstein tensor.

The starting point of this paper assumes there is a common thread uniting these fundamental
particles making this possible. Equations are developed that unite the amplitudes of the colour
and electromagnetic coupling constants with that of gravity. The precision required by
quantum mechanics for half integral and integral angular momentum allows gravity to be
included, despite the vast disparity in magnitude between gravity and the other two. This
combination of colour, electromagnetic and gravitational amplitudes in the same equation is
possible because of a radically different approach taken in this paper: an approach using
infinite superpositions of positive and negative integral # angular momentum virtual
wavefunctions for spin %2, spin 1 and spin 2 particles. The result is almost identical to the SM,
with infinitesimal but important differences. The total angular momentum can be summed
over all wavenumbers k; from k=0 to some cutoff value k. . We will assume (as with
many unification theories) that the cutoff for these infinite superpositions is somewhere near
Planck scale. Firstly, imagine a universe where the gravitational constant G — 0. As G —» 0,
the Planck length L, — 0, the Planck energy E, - < and k. — «also. If we sum the
angular momentum of these infinite superpositions when G —0 (i.e. from k=0 to
Koot —> ) We get precisely half integral or integral % for the fundamental spin %2, spin 1 &
spin 2 particles in appropriate m states. If we now put G >0 the infinitesimal effect of
including gravity can be balanced by an equal but opposite effect due to the non-infinite cutoff
value in k. A near Planck scale superposition cutoff requires gravity to be included to get
precisely half integral or integral 7. (Section 4.2)

These infinite superpositions have another very relevant property relating to the fact that all
experiments indicate that fundamental particles such as electrons can behave as point
particles. Each wavefunction with wavenumber k, which we label as y, , has a maximum
radial probability at r ~1/k and they all look the same (Figure 1.1.1). Every wavefunction
y, of these infinite superpositions, interacts only with virtual photons (for example) of the
same k; if superpositions representing say an electron are probed with such photons (that
interact only with wavefunction v, ) the resolution possible is of the same order as the
dimensions of y,,both have r~1/k. The higher the energy of the probing particle the
smaller the y, it interacts with; the resolution of an observing photon can never be fine
enough to see any y, dimensions. Even if this energy approaches the Planck value, with a
matching y, radius near the Planck length it is still not possible to resolve it. This behaviour
is consistent with the quantum mechanical properties of point particles.



— — kr —

Figure 1.1.1 Radial probability of the dominant n=6 mode of a spin ¥ wavefunctiony, .

1.2.3 Primary and secondary interactions

Supposing that superpositions can in fact build the fundamental spin %, spin 1, and spin 2
particles, then what builds the superpositions? Answering that question requires dividing all
interactions into two categories: primary and secondary.

Secondary interactions are those we are familiar with, and are covered by the SM; but with
the addition of gravity, which is not included in the SM. They take place between the
fundamental spin %2, spin 1 and spin 2 particles formed from infinite superpositions. They are
the quantum electrodynamics/quantum chromodynamics (QED)/(QCD) etc, interactions of all
real world experiments.

Primary interactions we conjecture on the other hand, are those that build virtual infinite
superpositions. The base states of virtual infinite superpositions only last for time
AT <h/2AE, and the primary interactions that build them are completely hidden to the real
world of experiments. Infinite superpositions cannot be decomposed into their base states, in
the same way as base states of fundamental particles can be observed. The quantum world is
always hidden until observation, even if we know base state probabilities. But virtual infinite
superpositions are always hidden, and only fundamental particles can be observed.

Primary interactions are extremely simple. They are only one way; zero-point fields act on the
particle, but the particle cannot act on, or influence, zero point fields. (Its invariance is
guaranteed by Heisenberg’s uncertainty principle.) In contrast, secondary interactions involve
all the excited modes above the ground state and are two way. These excited field modes both
act on the particle which in turn acts back on the field. Quantum field theory (QFT) is all
about these complicated two way interactions. Lagrangians are ideal for these two way
interactions, predicting symmetries and conservations. However, Lagrangians are less relevant
in primary interactions: the natural invariance of the ground state carries through into
symmetries and conservation laws. In view of this, our proposals depart from the current
practice of basing new theories on Lagrangians. In this regard, while acknowledging their
enormous predictive power, Penrose [6] expresses unease with this modern trend, arguing
against relying too strongly on Lagrangians in searches for improved fundamental theories (p
491). History tells us progress can be inhibited by assuming that what has worked so well up
to now must always be so. Newton reigned supreme for almost two centuries until superseded
by Einstein.
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The first half of this paper is about these primary interactions, and the superpositions they
build representing the fundamental spin %, spin 1 and spin 2 particles. Primary interactions
are between spin zero particles borrowed from a Higgs type scalar field, and the zero-point
vector fields. In the 1970’s models were proposed with preons as common building blocks of
leptons and quarks [14-17]. In contrast with the virtual particles in this paper, some of these
earlier models used real spin % building blocks. However, real substructure has difficulties
with large masses if compressed into the small volumes required to approach point particle
behaviour. It was probably because of this high mass/small volume problem that these earlier
preon proposals fell out of favour. On the other hand our proposed virtual substructure
borrows energy from zero point fields where the mass contribution at high k values can be
cancelled (section 3.2.1). As in earlier models this paper also calls the common building
blocks preons, but here the preons are both virtual and spin zero. They also now build all spin
% leptons and quarks, spin 1 gluons, photons, W & Z particles, plus spin 2 gravitons, in
contrast to only the leptons and quarks in the earlier models. (SeeTable 2.2.1) As these preons
have zero spin they possess no weak charge. Primary interactions (section 2.2.1) can take
place only with the zero point colour, electromagnetic and gravitational fields. The three
primary coupling constants for each of these three zero-point fields are different from, but
related to, secondary coupling constants.

The behaviour of primary coupling is also entirely different from secondary coupling.
Secondary coupling strengths vary (or run) with wavenumber k (the electromagnetic
increasing with k and colour decreasing with k). In contrast, we conjecture primary coupling
strengths (or constants) do not run. In this paper virtual preons are continually born with mass
out of a Higgs type scalar field, existing only for time At <#/2E. At their birth, they interact
while still bare with zero point vector fields; at this instant of birth t=0. The primary
coupling constants consequently are fixed for all k; there is no time for charge cancelling or
reinforcing, which in secondary interactions forms around the bare charge progressively after
its birth. The equations work only if this is true, and they also work only if the primary colour
coupling constant is one. (Sections 2.2.2). The ratio between the primary and secondary
colour coupling constants labelled x. is thus (if primary colour coupling is one) the inverse
of the secondary (or usual «;"of QCD) colour coupling constant at the superposition cutoff at
Planck Energy. (Sections 3.3 & 4.2.2) To enable the primary coupling to colour,
electromagnetic and gravitational zero point fields, preons need colour, electric charge and
mass. There are three preons, red, green & blue with positive electric charge, and their three
anticounterparts. Their mass borrowed from some type of scalar Higg’s field, or the time
component of zero-point fields must always be non-zero. This is discussed further in section
1.2.4. As there are eight gluon fields, superpositions are built with eight virtual preons for
each virtual wavefunction y, . The nett sum of these eight electric charges is 0,42, +4,46,
and never >+6. This leads to the usual 0,+1/3,+2/3,+1 electric charge seen in the real
world. Various combinations of these eight preons in appropriate superpositions can build
leptons and quarks, colour changing and neutral gluons, neutral photons, neutral massive Z°
photons and the charged massive W* photons. (Table 2.2.1)
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1.2.4  Photons, gluons and gravitons with infinitesimal mass (~10*eV ).

Einstein taught us that regardless of how fast a particle with mass moves, a ray of light always
passes it at the same velocity c. The SM builds on this principle with one group of particles
travelling at less than c, and another group at ¢: massive and massless, with a clear division
between them. In the SM the neutrino family was included in the massless group.

However, towards the end of last century evidence slowly emerged that this was not true, and
the family of three neutrinos must have masses somewhere in the electron volt range. There is
no explanation for this in the SM.

Due to their very low mass, and normal emitted energies, neutrinos invariably travel at
virtually the velocity of lightc . Photons also have always been included in the massless group
traveling precisely at velocity ¢, except in the case of the massive W* & Z°. Massless virtual
photons have an infinite range, which has always been seen as an absolute requirement of the
electromagnetic field. On the other hand, this paper requires some rest frame (even if this
frame can move at virtually c) in which to build all the fundamental particles. Table 6.2.1
suggests photons, gluons and gravitons have ~10*eV mass with a range of approximately
the inverse of the causally connected horizon radius, and velocities sufficiently close to that of
light their helicity remains essentially fixed. This allows some form of Higgs mechanism to
increase this infinitesimal mass to the various values in the massive set. (These infinitesimal
masses are also in line with some recent proposals [18,19] where gravitons have a mass of
<10*eV to explain accelerating expansion.)

The virtual wavefunction we use is w, =C rlexp(-n’k’r’/18)Y(0,p), an 1=3
wavefunction. This virtual 1 =3 property is normally hidden. In the same way as scattering
experiments on spin 0 pions show spin O properties, and not the properties of the two
cancelling spin % component particles, this | =3 property of the virtual components of
superpositions is not visible in the real world. Scattering experiments can exhibit only the spin
properties of the resulting particle. The individual angular momentum vectors |L|= 231 of
the infinite superposition all sum to a resulting: |L,.,|= (\3/2)%, \2h or f6h for spin ¥,
spin 1 or spin 2 respectively, in a similar way to two spin ¥ particles forming spin 0 or spin 1
states. We also use the fact that the angle to the z axis of the angular momentum vector for
s=1/2,m=+1/2 is identical to | =3 m=+2.

The wavefunction y,, =C_ r®exp(-n’k’r? /18)Y (6,9) has eigenvalues P, > =n’*a’k? with
P..|=nhAk, suggesting it borrows n parallel |hk| quanta from zero point vector fields
provided n is integral. We can see this by letting k — o allowing energy E — niiw by
absorbing n quanta %@ from the zero point vector fields (section 2.3.2). As spin 3 needs at
least three spin 1 particles to create it, the lowest integral number n can be is 3. The virtual
| =3 property can however be used to derive the magnetic moment of a charged spin %,
m==1/2 state as a function of n. Section 3.5 shows g =2 Dirac electrons need an average
(over integral n states) of N =6.0135.

Three member superpositions v, => ¢y, With n=5,6,&7 achieve this, creating Dirac
spin ¥ states. We also find that n=6 is the dominant member and each superposition y,
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needs at least three members to make all the equations consistent for Dirac particles.
Secondary interactions at any wavenumber k can occur with y, if integers n change by +1,
thus changing the eigenvalues |P|=n7k by +#k where this can be only a temporary
rearrangement of the triplets of values of n. This is true, whether the interaction is with
leptons, quarks, photons, gluons, W & Z particles, or gravitons. (Section 3.3)

1.2.5 Superposition wavefunctions require only squared vector potentials

The wavefunction y, = C_ r®exp(—nk’r® /18)Y (8, ¢) requires an invariant in all coordinates
spherically symmetric squared vector potential to create it: Q*A* = n*2°k*r®/81. There are no
linear potential terms in contrast with secondary interactions. The primary interaction operator
is P2 =-7n°v?+Q?A?, with no linear potential terms included and Q simply represents a
collective symbol for all the effective charges concerned. As an example, the dominant n=6
wavefunction of a spin % Dirac y, requires a squared vector potential of
Q?A%? =n*h*k*r? 181 =16h%k*r? (section 2.3.1). Primary coupling between the eight virtual
preons and the colour, electromagnetic and gravitational zero-point fields produces a vector
potential squared value for all infinite superpositions which can be expressed as:

2p2 _ [8+8\WEMP +im, G, /(2shc)]2 e {(SN)(leg)dk}
B k

37(sN)(1+¢)

Q

(Where the length of the complex vector is simply squared here.) The significance of the
cancelling top and bottom factors (sN) is explained in section 2.1.2. Also the cancelling
(1+¢) factors are due to gravity and explained in section 4.2. The primary_colour coupling
amplitude is conjectured to be 1 to each of the eight preons, and ,/aEMp the primary
electromagnetic coupling. This equation applies regardless of the individual preon colour or
electric charge signs, whether positive or negative (section 2.2.3). The primary gravitational
coupling is to the particle mass m,. The primary gravitational constant is G, divided by 7c
to put it in the same form as the other two coupling constants. The magnitude of the total
angular momentum vector of the infinite superposition is ||—Tota||=~/5(3+1)- This Q*A’
without the gravity term generates superpositions with probability (N -s)dk /k, where s is
the superposition spin, N =1 for massive spin ¥ fermion & massive boson superpositions,
but N =2 for infinitesimal mass boson superpositions (Table 4.3.1 section 6 and its
subsections cover this more fully). Section 4.2 includes gravity raising the superposition
probability to (1+&)(N-s)dk/k where the infinitesimal ¢ (not to be confused with
infinitesimal mass) is & ~ 2m? / Spin ~7x10~*for electrons, and & ~10~*for a Z°in Planck
units 7=c=G =1. The y, superpositions require at least three integral n members. The
following three member superpositions fit the SM best (see Table 4.3.1).

Spin % massive N =1 fermion superpositions W= D, ClWy -
n=5,6,7

Spin 1 massive N =1 boson superpositions W= D CWy -
n=4,5,6
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Spins 1 & 2 infinitesimal mass N =2 boson superpositions W= D CWu -
n=3,4,5

Below are infinite superpositions ‘(//wysym> for only spins %2 & 1. The symbol « refers to the
infinite sum, s the spin of the resulting real particle, m its angular momentum state, and ss a
spherically symmetric state. Section 3.1.3 explains this format. Also, square cutoffs in
wavenumber k are used here for simplicity. Infinitesimal mass superpositions are introduced
in section 6.2. (Complex number factors are not included here for clarity.)

k (cutoff )

U/ > 1+
Massive N =1 Spin 1, = c sl y /—gdk
P 2 l//w,llz,m> n;] n I'). { Vi ﬂnk l//nk,4m>) 2k (11 l)
)

Infinitesimal mass N =2 Spin 1,

Vain)= 2 G | { + B Waan)

n=3,4.5 0 Yk k

In these infinite superpositions the probability that the wavefunction is spherically symmetric
is always y.7=1- 4 and the probability that it is an m state is g2, where S, is the
magnitude of the velocity of the centre of momentum frame (see Figure 3.1.1), which is where
the primary interactions that generate each v, take place. This is similar to the superposition
of time and spatially polarized virtual photons in QED. For example, spin %2 has probabilities
of y?2=1-p> spherically symmetric y, wavefunctions, and A5 x (v, m==2)
wavefunctions. Each y, is normalized to one but the infinite superpositions . are not
normalized, diverging logarithmically with k ; the same logarithmic divergence that applies to
virtual photon emission. (Real wavefunctions must be normalized to one as they refer to
finding a real particle somewhere, but this need not apply here.) Section 3.1 finds that m =+2
virtual wavefunctions have 42 probability of leaving an m=-2 debt. Integrating over all k
produces a total angular momentum for a spin Yz state of 72/2. (The procedures for spin 1 &

spin 2 particles are covered in section 3.2.2.)

The first half of this paper is about the primary interactions between spin zero preons and spin
one quanta that build the fundamental particles. The SM is about the secondary interactions
between them. (The weak force is only between spin Y2 particles and thus a secondary
interaction. It cannot be involved in primary interactions.) Apart from infinitesimal effects,
such as infinitesimal masses, the properties of fundamental particles covered in this paper
should be consistent with their SM counterparts. All N =1& N = 2 superpositions as in Table
4.3.1 are conjectured to cutoff at Planck energy E,. If this is so, both colour and
electromagnetic interaction energies must cutoff at E, /<n> ~2.03x10"*GeV., or ~1/6 of the
Planck energy. (The expectation value <n> is ~6.0135 for spin Y2 leptons and quarks Eq.
(3.5.16)). The electromagnetic and colour coupling constants at this cutoff are consistent with
SM predictions assuming three families of fermions and one Higgs field. (See Figure 4.1.1 &
Figure 4.1.2).
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Part 1

Fundamental Particles as Infinite Superpositions

2 Building Infinite Virtual Superpositions

2.1 The Possibility of Infinite Superpositions

2.1.1 Early ideas

After World War 11 there was still much confusion about QED. In 1947 at the Long Island
Conference the results of the Lamb shift experiment were announced [21]. This conference
was perhaps the starting point for the development of modern QED: perhaps the pinnacle of
accurate theory supported by experiment. QED is also about what we have called secondary
interactions. (See 1.2.3.) Part 1 of this paper is about the much simpler primary interactions
and we start it with an oversimplified semi-classical way of explaining the Lamb shift. We are
going to imagine that the Lamb shift involves primary interactions when, in fact, it doesn’t. It
is a real world secondary interaction experiment, and therefore our illustration is not the
correct QED way of handling this phenomenon. Picturing it as a primary interaction however,
with zero point fields, may help illustrate the possibility of connections between fundamental
particles and infinite virtual superpositions. Hopefully this is in a similar manner to the way
Bohr’s original simple semi-classical explanation of quantized atomic energy levels played
such a large part in the eventual development of full three dimensional wavefunction solutions
of atoms, and quantum mechanics.

The density of transverse modes of waves at frequency @ is w°de/ z°c® and the zero point
energy for each of these modes is 7w /2. The electrostatic and magnetic energy densities in
electromagnetic waves are equal, thus for electromagnetic zero point fields:

. E2 CZ BZ h 2d h 4
The total average field energy SHE 5 = _wr%W or g,E?=¢,c°B* = %d—w
2 2| 7°C J 27°CC o
For a fundamental charge € using « =e?/ 4z¢,hc, and provided g <<1, this gives an
20 o' do (2.1.1)

average force squared of F?= e’E’ =

T ¢ o

Thinking semi-classically, for an electron of rest mass M this can generate simple harmonic
motion of amplitude r, where F?=m’w'r® (if 8 <<1). Solving for r? (where r? is
superimposed on the normal guantum mechanical electron orbit, ., =7/mc is the Compton

2
wavelength, and k=w/c): 2 __h 2ado [xz ] {20! dk}
m’c’ 7 o

) ] ) 2 k max k
Integrating r? (as directions are random): r?,, = %% =% dk =2 —| og(K,.. /1K) -

Total
k min
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The minimum and maximum values for k can be chosen to fit atomic orbits, and a root mean
square value for r can be found. Combining this with the small probability that the electron
will be found in the nucleus, this small root mean square deviation shifts the average potential
by approximately the Lamb shift. This can also be thought of as simple harmonic motion of
amplitude ~ %, occurring with probability (2¢:/7)dk/k. It can also be interpreted as the
electron recoiling by ~ %, (provided S...,, <<1) in random directions due to virtual photon
emission with a probability of (2a/ z)dk /k .

2.1.2 Dividing probabilities into the product of two component parts

This probability (2« / 7)dk /k can be thought of as the product of two terms A& B, where A
includes the electromagnetic coupling constant «, B includes dk/k, and
AB = (2a/ 7)dk / k. This suggests that this same behaviour is possible if we have an
appropriate superposition of virtual wavefunctions occurring with probability B, which emits
virtual photons with probability A (by changing eigenvalues |pnk|: nik by n=+1). For
example, if a virtual superposition occurs with probability B = (N-s)dk /k, and has a virtual
photon emission probability for each member of these superpositions of A= (N -s)*(2a/ 7),
then the overall virtual photon emission probability remains as above at AB = (2a/ z)dk /K.
This applies equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided
A includes the appropriate coupling constant this same logic applies regardless of the type of
boson emitted. As is usual to get integral or half integral total angular momentum 2s has to
be integral and section 6.2 argues that N must also be integral. (This paragraph is simplified
to illustrate the principle and will later be modified in section 3.3.)

In section 1.2.5 we said that these wavefunctions are built with squared vector potentials. If
superpositions of them are to represent real particles they must be able to exist anywhere. This
is possible only if they are generated by invariant fields. The only fields uniform in space-time
are the zero point fields and looking at the electromagnetic field first we can use section 2.1.1
above. Consider a vector r from some central origin O and a magnetic field vector B
through origin O, then the vector potential at point r is A:(er)/2 and the vector
potential squared is A =(Bzrzsin2 0)/4where the angle between vectors B &r is 6.

Assin’ @ averages 2/3 over a sphere: A’ =B’r’/6 (2.1.2)

This requires the source of these fields to be spherically symmetric, where B? here is the
magnetic field squared at any point due to the invariant cubic intensity of zero point
electromagnetic fields, also as in section 2.1.1. This is only true at higher frequencies, and we
will find later that at cosmic wavelengths we need a similarly invariant spherically symmetric
source redshifted from the receding spherical horizon. Putting Egs. (2.1.1) and (2.1.2)
together the vector potential squared is

e’B’r? o "Mw'r’do =ih2k4r2%

2 A7 — _ e do
6 37 ¢ o 3r K (2.1.3)
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As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer
N in the numerator and denominator:

, ] T'sN -dk ] (2.1.4)

But here a vector potential squared term {% hzk“rz} occurs with probability {st-dk} :
s

Another way of looking at this is that a wavefunction y, that is generated by a vector
potential squared term thZk“rz—| can occur with FMT probability.
| 375 ] k|

This is similar reasoning to that used in the semi-classical Lamb shift explanation of section
2.1.1. In the first bracketed term of Eq. (2.1.4), « is the electromagnetic coupling constant,
but the same logic applies for the eight gluon and gravitational zero point vector fields where
we will sum appropriate amplitudes of these and square this total as our effective coupling
constant in Eq. (2.1.4). But first we need to look at groups of spin zero preons that could build
these wavefunctions. What mixtures of colours and electrical charges end up with the
appropriate final colour and electrical charge for each of the fundamental particles or at least
the ones we know of?

2.2 Spin Zero Virtual Preons from a Higgs Type Scalar Field

2.2.1 Groups of eight preons that form superpositions

In this paper preons have zero spin and can have no weak charge. The only fields they can
interact with (via primary interactions that build superpositions as in section 1.2.3) are colour,
electromagnetic and gravity. In the simplest world there would be just one type of preon that
comes in three colours, always positively charged say, with their three anti colours all
negatively charged. We will indeed find that this seems to work. Looking at Table 2.2.1 we
see that a minimum of 6 preons is required to get the correct charge ratios of 3:2:1 between
electrons, and up and down quarks. To get vector potential squared values that make all our
equations work however, we need to couple to all eight gluon fields requiring a total of eight
preons. Table 2.2.1 has all the basic properties required to build infinite superpositions for the
fundamental particles. We need to remember when looking at this table that from section 1.2.3
the effective secondary charge is much less than the primary charge and we have no idea yet
of the effective value of the primary preon electric charge. Particles only are addressed in the
groups of preons in Table 2.2.1. The first point to notice, however, is that both the electron
and the W™ are predominantly antipreons, yet they are both defined as particles. Have we got
something wrong? When we look at relativistic masses in section 3.2.1 we get the usual plus
and minus solutions and Feynman showed us how to interpret the negative solutions as
antiparticles.
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Table 2.2.1 Groups of eight virtual preons forming the fundamental particles. The electric
charges we measure in the real world are one sixth of the group electric charges in this table.
The Higgs boson is discussed in section 8.2.4, if it is a superposition it would be in the neutral

group at the top.

Fundamental Preon colour Preon electric  Group colour  Group electric
Particles charge charge
Spin % Any colour + 1
Neutrino family its Anticolour -1
Spin 1 photons, Z, Red L
Antired -1
Ne_utral gluons i Green 1 Colourless 0
Spln_s 1& 2 gravitons Antigreen 1
Possibly Higgs boson Blue 1
Antiblue -1
Any colour + 1
its Anticolour -1
Spin % Antired -1
Electron family Antired -1 Colourless -6
Antigreen -1
Spinl w~- Antigreen -1
Antiblue -1
Antiblue -1
Red 1
Antired -1
Spin % Green 1
Blue up quark Antigreen -1 Blue +4
Family Green 1
Blue 1
Blue 1
Red 1
Green 1
Antigreen -1
Spin % Red 1
Red down Antired -1 Red -2
Quark family Green 1
Antigreen -1
Antiblue -1
Antigreen -1
Red 1
Antigreen -1
Spin 1 Red 1 Red plus
Red to Green Antired -1 Antigreen 0
Gluons Green 1
Antigreen -1
Blue 1
Antiblue -1
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If this also applies in anti preons then because they are zero spin, and the weak force
discriminates between particles and antiparticles by their helicity, this discrimination can
apply only in secondary interactions. The preon antipreon content of the groups in Table 2.2.1
does not necessarily tell us whether they produce particles or antiparticles. We will discuss
this further in section 3.2.1; also, as of now, there is still no good understanding of the
predominance of matter over antimatter in our universe. In Table 2.2.1 only one example of
colour is given for quarks and gluons. Different colours can be obtained by simply changing
appropriate preon colours. Various combinations of eight preons in this table are borrowed
from a scalar field for time AT <7/2AE, this process continually repeating in time.
Conservation of charge normally allows only opposite sign pairs of electric charges to appear
out of the vacuum. Let us imagine that these virtual preons are building an electron, for
example, whose electric charge exists continually unless it meets a positron and is annihilated.
This charged electron is thus due to a continuous appearance out of and back into the vacuum
of virtual charged preons in a steady state process existing for the life of the superposition,
and not conflicting with conservation of charge. If the electron itself does not conflict, then
neither do the borrowed preons that build it.

2.2.2 Primary coupling constants behave differently and are constant

QED informs us that the bare (electric) charge of an electron, for example, increases
logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual
charged pairs) progressively shield the bare charge from a radius of approximately one
Compton radius % inwards towards the centre. When an electron (for example) is created in
some interaction the full bare charge is exposed for an infinitesimal time.

Instantaneously after its creation, shielding due to polarization of the vacuum builds
progressively outward from the centre of its creation at the velocity of light. For radii > A
we measure the usual fundamental charge e. There are similar but more complicated
processes that occur to the colour charge. Camouflage is the dominant one where the colour
charge grows with radius as the emitted gluons themselves have colour charge. At the instant
of their birth the preons are bare and at this time, t =0 say, all the zero point vector fields can
act on these bare colour and electric charges as there is simply no time for shielding and other
effects to build. The primary coupling constants that we use must consequently be the same
for all values of k, in complete contrast to those for secondary interactions. We don’t know
what this primary electromagnetic coupling constant is, so we will just call it «,,, . Also, we
will find that to get any sense out of our equations the primary colour coupling has to be very
close to 1. A coupling of one is a natural number and simply reflects certainty of coupling.
Provided the secondary colour coupling can be in line with the SM, and there does not seem
to be any other good reason to pick a number less than 1, we will make the (apparently
arbitrary) assumption that the bare primary colour coupling is exactly 1. (In section 4.1.1 we
will find that this seems to be consistent with the SM.)
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2.2.3 Primary interactions also behave differently

Let us define a frame in which the central origin of the wavefunctions y, of our infinite
superposition is at rest. The laboratory or rest frame we will refer to as the LF. The preons that
build each y, are born from a Higg’s type scalar field with zero momentum in this frame.
This has very relevant consequences as their wavelength is infinite in this rest frame at time
t =0, and after they become wavefunction v, their wavelength is of the order 1/k for times
O<t<h/2E. This implies that there could possibly be significant differences in the way
amplitudes are handled between primary and secondary interactions.

Let us consider secondary interactions first with an electron and positron, for example, located
approximately distancer apart. For photon wavelengths << r both the electron and the
positron each emit virtual photons with probabilities proportional to « , but for wavelengths
>> r their amplitudes cancel. Returning to primary interactions, zero momentum preons must
always have an infinite wavelength which is greater than the wavelengths (orl1/k values) of
the zero point quanta they interact with, for all k = 0. This implies that we cannot simply add
or subtract amplitudes algebraically as the charged preons can be always further apart than the
wavelength of the interacting quanta (except when k=0, but we will see there is always a
minimum Kk value, i.e. k. >0 in sections 5 & 6). In fact, if algebraic addition of amplitudes
did apply in primary interactions, infinite superpositions for colourless and electrically neutral
neutrinos would be impossible. So how can infinitely far apart preons of differing charge
generate wavefunctions of all dimensions down to Planck scale? This can happen only if the
amplitudes of all eight preons are somehow linked over infinite space, all at the same time
t =0 contributing to generating the wavefunction v, . This non-local behaviour is not new.
All experiments confirm that what Einstein struggled to come to terms with is, in fact, true; he
called it “spooky action at a distance”. While these experiments are currently limited in the
distance over which they demonstrate entanglement, there is now wide acceptance that it can
reach across the universe. In the same manner wavefunctions covering all space can instantly
collapse. We want to suggest that this same non-locality applies in primary interactions; our
eight virtual preons all unite instantaneously at time t =0 across infinite space in generating
each y, . Also, the vector potential squared equations that they generate must always be the
same for all the preon combinations in Table 2.2.1. This can happen only if the amplitudes of
all eight are added, regardless of charge sign for primary interactions. This applies to both
colour and electric charge.

The opposite is true for the secondary interactions. At time t=0 all eight preons
instantaneously collapse into some sort of virtual composite particle that for times
O<t<h/2E obeys wavefunction v, . The dimensions of y, are of the same order as the
wavelength of the interacting quanta, and the usual algebraic total electric charge and nett
colour charge must now apply as in the group charges in Table 2.2.1. All of this may seem
contrary to current thinking which has gradually been built up over several centuries of
secondary interaction experiments; however, it may not be so out of place when viewed in the
context of the counter intuitive results of entanglement experiments. The key point to bear in
mind is that the predictions of this paper must agree or at least be able to fit the SM, or
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secondary interaction experiments; as we may never be able to look into virtual primary
interactions, but only observe their effects.

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to
both colour and electric coupling, where these two vectors can be at the same complex angle
or at different angles. The simplest case is if they are in line and we will assume this is true for
both colour and electromagnetic primary interactions which are both spin 1. This seems to
work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector
only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero gravity
world by simply adding the eight preon colour vectors of amplitude one and the eight primary
electromagnetic vectors of amplitude a}aEMp together, as all this only works if they are all in
line.

The total colour plus electromagnetic primary amplitude is 8+ 8, /aEMP

(2.2.1)
This equation is always true regardless of signs as in section 2.2.3
2
The colour plus electromagnetic primary coupling constant is (8+8 Oepp ) (2.2.2)
Inserting this into Eq. (2.1.4) we get
i 2 ] (2.2.3)
QA2 :‘ [8+8 aEMP:| n2kér? [ SN -dk ]
37zsN '
] ]

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1.4) as a vector potential
squared term

2 2.2.4
VN | F: N A o . (224
Q%A ZB—Nh k"r®occurring with probability =

7S

sN -dk

Where Q is a symbol representing the entire eight colour and eight electric amplitudes
combined, with s the spin and N =1 for massive superpositions, but N =2 for infinitesimal
mass superpositions. (Table 4.3.1, section 6 and its subsections cover this more fully.)

2.3 Virtual Wavefunctions that form Infinite Superpositions

2.3.1 Infinite families of similar virtual wavefunctions

Consider the family of wave functions where ignoring time:
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Vo =U (1KY (0)

U (nrk) =C, r' exp(-n’k’r? /18) (2.3.1)

U (nrk) is the radial part of .Y (64) the angular part, C, a normalizing constant, and we
will find that | is the usual angular momentum quantum number. There is an infinite family of
v .. » one for each value k where 0 <k <o in a zero gravity world.

Now put R(nrk) =rU (nrk) =C_r'"*exp(-n°k’r® /18) (2.3.2)

As we are dealing with zero spin preons we use Klein-Gordon equations [22]. The Klein-
Gordon equation is based on the relativistic equation p? = E?/c? —mZc? and in a spherically
symmetric squared vector potential the time independent Klein Gordon Equation is

5 E’
Py = -1’V + Q* A’y :{C—z—mécz}y (2.3.3)

Viy 10°R_1(1+))

Using = - - we get the time independent
v R or r
”o'R 10+nR* ., , [E? ]
radial Klein Gordon equation — = +Q°A°—| —-mc 234
q R 8I’2 r.2 Q L C2 0 J ( )

For each v, the energy is E_ a function of n&k, and we will label the rest mass as m,_, a
function of spin s, n&k, but also a function of the particle rest mass m,. Using different
colours to more clearly compare the next two equations this becomes

2 o*R 1(1+DR*  , , [E? |

— = +QA? —| =% _m? _c* 2.3.

R or /2 Q ch 0snk J (2.3.5)
21,2,.2

Differentiating R(nrk) =rU (nrk) =C,, r'"* exp( ) twice with respect to r, multiplying
by #?and dividing by R
R OR _1I(I+)A* 'A%kt (214+3)n*A%k”

= +
R or? r? 81 9 (2.:3.6)

Comparing Egs. (2.3.5) & (2.3.6) we see that | is the usual angular momentum quantum
number and the vector potential squared required to generate these wavefunctions is
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4h2k4r2 (n—“‘
272 n — 1 2 m2k4p?
Q el L3J (2.3.7)

: E, 21 +3)n*1’k’
The momentum squared is p’ = —%-m; c’= %
c

2

(2.3.8)

For | =3 wavefunctions this becomes p;, =n’#’k* & |p,, |=n7k (2.3.9)

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors

2

From Egs. (2.3.8) & (2.3.9) as k —> oo, the energy squared E2 — p? ¢’ =n?#’w’ and thus
if 1=3when k -« energy E, — niw (considering only the positive solution). (2.3.10)

This suggests that n must be integral. If it is integral when k — oo, we will conjecture that it
must be integral for all values of k. This is a virtual or “off shell” process, where energy can
depart from E* =mic* +p?c® for time AT ~7/2AE .We can also perhaps think of Eq. (2.3.9)
as integral n parallel momentum vector |p| =/hk quanta, transferring total momentum
|pnk| =nkk and energy E <nZw from the zero point fields to generate the virtual
wavefunction . Using different colours for both operator and wavefunction, we can say
that provided Q”A” = (n/3)"7°k*r* as in Eq. (2.3.7) the operator P? = (~/°V* +Q*A?) applied
to the virtual wavefunction v, =C. r’exp(-n’k’r? /18)Y (6p) produces
P |y ) = (-7°V? + Q*A%) |y, ) =n*h*K? |y, ), where n is integral, but k is continuous as for
free particles. Thus, we conjecture that:

v, =C,r’exp(-n’k’r® /18)Y (Ap) are eigenfunctions with (2.3.11)

eigenvalues p? =n’#’k? with continuous k but integral n .

Also, there are no scalar potentials involved, only squared vector potentials, so this is a
magnetic or vector type interaction. Particles in classical magnetic fields have a constant
magnitude of linear momentum which is consistent with the squared momentum eigenvalues
of Eq. (2.3.11). This also implies that each y , is formed from quanta of wave number k
only and that secondary interactions with y, emit or absorb |hk| virtual quanta if n changes
by +1. The wavefunction w, is virtual and in this sense both the energy E, and rest mass
M, 1N EQ. (2.3.8) are also virtual quantities borrowed from zero point vector fields and its
time component or a scalar Higgs type field. We use these virtual quantities to calculate the
amplitude that the wavefunction y is in an m state of angular momentum in section 3.1,
and in section 3.2 to calculate the total angular momentum and rest mass. As in section 2.3.2
above, we can think of |pnk| =nkk as n parallel momentum vectors |p|=hk . As spin 3 (or
| =3) needs at least three spin 1 quanta to build it, n must be at least 3. When n=3 we can
think of this as three of the eight preons each absorbing quanta|ik| at time t=0. We will
find that a spin ¥z state has a dominant n=6 eigenfunction where six of the eight preons each

23



absorb quanta |hk| It needs at least two smaller side eigenfunctions n=5 & n=7 with
either five or seven respectively, of the eight preons each absorbing quanta|hk| respectively at
t =0. (Figure 3.1.4 illustrates the three n modes of a positron superposition.)

4
From Eq. (2.3.7) Q°A’ = E} h’k*r? =16h%k*r? for this dominant n=6 mode.

[8+8Jae |

37zsN

Thus using Eq. (2.2.4) Q%A% = h?k*r? =16h%k*r*for an n=6 mode.

2|8+8\Jag, ]2
3z

mode. Thus 8+8«f0!EMp =247 andag,, ~137.1, but this is true for an n=6 eigenfunction

Now s=1/2& N =1 for spin % fermions and =16 if we have only an n=6

only, and we have a superposition where the amplitudes of the smaller side eigenfunctions
n=5 & n=7 determine the ratio between the primary to secondary (colour and

electromagnetic) coupling amplitudes or the value of oce,’l@kCutoﬁ (Section 3.3). The Q*A?
required to produce this superposition with amplitudes c, is, using Eq. (2.3.7)

n*h2k*r? (2.3.12)

Repeating the same procedure as above for three member superpositions using Eq. (2.3.12)
we find the strength of «.,,, required increases considerably (see section 4.1 & Table 4.1.1
As the secondary electromagnetic coupling agys @K must be constant for all spin %
leptons and quarks, the amplitudes of the smaller side eigenfunctions n=5 & n=7 that
determine this must also be constant for all the fermions, implying that Eq. (2.3.12) must be
the same for all fermions. The same arguments apply to the other groups of fundamental
particles but we return to this in sections 3.3 where we see that the same also applies with
graviton emission.

3 Properties of Infinite Superpositions

3.1 The Amplitude that Wavefunction v, is Spherically Symmetric

3.1.1 Four vector transformations

The rules of quantum mechanics tell us that if we carry out any measurement on a real
spherically symmetric | =3 wavefunction it will immediately fall into one of the seven
possible states 1 =3 m=0,+1,+2 +3[23]. But w, is a virtual | =3 wave function so we
cannot measure its angular momentum. During its brief existence it must always remain in
some virtual superposition of the above seven possible states and we can describe only the
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amplitudes of these. So, is there any way to calculate these amplitudes, as they must relate to
the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero
point vector fields?

First consider the 4 vector wavefunction of a spin 1 particle and start with a time polarized
state which has equal probability of polarization directions. It is thus spherically symmetric,
which we will label as ss. Using 4 vector (t, X, y, z) notation

In frame A, a time polarized or SS spin 1 state is (1,0,0,0).
Let frame B move along the z axis at velocity g =v/c inthe z direction.

In frame B the polarization state transforms to (»,0,0, 73).

But this is y *time polarized |Ss>states minus »*° x z polarized or |m=0) states

In frame B the probabilities are »2|ss) —y°/*|m=0) states.

Now y%—y?p% =y?(1- %) =1 is an invariant probability in all frames and in removing y?5?
xm=0 states from »?xsSs states, the new ratio of spherical symmetry is
(y? —=y°p?) 1 y* =1— p%. Thus, a spherically symmetric state is transformed from probability
1 in frame A, to 1 £? in frame B. Also removing m =0 states from spherically symmetric
states leaves a surplus of m=41 states, as spherically symmetric states are equal
superpositions of [m=-1), |m =0), &|m = +1) states.

Thus in Frame B the probabilities are (1- 4°)|ss)+ A% |m = +1) states. 3.1.1)

. . . .. 1
We can describe this as a virtual superposition of =|ss)+ 8|m=+1) states. (3.1.2)
, 1.

As B° —1 we have transverse polarized states, the same as real photons. Now transverse
polarized spin 1 states can be either left (m=-1), or right (m=+1) circular polarization, or
equal superpositions of (1/\E)|L>+(1/ﬁ)|R> as in x&y polarization. If we think of
individual spin zero preons absorbing these spin 1 quanta at t =0 they must also have this
same 37 probability of transversely polarized spin 1 states. If they then merge into some
composite | =3 particle (as in Figure 3.1.4) for time 0<t <#/2E, the probability of it being
in some particular state (I =3,m=0), (I =3,m==+1), (I=3,m=+2)0r (I =3,m==3), must be
the same AB°. We initially write the amplitudes in these three equations in terms of B, &
7. as this is the most convenient way to express them. Velocity operators are momentum
operators over relativistic masses. Our eigenvalues are pik =n’h’k* for each n&k , and this
allows the velocity operators to give constant ﬂnzk. Later in Egs. (3.1.11) and (3.1.12) we
write S, & y, 1N momentum terms. Even though the mass in these operators is virtual, we
can still use it to calculate|ﬁnk|. For each k and integral n there will be a constant |ﬁnk| and
Vo == B2 As we will see, 8., can be thought of as the magnitude of the velocity of
an imaginary centre of momentum frame in which these interactions take place. We will also
draw our Feynman diagrams of these interactions in terms of g, &y, for convenience, even
though this is unconventional. To proceed from here we define two frames as follows:
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1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3

The infinite superposition has rest mass m, and zero nett momentum in this frame. Each .,
is centred here with magnitude of momentum |p,,.| = n7k . Even though we have no idea of the
direction of this momentum vector we will define it as the z direction. The eight preons are
born in this frame with zero momentum and can thus be considered here as being at rest or
with zero velocity and infinite wavelength at their birth. The Feynman diagram of the
interaction in this frame that builds v, is illustrated in Figure 3.1.3.

2) The Centre of Momentum Frame (CMF)

This (imaginary) frame is the centre of momentum of the interaction that builds v, . The
CMF moves at velocity 3., relative to the laboratory frame in the z direction or parallel to
the unknown momentum vector direction p . In this CMF the momenta and velocities of the
preons at birth and after the interaction are equal and opposite. This is illustrated in Figure
3.1.2 again in terms of m,, g,,, &y, . In the LF the velocity of the preons at birth is zero, in
the CMF this is — g, and after the interaction +4, , where both —g,, and +4, are in the
unknown z direction. In the LF the particle velocity g, (particle)= g, is the simple
relativistic addition of the two equal velocities S, as in Figure 3.1.1.

. 28,
. (Particle) =, =—=
b LA
B Be —
Laboratory Frame Centre of Momentum Frame Virtual Particle

Figure 3.1.1 Velocities in unknown but the same directions in different frames.

3.1.2 Feynman diagrams of primary interactions

Let us start with

. 20, B (3.1.3)
B, (Particle) = B, = < and 7, = (1-B3,) Y2 =yt L+ B2)
1+ ﬂnk
If the particle rest mass is M, let each preon have a virtual rest mass m, / (8y,, \2s).
: : : : m
The eight preons are effectively a virtual particle of rest mass m — (3.1.4)

osnk — 7nk\/£

The particle momentum in the LF is zero at birth. After the interaction using these equations
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[ m, ][ 2p
|pnk| = nhk = mOsnk nkPj/nkPC = i\ynk\ozﬁj {1_’_’;:2‘( :| I:ynzk (1+ﬂnzk):lc
The particle momentum after the interaction in the LF |p,, |=nfk = 2Myfn /@ (3.15)
J2s
Using Eq. (3.1.4), in the LF the particle energy at birth is
, My’
My C = ’ k\/z (316)

In the LF the particle energy after the interaction is by using Eq. (3.1.3)

m M7,
rnOsnk}/pnkC2 = y jzyrfk (:L_'_ﬂnzk)c2 :?Tsk(l—i_ﬂnzk)cz (31 7)
nk

In the CMF the momentum at birth is using Eq. (3.1.4)
—My Py 3.1.8
Moo ? kB = «/OZ_Sk ( )

In the CMF the momentum after the interaction is equal but in the opposite direction
M B (3.1.9)

J2s

In the CMF the energy at birth, and after the interaction is
2
, mgcC

My Vi C~ =
Osnk /" nk \F
2s

(3.1.10)

These values are all summarized in Figure 3.1.2 and Figure 3.1.3 but with ¢ =1.

nik/2s B Kcnk\/f

2m.c 2

0

2m c
From Eq. (3.1.5) |pnk|=”hk=oT;k}/nk and S 7w =
s

h
(where & = o is the Compton wavelength). We can now express S, & 7, in momentum
0

terms:
nik<2s A nk+2s (3.1.11)
Let Knk :ﬂnk}/nk = =
2m,c 2
e K N (3.1.12)
Interms of K ,: B, = K and y,, =1+K}

nk
Each infinite superposition has fixed KC. Each wavefunction ¥, of this infinite

superposition has fixed n&s, thus K, <k .

dK,,  dk (3.1.13)
For example, we can put K—" -
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These simple expressions and what follows are not possible if m,_, =m,/7,./2s, and when
we include gravity we find my, =m, /(7,, JZ) is essential (section 4.2).

+m,

After merging: ( =)
(0.0 7y

q" =(0,0,0,2- '_/f ) \ Eight preons at birth: (\/— \/— L

V<&

Figure 3.1.2 Feynman diagram in an imaginary centre of momentum frame.

m
Aftermerglng( L V(14 2),0,0,42—==y . B.)
J2s V2s
' m
q" =(2- H—/ B 0,0.2—==7,5,) \
Vs V2 s
Eight preons at birth: ( "? 0.0,0)
//v.-.'. <5

Figure 3.1.3 Feynman diagram in the laboratory frame.

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman transition
amplitude of this interaction shows that the polarization states of these exchanged quanta is
determined by the sum of the components of the initial, plus final 4 momentum (p, + p,)”.
Ignoring all other common factors this says that the space polarized component is the sum of
the momentum terms (P, +pP,) and the time polarized component is the sum of the energy
terms (p, + p,)°. We have defined our momentum as in an unknown Z direction:

(pi + pf)z (3114)

The ratio of z polarization to time polarization amplitudes is 5
(p+p,)

In the CMF (p, + p;)* =0, thus an interaction in the CMF exchanges only time polarized, or

spherically symmetric | =1 states. In the LF the ratio of Z (or m=0) polarization, to time

polarization in the LF is S,

where (PP 2myy By (3.1.15)

nk
2moj/nk
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From section 3.1.1 these are probabilities of 7, SS) — y2 B |m =0)states, oras | =1 here

(1—ﬂnzk)\53> + 2 |m =+1) states.

.. . .. 1
In the LF this is a virtual superposition of (—|ss)+ A, |m = +1)) states. (3.1.16)

nk

From section 3.1.1 as these quanta from the scalar and vector zero point fields build eachy
this implies that:

. N . 1 (3.1.17)
In the LF y,, has virtual superposition amplitudes —|ss)+ 3, |m ) states.

nk

From section 3.1.1 appropriate | =1,m =1 superpositions can build any | =3, m state.
Figure 3.1.4 is an example of such a ¥, for n=5,6,&7 |l =3,m=+2) states.

3.1.3 Different ways to express superpositions

We have expressed all superpositions here in terms of spherically symmetric and m states for
convenience and simplicity. We could have expressed them in the form:

M—

This is equivalent to (as above we ignore complex number amplitude factors for clarity)

[[m==-3)+|m==2)+|m=—-1)+|m=0)+|m=+1)+|m=+2)+|m=+3) |+ B, |m=+2)

1 C
W =—|ss)+ B, |m=+2 )where we have put m = +2 in this example.
Vnk

Because all these wavefunctions are virtual they cannot be measured in the normal way that
collapses them into any of these eigenstates, it is more convenient to use the method adopted
here which is similar to QED virtual photon superpositions.
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h=5 Atbirth 1 =0
p=0 — ) Anycolour&
=) — anticolour
g O 0<r <h/2E after
p=0 _,‘ effectively merging.
p=fk —-ﬁ' m=+1 ( )
p =ik —t. m =+l P, =5hk
p = hk _.. m=+1 1=3, m=+2
p = hk _.. m=-1
p = Ik _.. (m=-1) \/2_&(:)1-+l) \.E
6 p=0 _’O Any colour &

"=
p=0 _’O anticolour
p =ik —». m=+1
p=hk —." m=+1 < >
p =ik —c‘ m=+1 P, =60k
p = hk —o‘ m=+1 =3, m=+2
p=hk _.‘ m=—1
p= hk _‘ m=-1

p=0 —() Anycolour &

n="7 ,

p = hk —>O m =+] anticolour

p=hk
p=hk
p=hk
p=hk
p=hk

p=hk

bosall

m=+l

m=+I ( )
m=+l P, =7hk

m=-1 [=3,m=+2

m=-|

(m= —1).»"\/5&(;;) = +1).v"'\/§

Figure 3.1.4 Eight preons forming m=+2 states as part of a positron superposition. If a
zero spin and zero momentum preon absorbs a quantum its momentum becomes p =#k and
its angular momentum becomes either m=+1, or an m=0 equal superposition of m==+1,
states. When it does not absorb a quantum it remains at both spin zero and momentum p =0.
There is no significance in which preons have absorbed quanta.



3.2 Mass and Total Angular Momentum of Infinite Superpositions

3.2.1 Total mass of massive infinite superpositions

We will consider first the total mass of an infinite superposition, and to help illustrate,
consider only one integral n eigenfunction v, at a time; temporarily assuming that the
amplitude ¢, of each ¥, has magnitude |cn| =1. Each time v, is born it borrows mass from
a scalar Higgs field (or a zero point field time component) and momentum from a zero point
field spatial component. The mass that it borrows is exactly cancelled by an equal debt in the
Higgs scalar field (or the zero point field time component) so this sums to zero for all k. (This
is a different way of looking at what generates mass; however, the end result is identical.) But
what about the momenta borrowed from the spatial component of zero point fields, do these
momenta also leave momentum debts in the vacuum? At any fixed value of k the momentum
is a constant of the motion in a squared vector potential A?. We can think of this as in any
particular direction there is some probability of momentum p,, =n%K due to this A?field.
When interacting with the magnetic or the spatial component of any electromagnetic field the
velocity squared factor 3> determines the rate of quanta absorbed.

Our wavefunctions v, are generated from a vector potential squared term A’ derived in
section 2.1.2 which in turn came from a B’ type term as in section 2.1.1. As discussed in
section 2.3.2 the eigenvalues p’, =n’*A’k* confirm the constant momentum squared feature
of magnetic, or space mode interactions. Also in section 2.1.1 the scalar virtual photon
emission probability is directly related to the force squared term F? = £?E?. Magnetic type
coupling probabilities are related to a magnetic type force squared term
F?=p%e*B*Ic* = B°£’E?, where from section 3.1.2 and Egs. (3.1.14) & (3.1.15) the ratio
of this scalar to magnetic coupling is A. Thus when k<o and the exchanged energy
Ey #hw, B, N quanta |#k| are absorbed from the vacuum and

we can expect a momentum debt of p_ (debt) = -2 nik (3.2.1)

We could sum > p;, & > py, (debt) but both vectors p,, and p,, (debt) are antiparallel in the
same unknown direction. We can pair them together giving a nett momentum per pair of:

h 3.2.2
p,. (nett)=p, +p,, (debt) = (1— B2 )nik = r;/zk = ;P/gk at wavenumber K. ( )
nk nk

We have said above that the mass of each virtual particle is cancelled by an equal and
opposite debt in the Higgs scalar field so we can now use the relativistic energy expression

k=00
EZ =) p,(nett)*c® times the probability of each pair at each wavenumber k.
k=0

We will initially look at only N =1 massive infinite superpositions in Eq. (2.2.4).
Thus, using probability sN-dk /k =s-dk/k, also Egs. (3.1.11), (3.1.12), (3.1.13),& (3.2.2)
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0 Zh 2 0
o ) 7o o 1+ Knk) 2K
E= mjc“{ _12 J =mZc* or E, =+m’ (3.2.3)
1+ Ky 1, 2.

This energy is due to summing momenta squared and it must be real, with a mass £m, for
infinite superpositions of Eigenfunctions . These superpositions can form all the non-
infinitesimal mass fundamental particles. The equations do not work if the mass m; is zero.
(We will look at infinitesimal masses in section 6.2.) Negative mass solutions in Eq. (3.2.3)
must be handled in the usual Feynman manner, and treated as antiparticles with positive
energy going backwards in time. If they are spin % this also determines how they interact with
the weak force.

3.2.2 Angular momentum of massive infinite superpositions

We will use the same procedure for the total angular momentum of N =1 type infinite
superpositions with non-infinitesimal mass in Eq. (2.2.4).

Wavefunctions  ,, =C,, r’exp(-n’k’r’/18)Y (4,p) have angular momentum squared
eigenvalues L*=12A°and the various m states have angular momentum eigenvalues
L, =mA. We will treat both angular momentum and angular momentum debts as real just as
we did for linear momentum. Even though m state wavefunctions are part of superpositions
they still have probabilities, just as the linear momenta squared above, and it seemed to work.
Using exactly the same arguments as in section 3.2.1, if ¥, is in a state of angular
momentum L, =mZ then it must leave an angular momentum debt in the vacuum of
L, (debt) =—A%mh (or as in section 3.2.1) L, (nett) =L, —L, (debt).

L : .. 3.24
L, (nett) = (1— g5 )mi = (1— B3 )L, =—2% (if L, is in state m) ( )
ynk
But from Eq. (3.1.17) the probability that L, isinan m state isalso 3. so that
: , : - i (3.2.5)
including this extra B’ probability term: L, (nett) = mh—;k at wavenumber k.
ynk
. . r -dk k
Foran N =1 type infinite superposition L, (Total) = | sz(nett)%. = J'ﬁ”k g—k
k=0 nk
2 a1 T
Using Egs. (3.1.11) to (3.1.13) L, (Total) = smi[ — dKnk _sm
o (1+ Knk) 2 |1+K2 .
h
L,(Total)=m'A = % or m'= gm (3.2.6)
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Where m' is the angular momentum state of the infinite superposition and m the state of v, .
Thus for spin % particles with s= % in Eq. (3.2.6) m'=m/4 but m'can be only + %,
implying the m state of v, that generates spin ¥2 must be m=+2. An N =1 massive spin 1
particle has s =1 with m"=m/2. (N =2 is covered in section 6.2.) This is summarized in the
following three member infinite superpositions ignoring complex number factors.

- - k=w’7 l//nk SS> —‘ 1 (3.2-7)
Massive (N =1) Spin %, ‘Wwyl,zvﬂ,2> = C, I —+ L. Wnk'ﬁ> —dk
n=5.6,7 k=0 7 nk J 2k
k=oo | j (3.2.8)
Massive (N =1) Spin1, |y, )= Y ¢, | IWL‘SS>+/3nk Voiom) Ide
n=4,5,6 k:()l_ j/nk _| k

The spin vectors of each v, with |L| = 2«@%, and their spin vector debts in the zero point
vector fields, have to be aligned such that the sum in each case is the correct value:
|L|:\/§h/2 ,|L|:«/§h or |L|:\/5h for spins %, 1 & 2 respectively.

Spherically symmetric massive N =1 spin 1 states are a superposition of three states

fﬂm =—1)+|m'=0)+|m’=+1)], and using Eq. (3.2.8) can be formed as follows

i _i .l l//nk,ss> —|Jz
\/§|l//oo,1,m':—1> - \/§H:4’5’6 Cn k_[ I ]/nk + nk l//nk m= —2>J| kdk
. 1 1 ) WF (3.2.9)
Massive spin 1 +ﬁ|Wm,1,m’:0>_ ﬁn:%ecn kj T B [V ok 0 | kdk
i _i o l//nk,ss> —|J7
I + \/§|l//oo,l,m':+l> - \/g s C, k_[() i Vo nk V ik, m= +2>J| K dk

3.2.3 Mass and angular momentum of multiple integer n superpositions
In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions ¥, . For

superpositions y, = ZCank , We replace ka With(Kk>2. Equation (2.3.9) appears to suggest
p[ => ¢, *c,n*n?k* :<n2>hzk2 and <|pk|>:hk1f<n2>. In section (3.5.1) we discuss why

(Ipu]) # i y{n*) but (jo,

=hk> c,*c,-n="hk(n). Thus using Eq. (3.1.11)
(k)= 2025 ) g 2 b

Replacing K} with (K ) =12k*s(n )2/2 in the key equations (3.2.3) & (3.2.6) does not
change the final results. The laws of quantum mechanics tell us the total angular momentum is

32K’ (3.2.10)

chgzs <n2>
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precisely integral % or half integral 72/2. Looking at the above integrals used to derive total
angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) and s must be
exactly %2 or one for spin %2 & spin 1 massive particles respectively in our probability formula
Eq. (2.2.4). Also, these integrals are infinite sums of positive and negative integral 72 that are
virtual and cannot be observed. If an infinite superposition for an electron is in a spin up state
and flips to spin down in a magnetic field, a real m=+1 photon is emitted carrying away the
change in angular momentum. This is the only real effect observed from this infinity of
(1=3,m=+2) virtual wavefunctions all flipping to (I =3,m=-2)states, plus an infinite
flipping of the virtual zero point vector debts. Also, Egs. (3.2.3) and (3.2.6) are true only if
our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at high
energy Planck scale cutoffs in section 4.2 and in section 6 low energy cutoffs near the radius
of the causally connected horizon.

3.3 Ratios between Primary and Secondary Coupling

3.3.1 Initial simplifying assumptions

This section is based on a special case thought experiment that tries to illustrate, hopefully in a
simple way, how superpositions interact with one another; in the same way as virtual photons,
for example, interact with electrons. It is unfortunately long and not very rigorous, but it
illustrates how, in all interactions between fundamental particles represented as infinite
superpositions, the actual interaction is between only the same k single wavenumber
superpositions of each particle. We will later conjecture that an interacting virtual particle is a
single wavenumber k superposition only, and not a full infinite superposition. Only real
particles whose properties we can measure are full infinite superpositions. The full properties
do not exist until measurement, just as in so many other examples in quantum mechanics. This
will be clearer as we proceed. It is also important to remember here, that because primary
coupling constants are to bare charges (section 2.2.2), and thus fixed for all k, while secondary
coupling constants run with k, the coupling ratios can be defined only at the cutoff value of k
applying to the bare charge (sections 4.1.1 & 4.2.2). From Table 2.2.1 there are six
fundamental primary charges for electrons and positrons. But electrons and positrons are
defined as fundamental charges. In other words, what we define as a fundamental electric
charge is in reality six primary charges. Of course, we can never in reality measure six as their
effect is reduced by the ratio between primary and secondary coupling. Because
electromagnetic and colour coupling are both via spin one bosons their coupling ratios are
fundamentally the same, but because of the above they are related as 6° =36:1.

1 36 (3.3.1)

ZColour ZEM

We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.6)
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(3.3.2)

1 _ aCoIour(Secondary) _ 0535 and 1 _ aEM(Secondary) _ aEMS

ZCoIour aCoIour(Primary) a3P ZEM

(24 (24

EM (Primary) EMP
The secondary coupling constants a,s & o, are the bare charge values, both at the fermion
interaction cutoff near the Planck length Eq. (4.2.10). Also we assumed in section 2.2.2 that

a3 =1; thus from Eq. (3.3.2)

He = Ot = ;" @Koy ~2.029x10"°GeV (3.3.3)

In other words, provided a;, =1, the ratio y. (Or ¥cy0,) 1S also the inverse of the colour
coupling constant «, at the high energy interaction cutoff near the Planck length. In this
respect y. Of XYcoour 1S the fundamental ratio we will use mainly from here on. From the
above paragraphs, to find the coupling ratios we need secondary interactions that are between
bare charges. But this implies extremely close spacing where the effects of spin dominate. If
the spacing is sufficiently large the effects of spin can be ignored but then we are not looking
at bare charges. However, we can ignore the effects of shielding due to virtual charged pairs
by imagining, as a simple thought experiment, an interaction between bare charges even at
such large spacing. We can also simplify things further by considering only scalar or
coulomb type elastic interactions at this large spacing. We are also going to temporarily
ignore Eq. (3.3.2) and imagine that we have only one primary electric and or one colour
charge. Consider two superpositions and (due to the above simplifying assumptions) imagine
them as spin zero charges. QED considers the interaction between them as a single covariant
combination of two separate and opposite direction non-covariant interactions (a) plus (b) as
in the Feynman diagram of Figure 3.3.1 below. The Feynman transition amplitude is invariant
in all frames [22], so let us consider a special simple case in a CM frame where we have
identical particles on a head-on (elastic) collision path with spatial momenta:

P, =P, =P, =+P} (3:34)

From Eq. (3.3.4) the initial and final spatial momenta are reversed with mirror images of each
other at each vertex. Of course, when we know momenta accurately we have no idea where
the particles are when this takes place, so in reality there is no head-on collision. We are also
going to assume in what follows that the vertices of this interaction are on opposite sides of
the interacting boson superposition. While we have no idea where this boson superposition is
centred, what we do know in this simple special scalar case is that the transferred four
momentum squared is simply the transferred three momentum squared, and ignoring the
minus sign for q° (due to i?) in what we are doing here for simplicity we can say :

' / 3.35
9’ =(p,— P, ) =(p,— P, )* =4p. =4p;. (3:3)
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(a) (b)

DI /

2, v,

The Feynman diagram is drawn with
a vertical photon line representing
the superposition of two opposite
direction and non-covariant
processes (a) plus (b).

The exchanged 4 momentum is:

q=P,=Py=Ps~ Py

ie(p,+p.)

ig,.q°

—ie(p, + p.)*

£, P’::

Figure 3.3.1 Feynman diagram of virtual photon exchange between two spin zero particles of
charge .

[y Yun=T) Spin ¥ Fermion
superpositions

N | e — Wy (n=26)
i /Massivespinl

| "5 e Yu(n=3) Boson superpositions
1ol | - |'- | A w, (n=4)
T e W g Infinitesimal mass
47 b </ Wy (N=23) spins 1 & 2

Boson superpositions

— I

Figure 3.3.2 All eigenfunctions ¥, in the groups of three overlap at a fixed wavenumber k.

If we look at Figure 3.3.2 we see that at any fixed value of k, all modes ¥, in the groups of
three overlapping superpositions for the various spins %2, 1 & 2 occupy similar sized regions
of space. The directions of their linear momenta are unknown but let us imagine some
particular vector 2Kk that is parallel to the above vectors p, =P, . As we are considering only
scalar interactions, all these modes must be spherically symmetric or time polarized. Equation
(3.1.16) says spherical symmetry is «<1/y,, and Egs. (3.1.11) and (3.1.12) tell us y,, —>1 as
B.. — 0. But we are considering bare charges at large spacings where the exchanged virtual
photons have small momenta and are time polarized as in Eq. (3.1.15). At a fixed value of k

they thus have momenta +n%k. Also, as they overlap each other, we can imagine units of
+hK quanta somehow transferring between these superpositions so that the values of n in
each mode can change temporarily by +1 for times AT ~/%/AE. The directions of these

36



momentum transfers causing either repulsion or attraction depending on the charge signs of
the superpositions at each vertex, whether the same or opposite.

3.3.2 Restrictions on possible eigenvalue changes

Before we look at changing these eigenvalues by n==+1 we need to consider what restrictions

there are on these changes.

4 2k4r2

and Eq. (2.2.4) informs

From Eq. (2.3.12) superpositiony, requires Q*A*=)"c, *c, n

2
|88y |
37sN
For very brief periods the required value of Q®A” can fluctuate, such as during these changes
of momentum, but if its average value changes over the entire process then Eq. (2.2.4) says
that the probability sN-dk /k changes also, and we have shown in section 3.2.1 that this is
disallowed. For example, in a spin %2 superposition ¥, ¥, ¥, (see Table 4.3.1) the average
values of [, |c;| &|c,| must each remain constant. This can only happen if n remains within
its pre-existing boundaries of (5<n<7). For example, if ¥, adds +Zk (we will ignore the
subscript k in y,, from here assuming that it will be understood) it can create ¥, but |c8|
must average zero, which it can do only if it fluctuates either side of zero, and |cn| cannot be
negative. Similarly |c4| must average zero, thus v, & v, are forbidden fermion superposition
states. Keeping the average values of |cn| constant is also equivalent to a constant internal
average particle energy (we have shown in section 3.2.1 that rest mass is a function of
ch *c. p2 ). By changing these eigenvalues by n=+1 there are only four possibilities: v
&y, can both reduce by -7k quanta; v, &w. can both increase by +7k quanta. If v,
becomes y,, |c,| also increases and |c,| decreases, but then ¥, has to drop back becoming
we, With [c,| decreasing back down and |c| increasing back up in exact balance. If we view
this as one overall process the average values of both |c| and |c,| remain constant but
fluctuate continuously. We can use exactly the same argument if . increases which has to be
followed by v, dropping, where if we view this as one process again, the average values of
both |c;|and |c,| remain constant. This is similar to a particle not being able to absorb a
photon in a covariant manner, it has to re-emit within time AT ~7/E. Just as transversely
polarized photons are the equal left and right superposition of circular polarizations

L) /+/2+|R) /2, we can perhaps express Eq. (2.3.9) p, =n’%’k® as equivalent to:

R’k*r*  occurs with probability = st-dk :

us the available Q*A’ =

p = +nkk is the equal superposition p = |+nAk) /2 +|-nk )/ /2. (3.3.6)

This superposition is in opposite directions of the vector K, implying equal 50% probabilities
of momentum vectors for any pair of opposite directions. (It is a virtual superposition so
neither of these two components can be observed.) Thus if n changes by +1 say, there are
equal 50% probabilities of the momentum transfers p =+#k and p =—#k. And the same is
true if n changes by —1. Spin 1 bosons transfer momentum Ap = +#k, which means that two
50% probability transfers are required, such as ., — v, combined with a w, — v,
provided the momentum directions add appropriately as in the Figure 3.3.3 top diagram But if
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Ve — Ve and v, > v, with p =£nZk keeping the same sign during this process, there
IS no nett 3 momentum transfer as in the lower half of Figure 3.3.3. The probability of these
two processes is identical, and we will use this same probability for spin 2 graviton
probability densities when looking at gravity which Einstein showed is not a force, as particles
simply follow geodesics in the warped spacetime surrounding any mass. For all the two way
transitions at both vertices, similar to those discussed above, the following is true:

Probability of all transitions similar to w, & v, is equal in either direction. ~ (3.3.7)

As we are looking at virtual interactions between fermions and bosons we will use subscripts
a for spin % and b for spins 1 and 2 superpositions in what follows.

l7[/661 hk l//Sa h_k l//sa

G s o

YV ap Spin 1 polarization vectors
change sign between vertices

Wi |-

= i

/i\ > LT Space
UL L. Y)
2 2 l/jea

Vsa

Time

Spin 1 bosons transfer momentum quanta %k as in QED.

rl.lffn“. h_k T ¥sa hk

e

Because spin 2 polarization

2

" vectors rotate at twice the
b \ frequency of spin 1 vectors
Tuy, they maintain sign between

W s / / vertices

/ . T h_k A Space

2 Vsa 2

Spin 2 bosons do not transfer momentum or force as in GR. Time

Figure 3.3.3 Covariant interaction (as in Egq. (3.3.4) and Figure 3.3.1) between fermion
(subscript a) and boson (subscript b and in boxes) eigenfunctions, with spin 1 photons in the
top diagram, and spin 2 gravitons in the bottom diagram. Orange and magenta are used for
bosons, blue and green for spin 1/2 to help identify the transitions at each of the four
spacetime corners. This is one process, but a superposition of two diagonal components
splitting the 3 momentum %2k equally. Momentum is transferred in the spin 1 case only, but
real spin 2 gravitons however, as in gravitational waves from rotating binary pairs for
example, do carry energy and momentum,
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We can think of the interactions in both the top and bottom of Figure 3.3.3 as a spacetime
rectangle. Starting with the top left corner, the key factors are the superposition
component/member amplitudes c,, &c,,, then proceeding clockwise (the order is irrelevant)

C,, &C,, C,, &cC,,and finally c,, &c,, . As this is part of one process, we can rearrange all
terms and multiply them to get (c,, *C,;,)(C, *Cq; )(Cs, * Cqo)(Csy *Cep)-
Putting P,, =¢,, *C,;,, P, =C,, *C,,etC.

(Cyp * Cyp )(Cop, * Cs, ) (Co * Co ) (Csa * Cs, ) = Py Po Pe P (3.3.8)

However, our superposition members (y,, shortened to ) are all Eigenfunctions with

Eigenvalues p’, =n*A’k? having equal probabilities of momentum vectors k pointing in
opposite directions, as in Eq.(3.3.7) and the following paragraph. Thus, we can interchange
the red and orange boson v, &y, and also the blue and green fermion ., &y, in Figure

3.3.3 with no change in exchanged momentum. These four possibilities increase the amplitude
factor for this group by four, so that (if all other factors are one) Eqg. (3.3.8) becomes:

2° (Cap * Cyp )(Cop * €5 )(Coy *Co, )(Csy *Cs) = 4P, Py R P (3.3.9)

But there are four different groups of four Eigenfunctions A, B, C & D as in Figure 3.3.4
below, and we have only been considering group C above.

A B C D
Spinl Spin% | Spinl Spin% | Spinl Spin¥% | Spin1l Spin?%
5 7 5 7 5 7 5 7
| N\ ya
4 6 A|r —(T 4\T 4|/6
3 5 3—5 3 5 3 5

Figure 3.3.4 Interaction between the four Eigenfunction groups A, B, Cand D

Using Eq. (3.3.9), if all other factors are one the amplitudes for the groups in Figure 3.3.4 are:

A= 4(C4b * C4b)(C5b * Csb)(cea * Cﬁa)(c7a * C7a) = 4P4b PSb PeaP7a (3'3'10)
B= 4(C3b * C3b)(c4b * C4b)(c6a * C6a)(c5a * C5a) = 4P3b P4b P6aP5a
C= 4(C4b * C4b)(csb * CSb)(Cea * CGa)(CSa * CSa) = 4P4b P5b PGaPSa

D= 4(C3b * C3b)(c4b * C4b)(C6a * CGa)(C7a *C7a) = 4P4b Psb P6a P7a

These amplitudes are all numbers as P, =c,, *¢c,,, P, =C., *C.,etc. are just probabilities. But
we can perhaps imagine these numbers as in the complex plane. From section 2.2.2 and
Figure 3.1.4, however, the three eigenfunctions forming each of the interacting particles are
born simultaneously. It would thus seem reasonable to assume that the amplitudes of each
group of three eigenfunctions have the same complex phase angle. So whether they are in the
complex plane or not, provided they are all at the same angle we can get the overall
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probability of this virtual exchange by simply adding the four amplitudes A,B,C&D from Eq.
(3.3.10) and squaring the total to get:

Overall interaction probability if all other factors are one = (A+ B +C + D)?
= 1G[P4b P5bP6a P?a + PSb P4b PGaPSa + P4bP5b PGaPSa + P3b PAbPGa P7a]2 (3'3'11)
2 2
= 16[P4b(P3b + P5b)] [Pﬁa(PSa + P7a)]

Using different colours again for common terms in each of the equations following and then
using Cy, *Cy, +Cy, *Cyp +Cy, ¥y =Cc, *C, +C, *Cq +C,, *Co, =1 the interaction probability is

(A+B+C+D)* =2*[c,, *c,, (1-c,, *c4b)]2 [Coa *Con(1—Cs, *cea)]2 (3.3.12)

We have assumed to here that all other amplitude factors are one. However at each vertex
there are both fermion and boson superposition probabilities from Eq. (2.2.4). Writing the
superposition probability at each vertex sN-dk/k as s,,N,dk/k, sN,dk/k for clarity
where spin1=s, N =1is N, etc. Including these factors (if all other factors are one) in Eq.
(3.3.12) our overall probability at wavenumber K is

2 2
r2Sl/lecea *Csa (1_ Coa *CGa)—| r251N204b *CAD (1* Cap *C4b)—|
k k

2
_ [251/2 N1C6a *CGa (1_ Csa *C6a)] [281N2C4b *C4b (l_ C4b *C4b)]

(k)*

2

The momentum per transfer is a total of +/4k and using Egs. (3.3.5), (3.3.6) &
(+7Kk)* =q* then putting # =1 the interaction probability is

2 2
[251/2 N,Cq, * Coa(1—C, *Csa)] [251N2C4b *c,, (1—c,y, *C4b)] (3.3.13)

4

q

This is the scalar interaction probability between two spin % fermions exchanging
infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions are effectively
spin zero, imagining them as bare charges and all other factors being one. When exchanging
spin 2 infinitesimal rest mass time polarized gravitons (as in the bottom half of Figure 3.3.3
with no 3 momentum) we can simply keep using wavenumber k in the denominator for the
interaction probability between fermions and gravitons. If all other amplitude factors are one
this interaction probability becomes (using subscript ¢ for spin 2 and N =2 = N, for clarity):

2 2
2s,,N.c..*c..(1-c, *cC 2s,N.c,.*c,.(1-c,. *C (3.3.14)
[ 1/2" "1¥6a Ga( 6a Ga):L4[ 2 %2%4c 4c( 4c 4c)] graVitOﬂS g fer ionS.
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And if, for example, two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass
with N =2 =N, ) the interaction probability if all other amplitude factors are one becomes
2 2
[2SlN2C4b *C'Ab (1_ Cup *C4b)]kE252N2C4c *C4c (1_ Cye *C4c)] forN = 2 photons. (3'3'15)

If two massive N =1 photons (as in Figure 3.3.2) exchange spin 2 gravitons the interaction
probability if all other factors are one becomes

[ZslNchb *C5b (1_ C5b *CSb)]Zk[AZSZNZCM *C4c (1_ C4c *C4c):|2 for N — 1 photons. (3316)
According to GR (section 1.2.2) the emission of gravitons is identical for both mass and
energy. Keeping all other factors (such as mass/energy) in Egs. (3.3.14), (3.3.15) and
(3.3.16) constant, the graviton interaction probabilities must be the same in each. We can thus
put them equal to each other and cancel out all the common red terms on the RH sides above:

ZSlNZCAb *CAb a- Cap *C4b): ZSlNlCSb *CSb 1- Csp, *CSb): 251/2N106a *Cea(l_ Cea *C6a)

or (3.3.17)
4c,, *cy, (l_c4b*c4b) = 2C5b*05b(1_c5b *CSb) = Cea*CGa(l_CGa*CGa)
N =2 Spin 1 N =1 Spin1 N =1 Spin 1/2

In this special case as in Eg. (3.3.4) we have shown that the time polarized interaction
probabilities are the same whether 3 momentum is exchanged or not, and this equation for the
above ratios is identical for both virtual spin 2 graviton and virtual spin 1 photon exchanges.
Ignoring complex numbers for simplicity, we can use either 4 momentum g or wavenumber k
interchangeably. Now assume that all other factors (other than coupling constants) are one,
and remember that we are simplifying with a thought experiment by looking at spin %
superpositions sufficiently far apart so we can treat them as approximately spherically
symmetric or effectively spin zero, even if they are supposed to be bare charges with spin.
Under these same scalar exchange conditions QED says that with electrons, for example:

4g2  (3.3.18)

7

The probability of scalar spin one photon exchange in Eg. (3.3.13) =

(This probability is for one momentum k direction only, but the mode density of these is

4a’ K:dk (2a) o .
———=|——| dk as an imaginary emission
k Vs 7k

k?dk / z°. We can perhaps think of

probability Z—a%, multiplied by an imaginary absorption probability 2—0[% in all possible
T T

directions.

The rest of this paper is mainly about virtual particles which cannot be experimentally
detected. However, as we will see, imaginary probability densities can have real world
consequences. This is similar to our postulated infinite virtual superpositions being
undetectable, but the particles they generate can certainly be experimented on in the real
world.
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This paper uses these imaginary probabilities throughout, as it allows a very simple
approximate way to look at gravity using only very long wavelength time polarized gravitons.

We demonstrate how it works in the next section on electromagnetic energy between charges.
Let us now temporarily ignore the fact that gluons have limited range and imagine our thought
experiment applying to colour charges exchanging gluons. The a of Eq. (3.3.18) becomes

the usual colour couplinge,. To get the fundamental coupling ratio labelled as y. =a;’
@k, We substitute the « of Eq. (3.3.18) with a = y.' as we assumed o, (Primary) =1.
Substituting 28, =1, 28, =2, N, =1& N, =2 and equating Egs. (3.3.13) & (3.3.18)

2 2
[CGa *Cea (1_ Coa *Cﬁa)] [4C4b *C4b (1_ Cup *C4b)] _ 4()(51)2
4 4

q q
[Cea *CGa (1_C6a *C6a)][404b *C4b Q- Cap *C4b)] = 2)(51 (3319)

But from Eq. (3.3.17) the blue and green terms are equal (also the magenta terms) and we can
solve for the fundamental coupling ratio by combining Egs. (3.3.17) & (3.3.19).

N =2 Spinl N =1 Spinl N =1 Spin 1/2 (3.3.20)
Photons or Gluons Massive Photons Fermions

4C,,*C,, (1—C,, *Cypy) = 25, * Cgy (1 Cy, *Cgpy) = Cg * Cy (1= G, *C,) = \IZIZC

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the
six primary electric charges of Eq. (3.3.1) because of the way electric charge is defined.
Equations (3.3.17), (3.3.19) & (3.3.20) tell us that for any interactions between two
superpositions, the inverse coupling ratio always involves the product of the central
superposition member probability by the probability of the other two members combined
xN xspin of the first superposition, times the equivalent product for the other superposition.
In section 4 we introduce gravity and solve these ratios. Despite all the simplifications and
lack of rigour, the above equations are surprisingly consistent with the SM, provided there are
only three families of fermions. Even though we used gravity to derive Eq. (3.3.17) we leave
discussing the gravity coupling ratio till section 6.2.6.

3.4 Electrostatic Energy between two Infinite Superpositions

3.4.1 Using an approximate but simple quantum mechanical approach

In section 3.3 we showed that fermion superpositions can exchange boson superpositions in
the same way as electrons can exchange virtual photons for example. Providing the
superposition amplitudes are appropriate, the coupling constants can be just as in QED,
though we will look further at this in section 4.1.1. So, it might seem that evaluating
electrostatic energy between superpositions is unnecessary. However, when we look at
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gravity, we find that the spacetime warping around mass concentrations could possibly be
related to cosmic wavelength virtual graviton probability densities. Virtual particle exchange
probabilities, in QED/QCD etc, use perturbation theory to calculate particle scattering cross-
sections, and electron g factor corrections with incredible precision. Both space and time
polarizations are involved. However, as we later focus on virtual cosmic wavelength graviton
probability densities at large spacings, we will use a simple but only approximate (but true at
large spacings) quantum mechanical method based on only time polarized photon probability
densities to find the scalar potentials between two charges (or infinite superpositions). This
same method also allows a simple solution to the magnetic energy between superpositions
(again at large spacings) in section 3.5, where we modify relevant equations in a simple
manner. In section 5 we will use some of these same equations when looking at why
borrowing energy and mass from zero point fields requires the universe to expand after the
Big Bang and distort spacetime around mass concentrations. We assume spherically
symmetric | =3 superpositions emit virtual scalar (time polarized) photons in this section and
| =3, m=+2 superpositions emit virtual m==1 photons in section 3.5. As section 3.3 has
shown that we can achieve the same electromagnetic coupling constant @ we can use the
scalar photon emission probability (2c/ 7)(dk / k) covered in section 2.1.1 and the section in
italics after Eq.(3.3.18). From section 3.3 we can also see that the effective average emission
point has to be the centre of superpositions. For a virtual photon AE-AT <7/ 2, and the range
over which it can be found is roughly r ~ AT ~1/2AE =1/2k when #=c=1. The radial
probability of finding the centre of the spin 1 superposition representing the interacting virtual
photon decays exponentially with radius as e®'. The normalized wavefunction y for such a
virtual scalar photon of wave number k emitted atr =0 is:

—kr _+i(kr—at) —kr ,+ikr
v = LKLZ &l @“metzo
\I 4 r \l 4 r
‘ Radial probability of finding the virtual photon
/ superposition centre of the same k value.

K 10 \ \ Dominant fermion virtual wavefunction v,

5 \\ \.
N \\
\i‘\_ K
1.4 20 — 2.8

03 L0 23 ' — kr

Figure 3.4.1 Radial probabilities of ¥ ¢, and the exponential decay with radius of a virtual
photon of the same k value R*R oc 2ke " These curves look the same for all k , applying
equally to virtual photons, gravitons and to large k value gluons etc.
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Wavefunction y is spherically symmetric as scalar photons are time polarized. Figure 3.4.1
plots the radial probabilities of the exponentially decaying virtual photon and the dominant
n=6 mode of its relating superpositiony, . The effective range of a wavenumber k virtual
photon is of a similar order to the radial probability dimensions of ¥, . For simplicity, in what
follows we locate two superpositions (which we refer to as sources) in cavities that are small
in relation to the distance between them. The accuracy of our results depends on how far apart
they are in relation to the cavity size. Consider two spherically symmetric sources distance
2C apart emitting virtual scalar photons as in Figure 3.4.2 where point P is I; from source
one, and I, from source 2. Let ¥, be the amplitude from source one, and ¥, be the amplitude
from source two and for simplicity and clarity let t = 0.

ok e kniky ok @ Krtikn, (3.4.1)
Thus Wi =]— & wy=,|—
Ar 1 4r 1,

Consider (Y1 + W) *(wit wa) =vi™ ity ™ vty ity ™y,

Now ¥;*v; & W,*y, are just the normal probability densities around sources one and
two as though they are infinitely far apart but the work done per pair of superpositions k on
bringing two sources closer together is in the interaction term: ¥, *w, + v, *y; .

Wl*wz — efkrlefere—ikrleJrikr2 _ 2—ke*k(r1”z)e*ik(r1*rz)
4rnr, 4rnr,
W,y = 2k o Kn g ki g ikn, g 4k _ Aefk(rﬁrz)eﬂk(rlfrz)
4rnr, 4rnr,
PR 2] = 2K goktnm) [e“k(rfrz) +e*ik(r17r2)}
T,
4k

= —— e (") cosk(n —1,)
4rnr,

(3.4.2)

Now put (A=r+r,B=rn-r) & w*yw,+y,*y, = e " cos(kB)

4rnr,

Real work is done when bringing superpositions together and we can treat these interacting
virtual photons as having real energy 7z« = #zkc. Using virtual photon emission probability
(2a !/ )(dk / k) from section 2.1.1

h 3.4.3
Energy per virtual photon x Probability = hkc><|_ProbabiIity 2—0[%—' = 2ahe dk ( )
L 7 k J V4
. . . . * * rZahC —|
Including Eq. (3.4.3) the interaction energy @ k is thus (¥ ¥, +¥, "y, )L ko and
T

using Eq. (3.4.2) the interaction energy @ k is {20’ ¢ dk} Ko cos(kB).
T 4rnr,

The total interaction energy density due to ¥; *¥, +¥, *y, forall k is
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h - (3.4.4)
20MC 4 [ ye ™ cos(BK)dk
m Arnh
* A2 g2 (3.4.5)
j ke " cos(BK)dk = ————
0 (A“+B%)
Where A =(n+n)° =n*+2nn+1,° & B®=(5-n) =n*-2nn+1,°
Thus A% =(r+n)° =r”+26n +1,° & A>+B? =2(r° +1,%) (3.4.6)

= 2(r*+C?) as cos(180—6) = —cosé
and A2 +B2=4(r? +C?) (3.4.7)

Point P

1’ =r'+C" =2rCcos(180—-6
C* —2rCcosf

Source 1 Source 2

(' | s

Figure 3.4.2 Distances to a point from two sources as a function of angle ¢ and radius .

A% - B? 4rr,

(A2 1+ B2 16(r2+C?%)?

Putting Egs. (3.4.4), (3.4.5), (3.4.6) & (3.4.7) together

(oo}

[ ke cos(BK)dk = 2
0 4(r°+C”°)
2ahc 4 wke_Ak cos(Bk)dk = 2ahc 4 nhr,
x Amnr m 4xnr, 4(r?+C?)?
= 3.4.8)
2chc 4 _AK 2ahc 1 1 (
—_— ke ™" cos(Bk)dk = -
r A4rnr, 5 T Ar (r2 +C2)2

This is the total interaction energy density of time polarized virtual photons at point P due to
W, *w, +v,*yy for all k and there are no directional vectors to take into account. We will
use similar equations for the vector potential (m =+1) photons for magnetic energies but will
then need directional vectors. Equation  (3.4.8) is the energy due to the interaction of
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amplitudes at any radius I' from the centre of the pair. It is independent of &, and to get the
total energy of interaction we multiply by 4zr?dr for layer dr and integrate from
r=0— 0.

) : . 2ahc T ¢
The total interaction energy is —j j(l/ll*l,ﬂz +y, *y,)dk 4zr?dr
T
00

Zahc 1 2 Azridr
T Ar (I’2+C2)2

Using Eq. (3.4.8)

2ahc } n rdr
Thus I j(l//l W, + v, ¥y, )dkdv _2a C_[ —_—
2 7 (r? +C?)?
]° i
: (r2+C )2 2Cc 2
The interaction or potential energy is E = a_hc
>c R (3.4.9)

If R=2C is the distance between the centres of our assemblies, this is the classical potential.
The procedure used here, with small changes, simplifies the derivation of the magnetic
moment; we reuse some equations, but in a slightly modified form taking polarization vectors
into account. We also reuse some of these simple but approximate derivations when looking at
gravity in Section 5.

3.5 Magnetic Energy between two Spin Aligned Infinite Superpositions

In this section we are going to consider two infinite superpositions that form Dirac spin %
states. We will look at the magnetic energy between them when they are both in a spin up
state, say along some Z axis as in Figure 3.5. 1. We are not looking at the magnetic energy
here when they are both coupled in a spin 0 or spin 1 state. That is, both Dirac spin Y2 states
have their \Eh/Z spin vectors randomly oriented around the Z axis with #/2 components
aligned along this Z axis. Also, in this section we will be dealing with transversely polarized
virtual photons and must take account of polarization vectors. In section 3.2.2 and Eq. (3.2.7)
spin Y states are generated only from | =3,m =2 states and as transversely polarized photons
are superpositions of m =+1 photons they can only be emitted from these | =3,m=2 states;
the remaining states are spherically symmetric and cannot emit transversely polarized
photons. We don’t yet know the value of amplitudes |Cn| so we will derive the magnetic
energy in terms of these. We will then equate this energy to the Dirac values assuming a value
of g =2 before QED corrections; this allows us to evaluate in section 4.3 the amplitudes
|cn| in terms of the ratio y.,, between primary and secondary electromagnetic coupling. We
can then evaluate in section 4.1 the primary electromagnetic coupling constant &gy, in terms
of the ratio y,, . (Section 3.5 uses the same format as Chapter 18, “The Feynman Lectures on
Physics” Volume 3, Quantum Mechanics[24] .
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J3n/2 E ‘ hiz

Figure 3.5. 1 Two spin aligned superpositions.

An | =3 ,m=2 state can emit a right hand circularly (R.H.C.) polarized (m=+1) photon in
the +z direction. Let the amplitude for this be temporarily |R>

An | =3, m=-2 state can emit a left hand circularly (L.H.C.) polarized (m=-1) photon in the
+2 direction. Let the amplitude for this also be temporarily |L) .

First rotate the Z axis about the y axis by angle & (call this operation S|R)) then use

<x’ :(1/ﬁ)[<R"+<L'U and multiply on the right by operation S|R) .

The amplitude to emit a transversely polarized photon in the x’ direction is thus
(x[s[R)= = [(RIs[R)+{L]s]R)]

Where (R'|S|R)=(3,+2'|S|3,+2) = (1/4)[2+2cos€—4sin249+3sin2QCOSHJ is the

amplitude an | =3,m=2 state remains in an | =3,m =2 state after rotation by angle & .
Also (L'|s|R)=—<3,—2’|s|3,+2)=(1/4)[2—2cos9—4sin29—3sin20cos9}isminusthe

amplitude that an | =3,m =2 state isin an | =3,m=-2 state after rotation by & .

1-2sin”@  cos26 (3.5.1)
2 V2

An | =3,m=2 state can also emit an (m=+1) photon in the —Z direction but it will now be

Putting this together (x'|S|R)=

left hand circularly polarized. Let this amplitude be temporarily: | L> .

Similarly an | =3, m=-2 state can emit an (m=-1) photon in the —Z direction which is right
hand circularly polarized. Let this amplitude be temporarily:|R) .

cos 20 (3.5.2)

N

We can go through the same procedure as above to get (X'|S|L) =

This amplitude Eq. (3.5.2) is for a photon emitted in the opposite direction to amplitude Eq.
(3.5.1) but cos28=cos2(180+¢) and we can simply add these two amplitudes. Let us
assume, however, that an | =3,m=2 state has equal amplitudes to emit in the +z & —Z
directions of |R>/\/§ and |L>/\/5.
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353
S|L>]= c03220+cos,229 0520 (3.5.3)

Equation (3.5.3) is the angular component of the amplitude for a transverse x’ polarization in
the new z’ direction where x — x' &z — z'=6. When =0 or 180 the on-axis amplitude
for transverse polarization is one as expected ignoring other factors. Using the same
normalization factors (we check the validity of this in section 3.5.2) we can still use the
amplitudes and phasing of our original time mode photons Egs. (3.4.1) but instead of
including polarization vectors we will for simplicity just use the cosine of the angle (y—9)
between them (as in Figure 3.5. 2 ) as a multiplying factor. Including the angular factor Eq.
(3.5.3) in our earlier scalar amplitudes Eqgs. (3.4.1) we have for our new wavefunctions:

ok o Ku+ik; ok e Knikn, (3.5.4)
wl=c0525,}—e & w2=c032y‘,—e
Ar 1 Ar 1,

The transverse polarized photons from sources (1) & (2) have polarization vectors |x1> and

S|R)+(x'

1
With these amplitudes; —| (X’
P Ak

|x2> at angle to each other (¥ —9), (Figure 3.5. 2) and the complex product becomes:

(Wit wo)* (i + wy) =w ™ w + (v vy +w, *w)(cos(y = 6) +w, v,

Where the interaction term is now: (¥;*¥,+v,*y,)C0S(y —0) and as in the scalar case
(section 3.4.1) but now using Egs. (3.5.4)

2k _ Zik(r—
W, *w, COS(y — 8) = €05 25 c0s 2y ———e K (1+R)e K(iR) oog(y — 5)

4rnr,
W, *w, COS(y — ) = C0S 25 COS ZyAe‘k(ﬁ”z)e”k(ﬁ—rz) cos(y — &)
4rnr,
(v *w, +w, *y,)cos(y — ) =cos25 cos 2y e " cos(kB) cos(y — o) (3.5.5)

4rnr.
(Where as in section 3.4.1, Eq. (3.4.2) A=+, &B=r-1,.)

Point I

Source 1 Source 2

Figure 3.5. 2 Two sources 2C apart, both with ,ank x(m=+2) states along the joining line,
5 &y are the respective anglestoP, I, & @ are the respective distances to point P.
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3.5.1 Amplitudes of transversely polarized virtual emitted photons

In the laboratory frame ¥, has amplitude S, to be in an m=+2 state (section 3.1). For a
multiple integer n superposition v, :ZCnl//nk. At each fixed wavenumber k, we cannot
distinguish which integer n a virtual phdton comes from, so we must add amplitudes from
each individual integer n superposition. To keep integrals simple we will assume that
B <<<<1 or that spacing 2C is very large, and our interacting k values are very small.
(We can make a comparison with the Dirac values at any large spacing, so accuracy need not
be affected.) Thus if g, <<<1 and y,, ~1, we can approximate Eq. (3.1.11) as

niky2s _[Pulv2s x”k‘/z < 2K £or spin v fermions.

K, = ~ ~
nk ﬂnkynk ﬂnk 2m c 2m c 2

A <n>k (3.5.6)
2

Adding amplitudes for multiple integer n superpositions <ﬁk> ~

(When deriving Eq. (3.2.10) we said (|p,|) =7k (n) and not <|pk|>=hk\/ﬁ . How do we
justify this? When Sy <<l as above g, o« nik = |p,| So adding amplitudes S, to get
(ﬁk> is equivalent to adding p, to get (pk> and not adding p’ =n’A’k’ to get
(p.]) = hkﬁ. If this is true when By <<1 it must be true for 0< 3, <1.)

3.5.2 Checking our normalization factors
Let us pause and check the reasonableness of all this and our normalization factors. From Egs.

2k —2kr
X babilit 2—%) ives a
i 2 (emission probability g

(3.4.1) for scalar photons |:l// v =

dk] 2k e 2" [ 2 dk
Scalar ¥, emission probability densityy * w{—a—}z—e > |— 2 —|
v

k 4dr r 7rk

The transversely polarized probability density, using Egs. (3.5.4) & (3.5.7) plus <ﬂk >2 IS

20 dk 2k e 1 20 dk
<ﬂnk> ’* ’: <ﬁnk> { 225 : ] : k

4 y?

(Where2s5 =2y &r, =r,.) If we now consider the on-axis & =0 case the transverse polarized
on axis emission probability density at k is:

4z 12 7zk

(5 {2“ }2 2K () oy 28
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Just as in QED the factor(ﬂk>2 is the factor we need for this on-axis emission probability
density ratio between transverse and scalar polarization. This justifies using the same
normalization constant (2k /47)”2 for both the scalar and magnetic wavefunctions. Using the
same virtual photon emission probability and energy #zkc as in Eq. (3.4.3) for both the scalar
and transverse polarization cases:

T T

h 3.5.7
Energy per transverse photon x Probability = hch{Probability Z—Q%} = 2ahe dk ( )

Multiplying Eq. (3.5.5) by Egq. (3.5.6) squared, and Eg. (3.5.7) we get the transverse

interaction energy at wavenumbery.,:

2 2ch
(B) (%*V/z+l//z*%)008(7—5){ @ Cdk}
T
fxz n zkﬂ
=|L|00325c0327
L 4 J Arnr,

e A cos(kB) [_Zahc dk}

T

2ahc dk}

Rearranging this: (,Hk )2 (v *w, +w, *pp)cos(y — o) {

T

245 (3.5.8)
2({n)"A%ahc _
_ (n)"REahc cos2s cos2y cos(y — 5) [k oAk cos(kB)dk]

T 4rnr,

. . : . 3 . .
As in the scalar case we integrate over k first but now with a k™ term due to the inclusion of
L : . 2
the(ﬂk )2 factor which is approximately proportional to k® from Eq. (3.5.6).
Using A=nr+r, & B=nr-r, and Egs. (3.4.6)& (3.5.6)

§r2r12r22 —(r? +C2)21
8{ (r2+C2)4 J

2ahc

T

]3 [k?’e’Ak cos(kB)dk}:
0

0

2
And thus: [(B) Wi y, +w, *wi)cos(y -6)
0

2
M C0S 26 €0s 2y cos(y — o) y §r2r12r22 —(r2 +C2)21
i 4, 8{ (r’+c®*

dk

(3.5.9)

Equation (3.5.9) is the magnetic interaction energy density at point P for all wave numbers k.
Figure 3.5. 2 is a plane of symmetry that can be rotated through angle 27z around the axis of
symmetry (the joining line along the axis of the two spin aligned sources). To evaluate the
total magnetic energy density over all space we multiply by 47zr?sin&dédr.

We thus integrate Eq. (3.5.9) X 47r’sin6dédr to get
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(3.5.10)

Kzahcﬁzcoswcoszﬂos(y 5)| 2r’r, _(r22+fz)2—|rzsin0d9dr
(r +C9) J

[2r2r,2 —(r? +C
C0s25 cos2y cos(y —6) | 21 2 > ( — ) r?sin@dédr can be reduced to the
nr, (re+C9)

Now T
0

1 2
1 7-5x 1+x 14 16
single integral: —3] V1-x° ( 3 ) — +— |dx which can be expressed as an
8C" X l X X 3

O — NN

infinite series in p (to not confuse with superposition value n):

"ff 14 10 |  (@p-)! x 1 (160-5lr) 7
plL2p+3 2p+1J(p_1)!(p+1)!4P'2 sC® 6 2
(Putting R = 2C ) :%—(160_51”).5 (3.5.11)
R 6 2
z (3.5.12)

This infinite series is approximately ~-—
R* 54(1.0045062....)

Putting Eq. (3.5.12) into Eqg. (3.5.9) the total magnetic interaction energy over all frequencies
and all space for two spin aligned infinite superpositions is:

' 3<n>27lzcahc{ 1 T }
U'= -— )

4t R® 54(1.0045062....

_ _ N [ <n>2 %2 ahc ] (3.5.13)
We will call this U (superpositions) ~ _t72R3(1 045062 )J

We can equate this magnetic energy to the classical value assuming the Dirac value of g=2
for spin %2 (No QED corrections have been applied so it must beg=2). For the arrangement
of spins as in Figure 3.5. 1 the Dirac magnetic energy between two spin %2 states is

2,2 ] (3.5.14)
U(Dlrac)-—|L|
| dze,C 2R® ]
. . . h h i . . .
Using the Dirac magnetic moment x = o8 _ ¢ _®%¢  the Dirac magnetic energy is
2m, 2myC

A2 ahc
U (Dirac) = —| =<
(irec) {zﬂ

The approximation used in deriving Eq. (3.5.6) }/Zﬂz zﬂz for ﬂ2 <<<1 is true only when
R>>> KC. This error in ﬁz is of the order of Ké /R? and rapidly tends to zero with
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increasing R . There is no upper limit on the value of distance R we can choose. Thus,
comparing our estimate of the magnetic energy with Dirac’s value when R >>> KC :

(43.5.15)

A2ah | 282 ah
U (Dirac) =U (Superpositions) or—{ c% C} <n> cahtc

| |
oR® | | 72R*(1.0045062....) |

All symbols cancel except (n) leaving: (n)? ~ 36(1.0045062.....)

The expectation value <n> in our superposition is slightly more than n=6 our dominant
mode. This is why we have used a three member superposition centred on this dominantn =6
mode. The two side modes n=5 and n=7 are smaller so that:

(Y= > (c,*c,)n ~ /36(1.0045062...) ~ 6.01350345 (3.5.16)
n=5,6,7.

This is for Dirac spin Y2 particles. This mean value of n creates a g=2 fermion which QED
corrections (which are secondary interactions) increase slightly to the experimental value. In
section 4.1 we solve the primary electromagnetic coupling constant in terms of ratio gy
using Eqg. (3.5.16). It is important to remember this magnetic energy derivation applies to two
infinite assemblies (or particles) localized in small cavities in relation to their distance R
apart. They must be both on the Z axis with spins aligned (or anti aligned) along this Z axis
as in Figure 3.5. 1 & Figure 3.5. 2. Also, the agreement with Dirac and in what follows is
possible if superposition ¥, interacts only with virtual photons of the same wavenumber k.

4 High Energy Superposition Cutoffs

4.1 Electromagnetic Coupling to Spin %2 Infinite Superpositions

Equation (3.5.16) is the key requirement for spin % superpositions to behave as Dirac
fermions, allowing us to solve ag;,,P as a function of coupling ratio ¥ using Eq. (3.5.16).

52



(n)=">" (c,*c,)n = /36(1.0045062...) ~ 6.01350345

n=>5,6,7.
Thus 5c; *cg +6C5 *C5 +7C; *C;, =6.01350345 but 6¢;*c5 +6C5*Cc5 +6C,*C, =6
and C,*C; —C5*C5 =0.01350345

As C;*C; +C;*C; =1-C; *C; we can now solve for C;*C; & C;*C; in terms of C;*C

c.*cC c.*cC 411
¢ *c, ~0.50675172 - =4—=% &  ci*C, ~0.49324827 - =% (4.1.1)

From Eqg. (2.3.12) the QZA2 required to produce this superposition with amplitudes C, is

n4 2 4r2
Q°A’ = > ¢,*c,———— and using Eq.(4.1.1)
n=5,6,7 81
> ¢, *c, n* =625c, *c, +1296¢, *c, +2401c, *¢, ~1524.991-217¢c, *c
n=5,6,7
2 p2 n*h’k*r? 2,42 - .
Thus Q°A*= >’ cn*chz[18.82705—2.67901c6*c6]h k°r“is the required vector
n=5,6,7

potential squared to produce this spin % superposition. From Eq. (2.2.4) with s= %2 &N =1

[8+8M)]

for massive fermions QA” = 2js the available Q*A’ .

Equating required and available: 2[8+8 aEMP)J ~37[18.82705-2.67901c, *c,]

|1+ e EMP)] [1.386256 —0.197258¢, *C, |

reye [ (1386256 0.197258¢, *c, 1] (4.1.2)

From Egs. (3.3.1) & (3.3.20), €, *Co(L—Co*C) =[2/ 7. =64[2/ 1, and we can solve for
aeye as a function of either ¥¢y or ¥ - We then use Eq. (3.3.20) again to get aEMS @Kot -
Now both ¥gy and X are fundamentally the same ratio differing only by 36:1, because
electron superpositions have six primary charges whereas we define them as one fundamental
charge (section 3.3.1) and quarks have only one colour charge (Table 2.2.1) Because
Xe = agl at the cutoff near L, it is more convenient to work with. From Eq. (3.3.20)

1 1 2 ]
Co*Cy = E+E /1 4 / and there are two solutions for each ¥ -
Xc

One has C, *C, dominant with two smallerC; *C. & C,*C, side modes, the other is the reverse
with C; *C, the minor player and two largerC; “C. & C, *C, side modes. As the values for Qg
with C;*C; dominant fit the SM very closely, we include only these. (This only applies to spin
Y fermions, and the spins 1 & 2 boson superpositions in Table 4.3.1 are the opposite, with
minor centre modes.) Table 4.1.1 shows possible coupling ratios . in the range
%< =50 — 51. The yellow row corresponds to the cutoff energy in Eq. (4.2.10) and Figure
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4.1.2. Table 4.1.1 shows these dominant C; *C, mode results for y. = ag'l at various possible
cutoffs in the range . =50 — 51 as this range fits the SM.

Coupling Ratio Xc Ce * Cq ah?l\}lprimary aEI%’ISecondary@kcutoff
50.00 ~ 0.723607 ~75.4414 ~104.7798
50.20 ~0.724497 ~ 75.5447 ~105.3429
50.40 ~0.725378 ~ 75.6472 ~105.9060
50.4053 ~ 0.725401 ~ 75.6499 ~105.9210
50.60 ~0.726250 ~ 75.7488 ~106.4692
50.80 ~0.727115 ~ 75.8497 ~107.0324
51.00 ~0.727970 ~ 75.9499 ~107.5956

Table 4.1.1. Possible coupling ratios y. versus « *(EM Secondary) in the range y, =50-51.
The yellow row corresponds to the interaction cutoff energy in Figure 4.1.2 & Eq. (4.2.10) as
there can be only one solution for this cutoff.

4.1.1 Comparing this with the standard model

In the real world of SM secondary interactions the electromagnetic force splits into two
components @, &a, at energies greater than the mass/energy of the Z, boson or
~91.1876 GeV.[25].However we want to compare these SM couplings with the values
derived in Table 4.1.1 at the =~ 2.0288 Gev. cutoff of Eq. (4.2.10). Assuming three families of
fermions and one Higgs field the SM [26] predicts

o' ~58.98+ 0.08—£Ioge _Q

2 91.1876

Q

o7t ~ 29.60+0.04+ ——log, (4.1.3)
6x27 ©91.1876

7
a,' ~8.47+0.22+—Ilog, ——
2 91.1876
The weak force split obeys Oy = Eal’ +a,
, 3 (4.1 4)
Also a;,* = gagﬁ,, Cos’d, & a,'=ag,Sin’g, where 6, is the Weinberg angle.

L . 11 1
Combining these equations a,, = gall +a, ~127.90+£0.173 - log, Q (4.1.5)

3x 27w 91.1876

Figure 4.1.1 plots these four inverse coupling constants. Figure 4.1.2 plots the intersection of
a;ﬂs%onda,y predicted in Table 4.1.1 and the SM prediction for agiﬂ in Eq. (4.1.5). It would
initially seem in Figure 4.1.2 that there is an unusually large error band in the predicted
results. However Aaghl,,Secondary/A;[l ~ 2.8 is approximately constant in this table and the
error band in the SM colour couplinge,” of +0.22 in Eqs  (4.1.3) translates into the larger

error band for Agyssenay OF +0.22x 2.8 ~+0.62 in Figure 4.1.2.
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T Inverse coupling constants E
Fermion interaction cutoff —22° ~ 2.029x10"GeV.

120 | T (n)
100 -
ey = Eal’l +a, ~105.934+0.173@ ~ 2.029x10°GeV. 9\
a0 3 Figure 4.1.2
1 is a close up
% o, ~50.405+0.22@ ~ 2.029x10°GeV. of this region.
60\ ™~
40 |
20 ¢
100 10° 108 101 10% 10% QinGeV. -

Figure 4.1.1 Standard Model based on three families of fermions and one Higgs field.

Planck Energy Possible values for

107.0} (n) N / a s (Secondary) from

Table 4.1.1. There can

1065} of course, only be one
solution here.

106.0F

Standard Model
i 5

1033 ot ta =ag,
Figure 4.1.1 expanded

105.0

Figure 4.1.2 A close up of the intersecting region of the SM that Eq.  (4.1.5) and Table
4.1.1 predicts. This fermion interaction cutoff is perhaps more consistent with the SM than we
might expect; as we have assumed, for simplicity, a square superposition cutoff at k.. . An
exponential cutoff of some type is much more likely, but it may have only small effect.
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4.2 Introducing Gravity into our Equations

4.2.1 Simple square superposition cutoffs

In section 3.2 we looked at single integer n superpositions of ¥, initially for clarity, and
later found multiple integer n superpositions gave the same results; we will do the same here.
We also found in Egs. (3.2.3) & (3.2.6) that the integrals for both angular momentum and
rest masses are of similar form. They both ended up including the term

K cutoff
} and this is equal to
0

2

1+ K,

nk

L _12 } which if K cutoff <o becomes {
+
0

. 1 _ Klcutoff 1 1 (4.2.1)
1+ KZcutoff 1+ KZcutoff 1+1/K? (cutoff) 1+e

1 2mic (4.2.2)
KZcutoff  n?7*(K_.qc)°S

where using Eq. (3.1.11) the infinitesimal ¢ =

For integral or half integral % angular momentum precision is required but Eg. (3.2.6) now

K, cutoff
sma[ -1 " smh 1 L
— =———— . S0, can the effect of gravity increase

ives us LZ Total) =
: (Tota) 2 {1+K§k ) 2 l+¢

our probabilities from sN -% to sN-(1+ 5)% ?

We will initially address only massive infinite superpositions where N =1 in Eq. (2.2.4).

The first question we need to address is what is the effective preon mass to be used when
coupling to gravity? In Eq. (3.1.4) we said the preon rest mass is m, / (87, \/E) for each of the
eight preons that build a spin %2 particle of rest mass M, . Now gravitons couple to the total
mass including the kinetic energy. At the start of the interaction each preon mass is
m, /(8}/nk\/£) and after the interaction (Figure 3.1.3) itis myy,, (1+ﬂn2k)/(8 2s) . Let us think
semi-classically again and see where it leads us. We have been using magnitudes of velocities
as they are the most convenient way to express our equations, even if not the conventional
language of quantum mechanics. The interaction with the zero point fields takes the
momentum of each preon from zero to 2m0ynk,8nkc/(8\E) (Figure 3.1.3). While this
happens as a quantum step change, let us imagine it as a virtually infinite acceleration from
zero velocity to 243, / (L+ f35), which is the relativistic velocity addition (see Figure 3.1.1)
of two equal steps of B, At the half way point after one step the velocity is S, (the
velocity of the CMF, the preon mass has increased to m,/(8+/2s). We can imagine this as
being like the central point of a quantum interaction.

We will conjecture this midway point preon mass m, /(8@) is the mass value that gravitons
couple to and we will see that it is indeed the only value that fits all equations. Also, it does
not make sense to choose either of the end point masses. We can also get reassurance from the
properties of the Feynman transition amplitude which informs us in Eq. (3.1.15) that
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(p + pf)Z _ 2M o7 i B
(pi + pf )0 2mo}/nk

= B, and the ratio of space to time polarization in the LF is ﬁnzk-

This centre of momentum velocity gives us the key properties of the interaction. We will thus
assume we have eight preons in each ¥ of effective gravitational mass m,/ (8«/%) with
effective total gravitational mass m, /\E . To put the gravitational constant in the same form
as the other coupling constants we need to divide it by 7c. The gravitational coupling
amplitude is thus mm/GP / (2shc) to the gravitational zero point field, where \Eis the
primary amplitude for a Planck mass to emit or absorb a graviton. Now this gravitational
amplitude can be regarded as a complex vector just as colour and electromagnetism. We
assumed for simplicity, as they are both spin 1 field particles, that colour and
electromagnetism are parallel. Spin 2 gravity could be at a different complex angle to the
other two. In fact, the equations only have the correct properties if gravity is at right angles to
colour and electromagnetism. Putting G we conjecture that the

’
Primary — AN GSecondary

gravitational coupling amplitude is imoa/GP / (2shc) = imo\/;(é -G, 1 (2shc) (4.2.3)

= imoaj;((’3 -G /(2shc)

We have put the secondary gravitational coupling constant to a bare Planck mass G, in Eq.
(4.2.3) equal to the measured gravitational constant G. We can only do this if «, =1 between
Planck masses. (See Eq.(5.1.7) and the preceding paragraph.) We will later find that «, does
not need to be one and is in fact less than one. Consequently we temporarily label the ratio
between the primary and secondary gravitational constants as y., returning to it in section
6.2.6. So, modifying Egs. (2.2.1) to (2.2.3) by adding Eq. (4.2.3)

- ’ 2
0w H8+8a/aEMP+|m0,/;(G-G/(25hc)
T

37sN
L

sN -dk

[sN -dk |
I

h2k4r2

| I—

2
8+84’ ! '
QZAZ = m h2k4r2 {M} where e = mg}(G -G
37zsN k 28hC(8+84Jargyp )’

|:8 +8\agyp )] 2
37sN

Thus primary graviton interaction can increase the probability of our previous wavefunctions
¥, by 1+ &’ as required to obtain precision in our integrals for 72/ 2 & 7 if K cutoff <oo.

Our previous wavefunctions ¥, required Q°A” = R°k*r? from Eq. (2.2.4).

mxt -G 1 2mjc?

Using EQ.(4.2.2) now put o' = —g= =
9Ea(.22) Pte 2she(8+8\Jagys )’ ¢ KZ2cutoff  sn’h?(k

2
cutoff )
2

Xs G ¢
4hc(8+8\/aEMP )2 nzhz(kcutoﬁ‘ )2

i

Thus
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X gn_ 1
256(L+ \Jags ) € N (Kyygy )’

Gh L2 1
ButL,”=—- and Yo e g 2
c 256(1+ \/aEMp) N” (Keueor )

256(1+ /oty )’ (4.2.4)

N2 (K op Lo )

For N =1single integer n superpositions y; ~

cutoff

For N =1 superpositions ¥, =ZCnl//nk , We can use the logic of section 3.5.1; replacing ank

n

With(Kk>2, and n* with (n)2 inEq. (4.2.4) so that Eq. (4.2.5) becomes

2561+ \Jargy,p )’ (4.2.5)

for N =1 multiple integer n superpositions y, ~ —— 2
<n> (kcutoff LP)

If we now go back to Egs. (2.3.9) & (2.3.10) ask —» oo the energy squared E;, — p,c’
=n’"’e’. Again, using the logic of section 3.5.1 for multiple integer n superpositions the

expectation value for energy squared as k —» oo is (E, )" — <|pk|>2 ¢? = (n)" h*k%c? thus

for multiple integer n superpositions as k —> oo, (E, ) — <|pk|>c =(n) ke (4.2.6)

4.2.2 All N = 1 superpositions cutoff at Planck energy but interactions at less

It is reasonable to assume that the cutoff superposition energy cannot exceed the Planck
energy E,.. (at least for square cutoffs) and that this is true for all N =1 superpositions.
(Section 6.2.1 discusses N = 2 superposition E cutoffs.) So, for simple square cutoffs:

Planck

N =1 multiple integer n superpositions cutoff energy <Ek(cutoﬁ)> = <n>hkcutoﬁc = Eppnek (4.2.7)
. . hc
This can be written as  (N)K .o 1€ = Eppprye = -
Planck
o . 1 4.2.8
For N =1 multiple integer n superpositions (N)K.oe =——— & (N)KyorrLp =1 (4.2.8)
Planck
N =1 multiple integer n superposition interaction cutoff energy #ck _ Eoac (4.2.9)

cutoff <n>

Using Eq. (4.2.9) with Planck energy of 1.22x10°GeV. and (n)~6.0135 from Eq.(3.5.16)
for simple square cutoffs (also see Figure 4.1.2).

Interactions between N =1 fermions cutoff @ ~ 2.0288x10"GeV.
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From Table 4.3.1 we see that all other particles such as photons, gluons and gravitons etc.
have (n)<6 and thus higher interaction cutoff energies than fermions i.e..
>2.03x10"GeV., but < E,. Putting 2.0288x10"°GeV. in the SM equations (4.1.3) and
(4.14).

o' @2.0288x10"°GeV .~ 34.4179+0.08 @ k(cutoff)

-1
a2 ............................... ~48.5707+0.04.....c.......... (4210)
Oy s ~50.4053+0.22....ccvrrrrrrrnnn.
ag, :§a11+a21 ........ ~105.934+0.173...c.ccrvvnnenne,

Real world high energy secondary interactions only involve «,, «, & «,, but spin zero primary
interactions do not involve the weak force. Table 4.1.1 can thus only predict a;,i,l ~105.921 at

the cutoff compared to the SM combination of (5/3)a;" +a, =, ~105.934+0.173 of Eq.

(4.2.10). (See Figure 4.1.1 & Figure 4.1.2). Also using Egs. (3.3.3) and (4.2.10) we get the
primary to secondary fundamental coupling ratio y .

Coupling Ratio y, =a; @k, ~50.405+0.22 (ie.@ 2.0288x10°GeV.) (4.2.11)

cutoff

The secondary coupling constants in Eq. (4.2.10) can perhaps be thought of as those to the
bare colour and electromagnetic charges.

If we now put Eqg. (4.2.8) into Eq. (4.2.5) we get ,. ~ 256+ orewe )" _ 256(1+a/aEMP )?

<n>2 (kcutoff LP)2
From Egs.(4.1.2) and Table 4.3.1 we find (1+«faEMp) ~1.115 and Eq.(4.2.5) becomes
x& ~256(1.115)* ~ 318.3 (4.2.12)

From the paragraph following Eq. (4.2.3) we see that this equation temporarily assumes «, =1
If it does equal one then y. ~318.3 is the ratio between the primary graviton coupling to bare
preons, and the normal measured gravitational constant G. Section 8.2.2 develops a cosmic
expansion model with «, ~0.004. In section 6.2.6 we assume an approximate value of
ag ~1in EQ.(6.2.9) to get a primary to secondary graviton coupling ratio of . ~318. When
& ~318 the contribution from gravity cancels any deficit in primary interactions providing
these superpositions cutoff at Planck energy, which we argue is true for all N=1
superpositions. (This section and all its equations are derived by equating the contribution due
to gravity and the deficit due to the Planck energy cutoff in primary interactions.). To enable
Planck energy interactions N =2 infinitesimal mass bosons must also cutoff at Planck energy
just as N =1 superpositions do, or as in Eq. (4.2.9). Sections 6.2 & 6.2.1 discusses these
N =2 superposition Planck energy cutoffs.
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Figure 4.2.1 plots radial probabilities for all n=3,4,56&7 Planck Energy cutoff modes.
They are identical as the radial probability P, o r® x Exp(n®k®r?/9), but from Eq. (4.2.6)
nk=1 in each Planck energy mode, so they all have radial probability
P, ~8.74x10° xr®Exp(r?/9).

Planck region

.

=]
=]
n

[}

fua

=]

All Planck energy n modes look identical

=] =]
L= n

[}
[}

Radial Probability —

— Radius in Planck units.

Figure 4.2.1 Plot of radial probability of all n=3,4,5,6&7 Planck energy modes. Despite
each mode having Planck energy, the probability in every case of being inside the Planck
region is virtually zero at~8.9x10".

4.3 Solving for Spin %, Spin 1 and Spin 2 Superpositions

Superpositions with N =2 are covered in section 6.2. Equation (4.2.11) and Eq. (3.3.20) can
be extended by keeping N-s constant as in Eq. (4.4.1) allowing us to solve various
combinations of spins %2, 1 or2and N=1 orN =2.

(N =2)x(Spin 1) (N =1) x (Spin 1) (N =1)x (Spin %)
or (N =1)x(Spin 2) or (N =2)x(Spin %) (4.4.1)
4C,, *C(1—Cy, *¥Cpp) = 205, *Co,(1—C5, *Cq,) = € *Ce (1—Co, *Cgy)
=2/ . ~~2/50.4053 ~0.199194
Starting with spin %2 we can solve this to get C; *C, = 0.7254 as the dominant value.
Putting C; *C; ~ 0.7254 into Eq.(4.1.2) or alternatively using Table 4.1.1
2 71 (4.4.2)
Ceyp ~ | |[L.386256—0.197258¢, *c, ~1| ~75.6499
2
[8+8\iaEMp )} SN -dk

From Eq. (2.2.4) the available Q°A’ = p—y 7%k *r® with probability
zs

where we ignore the infinitesimal factor of (1+¢&) due to gravitons. And from Eq. (2.3.12)
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n*h’k*r? [8+8\faEMP )T

2A2 — C *C — h2k4r2
Q Z T8l 37zsN
D ¢, *c,-n* ~1367.58 for (spin 1/2x N =1)
~ 683.79 for (spin 1x N =1) or (spin 1/2x N =2) (4.4.3)

~341.9 for (spin 1x N =2) or (spin 2x N =1)
~170.95 for (spin 2, N = 2) by extension.

The same primary electromagnetic coupling @, builds all fundamental particles, allowing
Eq.(4.4.3) to be true. Using Egs, (4.4.1), (4.4.3) &chn"‘cn =1 we get Table 4.3.1. We

define the coupling ratio for gravitons in Eq.(6.2.9) section 6.2.6, where we also solve
infinitesimal mass graviton superpositions. In Table 4.3.1 three member superpositions fit the
SM best. In section 4.1 we solved spin % superpositions with a dominant centre mode c, *c,

that fitted the SM. However when solving for spins 1 & 2 we must initially comply with Eq.
(4.4.1) which defines interaction probabilities (see Eq. (3.3.20) and the following paragraph).
We must also comply with Eq. (4.4.3) which determines centre or side mode dominance. In
this table we have also included a massive N =1, spin 2 graviton superposition as a dark
matter possibility which we will look at in Section 8.2. There are other possibilities which we
have not included.

Mass Type Spin C,*C, 0,505, C*C

N 5 5 7 7
Infinitesimal mass gravitons 2 2 0.8342 ~3x10" 0.1657
Massive Spin 2 gravitons 2 1 04847 0.0526 0.4627
Infinitesimal mass bosons 1 2 04847 0.0526  0.4627
Massive bosons 1 1 0.0134 0.8878 0.0988
Massive fermions o 1 0.1305 0.7254 0.1441

Table 4.3.1 Approximate probabilities for known and one possible superposition.

To this point this paper has attempted to demonstrate that infinite superpositions can behave
as the SM fundamental particles. The methods used may be unconventional, but it is
important to remember that primary interactions are very simple and very different in
comparison to secondary interactions (see sections 2.2.2 & 2.2.3).These methods are also
based on simple basic quantum mechanics and SR. There is also surprising consistency with
the SM. If the principles behind the outcomes of these derivations are at least on the right
track, and fundamental particles can be built by borrowing energy and mass from (space and
time mode) zero point fields then, as we will see in what follows, this may have some
significant and profound consequences. In particular what is currently labelled Dark Matter,

may possibly be a halo of virtual time polarized (=~10eV & %_ ~185,000ly at this current

cosmic time) massive spin 2 gravitons, with inverse radius squared density and an exponential
cutoff in the region of half a million light years.
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Part 2
Consequences of Infinite Superpositions

5 Exploring Possible Connections with Gravity

5.1 Zero Point Energy Densities are Limited

If the fundamental particles can be built from energy borrowed from the spatial component of
zero point fields and this energy source is limited, particularly at cosmic wavelengths, there
must be implications for the maximum possible densities of these particles. In section 2.2.3
we discussed how the preons that build fundamental particles are born from a Higg’s type
scalar field with zero momentum in the laboratory rest frame. Infinitesimal mass particles
such as gravitons borrow their mass from the time component of the same zero point fields.
With zero momentum in this frame they have infinite wavelength and can borrow from
anywhere in the universe. This suggests there should be little effect on localized densities, but
possibly on overall average densities in any universe. So, which fundamental particle is likely
to be most abundant? Working in Planck, or natural units with G =1, assume a graviton
coupling constant between Planck masses of one. The total baryonic matter in the universe
according to the ACDM , is ~ 4.5x10%Kg or ~2x10* Planck masses. Including dark matter
this is ~10% Planck masses. Their average distance apart is approximately the radius R, of
this region. As a crude illustration assume one graviton of this wavelength per pair of Planck
masses. Thus there should be approximately M? =10 virtual gravitons with wavelengths of
the order of radius R, within this same volume. (This number is in line with more accurate
later calculations.) No other fundamental particle is likely to approach these values; for
example, the number of virtual photons of this extreme wavelength is much smaller. (Virtual
particles emerging from the vacuum are covered in section 6.2.3) If this density of virtual
gravitons needs to borrow more energy from the zero point fields than what is available at
these extreme wavelengths, does this somehow control the maximum possible density of a
causally connected universe?

5.1.1 Virtual particles and infinite superpositions

Looking carefully at Section 3.3 we showed there that, for all interactions between
fundamental particles represented as infinite superpositions, the actual interaction is only
between a single wavenumber k superposition of each particle. We are going to conjecture
that a virtual particle of wavenumber k, for example, is just such a single wavenumber k
member. Only if we somehow interact with it do we observe the properties of the full infinite
superposition representing that particle. They are virtual before this interaction, always only
lasting for AT <7/2AE, and the full properties do not exist until observed, as in the
Copenhagen interpretation of quantum mechanics. Even though they are only a single
wavenumber their three superposition modes as in Table 4.3.1 partially identify them. This
combination and its probability as in Eq.(2.2.4) N-s-dk / k and the first paragraph after Eq.
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(3.3.12) defines the full particle properties. We will use this conjectured virtual property when
looking at the probability density of virtual gravitons of the maximum cutoff wavelength.
Virtual gravitons are thus a superposition of the three modes n=3,4,5 as in Table 4.3.1, but
of a single wavenumber k only. Time polarized or spherically symmetric versions are a
further equal (1/+/5) superposition of m=+2,+10 states of the above n=3,4,5 mode
superpositions. A spin 2 virtual graviton in an m=+2 state is simply a superposition of the
three modes n=3,4,5 as above, but all inan m=+2 state.

5.1.2 Virtual graviton density at wavenumber k in a causally connected universe

From this point on we will use Planck units #=c=G =1. (We will however, later suggest
that, while G =1 now that it varies with cosmic time to fit with QM.) General Relativity
predicts nonlinear fields near black holes, but in the low average densities of typical universes
we can assume approximate linearity. The majority of mass moves slowly relative to
comoving coordinates so we can ignore momentum (i.e. f<<1), provided we limit this
analyses to comoving coordinates. Spin 2 gravitons transform as the stress tensor in contrast
to the 4 current Lorentz transformations of spin 1, but, at low mass velocities the only
significant term is the mass density T, . In comoving coordinates the vast majority of virtual
gravitons will thus be time polarized or spherically symmetric which we will for simplicity
call scalar. We will initially do all our calculations in these comoving coordinates where we
should be able to simply apply the equations in sections 3.4 & 3.5 to spin 2 virtual graviton
emissions, as they should apply equally to both spins 1 & 2 at low mass velocities. (This is not
necessarily so near black holes.) We will assume spherically symmetric | =3 wavefunctions
emit both spin 1 & 2 scalar virtual bosons, and | =3,m =42 states can emit both m =+1 spin
1 bosons and m==2 spin 2 gravitons. Section 3.4 derived the electrostatic energy between
infinite superpositions. In flat space we looked at the amplitude that each equivalent point
charge emits a virtual photon, and then focused on the interaction terms between them. Thus
we can use the same scalar wavefunctions Eq’s. (3.4.1) for virtual scalar gravitons as we did

for virtual scalar photons. Using (w;+W,) * (Wi + W) = w1 *wi +y ¥, + v, Xy + v, *y,

we showed in section 3.4.1 that the interaction term for virtual photons is
4k

4rnr,

511
e (%) cosk(r, —1,) (611)

Wi,y Ry =

This equation is strictly true only in flat space but it is still approximately true if the curvature
is small or when 2m/r <<<<1, which we will assume applies almost everywhere throughout
the universe except in the infinitesimal fraction of space close to black holes. In both sections
3.4 & 3.5, for simplicity and clarity, we delayed using coupling constants and emission
probabilities in the wavefunctions until necessary. We do the same here. There will also be
some minimum wavenumber k which we call K, where for all k<k_ there will be

insufficient zero point energy available, and Eq. (5.1.1) cuts off exponentially. We will find
that this maximum wavelength is where k_;,, 1/ Ry, (=1/ Ry enaeunvese) - 1N S€Ction 6 we

find gravitons have an infinitesimal rest mass m,of the same order as this minimum
wavenumber k_. . At these extreme k values this rest mass must be included in the
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wavefunction exponential term. It is normally irrelevant for infinitesimal masses. Section 6.2

looks at N = 2 infinitesimal rest masses finding in Eq.(6.2.5) that(Kkmin>2 ~1.
Using Eq. (3.1.11)and 2=c =1
2,9 2,2 (512)
(K )’ = M ~1 so for spin 2 gravitons (n) 5’“‘” ~1 or my~(n)K,
2m, My

Table 4.3.1 tells us for N = 2 spin 2 gravitons (n) ~3.29 so that m, ~3.29k . (5.1.3)
This virtual mass m, increases the AE term in AE-AT <7/2 for a virtual graviton from

AE =k to AE =[k*+m; when 2 =c=1, reducing the range r ~AT ~AE™ over which it

r

can be found. This range is controlled by the exponential decay term e in its wavefunction,

becoming e ™ near K,...- SO we can define a k' using Eq. (5.1.3)

k= Jam? = k2 +10.84k%, and Kl ~ (K3, +10.84K7, ~3.44k (5.1.4)
Using the normalized virtual graviton wavefunction Eq. (3.4.1) we can say that:
—kr+ikr 1 o—kTrikr 515
Am%ﬁ%swzlzhe lmmm%thmWM%MmHmw‘er ( )
A r 4 r
Thus the massless interaction term in Eq. (5.1.1) becomes with this infinitesimal mass m,
4k’ , 5.1.6
VRNV VA e ¥ (%) cosk(r, —r,) (516)

4rnr,

Let point P in Figure 5.1.1 be anywhere in the interior region of a typical universe. Let the
average density (or its equivalent transformed value) be p, (subscript u for universe ) Planck

masses/energy density per unit volume. Consider two spherical shells initially in comoving
coordinates around the central point P of radii r, & r, and thicknesses dr, & dr, with masses

dm, = p,dv, =4zr’dr,p, and dm, = p,dv, = 4zr.dr,p,

Central  point
P

Figure 5.1.1 Two spherical shells surrounding a central point.
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In Planck units we know that the gravitational constant G =1 applies between Planck masses,
so we might expect the graviton coupling constant is «, =1 between Planck masses also, but

we don’t actually know this. (Its actual value has no effect on what we are going to do in
section 5, but Eq.(8.2.16) finds that«, ~ 0.004 fits with cosmic observations.

The secondary graviton coupling constant between Planck masses =« (5.1.7)

Section 3.4.1 in Eq. (3.4.3) used scalar emission probability (2« /z)(dk/k) for spin 1
photons. Equation (2.1.4) and the paragraph following tell us that this probability is
proportional to sNdk /k. Thus Eg. (3.3.18) and the italics following imply that the scalar
emission probability for spin 2 gravitons becomes (4« / 7)(dk / k) between Planck masses, or
twice that of spin 1. Equation (6.2.8 ) suggests all superpositions cutoff exponentially@ k. .
Looking at what we did in deriving Eq. (3.3.14) for graviton emission probability, we must
include this cutoff twice i.e. (1—Exp[-0.65k /K, 1)?, first for graviton superpositions, then
for mass superpositions. (We are looking at emission probability here, not exchange
probability, which requires four powers.) Now distant galaxies recede at light like and greater
velocities, but all clocks in comoving coordinates tick at the same rate and quantum
interactions (a bit likes Mach’s principal) are instantaneous over all space. Thus, as we
integrate over radii r, &r, =0 -—> oo we can still use the same equations as if the distant
galaxies are not moving. (The vast majority of mass is moving relatively slowly in these
comoving coordinate systems and we return to this important comoving coordinate property
in section 5.3.1). Using the spin 2 coupling probability (4. /z)(dk/k) between Planck
masses we can now integrate over both radii r, &r,; but to avoid counting all pairs of masses
dm, &dm, twice, we must divide the integral by two. The total probability density of virtual

gravitons at any point P in the universe at wavenumber k, is using Eq.(5.1.6)

4 dk K et
2;— ” 47zr12dr1-47zr22dr2-4”Te %) cosk(r, —,)
1°2

0>

2
Pox = P?Uae (1_e—0.65k/kmin)

k' ,
=32a, (1—e " m)? 5 ?dk ” rr,e <" cosk(r, —r,)-dr, -dr,
00—

Expanding cosk(r, —r,) = coskr, coskr, +sinkr, sinkr, we can then use:

r=ow 2,2 ’ 14 12y,2 4
[ re™ " coskr = —kz k2 - toget [[ e coskr, coskr,drdr, = K sz k2 jk
r=0 (k" +k%) 05 (k" +k%)
s —k'r . _ 2k'k —K'(R+6) o - _ 4k’2k2
and rL re " sinkr = —(k’2 k) to get oﬂme sinkr, sinkr,dr,dr, = m
’ ’2 2\2
Adding both together p, =32, (L—e *%® ) p2 k_dkm
k (k’2 + k2)4
. 1 (5.1.8)
=320 (1-e % Yol — dk ————
G( )pU k (k!2+k2)2

From Eq.(5.1.4) k' = \/kz +mi ~ \jkz +10.84k . and we can write Eq.(5.1.8) as
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Do =320, p2 (1—e "0k )2 \/k2+10.84k§1m dk
Gk clu
(2k? +10.84k%, )" K
2 065x\2 o2 (5.1.9)
po (L= ")’ x* +10.84 K, dx
Pox z320{G|(TU 2 2 where x :L
m(2x°+1084) X o

0.14
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Figure 5.1.2 A plot of Eq.(5.1.9). We will show below that p, /k?

.. is a constant for all
space time, thus this plot looks the same in all metrics, but the local measurement of k..

increases inversely to the local clock rate, with k . o g,;”> = g/’ near mass concentrations.

The wavenumber probability density of the extra gravitons emitted near mass concentrations
is also identical to the above curve, but the vertical axis is proportional to Gm/r.

Converting Eq. (5.1.9) back to dk_.. we can express it as follows:

in

0.154a. p. k
%dkmin when =X =1.

0.154a, p; (5.1.10)
Gk min ~ k4

Cutoff wavelength probability density pg, ... =

Cutoff wavelength probability density pg, ... = Kgimin K, Where K

Gk min

5.2 Can we Relate all this to General Relativity?

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic
time T it also assumes there is always some value K., where the borrowed energy density
Eevmin = E,pmin» the available zero point energy density @ k... We have initially assumed
comoving coordinates, but at peculiar velocities our spherical shells become ellipses and our
equation  Pgmin = KekmnOKmin  Should remain true at any peculiar velocity, also in all
coordinates. So, what happens if we put a small mass concentration +M, at some point? The
gravitons it emits must surely increase the local density of K., gravitons, upsetting the
balance between borrowed energy and that available. However, GR informs us that near mass
concentrations the metric changes, radial rulers shrink and local observers measure larger
radial lengths. This expands locally measured volumes lowering their measurement of the
background Pgmi, - But clocks slowdown also, increasing the locally measured value of k. .
Let us look at whether we can relate these changes in rulers and clocks with the
Pakmin = Kkaindkmin of Eq (5110)
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5.2.1 Approximations with possibly important consequences
Let us refer back to Eq. (3.4.2) and the steps we took in section 3.4.1 to derive it; but now
including k' = a/k +m, ~/k?+10.84k>, asin Eq.(5.1.4)

Ahinin_ oK, (5+7) (5.2.1)

YRty = CoS[K iy (i, —1)]
4rnr,

Y2 smlr.

Assume spacetime is approximately flat or g, ~7,,, with errors c1-(1-2m/r)
Using Figure 3.4.2, Eq. (5.2.1) is the probability that a virtual graviton of wavenumber k is at
the point P if all other factors are one. . Let us now put mass M, Planck masses at the Source 1
point in Figure 3.4.2, or as in Figure 5.2.1. Also assume that the point P is reasonably close to
mass M, (in relation to the horizon radius) at distance I, as in Figure 5.2.1 and the vast
majority of the rest of the mass inside the causally connected or observable horizon R, is at
various radii r, equal to I, of Eq. (5.2.1) where I, =1 >> 1, and thuscos[k(r, —r)] ~ cos(—kr)
& e ~ o™X This is equivalent to localizing General Relativity to much smaller than
horizon radii, but still to vast cosmic radii. Only under these conditions can we approximate
Eg. (5.2.1) as

4K’ : 5.2.2
Z ZRa P 1 e™" cos(-kr) 622)

nr

Radius »>>r

Central observer \Lr
atpointP ——><1@

N

Spherical shells thicknessdr
& mass dm = 4zp, rdr

Figure 5.2.1 A central observer at a distance r, from a mass concentration.

We are assuming time polarized gravitons are as we are looking at the scalar potential of a
central mass relative to the rest of the universe, or a time polarized/ scalar interaction with no
directional effects due to spatial polarization. We can consider simple spherical shells (again
initially in comoving coordinates) of thickness dr and radius r around a central observer at
the point P which have mass dm = g 4rr?dr. At each radius r the spin 2 gravitons coupling
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factor including cutoff is (1—e )220, / 7)(dk /k) between Planck masses. Again

assuming instantaneous quantum coupling as if space is not expanding:

)240: m, L dm dk (- e—065k/km.n)2 20,m,

COUp“ng factor = (1— e_O'GSk/kmm k

k
=S Lp bn rzdrd?

Including this coupling factor

4o.m, dk
(1— g 0K kmn )2 (%?pu Arrdr)(y, v, +v, *y,)

_ (l_e_o.ssk/kmm) (40!;”1 dkkp v dr][ Ak e‘k'r COS(—kI’)] (523)

Arrr

m, 169, Kk

n

This is the virtual graviton density at point P due to each spherical shell. (Ignoring the
relatively small number of k_,, gravitons emitted by mass m, itself v =y, (Section 7).
Integrating over radius r=0->00 the virtual graviton density at wavenumberk . using
Egs.(5.1.4) and (5.2.3) is

= (1-e %) 2 g e™" cos(—kr)dr

T

16, k'dk 7 _.
Apg = (1—e oKk y2g DL 2P “'re‘kr cos(—kr)dr
Koz k9 (5.2.4)

= (1— ™08 ¥ )zaG ﬂleu k'dk [ (k"*—k?)
n k | (k" +k?)?

Nowk'? =k? +m? ~ k* +10.82k’, )

min

m, 16, \/k* +10. 84kmmdk{ 10.84k2 + k% —k? }

ApG ~ (1_ e_0'65k/kmin )Za

min
°r k

(10.84k% +k? +k?)?

min

o (02, M 162 Jk2+1084k,i.ndk[ 10.84K7, }

‘r 7 k (10.84k?, +2k?)?
. k 6 Mmoo, omoeV+l084[ 1084 Tk 2
Putting X =——, Apgpin ® — g ———(1-€7"") > >
Koo T ok, X (2x° +10.84) X

Equation (5.1.10) hypothesizes Pgimin = KokminOKmin - IN @ metric far from masses where
9, =7, Ku, has its lowest value. As we approach any mass k, increases to k, where
we use blue/green double primes when g, =7, due to metric changes. This avoids

confusion with the k’&k’ .~ of Eq.(5.1.4). Ataradius I' from mass m the Schwarzchild

metric is (1-2m/r)™? for the time and radial terms. Radial rulers shrink and clocks slow,

measured volumes and frequencies both increase locally as ~1+ 0 Initially ignoring any
r

increase in frequency of k , and only consider the increase in the local measured volume. We
will also initially approximate with a small mass assuming the change in k_,, is small enough
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to ignore. Thus VAV ~1+2 and A\\//N ~ M if r>>>m, we are also going to assume that
r r
A AV
e 2% and we can say that:
Pex v
Apg, AVy m (5.2.6)
P VT

We can now put Egs. (5.1.9) and (5.2.5) into Eqg. (5.2.6) and dropping the now unnecessary
subscripts, the graviton coupling constant «, and exponential cutoff (1—e %"/ )? cancel:

16 M Py _gosmny: Jx*+1084 [ 1084 Tk dx
APy min . T °r kriin X (2X2+10-84)2J X m
Pekmin 304, Pl (1-e°%)2\x? +10.84 k_, dx r
G k4 2 2 X
min (2x +1o.84)

All terms in x cancel and this equation reduces to:

. 2 2 5.2.7
Moy _ 16x1084K2,m oKz m _m (5.2.7)
Pckmin 2z py T py b T

This equation tells us that even though both p, & K., reduce their values with the passing of
cosmic time the ratio k?, / p, is always invariant, and Figure 5.1.2 is always true in any

metric. To be consistent with GR; at all points inside the horizon /32_u ~1.765 in Planck units

min

at any cosmic time.

2
The average density of the universe p, ~1.725k>, ~1.725 Y2
Oou
Where the parameter Y =k R,,, is in radians. (5.2.8)
Putting Eq, (5.2.8) density p, ~1.725k?,_into Eq. (5.2.8gives Peimin & Kamin -
0.154a, (1.725k2, )? (5.2.9)
kamin ~ aG(A mm) dk ~ 0'4|‘:)8OCGC“(min = Kkaindkmin& Kkain ~ 0458(ZG

The value of K, ,,;, is invariant in any metric and at any peculiar velocity, If our conjectures
are true, this is the number density of maximum wavelength gravitons excluding possible
effects of virtual particles emerging from the vacuum. In section 6.2.3 we argue these do not
change the K¢, i, of Eq. (5.2.9).

5.2.2  The Schwarzchild metric near large masses
At a radius ' from a mass m (dropping the now unnecessary suffixes) the Schwarzchild
metric is (L-2m /)™ for the time and radial terms which can be written as

1 1
Vgrr = = =7
Ji-2mir o \fg,

(5.2.10)
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Velocity g,, (c =1) is that reached by a small mass falling from infinity and ﬁﬂl is the metric
change in clocks and rulers due to mass m . \We use blue/green symbols with the subscript m
for metrics g, =7, aswe did for k, above. The symbols ﬁ,ﬁ help clarity in what follows.

min

1 1 2m
2 2
== = — = —
™M= omry On o P r
Using these symbols k”, =, k..., & dk =7,9K... & OLcin = 7w LPokmin (5.2.11)

We can also differentiate Eq. (5.2.10) keeping the radius fixed.

dm
1 v dyy, ~dv . dm
d = or — = =7wm which is equivalent to
B zﬂ)l/z _ Zﬂ)slz Y4y, \% r

1 1

r
The change in Frequency ~ The change in Volume  ,  The change in Mass (5.2.12)

Frequency before change  VVolume before change — 7w Radius of Measurement

Up to this point we have been working in comoving coordinates. Velocities relative to
comoving coordinates are usually referred to as peculiar velocities. To distinguish them from
green metric symbols we will use red symbols where »: = (1- 2)". At peculiar velocity 3,

the local Lorentz (or SR) transformation of universe density p, is y:p, and frequency or
Thus p, /k?

wavenumber k... as .k o in Eq. 5.2.5 does not change at peculiar

velocities, but what happens if we change the metric locally around mass concentrations?

Equation 5.2.5 was derived by looking at graviton coupling between a very small central mass
and the mass of the rest of the universe assuming approximately flat spacetime. In section 8
we argue that GR is highly accurate up to galactic, and galaxy cluster scales, but not cosmic
scales. Even with black holes, the volume of warped spacetime in the galaxies surrounding
them is infinitesimal compared to the cosmic scale wavefunction volume that is in
approximately flat spacetime. Instead of complicating things with wavefunctions in curved
spacetime we can perhaps try a very simple approach. Lorentz transformations or SR apply

locally but not at cosmic scale, where Hubble flow galaxy velocities exceed that of light.

From Table 6.2.1 the Compton wavelength of infinitesimal mass gravitons is A, ~1.76R,,,,

if we think of a large sphere of this radius or multiples of it, regardless of changes in a small
localized metric, the number of atoms for example inside it, is fixed at any cosmic time. They
may all have random peculiar velocities with KE relative to comoving coordinates all moving
at various Hubble flow velocities due to space expansion, but the number of them inside this
expanding space is constant at any cosmic time, as seen by an imaginary observer outside the
cosmos. We know from GR that a mass m is the value when measured where g,, =7,,. In
any metric, a local observer measures both mass dm, after falling to his location, and that of
all the fixed number of distant atoms as having increased by »,. Also frequency or

wavenumber k. &dk, , increases as y,,. Thus Apg, ... o 7y in EQ(5.2.5), alsO pg i © 74

n
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. . . A : *dm/ . .
in Eq.(5.1.10), implying Pemin o /ulMIT oy} dTm Assuming Eq.(5.2.7) which used

kamin 7/M

Eq(5.2.5) is true for very small masses APemin _ Aw _ yar d—mas in Eq.(5.2.12).
Peckmin Im r

5.3 A Different Expansion to the Lambda Cold Dark Matter Model

Section 5.1.1 describes virtual gravitons as superpositions of the three modes n=3,4,5 at a
single wavenumber k, as in Table 4.3.1 from which we find (n) ~3.29. Using Egs. (3.1.11),

(3.1.12), (3.2.10)&(5.1.2); () =1+(K, )", <,Bk>2 = % For N =2 spin 2 gravitons

k k
(K, )= = Z = and thus we can express these as

X2 K (5.3.1)
where x=——

min

(r.) =1+x* and (B,)

1+ X2

Using Eq. (5.1.2) m,=(n)k,;, ~3.3k

from time polarized quanta a mass mO/(y\/Z)zmo/(zy)za_skmm/(2\/1+x2). The total
energy squared of a superposition mode n is the rest mass squared that is borrowed plus the
momentum  squared  (p’)=(n’)k*=333°k* if =1 Equation (3.2.1) says

and from Eq. (3.1.4), we find spin 2 gravitons borrow

min

<pk(debt)>=—<ﬂk>2<n>hk is the vacuum debt of spatially polarized quanta. But as in

Eq.(2.2.4) even though we are considering only a single graviton emitted, its superposition

occurs with probability N -s-dk /k so we need to multiply this spatial debt by N -S =4
for N = 2 infinitesimal mass spin 2 gravitons. (See first paragraph after Eq. (3.3.12).) So

putting 2 =1, multiplying by 4 and ignoring minus signs and putting k =kk”‘¢k= k...x for

gravitons:

i (632

Spatial vacuum debt per graviton at wavenumber k is AE,g .., ~3.3K T
+X

L 33ky, _ 66k, (5.3.3)
2J1+x2 1+ %2

Equations (5.1.9) & (5.1.10) give the number density of gravitons at any wavenumber k and
putting Eq.(5.2.8) p, ~1.722k2, into this where 3203 / k?. =~ 32x1.725% ~95.22

min

5.3.4
((1—e*°-65*)«/x2 +10.84] (53.4)

Graviton density at wavenumber k  Ag, = 95.2K ;a6 0X z
X(2x* +10.84)

Time vacuum debt per graviton atk is AE, .. =~ 4

kTime

Multiplying Equ’s. (5.3.2) & (5.3.3) by this density we get the energy densities required
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I

5 ] (5.3.5)
Space mode energy density required » 95.2kfmnaedx{

(1-e7°%)/x* +10.84 3.3x 4x
x(2¢ +10.84) 14X

-

. . 1— —-0.65x 2 10.84 . _]
Time mode energy required z95.2k:“naedx[( € )NXx°+10.84 6.6

(2 +1o.84)2 1+ x° J (5.3.6)

To enable numerical integration of these energiesup to k =k_. we can use dk =k_. dx

Integrated space mode energy density up tok .. (5.3.7)

x=1

(1-e°%)\x* +10.84 3.3x 4%

k2 ag | 95.2 dx ~1.125ak?, .
ijo x(2¢'+1084) 1+ ’
Integrated time mode energy density up to k .. : (5.3.8)
x=1 -0.65x 2
a1 [ 95.2 (e WX +1084 68 4 o184 k2, .

o x(2x¢ +1084) 1+

. . ke . . .
But zero point energy density at @ k. IS 2"“—'”2 and the integrated zero point energy available
T

4

-k . I
@K, IS 8"“—'2. Even if «, <<1 this is too small by about k2, ~1/R2, . However, the area of
T

the causally connected horizon 47ch2,H suggests possible connections with holographic
horizons and the AdS/CFT correspondence, but as we will find, in a very different way.

5.3.1 The Holographic Principle and Holographic Horizons

The holographic principle is a supposed property of quantum gravity and was first proposed
by Gerard’t Hooft. Leonard Susskind [31] described it as “The three dimensional world of
ordinary experience, the universe filled with galaxies, stars, and everything we are familiar
with is a hologram, an image of reality encoded on a two dimensional surface. A prime
example is the AdS/CFT correspondence proposed by Malcadena [27] where anti-de Sitter or
hyperbolic space with Planck modes on a 2D horizon that can perhaps be thought of as
holographically generating the interior. However we are going to assume space is flat, but still
use the horizon in a manner that parallels the holographic principle. We will however start
with some usefull cosmology equations. Space between comoving galaxies expands with
cosmic or proper time t and is called the scale factor a(t). It is normally expressed as

a(t) < t® and we will start at time t =T, with time T now.
(5.3.9)

Thus a(t) o ptp_1 and the Hubble parameter H (t) = % =Tp
a
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In flat space at the current time the coordinate, proper and comoving distances are all equal.
Writing the present scale factor normalized so that a(T)=1 implying a(t)=t"/T" we can
get the causally connected horizon radius R,,, and the horizon velocity V. Using Eq. (5.3.9):

—|f T >>T, & p constant.

T d T t
The horizon radius R J'_: pj_
To ( T, -Pp

T, (5.3.10)
Dtp p

T-T,
1
dR,, Td :
In flat space horizon velocity V = —2 d j—p then using d(u-v)=u-dv+v-du for (T >>T,)):
T

R P R
9Row _T° | Row - (pT? = 1+£R But 2 is the Hubble parameter at time T, so
dT T v T T
that in flat space the horizon velocity V =1+ H(T)R,, regardless of how p behaves. (5.3.11)

The Hubble flow velocity of a comoving galaxy on the horizon is V'=H (T)R,, and thus

from this equation the horizon velocity is always vV =1+V'. In other words, the horizon is
moving at light velocity relative to comoving coordinates instantaneously on the horizon as
measured by a local comoving observer. We are going to conjecture that the space added in
one unit of Planck time inside the expanding Hubble horizon creates the source of zero point
quanta that we can borrow. This extra volume is the horizon surface area 47zRéHAr where
Ar =V'At, V'=V —1 is the Hubble horizon velocity, and At is one unit of Planck time. As
preons at the centre are born with zero momentum they have infinite wavelength allowing
them to borrow quanta from any point inside the causally connected horizon.

Extra Hubble flow space volume inside horizon 47R%,Ar = 47R2,V'At. (5.3.12)

The density of modes available inside this extra space is:

K2 (5.3.13)
Mode density = —-dk
T

As zero point energies are e/ 2 = Ak / 2 per vibration mode we need to multiply by 7k /2.
But these quanta are half time mode and half spatial. Dividing by 2 again, putting one unit of
Planck time At =1 then multiplying by Eq. (5.3.12):

47REV' K’dk R,V xk’dk

Space and time mode energy density available = X —— = (5.3.14)
4 /4 V3
Multiplying both numerator and denominator by k2, and using Eq. (5.28)Y =k, R,
2 ’ .Y
PEnergy@k ~ kmlnR V r K —l ~ rv krfun 3dX where X = —
7 kmin T min

In Eq. (5.3.8) we integrated the energy required by k., gravitons up to k_,, , repeating this

min !

o, (5.3.15)

Space and time mode energy density available o, .. o\, = 2 z
T

73



P Horizon surface area 4zR.,

Zero momentum
preons at centre
can absorb quanta
from any point
inside horizon

The rate of space expansion inside the horizon
is the Hubble flow velocity HR,,, =V'=V -1

The extra volume of space inside the horizon
per unit of Planck time is Av=47zR2.V’

Figure 5.3.1 Preons forming a central mode k are born with zero momentum and infinite
wavelength. They can borrow modes from anywhere inside the horizon. The extra volume
of space available for this inside the horizon due to the scale factor expansion, can be
thought of as a holographic type layer on that horizon that is the Hubble flow velocityV'
thick. If V' =2c for example, this holographic layer is just two Planck lengths.

In the first half of this paper where we looked at building superpositions we assumed that
mass was borrowed from a Higgs type field whereas energy was borrowed from zero point
spatial modes. We will now conjecture that all infinitesimal mass superpositions borrow their
mass from the time modes of zero point fields. This implies that we can equate Eq’s. (5.3.8)
and (5.3.15) at any particular cosmic time.

YA
rv k2 ~1.84a.k?
w
ioti V! (5.3.16)
At all cosmic time ~1.84a,
4
This also implies:
At all cosmic time Y? ~ % (5.3.17)

Inserting this into Eq. (5.2.8)
2
At all cosmic time p, ~1.725 YZ ~ 1725)(12'8474”% (5.3.18)
ROU ROUV

This is different to Lorentz invariant zero point densities and only works in flat expanding
space with infinite wavelength preons born with zero momentum. If the above ideas are on the
right track these equations may well control the expansion of space. If there is no acceleration
initially as in the current ACDM model, we can assume a constant Hubble horizon velocity
V'. Using Eq. (5.3.18) and assuming a constant mass/energy inside an expanding scale
factor volume, as in current cosmology, we put the mass density poca™ in the radiation
dominated era and p o a”*in the matter dominated era. This leads to scale factors a oc t¥? and

aoct?®as in current cosmology with no acceleration. Section 8.2 looks at the possibility of
massive spin 2 virtual gravitons behaving as what is called dark matter, and the possibility
they control space expansion acceleration in the matter dominated era. We are also going to
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suggest that the time mode zero point energy in Figure 5.3.1 is also a possible source for the
Higgs field.

5.3.2 A constant horizon velocity in the radiation dominated era

In the introductory notes we discussed why we can simplify things greatly in this different
way of looking at gravity in flat space. We have equal coordinate, proper and comoving
distances at the current time. As explained in section 8.1.2, the FLRW equation becomes a
very simpleds® = —c*dt® +a(t)®(dx* + dy? + dz?) in this flat space where a(t) is the scale
factor at time t. Also the observable horizon radius can be very simply expressed as:

Roy = Ith with V = Z—F: is only true if space is flat. (5.3.19)
. . ag 1 . o _
The universe density Eq.  (5.3.18) p, < ————5 « —; in the radiation dominated space.
RwVG™ a

We are also going to assume a constant Hubble horizon velocity and a constant G in this era.

a' o« R> >aac RY? where R=R,, (5.3.20)
. RV2 dR
The Hubble parameter H _2_ 2R”2/t — as in flat space Z—T:v the horizon
a
velocity.
\Y (5.3.21)

The Hubble flow velocity at R,,, (=R here)is V'=H -R= >

As in Eq.(5.3.12) the Hubble flow velocity at the horizon is V'=H-R =V —1 (a comoving
observer instantaneously on the horizon sees it passing him at velocity c as in local SR.)

Thus v'=V —1=\é or the Horizon velocity is V =2 in the radiation era (5:3.22)
A horizon velocity of V =2 implies a horizon radius in flat space of R,,, = j;th =2t.
From Eq.(5.3.20) a o« RY? oc t*? as in current cosmology where r — J‘T dt _rdt _;
0 a(t) 0 tl/2

kT 2t s ,
——-5 =T =0.1645T" in Planck units.
60c°h 60
We can put R,,, =2t,V'=1 into Eq (5.3.18) to get the temperature in Planck units:
41.230, 41.23a,
RSV’ (2t)?
Temperature T =~ 2.8t "?ag* x1.417x10¥ K ~ 4x10%t "?a2*K (5.3.23)

The Stefan-Boltzmann law says prerma =

~0.1645T* > T ~ 2.8t " and converting to degrees K

pThermaI ~

Planck temperature T, @ t~4as* ~ 202 Planck units

Planck temperature ~1.4x10%? K @t ~ 2.2a” Planck time.
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Radiation temperature 1

inverse to scale factor =7

1031 For many powers of ten until transition, temperature T = 4.83x10%t 2 'K
After transition, this gradient is initially set by a(t) o« t**
10%7 X
. Transition @t ~10% Planck time.
10
T ~3000K @ recombination
10" - T ~2.75K now
. &~ e
= Time in Planck units —>
1011 | 102 | 1031 | 1041 | 1051 | 1061

Figure 5.3.2 A logarithmic temperature plot with «, =0.004 from t =1 Planck units until now.

Figure 5.3.2 plots radiation temperature starting at T ~1.4x10%°K @t~ 2.92a2° Planck
time, dropping to T ~3000K at recombination. Equation (5.3.23) controlling this plot is based
on Eq. (5.3.18), which this paper agues is true in all flat comoving coordinates and there is
no need for a finely tuned critical density to achieve flat space as it is inherent in this model.
Of course, we do not know exactly how long after t =1 Planck time all these equations start
to apply, but if it happened to be about the same time that inflation is thought to end (t ~10"
Planck time or ~10 *seconds) the causally connected radius would be R, ~10"° Planck
lengths or ~10 *metres with quantum temperature fluctuations (as a fraction of the average)
that could be similar to what inflation predicts (=10°°), and as observed in the CMB.
Nucleosynthesis is virtually identical to the ACDM model and there should be less need for
inflation as all these equations also apply in regions initially out of causal contact. Section
8.2.2 looks at an acceleration dependant effect on gravity that could effect this early era.

5.4 Non-Comoving Coordinates and Spatial Polarization

To this point we have been working in comoving coordinates for simplicity. Velocities
relative to comoving coordinates are called peculiar velocities, so, does all our previous work
still apply in non-comoving coordinates with these peculiar velocities? In section 5.1.2 we
calculated the density of k.. virtual gravitons in comoving coordinates where they are
spherically symmetric or time polarized. So at peculiar velocities there can be spatially
polarized probability densities of them. However we can apply here the same thinking that
Poincare used over a century ago. At that time there were various models of the electron, the
Abraham-Lorenz probably being the most well-known [28], [29]. All these models suffered
the problem of electromagnetic mass in the field being 4/3 times the relativistic mass, where
the extra 1/3 came from the spatially polarized component due to velocity. In 1906 Poincare
showed that if the bursting forces due to charge were balanced by stresses (or forces) in the
same rest frame as the particle, these would cancel the extra 1/3 figure, restoring covariance
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[30] . We can use the same principles here. In comoving coordinates we can think of our time
polarized gravitons with their centres of momentum at rest. (See the scalar type interaction
example as in section 3.3.2). In section 2.3 we looked at spherically symmetric wavefunctions
that build these superpositions around such zero nett momentum centres. They had squared
orbital momentums that would generate bursting pressures balanced by zero point forces in
the same frame as that centre, which for our time polarized gravitons is at rest in comoving
coordinates. These can be thought of as equivalent to the Poincare stresses holding a charged
particle together. So in any other frame moving relative to it at a peculiar velocity these zero
point balancing forces cancel any extra momentums or energies due to spatially polarized
components. Thus spatially polarized virtual gravitons due to peculiar velocities do not add to
the zero point energies borrowed from inside the horizon. We can ignore them, and only
consider time polarized k. gravitons in all other frames when equating zero point energies
required to build virtual gravitons with that available to be borrowed from the receding
horizon. In other words they do not change the metric.

We can think of a box of these k. gravitons fixed in comoving coordinates. It will have a 3
volume density (or 3 dimensions) p3D,,.. = KecmndK,.., @8 We have previously calculated
where by 3 volume we mean 3V =d°x = dxdydz . If we now move relative to it at peculiar
velocity s, (where red symbols will be used from here for peculiar velocities, to distinguish

from blue/green metric changes near mass concentrations) it will shrink in size as
yoi=0-p2)" so that its new 3 volume density p"3D Keemndk?,»  Where

Gkmin Gk min min !
dk” /dk, .. =y, isthe local increase in wavenumber k_. . If we repeat our derivations of the
background 3 volume density, and the extra emitted by local mass concentrations, we find
they also both increase by dk’, /dk,, =7, Wwith no change in the ratio Ap/p, so all our
logic is unchanged at any peculiar velocity. But all this, is the same as saying that at any
peculiar velocity, and in any metric, the 4 volume density of k_. gravitons is invariant at any
cosmic time T, where 4 Volume is 4V =d*x = dxdydzdt for 4 dimensions. (It is important to
note here that we are discussing above the number densities of k_. gravitons which increase

as y, with peculiar velocity, as distinct from energy densities of k_. gravitons which increase

min

min

as 7, =k’ 1k’ with peculiar velocity.)

5.4.1 Invariant 4 volume or 4D cosmic wavelength graviton densities

Kqi,Gravitons k. Gravitons
3Volume AXAYAz
K..Gravitons k. Gravitons k. Gravitons

PADgmin = - TOAY AV A7 AL
4Volume AXAYAzZAt AX'AY'AZ'At

Define p3Dg i, = and as 4 volume AXAYAzAt = AX'Ay'Az’At’

IS an invariant.

In flat comoving coordinates only we will define 4 volume k. graviton density as

4 Volume Density p4D = 3 Volume Density p3D

Gkmin Gk min

however p4D,, ... is invariant in all coordinates and in any metric.
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(5.4.1)

This is equivalent to dividing k” -, in any metric, at any peculiar velocity, by ».y,, thus

returning it to flat space comoving value k_._at any cosmic time T. As both

PADg min & ApADg, ., are invariant, their ratio is also invariant in any coordinates, and

at any peculiar velocity at any particular cosmic time. But the flat space comoving value of
k.., decreases with cosmic time.

5.4.2 Cosmic wavelength graviton and 4 volume or 4D action densities

In deriving Eq.  (5.3.8) we said that each k_, graviton always borrows a fixed amount of
action, where Action = AE - AT per graviton is constant but AE «c k .. So if four volume
(4D) k., graviton density (04D,,,,) IS invariant, the four volume action density required
by k . gravitons must also be invariant.

min

min

Our hypothesis is that at any point in spacetime, gravity is determined by the 4 volume k_.
action density available from inside the horizon always being equal to the 4 volume k.

action density required by gravitons; with both remaining invariant in any coordinates.

6 Infinitesimal Mass Bosons

6.1 Cosmic Wavelength Superposition Cutoffs

In section 4.2 when we introduced gravity, for the lower limit in our integrals we assumed
k.. =0, and then in section 5 showed that there is a lower limit K;, >0 . It turns out that
for massive N =1 superpositions the effect of this is negligible in comparison to the high
frequency cutoff K, <%, which we showed gravity can address in section 4.2. For
infinitesimal rest mass N = 2 superpositions we cannot, however, ignore the effect of K, >0

6.1.1 Quantifying the approximate effect of K.;, > 0 on infinite superpositions

If we look again at section 4.2.1 we can repeat what we did there as follows. Initially to
illustrate these effects we will consider only N =1 superpositions where we can say that when
Kokcuorr —> ©, and (for N =1 only) K — 0, and thus

nk min

—|Knkcutoff

I 1 Nl_F 1
L1+K§kJK 1+ K2 1+ K2 LKZ nicmin

nkmin nkCutoff nkCutoff
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s . 1 1
Our earlier infinitesimal in Eq.(4.2.2) ¢ =———— becomes &"=———+K} ..
K cutoff K. cutoff
i i i 1 Li 2 7{'20
Using section 4.2.1 and 4.2.2 equations, we can show —————~ —- and K, ., ¥ ——.
KzZcutoff A% Ron

For our purposes here we are ignoring small numerical factors such as <n>2 to show in Planck

. 1 A2
units where L, =1that &'~ ———+K2 . =c+Ac~ 5+ —°
x R
nkCutoff C OH
Ae 52 12 (6.1.2)
The ratio of the extra contribution Ag to ¢ iIs — =~ LR_C
3 OH

In Planck units RSH ~10" and K‘é for electrons say is ~10%, so the effect is of order
Agle ~10% /10" =107 which we have been ignoring. We cannot ignore this, however, in
the case of infinitesimal rest masses as we will see.

6.2 Infinitesimal Masses and N = 2 Superpositions

Looking again at angular momentum and rest masses discussed in section 3.2 the key factor in
our final integrals is in Eq. (6.1.1). Using Eq. (3.1.12) we can rewrite Eq. (6.1.1) as

I— 1 —IKnkcutoff 1 1
L - J = - (6.2.1)
1+ K, «

2 2
ynk min 7/nkCutoff

nk min

With massive N =1 superpositions, as above, the difference between yfkmm& 1 is vanishingly
small, i.e. (7, —1) =1/ and as in section 6.1.1 this first term is of much less significance
than the jffkcmﬁ term. Now define an approximate equality between N &(;/kmm>2 using Eq.
(3.1.12) as follows

N = | (o) =21+ (K )’ | (622)

In section 3.2 we derived angular momentum and rest masses for only massive, or what we
called N =1, particles. To get integral angular momentum we had to assume in deriving Eq.
(3.2.6) that the minimum value of K, orK, . =0. For massive N=1 particles, such as
electrons, the error in this assumption (as in section 6.1.1) is ~10~*° times smaller than ¢,
which for an electron is already ¢~10"* due to the high frequency cutoff @ ~10"**'GeV.
(We allowed for this &~10"when we included gravity in section 4.2.) From section 6.1.1
above we approximated ankmm as ~ Ki / RSH for all massive particles. So, we can express Eq.
(6.2.2) in terms of this approximation for fermions with non-infinitesimal mass

KZ 2

2

N {(m& =1+ Rf ~1] as —=—0 (6.2.3)
OH OH

2

A 10"eV mass particle has —= ~10"°

OH
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For the massive particles it appears we can say that N =1. However in section 8.2 we explore
the possibility of galaxy halos as spin 2 virtual gravitons of ~10*°eV mass where
(V) —1~107°. At this extreme low mass (but still 10° larger than infinitesimal masses
(which we discuss further below) Equation (6.2.1) shows that we cannot get the correct
angular momentum unless something else changes, perhaps by a small change in the actual
high frequency cutoff details. So if massive particles are a group with N =1, then it would not
seem unreasonable to imagine there could possibly be another group with N =2 =1+<Kkmin >2
implying that <Kkmin>2 =1. Repeating the derivation of Eq.  (3.2.6) but with
N =2=1+(K,,,) and for clarity and simplicity let K. = .

L, (Total) =s-(N = 2)mh _[ o KK2 7 AK =smf{1 _Iiz }
nk + nk |k

(6.2.4)

nkmin

1 1 h .
L,(Total) = smi| —————|=smh _m as previously.
1 (N =2) 2

nk min

Provided we have doubled the probability of superpositions as in Eg. (2.1.4) from
s-(N=Ddk/k to s-(N=2)dk/k, the final angular momentum results in Egs. (3.2.6) and
(6.2.4) are identical. The same is true for rest mass calculations. For multiple integer n
infinite superpositions if N =2 then the expectation value (K,.,,,)* =1. We thus conjecture:
All N =2 infinite superpositions have (K, )" =1. (6.2.5)

Using Table 4.3.1
N = 2 infinitesimal rest mass spin 1 superpositions have (n) ~3.98
N = 2 infinitesimal rest mass spin 2 superpositions have (n)~3.29
Using Egs. (3.1.11) and Eq. (5.2.8)

2
n R .
(K )’ = < Z R2K2 =~ 15282 AZk2 =1 or K z0.355% for Spin 1

(6.2.6)
11.09x2

RZkZ =1 or K zO.BOOR% for Spin 2

C ‘min

From Eq.(8.2.15) Y ~0.17 and from Table 8.2.1 R,,, ~39.3ly = 2.29x10%Ip —when k =1.9.

Using these values the above equations provide the infinitesimal masses of N =2 photons,
gluons and gravitons as in Table 6.2.1 below.

Spin (n) Compton Wavelength £, Infinitesimal Rest Mass
1 3.98 ~2.09R,,, ~3.1x10*eV.
2 3.33 ~1.77R,, ~2.6x10eV.

Table 6.2.1 Infinitesimal masses and Compton wavelengths of N =2 photons, gluons &
gravitons. They limit the range of virtual photons and gravitons to approximately the horizon.
The graviton rest masses above are reasonably close to recent proposals for the accelerating
expansion of the cosmos [18,19].
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6.2.1 Cutoff behaviours for N =1 & N = 2 superpositions

Equation (6.2.1) can be written for both N=1 &N =2 superpositions using the results of
sections 4.2 & 6.2 and Eq. (6.2.5) as follows:

r K cutoff

-1 1 1 1
5 == -— = — when N =2
|1+ K P [7nkmm = 2] 7 nkcutoff 2(1+&") (6.2.7)
r - Kk cutoff
12 = 21 - 21 = 1” when N =1
_1+ Knk Ko min |:7/nk min ~ 1:' ynkCutoff 1+ &

(We should be using expectation values, but for clarity we simply imply them.) We have
shown in section 6.2 that <1/7kman2>=1/2 when N =2, but in reality it is Eq. (6.2.7) that
must be true. In section 4.2 we showed that for N =1 superpositions the primary coupling of
gravity to preons infinitesimally increased the interaction probability by &' to (1+&") where

mzs -G o1 2mc?

from Eq. (4.2.4) ¢'= = :
ZShC(8+ 8\jaEMP )2 KrkaUtOff Snzhz(kcutm‘f)2

In the N =1 case this meant that any deficits due to a non-infinite cutoff were exactly balanced
by the contribution from gravity, but in the N =2 case this infinitesimal correction is out by a
factor of two. However Eq. (6.2.7) says that exactness can be maintained in the N =2 case by
an infinitesimal change from(1/5¢ . )=1/2to (1/y{,)~1/2. Thus both N=1 &N =2
superpositions can cutoff at Planck energy as in section 4.2.2. The low frequency cutoff for
all superpositions must be at k .. ~Y/R,, if they are to affect gravity.

6.2.2 An exponential cutoff at cosmic wavelengths for infinite superpositions

We used a square cutoff above for k_, but an exponential cutoff is more likely.

Going over what we did in Eq.(6.2.4) and using Eq.(6.2.5)

xdx J- 7 (L—e ") xdx
@+ x%)?

~ 0.2505

Putting x:kL: Ko then using I

min nk min
An exponential cutoff (L—e°**) @ k_._is ~ the same as a square cutoff@ k_._ (6.2.8)

kmin %
0.8

Probability factor T 06!
0.4

0.2

—> X=—

min

1 2 3 4 s
Figure 6.2.1 A simple e®®* exponential cutoff for all infinite superpositions that gives the
correct angular momentum for N =2, spins 1 & 2 infinitesimal mass bosons.
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6.2.3 Virtual particle pairs from the vacuum and spacetime curvature

For almost a century it has been a puzzle why spacetime appears to be flat on average and not
massively curved by Planck scale zero point energy densities. In section 5.1.1 we conjectured
that virtual particles are just single wavenumber k superposition members, whereas real
particles are full infinite superpositions of all wavenumbers k from k. to k We
assumed this was true in all of section 5. If this is the actual difference between virtual and
real particles, then only full infinite superpositions (representing that particle) have real
properties that can be measured (such as measured mass/energy) rather than implied. If k_,
virtual gravitons are such single members they can couple to k. members of full infinite

Planck *

superpositions. On the other hand, virtual particles out of the vacuum, are mainly short lived
high k single value members that will not couple to k_,. , if our conjectures are true.

The density of k_. virtual pairs from the vacuum based on the Lorentz invariant supply of
local zero point fields is virtually zero and the supply from expanding space is consumed by
k.., gravitons as in section 5.2 , (see sections 6.2.4 & 6.2.5 below). But this is not the full
story. The virtual particles that dress electrons and quarks for example add mass to the real
particles. As these short lived virtual particles are emited and reabsorbed they impart
momentum and Kinetic energy increasing the effective mass of the real long lived paricles. In
fact, the majority of the proton and neutron mass is due to the virtual gluons interacting
between quarks.

6.2.4 Zero point energy from the horizon behaves differently to local

As we said above local zero point energies are Lorentz invariant. At high frequencies there is
no shortage locally to build the high frequency components of full infinite superpositions. But
as we have shown this is not so as we approach cosmic wavelengths. If there were no supply
from expanding space there would be only a few modes of the local supply of k., ~1/R,,
quanta inside the horizon. Because preons are born with zero momentum and infinite
wavelength they can absorb k;, ~1/R,, quanta from space expansion inside the horizon as
we have discussed. This k. quanta supply behaves differently to normal Lorentz invariant

zero point local fields. It is only available to zero spin preons that are born with zero
momentum, or infinite wavelength, in the rest frame in which infinite superpositions are built.

6.2.5 Revisiting the building of infinite superpositions

In section 2 we developed equations to determine the probability of each mode of a
superposition using local zero point fields. In section 5 when we found the cosmic wavelength
supply inadequate, we used quanta from space expansion. So how do we justify our use of the
local zero point fields to determine mode probabilities and behaviours? As we noted above
there is a plentiful supply of high frequency local zero point fields. This local supply is
adequate for high densities of superpositions for all modes from the Planck energy k =1 high
energy mode cutoffs to somewhere around k ~107"', or near the Higgs boson energy. The

coupling to local zero point fields in this high frequency region determines the behaviour of
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all the SM particles. There is, however, a gradual transition to absorbing quanta from the
expanding space supply as the wavelength increases. Because this supply of k. quanta

behaves as the invariants K., or Kg,.., above, and entirely differently to Lorentz invariant

local zero point fields, spacetime has to warp around mass concentrations and the universe has
to expand.

6.2.6 The primary to secondary graviton coupling ratio y,

In Eq. (4.2.12) we found y/ ~318.3 as the ratio between the primary graviton coupling to a

bare Planck mass and the normal measured gravitational constant G. Equation (5.1.7) defined
graviton coupling between Planck masses and equation (8.2.16) finds «, ~ 0.004so0 that the

primary to secondary graviton coupling ratio (as for colour and electromagnetism in Eq.
(3.3.2) is:

7o =05y, ~318.3x 250 ~ 79,500 (6.2.9)

To solve graviton superpositions we can use Eg. (3.3.14), which is the gravitational
interaction probability between fermions, and we can now put on the RHS the coupling ratio
Zs ~ 20,352 in the same way as we did for Eq. (3.3.19). This c, *c, (1-c, *c, ) We are going
to calculate here is for spin 2 & N=2. It is different to the double combination of
(N =2)x(Spin 1) or (N =1) x(Spin 2) for 4c,, *c,, (1-c,, *c,,) We derived in Eq. (4.4.1).

[251/2 Ncha *Cea(l_ Cea *Cea)]z [252 N2C4c *C4c (1_ Cyc *C4c)]2 _ 4(%81)2
q* - qf
25, =LN, =1,&25, =4, N, =2 80 [C;, *C., (1-Cq, *C;,)][8C, *C,c (1—C, *C,e )| = 275" = 2/79,500
1 ] 1
L40,000J8[cﬁa*csa(1—cﬁa*cea)]
But from Eq. (4.4.1) ¢, *Co, (1—Cq, *Co,) =+/2/ 7. ~2/50.4053 ~0.199194
1 000 !

~
~

o~ ~ 0.0000 .
4x40,000x0.199194 32,000

or Cuc *C4c (1_ Cuc *C4C) ~

So Cye * Cye (1_ Cye * C4c)

Using Eq.(4.4.3),) ¢, *c,-n" ~170.95 for spin 2, N =2 we get the infinitesimal mass graviton
superposition values in Table 4.3.1.

6.2.7 Massive bosons and the Higg’s mechanism

In the SM the Higg’s mechanism adds mass to zero mass photons but here we say it adds
mass to infinitesimal mass photons to convert them to massive photons. But additionally, it
converts them from N =2 to N =1, and also from n=34,5 to n=4,5,6 superpositions.
Section 0 looks at possible connections with the Higgs field further.
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7 Virtual Gravitons and Mass Interacting with Itself

7.1 Do we have to take account of ¥, *¥,, on kmin Densities?

In section 5 we began by finding the average k. graviton probability density in a uniform
universe. We then placed a mass concentration in it, and calculated the extra probability
density of k. gravitons (before the dilution due to local space expansion) due to the
amplitude of this mass multiplied by the amplitude of the rest of the mass in the universe. This
ended up being proportional to 2m/r in Planck units. Apparently ignoring the v, * v,

term we gOt AIOkain = (V/Universe *‘//m) + (l//m *V/Universe) o« 2m / r asin Eq-(5-2-5)-

However, we approximated by assuming that our concentrated mass m <<< M did not change
the rest of the mass in the cosmos. If we subtract the mass m from the cosmic mass M and
look at how our concentrated mass m interacts with this reduced value we have
(M —m)m = Mm-m?, if we now add the interaction term of the mass interacting with itself
m? we then have (M —m)m+m? = Mm which is our original approximation.

In other words by not subtracting our small concentrated mass m from the larger cosmic mass
M we have effectively already included the local gravitons emitted by this local mass
interacting with itself.

8 An Infinitesimal Change to Einstein’s Equations

8.1 An Infinitesimal change to General Relativity at Cosmic Scale
Let us review how we have tried to connect gravity with our infinite superpositions in the
second half of this paper. We started out with the hypothesis that g,, =g =1 everywhere

when there are no mass concentrations, assuming that uniform densities don’t curve

spacetime. We introduced mass concentrations and spacetime had to curve around them so as
to keep 4 volume k. action densities, required and available, invariant. But what do we

mean by a mass concentration? If we think of the mass in the universe as a dust of density p,
and consider a small sphere of volume V = jdv enclosing this dust, its mass will be
m’ = _[ p,dv =p,V, but our hypothesis says it will have zero effect on the spacetime
curvature surrounding it. If we now increase this density to o by bringing dust from far away
into this sphere its mass will increase to m = I pdv, and the effect on spacetime curvature is
now proportional to the increase in the enclosed mass Am=m-m’ =J.(p—pu )dv = J'Apdv.

Using similar reasoning, if instead of increasing the density we now remove the original
enclosed dust the effect on the spacetime curvature is oc —-m’ = I —-p,dv=—p,V and spacetime

curvature is of opposite sign to that surrounding positive mass. Relooking at Eq.(5.2.7), but
instead of a mass concentration m, we replace it with mass dilution-m, Eq.(5.2.7) becomes:

APoimin 1 795 Knn —M _ =M (8.1.1)
Pskmin py I r
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If this dust is essentially at rest in comoving coordinates we can define a tensor T/,U (Cosmos).

In comoving coordinates T},U(COSYHOS) has only one significant non zero term
T, (Cosmos) = p, , a density of only a few atoms per cubic metre. In any other coordinates

this same TW(COSFHOS) tensor is transformed by the usual tensor transformations that apply in
GR. If these coordinatess move at peculiar velocity g, then Ty (Cosmos)= Vo Py

= 7:T,,(Cosmos) . The same transformation happens in any metric but with ;2 5, . We argue
that Equ.(5.2.7) is consistent with the infinitesimally modified Einstein field equations

e 1 872G
Modified EinsteinG,, =R, —-—9g,R= Z—A[T#U(Local) -T,

) v
2 M

(8.1.2)

LU

(Cosmos) |

Einstein had always wanted his theory of gravity in curved spacetime to be similar to the
Gauss/Poison equation V?¢ = p the electric charge density. But this charge density is in
reality the local difference in the normally very accurately (on average) balanced positive and
negative charge densities. We can express this difference as follows:

Poisson/Gauss V¢ = p(positive) — p(negative)] = p(nett charge) (8.1.3)

If we write the electric charge equation this way we can see that our modified Einstein tensor
equation above is perhaps not too different, and hopefully Einstein might have approved.
Equation (8.1.2) has some parallels to, but is not the same as, the A term he introduced to

stabilize the cosmos. The red terms are zero if T, (Local)=T, (Cosmos) and
p(positive) = p(negative). Just as the average value over the whole universe of p(positive)
is the same as that of p(negative), the same is also true for the average value of TﬂU(LocaI)

which has to be T, (Cosmos). This forces the average values of

y72%

Jo = 0, to be very close to one. It also means that there is no nett gravitational attraction of

matter over any large cosmic sphere. (We will look at what this means for the FLRW metric
in the next section) Thus this infinitesimal modification is most relevant in the extreme case as

T, (Local) approaches T, (Cosmos). Far from mass concentrations T, <T, (Cosmos),

spacetime curvature in these remote voids is of the opposite sign to that surrounding positive
mass, but the causally connected universe is always flat regardless of the value of Q. (See
section 8.1.2) Equation (8.1.2) is also consistent at all cosmic times with Eq. (5.2.9)
Porcmin = KeminGKmin - The effect of our modified Einstein equation at large scale can be seen
with a very oversimplified (for illustrative purposes) example. Consider a very large spherical
hole of radius R in an otherwise homogenous background of the cosmos with average density

Py Where the matter that was inside this spherical hole has now collapsed into a central
concentrated mass M = %ﬂ'RspU. Providing everything is spherically symmetric we can use

our modified Einstein Eq.(8.1.2) to get T, (Local)—T,,(Background) =0- p, =—p, With the
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hole having an effective negative density of o, and a negative effective mass inside any
3

: : m r : : ,
particular radius r of -m = —%ﬁﬁpu or —= sl where we define this bubble radius as:

Galactic bubble radius with galactic mass M = %nRgubb,epU : 8.14)
In weak gravitational fields Newton and Einstein are approximately the same, with Newton
predicting that provided both the negative hole mass and the concentrated central mass are
spherically symmetric, at the outside radius R they must cancel each other, with no
gravitational acceleration at this radius. (Provided the mass of the background dust outside
radius R is spherically symmetric it has no effect on this.) The effect of all this can be

summarized as in Equ’s.(8.1.5):

r3

Effective total mass inside bubble M'(r)=M@1-—)
Bubble (8_1.5)
. o L . M r
Effective gravitational attraction inside bubble F'(r)=—-(1- =3 )
r Bubble
Spherical hole in background
of radius R Hole mass concentrated at
\ L — 4 3
centre M =—zR7p,.
— 3

Background density of the
universe p,, less than an ~ | 2
atom per cubic metre.

Figure 8.1.1 An illustration of an oversimplified example of a spherical hole in the background
density of the universe that has collapsed into a central mass.

Modified gravitation attraction
General Relativity attraction

r
— >
R

Figure 8.1.2 An illustration of an oversimplified example of a spherical hole in the
background density of the universe that has collapsed into a central mass.
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We can integrate these forces from radius r, - R, t0 get the usual GR or Newtonian
change in potential but the negative mass effect gives a potential change of the opposite sign.
M

. . M
Newtonian potential change AV = ——
h

R (8.1.6)

Bubble

Negative mass potential change AV' =+
Bubble

If there are very approximately 10" galaxies and the radius of the cosmos is currently ~10*
Planck lengths the average bubble radius is ~10°" Planck lengths. If the average galaxy mass
is M ~10% Planck masses the change in the potential due to this negative mass effect is
AV' ~10°® Planck energy units which is a very small change. Figure 8.1.2 plots the effects of
Equ’s. (8.1.5). A galaxy of say 10"solar masses is roughly the same mass as a background
sphere of ~4x10° light years. At this radius the attraction has dropped to zero, but it is
roughly halved at ~3.2x10°light years, or about 80% of the bubble radius. Our example is
quite unrealistic as the transition will not be abrupt, but it does illustrate something that has
been observed in recent surveys of the universe where the rate at which matter is falling into
denser regions of the universe appears to be less than predicted by GR[32]

8.1.1 This infinitesimal change does not effect most gravitational fields
Equation (8.1.2) only modifies Einstein when the local mass density p,,.., = p, Where p,

is a few atoms per cubic metre which is extremely low. The Milky Way has a disk diameter of
~100,000ly and to keep things simple, if we assume a spherically symmetric distribution of

the total galaxy mass inside a sphere of this radius. the average mass density is about 10° g,

so Einstein’s GR is still very accurate. The same should apply inside the solar system. In
Section 5 we tried to show in Eq. (5.2.12) that the Schwarzchild metric relates with Eq.(8.1.2)
We have not attempted to do the same with the Kerr metric which is an exact solution to
Einstein’s equations. Provided p,,., >>>>> p, we will assume there is no change, however,

when there is angular momentum there may well be circularly polarized gravitons emitted
2

with an Ol—zcos2 6 angular distribution about the spin axis. This could possibly be why the
r

2
determinant of the Kerr metric can be written as ‘gﬂv‘ =r*sin®(1+ Ol—zcos2 0)’. We will
r

look more carefully at galaxy behaviour in Section 8.2. The only regions where p, ., —> o,
are what are normally referred to as the galaxy free voids.

8.1.2 Friedmann-Lemaitre-Robertson-Walker Metrics and Friedmann’s Equations
The FLRW metric and Freidmann equations have been the bedrock of cosmology for nearly a
century, a cosmology that in its current ACDM form has been recently showing some cracks.
(See Reiss [33] and New Physics required due to Hubble tensions). It is an exact solution to
the 00 component of GR so how can it possibly be questioned? If we relook at our
infinitesimally modified Einstein Eq. (8.1.2) and re express it as follows
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Writing T, =T, (Local) T  (Cosmos) (8.1.7)

y72y 7y
Infinitesimally Modified Einstein becomes G, =R, -—-g,R= 8zG T/

y22y HU 4 uv
2 C

Over large homogenous and isotropic regions of space the average values of all 16
components of T, (Local) are the same as T, (Cosmos) and this is true for all large volumes

) MO

inside the horizon.
All 16 components of both G, & T/, average zero in large regions (8.1.8)

If the components of the Freidmann equations average zero it cannot control cosmic
expansion and we argue that QM does. We will consequently continue to use the following
metric.

FLRW flat space metric with no KE or gravitation effects ds® = —c’dt® +a(t)*dr? (8.1.9)

8.2 Massive Spin 2 Virtual Gravitons and Dark Matter Halos

Table 4.3.1 listed theortically possible infinite superpositions and included a possible spin 2
massive boson that we called a massive graviton to partner with infinitesimal mass gravitons.
Pairs of these spin 2 gravitons have some parallels with massive and infinitesimal mass spin 1
photons that are also bosons. The photon mediates electrical charge with three different
massive photons for —1,0,+1 charge, and they all have masses in the ~100GeV range. The
spin 2 graviton on the other hand, mediates changes in the metric where no charge is involved,
consequently only one massive graviton appears to be necessary. Its mass however might
behave very differently to massive photons. Just as infinitesimal mass bosons have a mass of
k... = Ron, OF =10 *eV (at the current time) and always approximately inverse to the horizon
radius, we are going to speculate that massive spin 2 gravitons are always somewhere between
10* —>10° times as massive as infinitesimal mass gravitons. This would mean that at the
current cosmic time they would be =~10*eV with Compton wavelength halos of
~100,000 — 200,000ly radius around the galaxy cores emitting these virtual massive
gravitons. While this very low mass appears at first sight to be far too small to behave like
dark matter, infinitesimal mass gravitons couple between Planck masses and there are about
10" protons per Planck mass. If protons or quarks exchanged massive gravitons the coupling
constant between them only needs to be less than one and as we will see below it does not
need to be very large. Also if these massive gravitons are time polarized their spherical
symmetry gives an inverse radius squared mass density just as dark matter is supposed to have
to give galaxies their flat orbital velocities.

8.2.1 Massive gravitons generating MOND-like galaxy behaviour

The approach we are going to take in this section appears to only work if the mass of massive
gravitons m, =b -k, , where the mass ratio of massive to infinitesimal mass b is a constant.

We are thus going to assume that the mass of massive spin 2 gravitons is always m_ =b-k_,,
where b >>>1 and this mass is vastly greater than that of infinitesimal mass gravitons.
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Using Eq. (5.1.4) at wavenumber k_, let ki, .. = k2, bk, ~ bk, ~mg ifb>>>1,

. . r —K&k min T +HiKmin T —Mg F+iKpin T
with wavefunction Vekmin = \/ﬁ : = \Izme —
A r ar r

*R —2mgr

(8.2.1)

2 : : -
W simin Vi ~ 4::2 e ™" with radial probability R

To give galaxies their observed orbital velocity behaviour they are thought to have a ratio of
dark matter to baryonic of 9:1. Assume a coupling constant between baryonic Planck masses
of «,,. for massive gravitons, also assume an average galactic baryonic mass of 10* Planck

Gk min Gk min ~ 2mGe

masses. If massive gravitons are ~10eV or ~10™* Planck masses in this cosmic era, their
total mass will be ~ (10°)?,,;10™*° #10¥«,,, and if «,,; ~10°this is 10* Planck masses of

massive gravitons which is about what is needed. This coupling constant could be a realisticly
small number, much less than one if it is between neutrons/protons/quarks, or some baryonic
particles. If we imagine as an unrealistic example a hollow sphere of baryonic matter where
there are no gravitons or massive gravitons inside it. But on the outside, the radial mass
density of massive gravitons is inverse to the radius sqared as in Eq. (8.2.1) within the
Compton wavelength approximately. If we plot the orbital velocity with radius, it will follow
Newtonian predictions in the inner core region and exponentially transition into the flat
velocities observed. This Newtonian gravity will thus be concentrated around the peak radial
baryonic mass densities (as in Renzo’s rule). A very hypothetical plot of this is shown in
Figure 8.1.3.

1.0F

_ Orbital velocity R 0.8 Massive aravitons start takina effect
ml/4aé/4 06

04 Newtonian behaviour in the inner regions

—

0.2 r

%

05 10 15 20 25 30 Ieritical

Figure 8.1.3 Plot of a very hypothetical orbital velocity radial profile assuming the peak
radial mass densities, where the massive gravitons originate, are somewhere greater than one
Milgom critical radius. This behaviour has many parallels to MOND predictions.

8.2.2 Accelerating cosmic expansion
If the mass of massive gravitons is always m, =b-k_, then as k. ~Rg,, and in the initial

stages at least, R, is proportional to cosmic time, then we can say that m_ ~oct™. If all

cosmic matter had clustered into galaxies, and as the ratio of dark to baryonic is currently 9:1,
we can say that the mass of massive gravitons is ~oc9t™"at any cosmic time. But this
clustering will happen exponentially. We can thus speculate that the total cosmic mass density
may have an exponential form such as:

Cosmic mass density g, ~ Pgaonc [1+ ot (1— Exp[f (t)])] (8.2.2)
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This implies large extra mass in the early eras when supermassive black holes appear to have
formed more rapidly than expected. But we first need to find an exponential function that
makes sense logically and also fits with observations. The radius of the Compton wavelength

halo r,,,, ~ot, so the volume inside this halo is v,,,, ~o t°®

Halo

(a) Compton wavelength radius halo volume v, ~ t° (8.2.3)

At any cosmic time the density of the background supply is oc RS, oc t™. If we take the Milky

Way as an example, and assume a Compton wavelength of about 10* Planck lengths, the
average density inside this radius is about 10" times the cosmic average density. We are going
to assume that at all cosmic time the halo density is proportional to the background density

(b) Average baryonic density in this halo volume p, ., ~o Ry} ot (8.2.4)

The baryonic mass inside the halo is v, ~oc t*times t™, or

Halo

(c) The baryonic mass inside the halo is M ~octPxt? ot (8.2.5)

BaryonicHalo

The number of massive gravitons emitted is proportional to this baryonic mass squared:

(d) The number of massive gravitons emitted is oc M? oc t2 (8.2.6)

BaryonicHalo

At large volumes of space we need to multiply by the average density of galaxies. From Eq.
(8.1.7) when mass is initially distributed evenly the local mass density is equal to the cosmic
average and there is no tendency to cluster, but it is unstable. We can think of this instability
as similar to the top of a hill with a slope proportional to the horizontal distance from the
central top point. This is equivalent to a y = kx® curve with slope y = kx.

In terms of the rate of individual galaxy formation this is equivalent to:
(e) Rate of individual galaxy formation oc t? per unit time. (8.2.7)
At any early cosmic time the integrated total number of galaxies is

(f) Total average density of galaxies is o t°. (8.2.8)

Multiplying factors (d) and (f) together we can say that in a very large volume of space the
total number of massive gravitons emitted is:

Total number of massive gravitons oc (d)x (f) oc t? xt® oc t°. (8.2.9)

Now 1-Exp[-t]° ~t°> when t <<<1 so we will conjecture that Eq. (8.2.2) becomes

Cosmic mass density o, = Pg,onic X(t)

In the matter dominated era
where X(t) ~ {1+ ot (1— Exp[- %]5)} (8.2.10)
. . yo,
Baryonic mass densit v
y y pBaryonlc X(t)
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The approximations we have used here depend on how linear the horizon radius is with time.
As we will see, the radius starts at r=3t but ends up in the region of r ~3.2t, so these
approximations reduce the accuracy of our equations, but they maybe a reasonable guide for
future possible paths. As in section 5 we assume that all infinitesimal mass superpositions

borrow their mass from the time mode zero-point energy coming from the horizon (as in
.Y
Figure 5.3.1) time modes of zero-point fields. In Eq.(5.3.16) we put Y4V
T

relook at the way we derived Eq. (5.3.8) we had included p? as the probability factor for

~1.84a,,and if we

graviton emission. As in Eqg. (8.2.10) p, = pX(t) with p ~ p2X(t)> and we can put
YV o p2X(t) 2, and YWV’ o pBX(t)afaG . At any cosmic time in the matter dominated era,
there is some baryonic density p,, and if we imagine it to be fixed while we increase the
clustering ratio, the factor X(t) changes, implying Y~V' o X(t), or that:

X(t)? (8.2.11)
oo 2N

V!

Using this equation we can use Eq. (5.2.8) to imply:

YZ

? 2 8.2.12
The average density of the universe p, ~1.725k?, o ! X (1) ( )

"R, RV
Conjecturing the scale factor cubed is inversely proportional to baryonic mass density p;*:
X(t) _ RaV'X() RS,V (8.2.13)
Py X(t)° X(t)

a(t)® oc pgt o

In flat space we can use Eq.(5.3.19) (R,, = J'th where V :Z—T is only true in flat space),

and using the relation HR,, =V’ or H =V R}, we can get the DE:
V' R(t)-1_a(t) (8.2.14)
R, R a()

With appropriate boundary conditions assuming H, =73km/sec/ Mps, Table 8.2.1 shows

four combinations of parameter k in EQ.(8.2.14). Caramena and Marra [20] using 2020
Pantheon data, measured deceleration at g, =—1.08+0.29 in line with the k =1.9 value. The

radius and age are a bit small compared to ACDM values but, as we mentioned above, our
approximations limit assuracy as the non linearity of R(t) increases. The following graphs

assume that central q, =-1.08+0.29, or k =1.9 solution.

Parameterk. | Horizon radius Cosmic age Deceleration | Redshift
k=1.9 ~39.3x10°ly. ~12.3x10°y. | g, =-1.09 z, ~0.38
k=1.85 ~ 41x10°ly. ~12.7x10°y. | g, =-1.19 z, ~0.43
k=18 ~ 43x10°ly. ~13.4x10°y. | g,=-1.3 z, ~0.48
k=175 ~ 46x10°ly. ~14x10°y. q,=-1.4 2, =~ 0.52

Table 8.2.1 Four possible solutions of Eq. assuming H, = 73km/sec/ Mps.
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Figure 8.2.1 A plot of the k =1.9 solution of Eq. (8.2.14) with H, = 73km / sec/ Mps.
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Figure 8.2.2 A plot of deceleration parameter g versus time on the left, and versus redshift z on the
right. Transition, when k =1.9 was about 4.1 billion years ago.
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Figure 8.2.3 A plot of the scale factor with k=1.9 showing similar behaviour to the
Lambda-CDM. All the solutions in Table 8.2.1 show very similar scale factor behaviour.
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15 Ratio for clustered baryons (1+9t™)

Massive Graviton mass 2 orange, and overall cosmic space average

. t
Baryonic mass 1+ 9t (1 Exp[- E]S) , blue.

10

— |~
\’

1 2 3 4
Figure 8.2.4 A plot of Eq.(8.2.10) of the ratio of the mass of massive gravitons to baryonic

mass, for both clustered galaxies and the overall cosmic average versus cosmic time. Both
curves have an inverse time factor as massive araviton mass is inverse to cosmic time,

/ Supermassive black holes formation should

5
Massive Graviton mass 10 .
1 be much faster in early eras.

Baryonic mass 104 ,

1000 |
100

' ' ' Cosmic age in years —
107 10% 10° 10"
Figure 8.2.5 A logarithmic plot of the mass ratio for clustered baryonic mass versus cosmic
time in years.

8.2.3 Baryonic density for this solution

. 1 . :
One kg /m’is ~ 0516107 Planck units and current observations measure 0.2 to 0.25 atoms
. X
per cubic metre. Proton mass is 1.67x107°'Kg, pg,yene ~ 0.225x1.67x107" ~0.375x107*"kg / m’
0.375x10°"

~—————— ~7.3x107" Planck units. When k =1.9&t =1, |1+9t"(1- Exp[—i]5) ~1.35
0.516x10 1.9

EQ. (8.2.10) 1, ~ Py {1+ ot ™ (1- Exp[- %}5)} ~7.3x10 % x1.35 ~9.86 x10 *

Eq. (5.2.8) p, ~1.725k?2, ~1.725Y*R_}, so that 1.725Y*R;;, ~9.86x107'*,
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9.86x10*°R?

Thus Y? ~ Lot H. At 39.3x10°ly, R, ~2.29x10%Ip — RZ, ~5.24x10"%Ip®.
9.86x107%° x5.24 x10'% (8.2.15)
Y2 o 222X S ~3x107% > Y ~0.173
1.725
YV _
In Eq.(5.3.16) we put 7 ~1.84¢, S0 that:
T
a0 2 8.2.16
- YV 3x10°x(V'=292) 00 ( )
47 x1.84 47 %x1.84

8.2.4 The Higgs boson

It is not clear whether the Higgs boson is a spin zero superposition as in Table 2.2.1.
However, if it is, it would be a superposition of two infinite superpositions (one spin up and
one spin down) with a total angular momentum vector summing to zero, just as two spin %
fermion superpositions can for example.

9 Further Issues not Already Covered.

9.1.1 Preferred frames

It might seem that we have been arguing in earlier sections for a preferred frame. But there is
really no difference in what we are proposing compared to current physics. In comoving
frames the cosmic microwave background is isotropic. At peculiar velocity s, it is no longer
isotropic, and the average background temperature increases by y,, exactly the same increase
as k., to k'. =,k ;thatis if we could measure it, which is most unlikely. We have

frequently talked in this paper about local observers measuring k but only as a thought

experiment, and the average (over all directions) background temperature can be used to
measure either » .. or y .. atany particular cosmic time, provided we already know its

/ metric

value in flat comoving coordinates, which from Eq.(8.2.15) is k., ~0.17R;,, There are no

other changes in physics in this comoving frame; it is exactly as Einstein originally postulated,

an important experimentally verified feature of GR. If we think in terms of four volume, or
4D k,,, action density invariance, whether we are in a non-comoving frame, or in a non-flat

metric, it makes no difference.

n

9.1.2 Gravitational waves and 4 volume invariance

We showed in section 5.4.1 that the 4 volume k_. graviton density at any cosmic time
p4D,, .., 1S invariant in all coordinates and in any metric. But the metric can oscillate and not

change this invariance, with such disturbances travelling at the speed of light. We can imagine
extra gravitons around a mass concentration and the background gravitons (if there is

accelerating mass as in binary pairs) generating real transversely polarized m = £2 | gravitons.
We can also show from Eqs.(5.1.9) that most of these gravitons are close to the locally
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measured value of the k_. wavenumber, about 96% are between k_. & 5k_. . Thus, most of

this radiated energy is near K., . The frequency of the radiated wave is twice the orbital
frequency of the binary pair source, typically hundreds of orbits per second. Typical
wavelengths are in the thousands of kilometres or roughly 10" Planck lengths. As most of the
energy in the wave is in quanta near k_. there is no connection with the frequency of the
radiated wave as in spin 1 photons and electromagnetism. The wavelength of k . gravitons is
1/k,,;, =1.2R,, ~3.2x10% Planck lengths, with the ratio between these two wavelengths of

the order of ~10%. This ratio is inverse to the binary pair orbital frequency. It could only
approach one if the binary orbital period is approximately twice the age of the universe.

9.1.3 Constancy of fundamental charge

It has always been fundamental that the electromagnetic charge of protons and electrons is
precisely equal and opposite to get a neutral universe. In section 4.2 we showed that the
probability of superpositions was SN -dk(1+&)/k where the infinitesimal & is proportional
to rest mass squared and thus different for various particles. We used this probability to
determine interaction coupling strengths in section 3.3. This suggests that the probability of
virtual photon emission is also proportional to the probability sN-dk(l1+&)/k of each
superposition, and would not be precisely equal for electrons and protons due to small
variations in ¢ of the order of ~10™ between electrons and quarks. If, however, we look
closely at Eq.(4.2.3) and the following equations, by adding the amplitude for gravity at right
angles we effectively added the probabilities of spin 2 gravity generated superpositions to
those of spin 1 colour and electromagnetic superpositions. If, somehow, only those
superpositions generated by spin 1 electromagnetic and colour interact with spin 1 photons,
this would cancel any minute difference in charge. If this is not so, then there are infinitesimal
differences in charge of the order of ~10 *which would surely have shown up in some form
by now, unless there are minute differences in the total number of electrons and protons.

9.1.4 Superpositions, Feynman’s strings and possible resonances

For over a century there have been models of the electron with the Abraham-Lorenz probably
the best known [28], [29] but all of them suffered from electromagnetic mass in the field
being 4/3 times the relativistic mass. Poincare showed that bursting forces due to charge
balanced by stresses (or forces) in the same rest frame as the particle could cancel the extra
1/3 figure, and restore covariance [30]. In chapter 29 Volume Il of his famous lectures on
physics, Feynman, probably jokingly, suggested that if the electron is held together by strings,
their resonances could explain the muon mass [38]. He just may have been right. The
dominant n =6 mode of the electron family of superpositions is held in orbit by a squared
vector potential Q®A* =16#°k*r?. The bursting force is a scalar potential of order «,,, a

small perturbation in comparison. Perhaps we could imagine some sort of cubic equation with
three solutions for rest mass, and something similar for quarks, but with larger perturbing
forces.
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10 Discussion

This paper set out to form the fundamental particles from infinite superpositions. There are
several significant consequences of this proposal, including the hypothesis that the four
volume density of cosmic wavelength (or k_ . ) gravitons inside the observable horizon is
invariant at any cosmic time. The density of matter, is approximately proportional to the
inverse horizon area, but also proportional to the inverse of the Hubble flow velocity
(p, o<1/ (R3,V"), suggesting that QM controls the expansion of space.

When mass is distributed evenly as a dust there is a uniform three volume (spatial) density
throughout a sphere of radius R, and space and spacetime is flat everywhere. If any of this

mass is concentrated in a central location it increases the three volume density of k..

gravitons around this mass and space has to expand locally in agreement with Einstein’s
equations, apart from an infinitesimal difference that becomes larger at large cosmic radii.

Of course, QM can only control the density and expansion rate of the cosmos in the manner
described here unless there is something wrong with the Friedmann equations. We have
argued, however, that our infinitesimally modified Einstein equations, over very large
homogenous and isotropic regions of space, make all components of these modified tensors
average zero. This nullifies their effect in the Friedmann equations.

Perhaps the most significant consequence of this proposal is that, just like spin 1 photons, spin
2 gravitons have a massive member as well as one with what we describe as having
infinitesimal mass. However, in the case of gravitons the massive member has a mass that is
always approximately proportional to the inverse horizon radius (ec Ry,), and is currently
about 10%eV, having a Compton wavelength similar to galaxy halos. The spherically
symmetric wavefunctions of these 10*eV massive gravitons, with inverse radius squared
probability, give galaxies their MOND-like properties we observe. In other words. provided
their Compton wavelength is long enough, they behave just like a form of dark matter that
decreases in density with radius as r.

Our approach suggests a modified GR complying with both quantum mechanics and SR, but
the domain in which GR is accurate is always retricted to a location in space. It proposes a
very different method for forming fundamental particles which does not unite the fundamental
forces at high energy but agrees with the most basic version of the SM apart from
infinitesimal mass bosons. Like Einstein, as in Figure 3.3.3, it looks at gravity not as a force,
but purely as a consequence of warped spacetime, or invariant four volume (4D) k., graviton
densities with particles following geodesics.

It is common practice in cosmology to put the scale factor a(t) o« t”, and the QM approach in
this paper controls the scale factor in the radiation era at p=1/2 with a horizon velocity
V =2. In the matter era massive gravitons, with a mass that is always approximately inverse
to the horizon radius, control the scale factor initially at p=2/3 and the horizon velocity at
V =3 as in current cosmology if Q =1, but with no dark energy. We proposed an extremely
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simple mathematical model of this which demonstrates that the generation of massive
gravitons can accelerate the expansion of space. As cosmic time progresses p is>2/3 and
V is > 3, where the actual time history of this change, tracks this massive graviton generation
inside galaxy halos. As the mass of massive gravitons is approximately inverse to cosmic time
they were very massive in the early eras which must have significantly effected the rate at
which supermassive black holes could form.

As noted in our introduction, Merritt points out that dark energy responsible for accelerating
expansion in the ACDM is an auxiliary hypothesis, added to the model around 1998.
However, since that time astronomers have adjusted its properties, as needed, to match
whatever new observational data relating to the universe’s large scale structure becomes
available, under the assumptions that Einstein’s theory of gravity is correct. (D. Merritt,
personal communication with the author’s brother, October 20, 2018). And in this regard, the
Reiss team claim their latest figures for the Hubble parameter provide “stronger evidence for
physics beyond the ACDM ” (Reiss et al.,2019 p.1) [33]

On a final note, the primary interactions involved in forming the fundamental particles are
simple, allowing simple mathematics. Indeed, we have purposely avoided exotic mathematics
throughout this paper in the belief that, while powerful and elegant, it can hide the wood for
the trees so to speak. The theoretical physicist Hossenfelder expresses a similar sentiment in
the title of her recent book [3] Lost in Math: How Beauty Leads Physics Astray. If “Mother
Nature” can be described simply, why not do so?

The ideas presented, although radical, at a fundamental level are also very simple.
Superpositions are a signature component of quantum mechanics and we have merely
extended them to building the fundamental particles. The proposals form a consistent package
conforming with both quantum mechanics and SR. They also suggest new physics that may
facilitate progress in a field considered by many to be in difficulty, or even in crisis [1-5].

11 Conclusions

If the fundamental particles are built from infinite superpositions as we propose, they must
have at least an infinitesimal mass that is approximately inversely proportional to the horizon
radius multiplied by the the Hubble flow velocity. And this may have some very significant
consequences:

e Because cosmic wavelength gravitons vastly outnumber all other particles, the
invariance of the action quanta they borrow from the expanding space inside the
horizon directly relates with infinitesimally modified Einstein field equations.

e This infinitesimal modification limits the range of GR to much smaller than horizon

scale and also makes the Einstein equations average zero over isotropic and
homogeneous regions.
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e The Freidman equation components must also average zero over large regions of space
and space is flat. QM controls the expansion of space regardless of , with or without

inflation.

e In the matter era, the inverse radius squared probability of massive gravitons behave
just like dark matter, giving galaxies and galaxy clusters their observed MOND-like
behaviour.

e Because the mass of massive gravitons is approximately inverse to cosmic time, it was
very large in early eras and should have sped up supermassive black hole generation

e The holographic principle is seen as a property of quantum gravity, and this paper
builds on that principle. It includes gravity at horizon scale wavelengths, but not near
Planck energy as in most papers including gravity with the other forces.

e Space has to be always flat, spacetime is distorted locally, and the domain of accuracy
of GR is restricted to a location in space.

e Because spin 2 polarization vectors rotate at twice the rate of spin 1 polarization
vectors, they can not transmit momentum or force. Thus, gravity cannot unite with the
other fundamental forces, which is exactly what Einstein told us over a century ago. It
is an emergent property of QM as is accelerating expansion.
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