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A novel chiral electron-hole (CEH) pairing mechanism is proposed to account for

non-BCS superconductivity. In contrast to BCS Cooper pairs, CEH pairs exhibit a

pronounced a�nity to antiferromagnetism for superconductivity. The gap equations

derived from this new microscopic mechanism are analyzed for both s- and d-wave su-

perconductivity, revealing marked departures from the BCS theory. Unsurprisingly,

CEH naturally describes superconductivity in strongly-correlated systems, necessi-

tating an exceedingly large coupling parameter (λ > 1 for s-wave and λ > π/2

for d-wave) to be e�cacious. The new mechanism provides a better understand-

ing of various non-BCS features, especially in cuprate and iron-based superconduc-

tors. In particular, CEH, through quantitative comparison with experimental data,

shows promise in solving long-standing puzzles such as the unexpectedly large gap-

to-critical-temperature ratio ∆0/Tc, the lack of gap closure at Tc, superconducting

phase diagrams, and a non-zero heat-capacity-to-temperature ratio C/T at T = 0

(i.e., the �anomalous linear term�), along with its quadratic behavior near T = 0 for

d-wave cuprates.

I. INTRODUCTION

Magnetism has traditionally been viewed as antagonistic to conventional Bardeen-
Cooper-Schrie�er (BCS) superconductivity [1]. However, many non-BCS superconductors
discovered in the past few decades have demonstrated the opposite, showing that strong
magnetism is actually very conducive to non-BCS superconductivity. In particular, many of
them are derived from parent compounds with antiferromagnetic properties, and some even
exhibit cases of the coexistence of superconductivity and antiferromagnetic order [2]. The
two primary classes of high Tc superconductors, cuprate [3] and iron-based (FeSC) [4] super-
conductors, both have their roots in antiferromagnetic compounds, with cuprates originating
from antiferromagnetic Mott insulators and FeSCs from antiferromagnetic metals.

The coexistence of superconductivity and long-range antiferromagnetic order was actually
discovered a long time ago in the late 1970s [5, 6]. The intimate relationship between
antiferromagnetism and superconductivity has been observed in many di�erent types of
non-BCS superconducting materials, including heavy fermion compounds [7, 8], organic
superconductors such as quasi-1D TMTTF/TMTSF type and quasi-2D BEDT-TTF type
[9], and doped fullerenes [10].

The signi�cance of antiferromagnetic order may provide crucial clues for solving the
puzzles of non-BCS superconductivity. In particular, this leads to our proposal of a new
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pairing mechanism via chiral electron-hole (CEH) condensation in this work. The presence
of strong antiferromagnetic correlations is critical, as it guarantees that chirally opposite
electron and hole states are next to each other, making the chiral condensation more feasible.
This may explain why both high Tc superconducting classes (cuprates and FeSCs) are based
on antiferromagnetic compounds.

In order to fully comprehend these superconductors, it is imperative to not only �nd
their correct pairing mechanism, but also to identify their pairing symmetry. Angle-resolved
photoemission spectroscopy measurements have indisputably proven that cuprates display
a dx2−y2 gap symmetry [11]. Although studies on the pairing symmetry of FeSCs that were
discovered much later are not as conclusive, the majority consensus suggests that they most
probably exhibit some type of s-wave pairing symmetry [12].

In this paper, we apply the mean-�eld approach to derive superconducting gap equations
using the new pairing mechanism. Detailed analysis of the equations for both s-wave and
d-wave superconductivity will reveal various features that di�er from BCS. Furthermore, we
will address puzzles concerning superconducting gap and heat capacity and present several
examples that directly compare CEH predictions with cuprate and FeSC data. Natural units
(~ = c = kB = 1) are utilized throughout the work for convenience.

II. CHIRAL ELECTRON-HOLE (CEH) PAIRING

We will closely follow the Bogoliubov-BCS formalism as described in Ref. [13] for the
mean-�eld theory of BCS superconductivity, albeit with a new microscopic superconducting
mechanism. First of all, we will begin with a four-fermion interacting Hamiltonian for the
simple straightforward case of s-wave CEH pairing,

H =
∑
kσ

ξkc
†
kσckσ − V

∑
kk′

c†kLc−kRc
†
−k′Rck′L (1)

where we use left and right chiralities instead of the conventional up and down spin notation
to emphasize the signi�cance of chirality in this study.

Note that similar four-fermion interactions were also used in the Nambu-Jona-Lasinio
(NJL) mechanism [14] in particle physics for quark condensation and spontaneous symmetry
breaking, borrowing the idea from the earlier BCS superconductivity work [1]. Such ideas
are also crucial in the recently developed mirror matter theory, which aims to address many
puzzles in fundamental physics and cosmology [15�19]. In particular, the concept of staged
chiral quark condensation [16, 19, 20] has directly motivated this work.

The most signi�cant di�erence in Eq. 1 from the BCS Hamiltonian is that, by borrowing
back the idea of the NJL model, the four creation and annihilation operators are arranged
to incorporate the proposed condensation mechanism of chiral electron-hole pairs instead
of the conventional Cooper pairs. Speci�cally, the superconducting pairs are formed from
electrons and holes with exactly opposite chiralities, a con�guration readily achievable in
adjacent sites of antiferromagnetic materials. We can then de�ne a similar order parameter
∆ based on the CEH condensation mechanism,

∆ = V
∑
k

〈c†kLc−kR〉 , ∆∗ = V
∑
k

〈c†−kRckL〉 . (2)

Upon initial instinctive consideration, one might assume that CEH pairs cannot conduct
electric currents due to their zero net charge. However, the conduction mechanism of CEH



3

FIG. 1. Di�erent pairing and conducting mechanisms between CEH and BCS are shown.

pairs is fundamentally di�erent from that of Cooper pairs, as illustrated in Fig. 1. While the
Cooper pair conducts currents through center-of-mass motion, the CEH pair achieves this
through relative motion. On a macroscopic scale, both mechanisms yield equivalent 2e-like
currents, resulting in comparable outcomes in most macroscopic phenomena, including the
Josephson e�ect.

Another important aspect concerns the pairing symmetry. In CEH condensation, the
pairs must be spin singlets owing to its chiral nature (like the Higgs in particle physics),
leading to symmetric orbital wave functions. Consequently, the resulting pairing symmetry
can only be s-, d-, or g-wave.

Considering the CEH condensation, the Hamiltonian of Eq. 1 then takes the bilinear
form,

H =
∑
k

(
c†kL, c

†
−kR
)( ξk −∆∗
−∆ ξk

)(
ckL
c−kR

)
. (3)

We can then diagonalize the Hamiltonian through the Bogoliubov transformation [21] as
follows,

U †
(
ξk −∆∗
−∆ ξk

)
U =

(
E+

k 0
0 E−k

)
, U =

(
uk v∗k
−vk u∗k

)
(4)

where the eigenvalues are,
E±k = ξk ± |∆|, (5)

in contrast to E±k = ±
√
ξ2
k + |∆|2 in BCS. The corresponding emergent Bogoliubov quasi-

particles are therefore de�ned as follows,(
bkL
b−kR

)
= U †

(
ckL
c−kR

)
(6)

where the quasi-particle operators b and b† satisfy the same anticommutation relations as
fermions. Applying the unitarity condition of |u|2 + |v|2 = 1, we arrive at the solution,

|u| = |v| = 1√
2

(7)
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which is remarkably di�erent from the BCS �ndings. To facilitate later discussion, we can
introduce a phase factor by setting u/v = eiδ, which gives u∗v = 1/2e−iδ.

Using the above solution, we obtain the following condensation relation

〈c†kLc−kR〉 = u∗v(〈b†−kRb−kR〉 − 〈b
†
kLbkL〉) (8)

where, at �nite temperature, the quasi-particles follow Fermi-Dirac statistics, that is,

〈b†kLbkL〉 =
1

eE+/T + 1
, 〈b†−kRb−kR〉 =

1

eE−/T + 1
. (9)

Then, we can obtain the s-wave CEH gap equation from Eqs. 2, 5, 8, and 9,

∆ =
V

2
e−iδ

∑
k

sinh(|∆|/T )

cosh(|∆|/T ) + cosh(ξk/T )

= V ρF e
−iδ
∫ ω∗

0

dξ
sinh(|∆|/T )

cosh(|∆|/T ) + cosh(ξ/T )
(10)

where ρF denotes the density of states at the Fermi energy and the summation is replaced
by an integration over the energy shell (±ω∗) near the Fermi surface where the formation
of superconducting pairs occurs. It is worth noting that ω∗ bears resemblance to the Debye
energy ωD in the BCS theory. However, we will elaborate later on the more signi�cant
impact of ω∗ within the CEH mechanism.

By working out the integration and introducing a dimensionless coupling parameter λ =
V ρF and a positive energy gap ∆ de�ned by ∆ = ∆e−iδ, the s-wave gap equation can be
simpli�ed as,

∆(T ) = 2λT tanh−1

(
tanh(

∆(T )

2T
) tanh(

ω∗

2T
)

)
= λT log(

e(∆(T )+ω∗)/T + 1

e∆(T )/T + eω∗/T
). (11)

CEH Gap equations with more intricate orbital pairing symmetries can be calculated by
considering an angular-dependent superconducting energy gap ∆k = ∆γk. For a d-wave gap
symmetry of dx2−y2 in cuprate superconductors, we have the symmetry factor γk = cos(2ϕ).
A d-wave CEH gap equation can then be derived with ease,

∆(T ) =
8λT

π

∫ π/4

0

dϕ tanh−1

(
tanh(

∆(T ) cos(2ϕ)

2T
) tanh(

ω∗

2T
)

)
. (12)

If we further consider ∆ as an emergent scalar �eld (akin to the Higgs �eld in parti-
cle physics), its self-interactions will lead to the same phenomenological Ginsburg-Landau
theory as derived in BCS superconductivity.

III. ANALYSIS OF CEH GAP EQUATIONS

First, we should emphasize that both s-wave and d-wave gap equations in CEH (Eqs. 11
and 12) are dramatically di�erent from those derived in the BCS theory. In particular, the
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two parameters of ω∗ and λ play a crucial role in distinguishing the CEH mechanism from
BCS.

To ensure that quasi-particles have positive energies (or negative energies for correspond-
ing �anti-particles�) as in Eq. 5, we establish the following superconducting requirement
under the CEH model,

ω∗ ≤ ∆(T ) (13)

which is entirely di�erent from that of BCS. In BCS, positive energies are guaranteed as
E+

k =
√
ξ2
k + |∆|2, and thus no constraint on the Debye energy ωD is necessary. In addition,

it should be noted that the coupling parameter λ in CEH must be very large (i.e., λ > 1 for
s-wave and λ > π/2 for d-wave as presented below), as opposed to the small parameter of
λ� 1 used in BCS. This implies that CEH is naturally suited for modeling superconductivity
in strongly-correlated electron systems while BCS is more appropriate for the weak-coupling
limit.

The condition of Eq. 13 suggests that typically ∆(Tc) = ω∗ 6= 0, meaning that the
superconducting gap does not necessarily close at the critical temperature Tc, which is
distinct from BCS. More details are presented below for both s- and d-wave cases.

A. s-wave results

The CEH s-wave gap equation (Eq. 11) can also be written as,

x1/λ(x+ w) = wx+ 1 (14)

where x = exp(∆(T )/T ) > 1 and w = exp(ω∗/T ) > 1. The superconducting condition of
Eq. 13 requires that x > w. We can then easily solve it for λ,

λ =
log(x)

log(wx+1
w+x

)
=

log(x)

log(x) + log(w+1/x
w+x

)
> 1 (15)

which means that CEH addresses a strongly-correlated system.
In the limit of T → 0, we obtain the gap at zero temperature,

∆0 ≡ ∆(T = 0) = λω∗ (16)

and the gap equation can then be simpli�ed at the critical temperature Tc as,

2 exp(
λ+ 1

λ2

∆0

Tc
) = exp(

2

λ

∆0

Tc
) + 1. (17)

This allows us to plot the solution of ∆0/Tc as a function of λ as shown in Fig. 2 with its
two asymptotic limits: two as λ → ∞ and log(2)λ2/(λ− 1) as λ → 1. Note that this ratio
is always larger than two and can become much larger at smaller λ (or lower doping levels),
in contrast to the constant value of about 1.764 in BCS for s-wave superconductors.

Fig. 3 shows the ∆(T )/∆0 ratios as a function of T/Tc for various λ values, which are
numerically calculated from the gap equation. In Fig. 3, it is evident that the supercon-
ducting gap in CEH, in general, does not close at the critical temperature Tc, resulting in
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FIG. 3. The ∆(T )/∆0 ratios as a function of T/Tc are shown for s-wave CEH superconductivity.

The gap only vanishes at Tc when λ → ∞, in which case the curve nearly overlaps with that of

BCS.

∆(Tc) = ∆0/λ according to Eq. 16. It only closes in the extreme case of λ→∞, where the
relation between ∆(T )/∆0 and T/Tc can be simpli�ed as,

T

Tc
=

∆(T )/∆0

tanh−1(∆(T )/∆0)
(18)

which nearly overlaps with the results from BCS as shown in Fig. 3.
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On the other hand, the superconducting gap does close at a higher temperature T0 > Tc.
It can be calculated from the gap equation using the condition of ∆(T0) = 0,

T0 =
ω∗

2 tanh−1(1/λ)
=

ω∗

log(λ+1
λ−1

)
(19)

which, though higher, follows a similar trend as Tc as demonstrated in the following section.
Another ratio can be calculated simply as follows,

∆0/T0 = 2λ tanh−1(1/λ) < ∆0/Tc (20)

which is shown as the red dotted line in Fig. 2.
At T → 0, we �nd, directly from the gap equation, that the energy gap exponentially

approaches its maximum value of ∆0,

∆(T ) ' ∆0 − λT exp(−∆0

T
(1− 1

λ
)) (21)

which is similar to that of BCS.

B. d-wave results

Taking the limit of T → 0, we obtain the coupling parameter from the gap equation (Eq.
12) (see Appendix A),

λ =
π

2(1− sin 2θ) + 4θ cos 2θ
>
π

2
(22)

where θ is de�ned by cos 2θ = ω∗/∆0 within the range of 0 < θ < π/4. This indicates that
CEH d-wave superconductors require even stronger correlations.

We can also obtain the d-wave ratio of ∆0/Tc numerically from the gap equation using
ω∗ = ∆(Tc) = ∆0 cos 2θ and compare it with the s-wave and BCS results, as shown in Fig.
2 and also in Fig. 4 as a function of θ. The general trend of the d-wave ratio is similar to
the s-wave one, though notably higher. However, the inset plot in Fig. 4 reveals that the
d-wave ratio is not monotonic and has a minimum of about 3.0774 at θ ≈ 0.7184.

Similar to the s-wave results, the normalized d-wave superconducting gap as a function
of T/Tc is shown in Fig. 5. Again, it does not close at Tc which is contrary to the BCS
prediction. Note that the temperature dependence of the BCS d-wave gap, unlike the s-wave
case, di�ers greatly from the CEH predictions, even in the limit of λ → ∞ or θ = π/4. As
a matter of fact, the distinction is so signi�cant between BCS and CEH that measurements
with decent experimental precision should be pursued.

It is straightforward to calculate the temperature T0 > Tc where the d-wave supercon-
ducting gap vanishes,

T0 =
ω∗

2 tanh−1(π/(2λ))
(23)

which is similar to the s-wave result except for a larger lower bound on the coupling param-
eter (λ > π/2). A similar ratio can also be obtained,

∆0/T0 = 2 tanh−1(1 + 2θ cos 2θ − sin 2θ)/ cos 2θ < ∆0/Tc (24)
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The gap only closes at Tc when θ → π/4 or λ→∞. However, the gap-vanishing BCS curve behaves

di�erently.

which is plotted as the blue dotted line in Fig. 2. Like ∆0/Tc, this ratio has a minimum of
about 3.027 at θ ≈ 0.662.

The asymptotic behavior of the superconducting gap at T → 0 can be obtained as follows,

∆ ' ∆0 −
T 2

θ sin(2θ) cos(2θ)∆0

(25)
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which is derived by utilizing the following integration,∫ π/4

0

dϕ exp(−∆

T
| cos(2ϕ)− cos(2θ)|)

∣∣∣∣∣
T→0

=
T

∆ sin(2θ)
. (26)

IV. ENTROPY AND SPECIFIC HEAT

In the CEH superconducting phase, the entropy of the �nite-temperature system can be
expressed through the statistics of Bogoliubov quasi-particles,

S = −2
∑
k

(f+ log f+ + f− log f−)

= −2
∑
k

(f+ log f+ + (1− f+) log(1− f+)) (27)

where f± represent the Fermi-Dirac distributions of the quasi-particles as in Eq. 9. By
replacing the summation with an energy integration, we obtain for the simple s-wave case,

S = 2

∫ ∆+ω∗

∆−ω∗
dερ(ε)

(
ε/T

1 + eε/T
+ log(1 + e−ε/T )

)
(28)

where ρ(ε) is the quasi-particle density of states. This entropy formula seems to be the
same as the BCS one but only formally. The critical di�erences lie in ρ(ε) and the bounds
of integration ±ω∗. In CEH, ρ(ε) = ρF , whereas in BCS, the density exhibits a singular
behavior at the gap energy, re�ecting their di�erences in the pairing mechanism. More
signi�cantly, the integration bounds in CEH demand more careful handling, unlike BCS, due
to a drastically di�erent dispersion relation in Eq. 5. Such di�erences are most e�ectively
showcased in the following calculations of heat capacity.

A. s-wave speci�c heat

The speci�c heat for the CEH s-wave superconductors can be obtained from the entropy
in Eq. 28 as follows,

Csc = T
∂S

∂T
= 2TρF

∫ ∆+ω∗

∆−ω∗
dε

eε/T

(eε/T + 1)2

(( ε
T

)2

− ε

T

∂∆(T )

∂T

)
(29)

which can be simpli�ed as,

Csc(T ) = 2TρF (s2(T )− ∂∆(T )

∂T
s1(T )) (30)

where the two auxiliary functions are de�ned as

s1,2(T ) =

∫ (∆+ω∗)/T

(∆−ω∗)/T
dx

ex

(ex + 1)2
x1,2. (31)
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and the normal-state heat capacity CN are also presented.

The CEH s-wave speci�c heat for various λ values is shown in Fig. 6, where it exponen-
tially approaches zero in the limit of T → 0,

Csc(T )→ 2TρF

(
∆0 − ω∗

T

)2

e−(∆0−ω∗)/T (32)

and behaves similarly to the s-wave BCS superconductivity.
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To better understand the heat capacity jump at the critical temperature, we plot its peak
value at Tc as a function of the coupling parameter λ in Fig. 7. It is evident that the second
term contribution C∆̇ in Eq. 30 dominates the heat capacity at larger λ. The normal state
electronic heat capacity, within the same energy shell ±ω∗, can be written as,

CN(T ) = 2TρF

∫ ω∗/T

−ω∗/T
dx

ex

(ex + 1)2
x2 (33)

where, in the bounds of integration, ω∗/T = ∆0/(λT ) decreases rapidly as λ increases. The
behavior of CN(Tc), as shown in Fig. 7, resembles that of normal metals only at very low λ
values (still > 1), where ω∗/Tc remains large. It then drops rapidly to zero because ω∗/Tc
approaches 2/λ asymptotically as λ → ∞. Note that, unlike in the case of BCS, the �rst
term in Eq. 30 does not reduce to CN at Tc since the gap does not close at Tc or ∆(Tc) 6= 0.

Fig. 7 demonstrates that optimal superconductivity for s-wave pairing favors relatively
weaker correlations (λ . 1.5). The speci�c capacity jump at Tc from the superconducting
state to the normal state is more complicated in CEH. The normal state electronic heat
capacity in BCS maintains a constant CN/T , giving rise to a �xed jump ratio of about 1.43
for s-wave pairing. However, in CEH, this ratio varies depending on λ or the doping level
and may reach about 3 at λ ∼ 1.5 as CN decreases. More complicatedly, the ω∗ energy shell
may shrink so signi�cantly at larger λ or higher doping levels that other energy bands could
become accessible for electrons, causing an increase in CN and resulting in a smaller heat
capacity jump at Tc.

B. d-wave speci�c heat

The d-wave speci�c heat can be similarly obtained as follows,

Csc(T ) =
8TρF
π

(∫ π/4

0

dϕd2(ϕ, T )− ∂∆

∂T

∫ π/4

0

dϕd1(ϕ, T ) cos(2ϕ)

)
(34)

where the two integrand functions, similar to the s-wave case, are de�ned by

d1,2(ϕ, T ) =

∫ (∆ cos(2ϕ)+ω∗)/T

(∆ cos(2ϕ)−ω∗)/T
dx

ex

(ex + 1)2
x1,2 (35)

and the derivative of the gap can be obtained by di�erentiating the gap equation,

∂∆

∂T
=

∆

T
+
ω∗

T

4λg2(T )

π exp(−ω∗/T )− 8λ sinh(ω∗/T )g1(T )
(36)

where the two auxiliary functions are given by

g1(T ) =

∫ π/4

0

dϕ
e∆ cos(2ϕ)/T cos(2ϕ)

(e(∆ cos(2ϕ)+ω∗)/T + 1)(e∆ cos(2ϕ)/T + eω∗/T )

g2(T ) =

∫ π/4

0

dϕ
1− e2∆ cos(2ϕ)/T

(e(∆ cos(2ϕ)+ω∗)/T + 1)(e∆ cos(2ϕ)/T + eω∗/T )
. (37)

As presented in Fig. 8, the peak speci�c heat at T = Tc for d-wave superconductivity
follows the trend of s-wave, though large heat capacity jumps are extended to larger θ / λ
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or higher doping levels. Again, compared to a constant jump ratio of about 0.95 for BCS
d-wave, the normalized jump ratio in CEH varies (reaching ∼ 1.2 at λ = 2). The d-wave
ratio is generally lower than the s-wave one due to a slower decrease in CN as θ and λ
increase.

One notable �nding in CEH is its unique prediction of a non-zero linear term in the
d-wave heat capacity at the zero-temperature limit, as shown in Fig. 9. This non-zero o�set
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originates from the d2(ϕ, T ) term of Eq. 34 (see Appendix B),

γ(0) ≡ Csc(T )

T

∣∣∣∣
T→0

=
8π

3

(π
4
− θ
)
ρF 6= 0 (38)

which explains the �anomalous linear term� observed in the heat capacity of cuprates [22�24].
It only approaches zero at the extreme overdoping limit where θ = π/4 or λ→∞.

The next leading order at T → 0 in Fig. 9 is contributed from both terms (see Appendix
B),

Csc(T )

TρF
− γ(0)

ρF
'
(

8π

3θ
+

14π3

15 tan 2θ

)
1

sin2 2θ

(
T

∆0

)2

(39)

where the �rst part within the parentheses is calculated from the d1(ϕ, T ) term and the
second from the d2(ϕ, T ) term. This exactly explains the quadratic behavior observed in
the heat capacity curve of C/T at T � Tc in d-wave superconducting cuprates [25�27].

V. DISCUSSIONS AND COMPARISONS WITH EXPERIMENTAL DATA

The proposed CEH mechanism provides many unique predictions that are distinct from
the well known BCS results. These di�erences have been discussed above in detail and are
also summarized in Table I. In particular, CEH naturally explains the necessity of antiferro-
magnetism and strong coupling in non-BCS superconductivity. Most strikingly, many of its
predictions agree very well with existing experimental data on non-BCS superconductors,
particularly cuprates and FeSCs. Several such examples will be illustrated below.

CEH conducts current via relative motion and this may explain why �at bands are favored
in high-Tc superconductivity. The key feature in CEH is the ω∗ energy shell, which could
function as both the superconducting band for CEH pairs and an energy gap (closely related
to the widely-recognized pseudogap) for normal state electrons. This ω∗ band may be one of
the �at bands where center-of-mass motion is forbidden, making it ideal for the formation
of antiferromagnetism and CEH pairs. For easier comparison with data below, we assume a
simple linear relationship between ω∗ and the pseudogap temperature T ∗: ω∗ ∝ T ∗.

In the undoped parent compound, ω∗ typically exceeds the superconducting gap ∆, which
can disrupt the stability of CEH pairs with additional energy. Doping, however, plays a cru-
cial role in reducing ω∗, making it below the level of ∆, and thereby facilitating the onset
of superconductivity. Meanwhile, doping tends to increase the coupling parameter λ as the
density of states in the ω∗ band rises due to unitarity or conservation of the number of quan-
tum states in a compressed ω∗ band. High-pressure-induced superconductivity, investigated
in various materials, may introduce similar e�ects by compressing the ω∗ band with external
pressure.

It have been observed in various cuprate superconductors that the ratio ∆0/Tc exceeds
three. This ratio has been shown to undergo a dramatic increase with decreasing doping and
approach a limit of three near maximum doping (see Fig. 3 of Ref. [28] and the references
therein). This behavior aligns well with our d-wave prediction based on the new pairing
mechanism as shown in Fig. 2. To further demonstrate this, a direct comparison between
CEH predictions and experimental data for HgBa2CuO4+δ (Hg-1201) [29] is presented in Fig.
10. A good �t to the experimental data is achieved using a simple λ − p parametrization
discussed below. Furthermore, large ∆0/Tc ratios, consistent with CEH s-wave predictions,
have also been observed in iron-based superconductors [12].
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TABLE I. Summary of comparisons of some major results between BCS and CEH.

Model BCS CEH

material averse to magnetism desirous of antiferromagnetism

mechanism Cooper pairs chiral electron-hole pairs

SC criteria no constraint on Debye ωD ω∗ < ∆(T )

symmetry s-wave d-wave s-wave d-wave

coupling
weak coupling strong coupling

λ� 1 λ > 1 λ > π
2 , 0 < θ < π

4

E±k = ±
√
ξ2
k + |∆|2 ±

√
ξ2
k + |∆ cos 2ϕ|2 ξk ± |∆| ξk ± |∆ cos 2ϕ|

gap equation 1
λ =

∫ ωD

0 dξ tanh(E+/2T )
E+

1
λ =

∫ 2π
0 dϕ cos2 2ϕ

2π × Eq. 11 Eq. 12∫ ωD

0 dξ tanh(E+/2T )
E+

∆0 = 2ωDe
−1/λ 2.426ωDe

−2/λ λω∗ ω∗/ cos 2θ

Tc or T0 =
Tc = T0 Tc < T0

Tc = 1.134ωDe
−1/λ Tc = 1.134ωDe

−2/λ T0 = ω∗

2 tanh−1(1/λ)
T0 = ω∗

2 tanh−1(π/2λ)

∆0/Tc = 1.764 2.140 > 2 (Fig. 2) & 3.077 (Fig. 4)

∆(Tc) ∆(Tc) = 0, gap closes at Tc ∆(Tc) = ω∗ 6= 0, does not close at Tc
∆(T )
∆0

vs. T
Tc

dash line in Fig. 3 dash line in Fig. 5 Fig. 3 Fig. 5

speci�c heat Figs. 7-6 Figs. 8-9

C/T (T → 0)
exponentially linearly exponentially quadratically

approaches 0 approaches 0 approaches 0 to 8π
3 (π4 − θ)ρF 6= 0

jump at Tc 1.43 0.95 varies with λ varies with θ

 2

 3

 4

 5

 6

 7

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24  0.26  0.28  0.3

Δ
(0

)/
T

c

doping parameter p

Hg-1201 (Guyard2008)

CEH d-wave

BCS d-wave

FIG. 10. ∆0/Tc as a function of the doping level predicted by d-wave CEH is shown in good

agreement with the HgBa2CuO4+δ (Hg-1201) data [29]. A much lower constant BCS value of 2.140

is also shown for comparison.
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It has been observed in various studies (e.g., [29�31]) that the non-BCS superconducting
gap does not close at the critical temperature, exhibiting a behavior similar to that shown
in Fig. 5. In particular, in Fig. 3 of Ref. [29], the trend of the temperature dependence
closely resembles our results and also displays a similar deviation from the BCS prediction.

Another piece of clear and convincing evidence comes from the detailed analysis of d-wave
speci�c heat presented above, which is worth reiterating. CEH predicts a non-zero linear
term in heat capacity at T = 0 for d-wave superconductors, a phenomenon well observed in
many cuprates [22�24]. Furthermore, the predicted quadratic temperature dependence in
C/T near zero temperature is also in agreement with observations [25�27], in stark contrast
to the BCS linear dependence.

To make direct comparisons between CEH predictions and the wealth of data accumulated
over decades of high-Tc superconductivity studies, it is necessary to establish a concrete
relationship between the coupling parameter λ and the doping level parameter p. We will
start with some rough yet simple estimates to facilitate direct comparisons to the data. For
strongly correlated parent compounds like cuprates or FeSCs, it is reasonable to assume that
the initial coupling parameter λ ∼ 1. Doping then increases the density of charge carrier
states, e�ectively making λ larger. It has been observed that the carrier density increases
very rapidly at very low doping levels and then more gradually at higher doping levels [32].
At low doping levels or in the case of CEH s-wave superconductors, we can approximate this
with the following λ− p relation

λ = 1− 1

log(p/pm)
(40)

where pm is the maximum doping level corresponding to λ → ∞. For the example of an
s-wave FeSC discussed below, we choose to adopt pm = 1/3.

However, CEH d-wave superconductors require larger correlations, speci�cally, λ > π/2,
which means that superconductivity will not occur until the doping reaches a minimum level
p0. To describe d-wave superconductors, we can apply the following parametrization,

p = p0 + a sin2 θ. (41)

For the comparison shown in Fig. 10, parameters of p0 = 0.08 and a = 0.4 are adopted.
Using the λ − p and θ − p relations given in Eqs. 40-41, we can compare the phase

diagrams constructed from CEH to experimental data in two examples. The �rst example
involves NaFe1−xCoxAs with experimental data taken from Refs. [33, 34]. Fig. 11 shows
the results from CEH assuming that pm = 1/3 and ω∗ = 0.5T ∗. The superconducting phase
and Tc values derived from s-wave CEH agree well with the data. One possible issue is that
Tc appears moderately overestimated at extremely low doping levels (p . 0.01), which could
stem from the oversimpli�ed parametrization in Eq. 40. The λ−p relation may require more
nuanced treatment at extremely low doping levels where the density of states undergoes the
most signi�cant changes. Other parameters such as the superconducting gap ∆0 and the
gap closing temperature T0 predicted by s-wave CEH are also depicted in Fig. 11.

Another example is the phase diagram of La2−xSrxCuO4 (LSCO). In Fig. 12, a compar-
ison between the measured LSCO data [35, 36] and the d-wave predictions from CEH (p =
0.05+0.94 sin2 θ and ω∗ = 1.5T ∗) is presented. The superconducting phase, characterized by
the well-known dome shape for cuprates, is well reproduced and CEH shows good agreement
with both the data [35] and the universal Tc parametrization of Tc/T

max

c = 1−82.6(p−0.16)2

[37] using Tmax

c = 38K for LSCO.
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The same θ − p relation applied in LSCO, along with ω∗ = 2.3T ∗, also performs equally
well in predicting the phase diagram of YBCO, despite signi�cantly higher T ∗ and Tc val-
ues in YBCO. More systematic comparisons, especially to experimental data on ∆0 and
T0, will provide more compelling evidence for CEH. Further comparisons with other non-
BCS superconducting materials would o�er more valuable insights into understanding these
parametrization relations.
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VI. CONCLUSIONS AND OUTLOOK

Using the new chiral electron-hole pairing mechanism, we provide a more comprehensive
understanding of non-BCS superconductivity in a strongly correlated electron system. Our
new predictions are remarkably consistent with numerous puzzling properties observed in
cuprate and FeSC superconductors such as the unexpectedly large ∆0/Tc ratios, the absence
of gap closure at Tc, the presence of a non-zero γ(0) term and a quadratic trend in the heat
capacity ratio of C/T as T → 0 in cuprates, among others. Further measurements (e.g.,
on T0) and systematic comparisons with experimental data across diverse material types
will provide more stringent tests on the CEH mechanism. A better understanding of the
ω∗ band and the λ-doping level relationship may help identify even more promising high-Tc
superconducting materials in the near future.
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Appendix A: d-wave λ− θ relation

The d-wave gap equation (Eq. 12) can be rewritten as,

∆(T ) =
4λT

π

∫ π/4

0

dϕ log

(
e(∆ cos 2ϕ+ω∗)/T + 1

e∆ cos 2ϕ/T + eω∗/T

)
. (A1)

As T → 0, the integrand becomes ∆ cos 2ϕ/T if ∆ cos 2ϕ < ω∗ and ω∗/T otherwise. By
introducing a new parameter θ with

cos(2θ) = ω∗/∆0 (A2)

where the range of θ is limited to 0 < θ < π/4, we obtain in the zero-temperature limit

∆0 =
4λT

π

(∫ θ

0

dϕ
ω∗

T
+

∫ π/4

θ

dϕ
∆0 cos 2ϕ

T

)

=
4θ

π
λω∗ +

2(1− sin 2θ)

π
λ∆0 (A3)

which, by using Eq. A2, immediately leads to the d-wave λ− θ relation as given in Eq. 22.

Appendix B: d-wave speci�c heat at T → 0

The d-wave speci�c heat in Eq. 34 can be expressed as a sum of two terms: Csc = C2 +C1

where C2,1 involve the integration of the two functions d2,1(ϕ, T ), respectively. For both
terms, the integration with respect to ϕ can be divided into two parts: from 0 to θ′ and from
θ′ to π/4, where cos 2θ′ = ω∗/∆. For convenience, we introduce the following de�nitions,

y± ≡ (cos 2ϕ± cos 2θ′)∆/T (B1)

hn(x) ≡ ex

(ex + 1)2
xn. (B2)
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1. C1 contribution at T → 0

First, we work with the C1 term where we can simplify the second part of the integral as
follows,

∫ π/4

θ′
dϕ cos 2ϕ

∫ y+

y−

dxh1(x) =

∫ π/4

θ′
dϕ cos 2ϕ

(∫ y+

−y+
−
∫ −|y−|
−y+

)
dxh1(x)

=

∫ π/4

θ′
dϕ cos 2ϕ

∫ y+

|y−|
dxh1(x) (B3)

because h1(x) is an odd function. By taking the limit of y+ →∞ as T → 0 and the following
integration, ∫ ∞

y

dxh1(x) = log(1 + ey)− yey/(ey + 1) ≡ j(y), (B4)

where j(y) is odd as well, we can obtain the full integration as,

∫ π/4

0

dϕ cos 2ϕ

∫ y+

y−

dxh1(x) =

(∫ θ′

0

∫ y+

y−

+

∫ π/4

θ′

∫ y+

|y−|

)
dϕdx cos 2ϕh1(x)

=

(∫ θ′

0

+

∫ π/4

θ′

)
dϕ cos 2ϕj(|y−|). (B5)

By a change of variable from ϕ to y−, we obtain for the �rst part,∫ θ′

0

dϕ cos 2ϕj(y−) =

∫ (1−cos 2θ′)∆/T

0

dy−j(y−)
T

2 tan 2ϕ∆

=
π2T

12 tan 2θ′∆
(B6)

where the main contribution arises from the vicinity of ϕ ∼ θ′, allowing us to approximate
tan 2ϕ with tan 2θ′, and the upper limit of integration becomes ∞ as T → 0, allowing us to
use the identity

∫∞
0
dyj(y) = π2/6. Likewise, the second part of the integral yields the same

result.
From Eq. 25, we can obtain the derivative of the gap,

∂∆(T )

∂T
= − 2T

θ′ sin(2θ′) cos(2θ′)∆
. (B7)

Putting them all together, we can obtain the C1 contribution to the speci�c heat,

C1

Tρf
=

8π

3θ′ sin2 2θ′

(
T

∆

)2

(B8)

which gives the �rst term in Eq. 39 by replacing θ′ and ∆ with θ′ = θ and ∆ = ∆0 at T = 0.
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2. C2 contribution at T → 0

Similarly, contributions to the C2 term can be separated into three parts,∫ π/4

0

dϕ

∫ y+

y−

dxh2(x) =

(∫ θ′

0

∫ y+

y−

−
∫ π/4

θ′

∫ y+

|y−|
+

∫ π/4

θ′

∫ y+

−y+

)
dϕdxh2(x)

≡ C ′2a + C ′2b + C ′2c (B9)

because h2(x) is an even function.
We can easily integrate out the last part by taking y+ →∞ as T → 0 and

∫∞
−∞ dxh2(x) =

π2/3,

C ′2c =

∫ π/4

θ′
dϕ

∫ ∞
−∞

dxh2(x) =
π2

3
(
π

4
− θ′) (B10)

which gives the non-zero o�set in Eq. 38.
The �rst part of Eq. B9 can be worked out by changing the order of integration as follows,

C ′2a =

(∫ x1

0

∫ Tx/∆+cos 2θ′

cos 2θ′
+

∫ x2

x1

∫ 1

cos 2θ′
+

∫ x3

x2

∫ 1

Tx/∆−cos 2θ′

)
dxh2(x)

d cos 2ϕ

2 sin 2ϕ
(B11)

where x1 = (1 − cos 2θ′)∆/T , x2 = 2 cos 2θ′∆/T , or vice versa, and x3 = (1 + cos 2θ′)∆/T .
As T → 0, we have x1,2,3 →∞, rendering the last two terms in the above integral negligible.
The integration with respect to ϕ in the �rst term results in θ′ − cos−1(Tx/∆ + cos 2θ′)/2.
Using the following expansion,

cos−1(t+ cos 2θ) = 2θ − t

sin 2θ
− cos 2θt2

2 sin3 2θ
+O(t3), (B12)

we can simplify the integral as

C ′2a =
T

2 sin 2θ′∆

∫ ∞
0

dxh3(x) +
cos 2θ′

4 sin3 2θ

(
T

∆

)2 ∫ ∞
0

dxh4(x) +O(T 3). (B13)

The second part of Eq. B9 can be treated similarly as,

C ′2b = −

(∫ x4

0

dxh2(x)

∫ cos 2θ′

cos 2θ′−Tx/∆
+

∫ x2

x4

dxh2(x)

∫ cos 2θ′

Tx/∆−cos 2θ′

)
d cos 2ϕ

2 sin 2ϕ
(B14)

where x4 = cos 2θ′∆/T and again, only the �rst term contributes. Then it can be worked
out as,

C ′2b = − T

2 sin 2θ′∆

∫ ∞
0

dxh3(x) +
cos 2θ′

4 sin3 2θ

(
T

∆

)2 ∫ ∞
0

dxh4(x) +O(T 3). (B15)

The linear terms in Eqs. B13 and B15 exactly cancel each other out. By summing up the
two parts and using

∫∞
0
dxh4(x) = 7π4/30, we obtain the C2 contribution to the quadratic

temperature dependence, which gives the second term in Eq. 39.
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