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Abstract

In this paper we introduce the idea of electric fictitious currents for the electromagnetic
field. Electric fictitious currents are currents that arise in electrodynamics when we change the
topology of space. We show, with a specific example, how fictitious currents may be the source
of magnetic moment of a singularity.
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1 Introduction

The Standard Model of particle physics is a very successful theory describing three out of the four
known forces of nature. Its final formulation relay heavily on the use of gauge fields. In gauge theories
the Lagrangian of the system (i.e. its dynamics) does not change under local transformations acting
in a simply connected region of space-time.

However in the standard model, particle are point objects with no dimension being, as a matter of
fact, space-time singularities with fields around them having sometimes infinite values. For example,
the classical version of electric field around an electron goes to infinity as 1/r2, and in the Standard
Models we start from the classical Lagrangian before quantizing.

In this paper we study what happens to a gauge field when we introduce a singularity in space
such that the space is not simply connected any more. The major result is that, depending on
the topology of the singularity, fictitious currents may arise as a manifestation of the inertia of the
system in changing topology. In the example we studied, dealing only with the U(1) symmetry of
the Standard Model, these currents may be seen as a sources for magnetic moment of particles.

In section 2 we derive fictitious currents generated by a singularity in space. The reader, that
does not want to go through the math, can find a simplified version of the content of this section in
[1].

In sections 3 we show how magnetic moment of a particle can arise as a consequence of fictitious
currents.

In the sections 4, 5 and 6 we give additional thoughts and conclusions.

2 Fictitious Currents

We start from the Lagrangian density of the electromagnetic field in units where µ0 = 1:

L = −1

4
FµνF

µν − Jν
sAν (1)

where Jν
s is the source four-vector current, Fµν equal to:

Fµν = ∂µAν − ∂νAµ (2)
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is the electromagnetic tensor and Aµ is the four-potential. Moreover, we know that Fµν is a gauge
field and that its Lagrangian is invariant with respect to the symmetry:

Aµ → Aµ + ∂µθ (3)

where θ(xµ) is any continuous function in a simply connected space-time region Ω.
In the general case, the Lagrangian density L(A, ∂A), given by Eq. (1), depends on both the

four-vector potential and its derivatives. We will consider now the case of the free electromagnetic
field (i.e. Jν = 0) in which the Lagrangian density L(∂A) depends only on the derivatives and it
can be written as (see Appendix A.1):

L = −1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) (4)

Let ξµ = ∂µθ be the gradient of a continuous function in Ω. In this section we will apply the
symmetry Aµ → Aµ + ξµ in order to see what happens to the Lagrangian density.

For the first term in (4) we have;

∂µ(Aν + ξν)∂
µ(Aν + ξν) = ∂µAν∂

µAν + ∂µAν∂
µξν + ∂µξν∂

µAν +

not needed︷ ︸︸ ︷
∂µξν∂

µξν (5)

where the last term is not needed and can be omitted because we are interested in the equation of
motion and that term does not depend on Aµ and therefore has not effect on the variation of the
action with respect to the fields.

For the second term we have:

∂ν(Aµ + ξµ)∂
µ(Aν + ξν) = ∂νAµ∂

µAν + ∂νAµ∂
µξν + ∂νξµ∂

µAν +

not needed︷ ︸︸ ︷
∂νξµ∂

µξν (6)

where the last term once again can be omitted if we are interested in the equation of motion. Putting
the two equation above back together, swapping some terms and rearranging the names of dummy
indices of the third term in parenthesis below, we have:

L = −1

4
FµνF

µν − 1

2
(∂µAν∂

µξν + ∂µAν∂µξν − ∂µAν∂
νξµ − ∂µAν∂νξµ) (7)

Applying the Leibniz rule (i.e. f ′g′ = (fg′)′ − fg′′) to the terms in parenthesis above, we have:

∂αAβ∂
γξδ =

not needed︷ ︸︸ ︷
∂α(Aβ∂

γξδ)−Aβ∂α∂
γξδ (8)

where in this case the first term is not needed, if we are interested in the equation of motion, because
it is a divergence and therefore it depends only on the value of the tensors on the boundary of Ω
and has no effect on the variation of the action with respect to fields. Eq. (7) becomes:

L = −1

4
FµνF

µν − 1

2
(−Aν∂µ∂

µξν −Aν∂µ∂µξν +Aν∂µ∂
νξµ +Aν∂µ∂νξµ) (9)

If we are in nice flat Minkowski space we can raise and lower indices at will, also on the derivative
symbols. We have:

L = −1

4
FµνF

µν − 1

2
(−Aν∂µ∂

µξν −Aν∂µ∂
µξν +Aν∂µ∂

νξµ +Aν∂µ∂
νξµ) (10)

and eventually:

L = −1

4
FµνF

µν −Aν∂µ(∂
νξµ − ∂µξν)

= −1

4
FµνF

µν − JνAν = −1

4
FµνF

µν − JνA
ν (11)

In the last equation we have put the currents in both covariant and controvariant form where the
controvariant form is given by:

Jν = ∂µ(∂
νξµ − ∂µξν) (12)
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and the covariant form is given by:

Jν = ∂µ(∂νξµ − ∂µξν) (13)

which allow the J to be expressed in terms of exterior derivatives of differential forms.

J = ∂dξ = ∂d2θ (14)

Statement: Let A be the potential four-vector relevant to the solution of the Maxwell’s Equations
in a region Ω of flat space-time, with no sources and with given boundary conditions on ∂Ω. Let
ξµ = ∂µθ the gradient of a smooth function θ in Ω. Then, we have:

Aµ → Aµ + ξµ ⇒ L = L − JνAν (15)

with:
Jν = ∂µ(∂

νξµ − ∂µξν) (16)

and therefore, changing the four-vector potential by ξµ has the same effect on the electromagnetic
field of introducing Fictitious Currents (Pseudo Currents) Jν in Ω with the same boundary
condition on ∂Ω.

Moreover, form EQ. (14), if Ω is simply connected, clearly Jν = 0 since d2 of any differential form
in Ω vanishes.

Note that:
L(∂A) ̸= L(∂(A+ ξ)) (17)

only because we have removed terms from the Lagrangian. Otherwise, the two Lagrangians would
have been identical since we are applying a symmetry. However, the way we have removed the terms
has left the equation of motion unchanged, and in fact, if Ω is simply connected we have Jν = 0 and
this restores the correctness of the equation of motion and leaves the field unchanged.

However, if Ω is not simply connected, then the currents Jν may be different from zero and act as
sources for the fields, and we have called these currents Fictitious Currents (Pseudo Currents). Note
that these are electric fictitious currents not to be confused with the magnetic fictitious currents
sometimes used in computational electrodynamics as a trick for solving complex problems.

The reason why we call Jν fictitious, it is due to an analogy with discrete mechanical systems
(see Appendix A.2). For discrete mechanical systems, if we act on a symmetry (e.g. shift in space)
while the system is evolving, this will result in fictitious forces. For continuous systems, if we act on
a symmetry, this will result in fictitious currents.

The analogy is not perfect though. For mechanical systems fictitious forces appear when we have
a change of symmetry during the evolution of the system. For the electromagnetic field, fictitious
currents appear when we have a change a of the gauge symmetry fields in conjunction with a specific
space topology.

With abuse of terminology, we may say that fictitious currents are due to the inertia of the
system in changing space topology.

3 Magnetic Moment of One Half Spin Particles

Now that we have defined fictitious currents, we want to find an example where the theory may be
used. Let us consider the Lagrangian density of quantum electrodynamics:

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνFµν (18)

3



and suppose that we have no particles and the electromagnetic field is zero everywhere (at least from
a classical field theory point of view). We know that we have the following symmetry:

ψ → ψeiθ(x
µ) ; A→ A+ ∂µθ ⇒ ∆L = 0 (19)

where A is the four-vector potential.

Suppose now we hit the field with the creation operator and we create a particle. Before the
particle is present, the gauge field θ is a continuous function, and since we can choose, we choose
it to be zero everywhere. Suppose finally that creating the particle is equivalent to removing from
space a cylinder of radius ϵ and height L, with ϵ << L, with the axis of the cylinder AB lying on
the z axis, with A = (0, 0, L/2) and B = (0, 0,−L/2). The gauge field θ before was continuous
everywhere. Now space is not simply connected any more and the gauge field θ has to adapt to the
boundary condition we set on the cylinder.

With abuse of terminology, we will call the cylinder a singularity. This is because the results of
our analysis on the solution for the fields will be independent from ϵ and therefore we may take the
limit for ϵ going to zero, make the cylinder a line segment where the gauge field is step discontinuous
and define our particle to be a proper line segment singularity.

We want to evaluate the currents Jµ close to the cylinder and around the middle point of its
axis, far as from the two ends A and B. If we are close enough to the cylinder, we can consider it of
infinite height and we end up in a solution having cylindrical symmetry where we can assume the
solution for θ to be independent from z (i.e. ξ3 = ∂θ

∂3
= 0). We can forget the z axis and go back

to a 3-dimensional problem. Although the topology has changed, in our case the discontinuity can
be represented just by boundary conditions of the field on the cylinder. We are in flat space, and
therefore controvariant and covariant forms of the currents are the same. From Eq. (13) we have:

Jν =


J0 = ∂1(∂0ξ1 − ∂1ξ0) + ∂2(∂0ξ2 − ∂2ξ0)
J1 = ∂0(∂1ξ0 − ∂0ξ1) + ∂2(∂1ξ2 − ∂2ξ1)
J2 = ∂0(∂2ξ0 − ∂0ξ2) + ∂1(∂2ξ1 − ∂1ξ2)
J3 = 0

=


Jt = ∂y(∇× ξ̂)x − ∂x(∇× ξ̂)y
Jx = ∂t(∇× ξ̂)y − ∂y(∇× ξ̂)t
Jy = ∂x(∇× ξ̂)t − ∂t(∇× ξ̂)x
Jz = 0

(20)

where ξ̂ is the three-vector (t, x, y) and (·)i means component along the i axis. From the above
equation we conclude easily: {

Ĵ = ∇×∇× ξ̂
Jz = 0

(21)

where Ĵ is the three-vector (Jt, Jx, Jy).

For θ we give the following boundary conditions expressed in cylindrical coordinates (r, ϕ, z):
lim
r→∞

θ(r, ϕ, z) = θ∞

lim
r→ϵ

θ(r, ϕ, z) = αϕ+ θ0 for − L
2 < z < L

2

(22)

where α, θ0 and θ∞ are constants α can be a positive or negative number. Note that, for t > 0
where ∂ξi

∂t = 0, and therefore ξt = ξz = 0, we can replace the z axis with the t axis an vice-versa at
any time, since the field is independent from both axes. We can find the solution with respect to the
(t, x, y) space and this will be the same solution for the (x, y, z) space. The second condition above
is the one that defines the discontinuity and, in words, it means that going around the cylinder, by
the time we go around the z axis once, the phase of Ψeiθ goes around the circle α times.
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Figure 1: Boundary Conditions in the Singularity

Although we do not need to know θ in space, we want to spend a few words on the way it may
look like. We assume that two close points want to have the same phase, which means that there
is some energy associated to difference in phase for nearby points. As usual with these problems
of finding a minimum for energy in space, we end up with a Laplace equation. We propose the
following equation for θ:

∇2θ = 0 (23)

that together with the boundary condition allows to evaluate θ in space.

Whatever equation we use for θ, its important to note that, in the (θ, x, y) space, θ = θ(x, y) will
be a multivalued function shaped like an helicoid and spiralling along the θ axis.

Now we are ready to evaluate the fictitious currents. If we integrate ξ̂ on any loop on the (x, y)
plane not containing the origin, we get always a vanishing integral because ∇×∇θ = 0. However,
if we integrate ξ̂ on any loop on the (x, y) plane containing the cylinder, given Eq. (22) we get 2πα.
This is because, given the expression of the gradient in the cylindrical coordinate, we have;

lim
r→ϵ

ξ̂ = lim
r→ϵ

∇θ = α

r
îϕ ⇒ ξ̂ =

α

r
u(r − ϵ)̂iϕ (24)

where u(r) is the Heaviside unitary step discontinuous function and we assume vanishing field inside
the cylinder. This means we have a discrete curl in the origin. Using Eq. (47) we have:

Ĵ = ∇×∇× ξ̂ = ∇×∇×
(α
r
u(r − ϵ)̂iϕ

)
=

α

µ0
δ̊t,ϵ(x, y) [A][m−2] (25)

where the definition of δ̊t is given in Appendix A.3. In the above equation we have taken into
account that ξ̂ has the same units of Aµ ([kg][m][s−2][A−1]) and we have put back in the equation
µ0 ([kg][m][s−2][A−2]) that was previously set to 1. Moreover, each curl adds an [m−1] units.

The field δ̊t has units of [m
−3]. The ratio α/µ0 has units of [A][m]. The parameter α is a small

integer (e.g. α = 1) and therefore the above equation is a new nice interpretation of µ0 in terms of
the currents circulating around our singularity.

The above equation represents a current circulating around z and along the line segment discon-
tinuity. It generates a magnetic moment m per unit length, independent from ϵ and given by Eq.
(48). We have:

m =
2πα

µ0
[A][m] (26)

The total magnetic moment M of the line segment discontinuity of length L is therefore:

M = mL =
2παL

µ0
[A][m2] (27)

We finish this section by giving an estimation of the length of the discontinuity. For example, if we
use the known value of the magnetic moment of the electron1 µe and the value α = 1. Given the

1µe = −9.2847647043(28)× 10−24 [A][m2]
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value of the permeability2 µ0, we have::

L =
µ0|µe|
2πα

= 1.9× 10−29 [m] (28)

4 Charge of One Half Spin Particle

Now we go back to see in more detail what happens during the transition at time t = 0, in which
we go from a zero gauge to our gauge θ(r, ϕ, t), in cylindrical coordinates, where once again we use
the axis t instead of the axis z because the solution is independent from z. The gauge field θ goes
from being a continuous field that does not go around the line segment discontinuity, to a field that
goes around the discontinuity α times. This is equivalent to have α jumping from zero to its actual
value. Given by Eq. (22) we have:

θ(r, ϕ, t) = αϕu(r − d)u(t) (29)

where u is the Heaviside unitary step continuous function. From Eq. (21), we evaluate:

J0 = Ĵt = ∇×∇× ξ̂ = 0 (30)

because the field ξ̂ lays always on the (x, y) plane. Since J0 is always vanishing, we conclude that
in our geometry there is no generation of charge and therefore it is not possible to use this model
to introduce a classical mechanism for the creation of the charge of a particle. Possibly a different
geometry should be used.

5 Space Deficiency Model

In [3] we have shown that if we model space as an elastic material, a deficiency in the material (i.e.
in space) is equivalent to gravity. This is because, if we remove a ball of material making a hole
in it and we identify the boundary of the hole to a point, the material will stretch and the strain
field is equivalent to gravitational field. Moreover, two deficiencies in the material will experience
an attraction force to each other proportional to 1/r2 where r is the distance between the two space
deficiencies.

Since space should be conserved, we wonder how a deficiency may be created in space. A
possibility is that when a particle is created in a point P , the configuration of space changes from
flat Euclidean space to a 3-dimensional manifold attached to the point P by means of a connected
sum.

We will illustrate this with a 2-dimensional example.

Figure 2: Space Deficiency Model

Given a sheet of elastic material representing space, if we cut along a line segment between two
points A and B and we identify the two sides of the cut with opposite orientations, we get a cross
cap (i.e. a real projective plane) attached to the sheet by means of a direct sum.

The sheet will pull the cross cap which will shrink till the bending forces inside the cap will
balance the pulling forces of the sheet. At the equilibrium, the cross cap will protrude from the
sheet and since the quantity of elastic material is conserved in the process, this will be equivalent to
a space deficiency.

The sheet will be stretched around the cross cap and the strain field will be equivalent to a
gravitation field (see [3]). Note that, if the sheet represents space, fields will change phase when
crossing the line segment as in the example we gave in the previous sections.

2µ0 = 4π × 10−7 [kg][m][s−2][A−2]
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6 Conclusions

In this paper, we have shown that a sufficient condition to have magnetic moment in a point in space
(i.e. particle) is to introduce a topological singularity designed to twist the fields in a specific way.
Although the paper has been dealing with the U(1) symmetry only, the very same approach may
be used to explore what happens with the other two symmetries of the standard Model. We believe
that it is worth to further research in order to trying to match particle characteristics to topological
characteristics of space singularity (i.e. 3D compact manifolds connected by direct sum to space)
with respect to the three symmetries of nature, in an effort to make a one-to-one correspondence
between particles and manifolds (or topological singularities).

Although we know that this approach is very unlikely to be a theory that fully describe particles,
however, there is also a chance that things may partially match just by mathematical chance, end
this would allow to exploit the huge variety of 3D-compact manifold to explain some of the complex
characteristics of particles.

We may for example be able to give to some constants of the Standard Model, which now are
known by direct measurement, a theoretical derivation. An example that come to mind is the three
different families of particles with different mass (e.g. electron, muon and tau). They may just be
three different stationary state of the same manifold (i.e. same particle characteristics) like Willmore
spheres that are all the same manifold in different stationary state of energy and with different sizes
(i.e. mass from a particle point of view).

Another example is the fractional charge of some particles that come in 1/3 and 2/3 the charge of
the electron. This may be explained if we find the correct topological singularity to describe them.

A final example may come from dark matter. Maybe dark matter particles are simply manifolds
that do not twist the fields (e.g. oriented manifolds) and therefore do not interact to ordinary matter.

Appendix

A.1 Lagrangian Density of Electromagnetic Field

Given the Lagrangian density of the free electromagnetic field:

L =
1

4
FµνF

µν (31)

we have:

L =
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) (32)

=
1

4
(∂µAν∂

µAν − ∂νAµ∂
µAν − ∂µAν∂

νAµ + ∂µAν∂
µAν) (33)

the above terms are equal in pairs, we have:

L =
1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) (34)

A.2 Fictitious Forces

Given the Lagrangian of a one variable discrete system:

L = L(q, q̇) (35)

having the following symmetry:
q → q + ϕ ⇒ ∆L = 0 (36)

then from the Noether’s theorem we know that the quantity ∂L
∂q̇ is conserved.

The above quantity is conserved when we let the system evolve without applying the symmetry to
it. However, if we apply the symmetry by changing some symmetry parameter (e.g. for a mechanical
system this parameter may be position) while the system is evolving (e.g. for a mechanical system it
may correspond to a shift of the whole system in space or to moving the relative position of parts of
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the system in a way the Lagrangian is not affected), then d
dt

∂L
∂q̇ is not a conserved quantity any more.

This physically corresponds to having fictitious forces (pseudo forces) in the system depending from
the way we change the symmetry parameter as a function of time.

To address the above case, we need to change the Lagrangian in order to take into account the
dependency from symmetry parameters (see [2]). To illustrate that, we will use the same example
of [2], where it is shown how to get a new Lagrangian just with a change of coordinates from q0, the
coordinate of the inertial system, to q = q0 + ϕ, the coordinate of the non inertial one:

Given the Lagrangian of a particle in an external field:

L =
1

2
m(ẋ0)

2 − U(x0) (37)

where x0 is the coordinate in the inertial frame and x is the coordinate of the moving frame with
velocity ϕ̇, we consider the change of variable x0 = x+ ϕ(t). We have:

L′(x+ ϕ, ẋ+ ϕ̇) =
1

2
mẋ2 +mẋϕ̇+

1

2
mϕ̇2 − U(x) (38)

The term 1
2mϕ̇ does not depends on x, gives no contribution to ∂S

∂q and, if we are interested to the

equation of motion, it can be dropped. Regarding the term mẋϕ̇, using the Leibniz rule we have:

mẋϕ̇ = m
d

dt
(xϕ̇)−mxϕ̈ (39)

the term m d
dt (xϕ̇) is the derivative of a function. Its contribution to the action depends only on its

value at the two ends of the time integral. Once again, it gives no contribution to ∂S
∂q and it can be

dropped. We are left with the following Lagrangian:

L′ =
1

2
mẋ2 −mxϕ̈− U(x) (40)

which, by using the Euler-Lagrange equation, gives the following equation of motion:

mẍ = −∂U
∂x

−mϕ̈ (41)

The term mϕ̈ is what we call a fictitious force (pseudo force) and it is a force experienced by the
particle m because it is in a non inertial reference frame.

A.3 Definition of the δ̊ Function

Let ξ̃(r, ϕ, z) be the following vector field in the (r, ϕ, z) cylindrical coordinates:

ξ̃ =
1

r
u(r − ϵ)̂iϕ (42)

where u(r) is the Heaviside unitary step discontinuous function, îϕ is the unitary vector (versor) in
the ϕ coordinate direction and ϵ is any positive real number.

Using the expression of the curl in cylindrical coordinates we have:

∇× ξ̂ =
1

r
δ(r − ϵ)̂iz (43)

Given Eq. (43) and using the expression of the curl in cylindrical coordinates we have:

∇× (∇× ξ̂) =

(
1

r2
δ(r − ϵ)− 1

r
δ′(r − ϵ)

)
îϕ =

2

r2
δ(r − ϵ)̂iϕ (44)

Where the above is true because, although it is hard to believe, we have that:

1

r2
δ(r − ϵ) = −1

r
δ′(r − ϵ) (45)
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We will prove the equality (45) at the end of the section. For the time being, inspired by Eq. (43),

we define the field δ̊z,ϵ as follows:

δ̊z,ϵ(x, y) =
2

ϵ2
δ(r − ϵ)̂iϕ (46)

which is a field circulating on the (x, y) plane, discrete with respect to the distance from the z axis
and present on a circle centred in the origin and having radius ϵ. From Eq. (44) and Eq. (46) we
have:

∇×∇×
(
1

r
δ(r − ϵ)̂iz

)
= δ̊z,ϵ(x, y) (47)

We want now to give some physical interpretation of δ̊z,ϵ. Suppose J0δ̊z,ϵ represents a current
circulating around the z axis. We want to evaluate the magnetic moment m generated by this
current. The magnetic moment of a single coil of a solenoid is given by the intensity of the current
multiplied by the area enclosed by the coil. Given Eq. (46), we have that the magnetic moment per
unit length along z is given by:

m = πϵ2J0
2

ϵ2
|δ(r − ϵ)|̂iz = 2πJ0 |̊δz,ϵ(x, y)|̂iz (48)

where with |δ(r−ϵ)|, we mean the amplitude of the δ. We note that the above results is independent

from ϵ and therefore we may say that a δ̊z(x, y) is a distribution of current, as close to the z axis as
we like (i.e. ϵ→ 0), and giving a magnetic moment of 2π.

As promised, we finish this paragraph by proving Eq. (45). Let g(r) be a continuous function with
g(r) = 0 for r < 0 and such that: ∫ ∞

0

g(r)dr = 1 (49)

Let f be the generalised function 1
r δ

′(r − ϵ). We have:

r2f = r2 lim
n→∞

1

r
n2g′(nr − ϵ) = lim

n→∞
n[(nr)g′(nr − ϵ)] = lim

n→∞
ng1(nr − ϵ) (50)

where g1 = (r + ϵ)g′(r). Clearly r2f is a delta function Aδ(r) centred in zero, where the amplitude
A is given by:

A =

∫ ∞

0

g1(r)dr =

∫ ∞

0

(r + d)g′(r)dr = −
∫ ∞

0

g(r)dr = 1 (51)

where we have used integration by parts. This proves the inequality because we have proven that:

r2f = −r2 1

r2
δ(r − ϵ) (52)
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