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Abstract

We suggest a new solution to the strong CP problem. The solution
is based on the proper use of the boumdary conditions for the QCD
generatimg functional integral. It obeys the principle of renormaliz-
ability of Quantum Field Theory and does not involve new particles
like axions.
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1 Introduction

The strong CP problem for a long time is considered as an outstanding
problem of Quantum Field Theory and Elementary Particle Physics. For an
excellent review of the subject see [1]. The most popular presently solution
[2], [3] to the problem introduces new particles - axions [4],[5]. Axions are
considered as real candidates for dark matter of the Univers. But presently
only restrictions on their possible properties are established in spite of the
numerous experimental efforts to discover such particles, see e.g. [6],[7],[8].
Besides, the axion solution of the strong CP problem violates the principle
of renormalizability of Quantum Field Theory. This basic principle presently
is one of the most phenomenologically successful principles of Elementary
Particles Theory. It ensured in Quantum Electrodynamics the agreement
between the theory and the experiment for anomalous magnetic moment of
the elctron within ten decimal points. This impressive agreement convinces
us that renormalizable Quantum Field Theory is a correct physics heory.
Therefore it seems to be interesting to find a solution to the strong CP
problem which also obeys the principle of renormalizability. This is the goal
of the present paper.

2 Main part

We will deal with the Quantum Chromodynamics (QCD) generating func-
tional of Green functions

Z(J) =
∫

dΦ exp
(
i
∫

d4x (LQCD + Jk · Φk)
)

, (1)

where dΦ denotes the integration measure of the functional integral Z(J)
over all fields Φk of the theory, gluons and quarks. Jk are sources of the
fields. The symbol J in Z(J) denotes the full set of sources Jk.

Within perturbation theory the QCD Lagrangian LQCD is invariant, in
particular, under the combined symmetry transformations CP, where C is
the charge conjugation operator and P is the space reflection.

The essence of the CP problem is that in full nonperturbative QCD one
can add to the QCD Lagrangian the CP odd gauge invariant term which
seems to be not forbidden from the first principles
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∆Lθ =
θ

32π2
Ga

µνG̃
a
µν . (2)

It is C-invariant and P-noninvariant, hence CP odd. But this term is forbid-
den by experiments with the rather high precision.

The dual field strength tensor G̃a
µν in (2) is defined in the standard way

G̃a
µν =

1

2
εµνρσG

a
ρσ. (3)

The θ-term in (2) is invisible in perturbation theory since it can be rewritten
as a total derivative

∆Lθ = θ∂µKµ. (4)

Here Kµ is the known Chern-Simons current

Kµ =
1

16π2
εµνρσ

(
Aa

ν∂ρA
a
σ +

1

3
fabcAa

νA
b
ρA

c
σ

)
. (5)

The θ-term can be discarded within perturbation theory since the fields de-
crease in Euclidean space at infinity and the total derivative (4) does not
contribute to the QCD action. But with the discovery of instantons [9] it
was realized that the field configurations with the instanton boundary condi-
tions give nonzero nonperturbative contributions to the action. In particular,
the one instanton contribution gives

∆Sθ =
∫

d4x∆Lθ = θ. (6)

The key notion here is the topological charge

V =
∫

d4x∂µKµ =
∫

d3xK0(~x, t)|t=+∞
t=−∞ = K(t → +∞)−K(t → −∞), (7)

where K is the Pontryagin number. The topological charge is zero for per-
turbative fields, i.e. in perturbation theory. But instanton fields, e.g. in
the A0 = 0 gauge, interpolate between Ai(~x, t = −∞) = 0, i = 1, 2, 3 and
nonzero Ai(~x, t = +∞) = U+∂iU, i = 1, 2, 3. Here the matrix U is the
Polyakov hedgehog

U(~x) = exp

(
− iπ~x · ~σ√

~x2 + ρ2

)
. (8)

3



For this instanton configuration one has that the Pontryagin number and
correspondingly the topological charge are equal to unity

V = K(t = +∞) = 1, (9)

Thus the θ-term gives the nonzero contribution to the QCD action.
In the full QCD, with quarks, there is also contributions to the CP odd

part of the QCD Lagrangian from the imaginary phases of the quark mass ma-
trix. The phases can be rotated away by the chiral transformations of quark
fields. But there is the axial anomaly [11],[12]. It generates noninvariance of
the measure of the Feynman functional integral under chiral transformations
[13]. Therefore the phases of the quark mass matrix arise before the GG̃
term in the Lagrangian. Hence the parameter which determines the value of
the CP violation is in fact

θ + arg(detM), (10)

where M is the quark mass matrix.
Below we shall use the same symbol θ for this parameter to simplify

notations.
Probably the most essential effect of the θ-term is a nonzero electric dipole

moment of the neutron dn. The latter is given by the effective Lagrangian

LnEDM =
dn

2
n̄iγ5σµνnF µν , (11)

where F µν = ∂µAν − ∂νAµ is the photon field strength tensor, n is the
neutron field , σµν = 1

21
[γmuγnu] is the antisymmetric product of Dirac gamma

matrices.
The θ-term generates the following dn

< n(pf )γ(k)|eJem
µ Aµi

∫
d4x∆Lθ|n(pi) >= dnn̄(pf )γ5σµνn(pi)k

µεµ(k). (12)

Here Jµ is the quark electromagnetic current. kµ = pµ
f − pµ

i , εµ(k) is the
photon polarization.

The matrix element in the left hand side of eq.(12) is calculated within
nonperturbative QCD. There are several methods by which dn was estimated,
see e.g. [1]. The results have considerable uncertainties of the order of 50%
because of difficulties of nonperturbative QCD culculations. But anyway the
average theoretical value for dn can be estimated as
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dn,theor ≈ θ × 10−16 e · cm. (13)

This should be compared with the recent experimental value [14]

dn = (0.0± 1.1)× 10−26 e · cm. (14)

Thus one gets an extremely strong restriction on the value of θ

|θ| ≤ 10−10. (15)

The explanation of this practically zero value of the coupling θ is the essence
of a solution to the strong CP problem.

The presently popular solution to the problem is the axion solution. It
assumes the addition to the QCD Lagrangian the term with the new axion
field a(x), which reduces to the shift θ → a(x)/fa + θ. So the corresponding
term ∆Lθ of eq.(2) in the QCD Lagrangian becomes

∆Lθ →
(

a(x)

fa

+ θ

)
1

32π2
Gb

µνG̃
b
µν . (16)

After the spontaneous symmetry breaking of the global symmetry [2],[3] one
calculates the effective potential for the axion field a(x) and finds that when
the axion rests at the minimum of this porential, the CP violating term (16)
nullifies. This is the axion solution to the strong CP problem.

But first of all, the term with the axion field a(x) in (16) has the dynam-
ical dimension five instead of necessary for renormalizability four. Hence
it violates renormalizability of the Lagrangian. As we already have men-
tioned in the introduction, renormalizability is a rather important principle
of Quantum Field Theory which turned out to be very successful phenomeno-
logically. Therefore it is quite important to preserve it when solving the
strong CP problem. Secondly, the axion is not found experimentally in spite
of numerous experimental attemps.

Therefore we suggest a new solution to the strong CP problem which
preserves renormalizability of the theory and does not involve new exotic
particles like axions.

Let us again consider the QCD generating functional (1). In perturbation
theory one has the following boundary conditions e.g. for gluon fields

Aa
µ(~x, t →∞) → Aa

µ,in(x), (17)
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Aa
µ(~x, t →∞) → Aa,out

µ (x).

Here incoming asymptotic fields Aa
µ,in(x) contains only the positive frequency

part and outgoing fields Aa,out
µ, (x) contain only the negative frequency part:

Aa
µ,in(x) =

1

(2π)3/2

∫
d3k ei(~k~x−ωt)vi

µ(k)ai(k)/
√

2w, (18)

Aa,out
µ, (x) =

1

(2π)3/2

∫
d3k ei(~k~x+ωt)vi

µ(k)a∗i (k)/
√

2w,

where ω =
√

~k2, vi
µ(k) are polarization vectors and the sums over polariza-

tions i = 1, 2 are assumed.
These are the Feynman boundary conditions. They are necessary to ob-

tain the correct form of the perturbative propagator of the type 1/(k2 + iε)
with the correct iε-prescription. Thus the fields oscillate at time infinities.
After transition to the Euclidean space by means of the Wick rotation t → ix4

the fields decrease at time infinities, so it is easy to see that in perturbation
theory total derivatives in the Lagrangian are zero.

One can write perturbative boundary conditions (17) for all fields Φi of
QCD symbolically as follows

Φ(t → ±∞) → Φout
in (x). (19)

In our opinion, it is natural to generalize boundary conditions (19) from
perturbative fields to all fields of the theory over which the integration in the
generating functional integral (1) proceeds. Such a definition nullifies total
derivatives in the Lagrangian. Thus it solves the strong CP problem. Besides
this definition allows to write the complete generating functional integral as
one formula:

Z(J) =
∫
Φ(t→±∞)→Φout

in

dΦ exp
(
i
∫

d4x (LQCD + Jk · Φk)
)

, (20)

Let us make now necessary remarks concerning the famous U(1) prob-
lem. The essence of this problem is that the mass of the flavour singlet pseu-
doscalar η′ neson mη′ ≈ 958MeV is surprisingly heavier than the masses of
the flavour octet pseudoscalar mesons.

There is the statement [15],[16] that instantons solve the U(1) problem.
But there is also the solution [17],[18] of the U(1) problem using the axial
anomaly which was suggested before the discovey of instantons.
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3 Conclusions

We suggest a new solution to the strong CP problem. The solution is based
on the proper use of the boumdary conditions for the generatimg functional
integral. It obeys the principle of renormalizability and does not involve new
exotic particles like axions.
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