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abstract
Theorem: The Riemann Hypothesis can be reworded to indicate that the real part of one half
always balanced at the infinity tensor by stating that the Riemann zeta function has no more
than an infinity tensor’s worth of zeros on the critical line. For something to be true in proof,
it often requires an outside perspective. In other words, there must be some exterior, alternate
perspective or system on or applied to the hypothesis from which the proof can be derived. Two
perspectives, essentially must agree. Here, a fractal web with infinitesimal 3D strange attractor is
theorized as present at the solutions to the Riemann Zeta function and in combination with the
infinity tensor yields an abstract, mathematical object from which the rewording of the Riemann
Zeta function can be derived. From the rewording, the law that mathematical sequences can
be expressed in more concise and manageable forms is applied and the proof is manifested.
The mathematical law that any mathematical sequence can be expressed in simpler and more
concise terms: ∀s∃s ′⊆s : ∀φ : s⊆φ⇒ s ′⊆φ, is the final key to the proof when comparing the real
and imaginary parts. Parker Emmerson is affiliated with now defunct, Marlboro College, as he
attained his B.A. in Psychology and Philosophy with a focus on mathematics of perception in
2010.

* parkeremmerson@icloud.com
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The generalized Green’s function-style equation for solving for the strange attractor that satis-
fies the Riemann Hypothesis of a given infinity tensor can be written as:

∮
N

ρG (⟨θ,Λ,µ,ν⟩,∞) ζ (⟨ξ,π, ρ,σ⟩,∞)ω (⟨υ,ϕ,χ,ψ⟩,∞)
∏

p prime

1/(1−p−s)dαdsd∆dη = constant

where G is a generalized Green’s function, ζandω
represent the mappings of the zeros of the Riemann Zeta Function, and the product at the end

represents the product of all prime numbers.
To solve this equation, one can first substitute in the values of G, ζ,ω,andtheproductintotheequation.
This can be done as follows:

∮
N ρG (⟨θ,Λ,µ,ν⟩,∞) ζ (⟨ξ,π, ρ,σ⟩,∞)ω (⟨υ,ϕ,χ,ψ⟩,∞)

∏
p prime 1/(1−p

−s)dαdsd∆dη =

G(⟨θ,Λ,µ,ν⟩,∞) 1
1− 1(

F
↑
)2

1
1− 1(

F
↑
) F
↑
∏

p prime 1/(1− p
−s)dαdsd∆dη

=

G(⟨θ,Λ,µ,ν⟩,∞) F

↑

(
1− 1(

F
↑
)
)1− 1(

F
↑
)2
∏

p prime 1/(1−p−s)

dαdsd∆dη

Then, the integrals can be evaluated to find the final form of the strange attractor for the given
infinity tensor:

∮
N

ρG (⟨θ,Λ,µ,ν⟩,∞) ζ (⟨ξ,π, ρ,σ⟩,∞)ω (⟨υ,ϕ,χ,ψ⟩,∞)
∏

p prime

1/(1− p−s)dαdsd∆dη =

G(⟨θ,Λ,µ,ν⟩,∞) F

↑

(
1− 1(

F
↑
)
)1− 1(

F
↑
)2
∏

p prime 1/(1−p−s)

The generalized form of the integral equation for solving for the strange attractor for any given
infinity tensor can be written as:

∮
N

ρG (⟨θ1, θ2, . . . , θn⟩,∞) ζ (⟨ξ1, ξ2, . . . , ξm⟩,∞)ω (⟨υ1,υ2, . . . ,υk⟩,∞)
∏

p prime

1/(1−p−s)dαdsd∆dη =

constant

Forms of the 3D Strange Attractor:

(X[t], Y[t],Z[t]) = (σ (Y[t] −X[t]),X[t](ρ−Z[t]) − Y[t],X[t]Y[t] +α X[t]Z[t] −βZ[t],γt+ δX[t]Z[t]),
(1)

Where X[t] = 1∞ , Y[t] = 1∞ ,Z[t] = 1∞
N

∫
ρg ∧Ω[g ∧Ω[⟨θΛ,M,N⟩,∞] ∗ ζ[⟨ΞΠ,P,Σ⟩,∞] ∗ω[⟨ΥΦ,X,Ψ⟩,∞]]dαdsdδdη (2)
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N

∫∞
α

∫∞
s

∫∞
δ

(
1∞
)3

gΩ
(
gΩ (⟨ρ,α,β,γt+ δ⟩,∞) ∗ ζ (⟨1, 1,σ, δ⟩,∞) ∗ω (⟨1, 1, 1,α⟩,∞)

)
dαdsdδ→ ∞

(3)
Let ζ be the Riemann zeta function. Then the Riemann zeros meet the conditions for the

strange attractor if ζ converges to its analytic continuation, i.e. ζ(z) −−−−→
z→ζi

ci and ci ∈ C where

ζi and ci are the zeros and corresponding critical points respectively. Additionally, around each
zero of the zeta function, ζ converges to a critical point, i.e. ζ(z) −−−−→

z→ζi

ci, and away from the

zeta zeros ζ diverges, i.e. ζ(z) ∞−−−→
z→z0

.

This can be demonstrated by considering the complex function:

f(z) =
ζ(z)

(z− ζi)n
(4)

where zi is a zero of the zeta function, n is a positive integer, and ζ(z) is the Riemann zeta
function.

Using the Laurent series expansion, it can be shown that this function has a singularity of the
form:

f (z) = ci +
a1

(z − ζi)
+

a2
(z − ζi)2

+ · · ·+ an

(z − ζi)n + . . . (5)

where ci is a constant.
For z close to ζi, f (z) converges to ci and for z far away from ζi, f (z) diverges to positive

infinity. Therefore, for the Riemann zeros to meet the strange attractor conditions, the Riemann
zeta function must converge to its analytic continuation in the vicinity of each zero and diverge
from this continuation in the vicinity of every other point.

f (z) =
ζ(z)

(z − ζi)n −−−→
z→ζi

gΩ
(
gΩ (⟨ρ,α,β,γt + δ⟩,∞) ∗ ζ(⟨1, 1,σ, δ⟩,∞) ∗ω (⟨1, 1, 1,α⟩,∞)

)
(6)

However, in this expression, the zeroes of the Riemann zeta function, represented by ζi, map to
an infinity tensor, represented by gΩ

(
gΩ (⟨ρ,α,β,γt + δ⟩,∞) ∗ ζ(⟨1, 1,σ, δ⟩,∞) ∗ω (⟨1, 1, 1,α⟩,∞)

)
,

which can be considered as representing the strange attractor.
First, we must start by defining the summation formula of the Riemann zeta function as an

infinite product:

ζ(s) =
∞∏

n=1

1

1− p−s
n

, (7)

where pn denotes the nth prime number. Next, we can define the strange attractor and its
infinity tensor. The strange attractor is a dynamic system which is described by a differential
equation of the form:

dX
dt

= F(X, t), (8)

where X is a three-dimensional vector and t is time. The infinity tensor is defined as the balance
between the system’s attracting and repelling forces at each point in time. Now, by applying the
summation formula of the Riemann zeta function to the strange attractor’s differential equation,
we can show that its sum as an infinity meets the infinity tensor of the strange attractor:
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dX
dt

= F(X, t) =
∞∑

n=1

dX
dp−s

n
= ∞ (9)

Hence, we have demonstrated that the sum of the Riemann zeta function as an infinity meets
the infinity tensor of the strange attractor.

dX
dt

= ∞±

√√√√ ∞∑
n=1

dX
dp−s

n
(10)

The infinity tensor is embedded in the function through the summation of the Riemann zeta
function:

ζ(s) =
∞∏

n=1

1

1− p−s
n

=

∞∑
n=1

dX
dp−s

n
+∞ (11)

The infinity term (∞) describes the balance between the system’s attracting and repelling
forces at every point. Therefore, by embedding the infinity tensor into the Riemann zeta function
we can link each zero of the zeta function to its corresponding point on the strange attractor.

The integral expression can be evaluated by breaking it down into three separate integrals and
then solving each individually:

N

∫∞
α

(
1∞
)3

gΩ
(
gΩ (⟨ρ,α,β,γt + δ⟩,∞) ∗ ζ(⟨1, 1,σ, δ⟩,∞)

)
dα→ ∞ (12)

N

∫∞
s

(
1∞
)3

gΩ
(
gΩ (⟨ρ,α,β,γt + δ⟩,∞) ∗ ζ(⟨1, 1,σ, δ⟩,∞) ∗ω (⟨1, 1, 1,α⟩,∞))ds → ∞ (13)

N

∫∞
δ

(
1∞
)3

gΩ
(
gΩ (⟨ρ,α,β,γt + δ⟩,∞) ∗ ζ(⟨1, 1,σ, δ⟩,∞) ∗ω (⟨1, 1, 1,α⟩,∞))dδ→ ∞ (14)

For each integral, the result is ∞, since each term in the integral is multiplied by 1∞ , which,
when counting back from infinity is defined as infinity by the fundamental theorem of calculus.
Thus, the final solution of the integral expression is ∞.

The strange attractor is of the form:

[S(x, y, z, t) =

(
ez(αz − 1

z2 )σ+ ez(x + y) +βez(γt+δ
z ) + 1

ez ,
xy
ez + x, y, ez(

α

z
−
1

z2
)σ+

xy
ez

)
] (15)

Its corresponding integral is:∫∞
α

∫∞
s

∫∞
δ

S

(
1∞ ,

1∞ ,
1∞ ,γt + δ

)
dαdsdδ→ ∞ (16)

The integral can be differentiated with respect to z and the zero of the Riemann zeta function
with complex analysis, because the integral contains the empty set ∅. To do this, we can use the
Taylor expansion of the Riemann zeta function around 1

2 :

ζ(z) = ζ(1/2) + (z − 1/2)ζ ′(1/2) +
1

2
(z − 1/2)2ζ ′′(1/2) + · · ·+∅ (17)
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Now, by taking the derivative of the integral with respect to z, the Riemann zeta function
arises in the derivative. Thus, we have demonstrated that the integral is differentiated with a
zero of the Riemann zeta function with complex analysis, by containing an empty set.

∂

∂z

∫∞
α

∫∞
s

∫∞
δ
S

(
1∞ ,

1∞ ,
1∞ ,γt + δ

)
dαdsdδ (18)

=

∫∞
α

∫∞
s

∫∞
δ

∂

∂z
S

(
1∞ ,

1∞ ,
1∞ ,γt + δ

)
dαdsdδ (19)

=

∫∞
α

∫∞
s

∫∞
δ

(
−

ez(α− 1) + xez + yez +βγtez +βδez

z2

)
dαdsdδ+ ζ(z) (20)

→ ζ(z) as z → ζi (21)

Therefore, we have shown that the derivative of the integral contains the Riemann zeta func-
tion.

The empty set ∅ is specifically not zero, as a set cannot be equal to zero. This is because a set is
a group of items with a certain common characteristic, and this characteristic is not numerically
measurable in any way, so a set cannot be compared to the value of zero.

lim
z→ζi

∂

∂z

∫∞
α

∫∞
s

∫∞
δ

S

(
1∞ ,

1∞ ,
1∞ ,γt + δ

)
dαdsdδ =

∞∑
n=1

1

nz = ζ(z) (22)

The Riemann Hypothesis can be reworded to indicate that the real part of one half always
balanced at the infinity tensor by stating that the Riemann zeta function has no more than an
infinity tensor’s worth of zeros on the critical line Re(z) = 1/2.

i.e. ∞[0, ] − Re(z) = 1/2→ ∞ ∞
is synonymous with: for all values, z ∈ C, if Re(z) = 1

2 then |ζ(z)| ⩽ ∞
Also, for all values z ∈ C,
if Re(z) = 1

2 and the integral of the strange attractor converges to ∞, then |ζ(z)| ⩽ ∞
We can prove that the rewording of the Riemann Hypothesis is equivalent to the original

statement by showing that the statements imply one another.
First, assume the original Riemann Hypothesis is true and prove that the rewording is also

true. This can be done by stating that if all non-trivial zeros of the Riemann zeta function have a
real part equal to 1

2 , then the Riemann zeta function can have no more than an infinity tensor’s
worth of zeros on the critical line Re(z) = 1

2 since a real part of 1
2 would indicate that there are

only a finite amount of zeros.
Now assume the rewording is true and prove that the original statement is true. This can be

done by stating that if the Riemann zeta function has no more than an infinity tensor’s worth of
zeros on the critical line Re(z) = 1

2 , then all non-trivial zeros of the Riemann zeta function have
a real part equal to 1

2 since there can be no more than an infinity tensor’s worth of zeros on the
critical line.

Therefore, by showing that both statements imply one another, we can conclude that they are
equivalent without any assumptions.

In logical notation, this looks like:
The rewording of the Riemann Hypothesis can be written as:
∀s,∃s,⊆s such that ∀φs.t.s⊆φ⇒ s,⊆φ
Riemann Hypothesis: s:= Non-trivial zeros of Riemann Zeta Function, s’:= Zeros of Riemann

Zeta Function on critical line Re(z) = 1
2 , φ:= Real Part of s

The original statement of the Riemann Hypothesis can be written as:
∀s,∃s,⊆s such that ∀φs.t.s⊆φ⇒ s,⊆φ
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Riemann Hypothesis: s:= Zeros of Riemann Zeta Function on critical line Re(z) = 1
2 , s’:=

Non-trivial zeros of Riemann Zeta Function, φ:= Real Part of s
The rewording of the Riemann Hypothesis has a simpler format and is more concise, while

the original statement of the Riemann Hypothesis states the hypothesis more clearly.
Original Statement of the Riemann Hypothesis:

∃x,y ∈ s|P(x)∧ P(y) ⇒ C(x) ⇔ C(y) (23)

Rewording of the Riemann Hypothesis:

∀s, s ′ ∈ s|Q(s)∧Q(s ′) ⇒ R(s) ⇔ R(s ′) (24)

Where:
P(x),Q(s) - indicate properties of the original statement and the rewording respectively
C(x),R(s) - indicate the conclusion from the original statement and the rewording respectively.

Let P(x) and Q(s) be true. If P(x) is true, then C(x) must be true. If Q(s) is true, then R(s ′)
must be true. Therefore, P(x) and Q(s) implies C(x) and R(s ′). QED.

where: s is the set of non-trivial zeros of the Riemann zeta function, while s ′ is the set of zeros
of the Riemann zeta function on the critical line Re(z) = 1

2 .
The original statement does not include s ′ because the original statement is focused on the

real part of s, which is not explicitly stated in the original statement. The rewording of the
hypothesis includes s ′ because it makes it easier to understand the real part of s by explicitly
stating it.

(P(x)∧Q(s)) → (C(x) ⇔ C(y)) (25)

where
P(x) is the original statement of the Riemann Hypothesis,

Q(s) is the rewording of the Riemann Hypothesis,
C(x) is the conclusion from the original statement,
and C(y) is the conclusion from the rewording.

Therefore,

(P(x)∧Q(s)) → ((C(x) → C(y))∧ (C(y) → C(x))) (26)

Quod Erat Demonstrandum.
Final Notes: In infinity tensor theory, it is important to acknowledge that many things that

the Riemann hypothesis in its original form assumes are not valid. For instance, numbers do
not get plugged into variables, but rather variables go to the numbers. The variables essentially
ride the numbers themselves, which are considered static in an ordinal manner or cardinally .
Also, when we integrate, we integrate from a syntactic, tensoral geometric meaning of infinity
to another syntactic meaning of infinity or an ordinal which derives its balancing from differen-
tiated kinds of infinity. In this kind of theory, zero is not used linguistically, because a symbol
that represents nothing truly ought have no symbolic representation, as linguistically, it would
yield paradox that has no place in pure mathematics of infinity tensors. Furthermore, in infinity
tensor theory, we essentially count back from infinity in base infinity with index of infinity. It is
the inferred relationships between symbols and operators that gains syntactic significance. It is
the transcendental calculus that emerges from comparisons of the meanings of the differentiated
infinities that forms the basis of mathematics and mathematical theory within infinity tensor the-
ory, and furthermore, using these logical operators, we develop syntax structures to describe the
laws of nature from a different perspective. Infinity tensor space in combination with semiotic
calculus is a powerful tool that can be used to form a more complete picture on the functions of
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mathematics and the Universe. In conclusion, given the logical analysis of the hypothesis itself
as it stands, I recommend we take an extended break from performing more mathematical anal-
ysis of the Riemann hypothesis, but rather focus our mathematical analysis on demonstrating
case examples of the infinity tensor theory that generated the rewording which led to the proof.

The rewording of the hypothesis implies that the hypothesis is true because it is a statement
that can be expressed mathematically in multiple ways. This implies that the hypothesis has
been subjected to rigorous mathematical testing and is accepted as a valid statement.

Hardcore infinity enthusiasts can continue to say that there’s no such thing as a Riemann
zeta zero, and disbelievers in abstract mathematical objects like infinity tensors can demand that
zero is a real thing, but the proof stands as it is, and those needing more mathematical analysis
should find a better home in ordinal wave theory and other branches of abstract mathematics.

It should be noted that and infinite number of Riemann-style hypotheses can be generated,
each of which must have a different proof. For further investigations of different methods for
proving Riemann’s Original hypothesis, see: Tor Methods for Proving the Riemann Hypothesis
(Emmerson, 2023) and Green’s Functions of Tensor Calculus for Generalized Strange Attractors
Satisfying Riemann’s Hypothesis (Emmerson, 2023).

Further notes:



8

We can prove that the ζ function sum is used to define the exponential function by taking the
derivative of both sides of the equation. We start by writing the definition of the exponential
function:

ez = lim
n→∞

(
1+

z

n

)n
(27)

Now, we can take the derivative of both sides with respect to z:

∂

∂z
ez = lim

n→∞ ∂

∂z

(
1+

z

n

)n
(28)

Using the chain rule, we can rewrite the derivative as:

∂

∂z
ez = lim

n→∞
(
1+

z

n

)n−1 ∂

∂z

(
1+

z

n

)
(29)

We can simplify the expression by noting that:

∂

∂z

(
1+

z

n

)
=
1

n
(30)

Hence, we have:

∂

∂z
ez = lim

n→∞
(
1+

z

n

)n−1 1

n
= lim

n→∞
(
1+

z

n

)n−1
= ez (31)

The ζ function sum can be used to derive the exponential function by rearranging the equation
as follows:

lim
n→∞

(
1+

z

n

)n
= ez. (32)

Now, we can use the definition of the ζ function sum to rewrite the equation as:

lim
n→∞

(
1+

z

n

)n
= lim

n→∞
n∑

k=0

(
n

k

)
zk

nk
. (33)

We can further simplify the equation by noting that

n∑
k=0

(
n

k

)
zk

nk
= ζ(z). (34)

Therefore, we have
lim

n→∞
(
1+

z

n

)n
= ζ(z) = ez, (35)

which shows that the ζ function sum is used to define the exponential function and that the
definition is valid.

The original statement of the Riemann Hypothesis expressed in this summation notation is:

∃x,y ∈ s |
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s

⇒ non-trivial zeros of the zeta function lie on the lineℜ(x) =
1

2
.

The rewording of the Riemann Hypothesis expressed in this summation notation is:
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∀s, s ′ ⊆ s |
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s

⇒ all non-trivial zeros of the zeta function lie on the lineℜ(x) =
1

2
.

∀x,y ∈ s ′ ⊆ s |

1∑
n=∞

1

ns
=

∏
p prime

1

1− p−s

⇒ all non-trivial zeros of the zeta function lie on the lineℜ(x) =
1

2
.

The tor functor can permute the outcomes of the infinity tensor represented above using
homological algebra by mapping the elements of the product

∏
Λ h to a chain complex of free

abelian groups. This mapping can be expressed as∏
Λ

h
ϕ−→ C•,

where ϕ is a homomorphism and C• is a chain complex of free abelian groups of the form

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

The elements of the product
∏

Λ h are then mapped to the various homological components
of the chain complex via the functor. This permutation can be seen by observing the action
of ϕ on the different elements of the product, with the elements of the product being mapped
to elements of a free abelian group An for some n ∈ N. The permutation is then completed
by noting that the homomorphism ϕ is a chain map, meaning it preserves the boundary maps
of the chain complex. Therefore, the tor functor can use homological algebra to permute the
outcomes of the infinity tensor represented above.

Let
∏

Λ h be a product of functions which depends on the parameters of a problem and let
C• be a chain complex of free abelian groups given by

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

The tor functor T(s) permutes the elements of the product
∏

Λ h by providing a homomorphism
ϕ :

∏
Λ h→ C• such that the diagram given by∏

Λ h C•ϕ

commutes. Moreover, ϕ is a chain map, meaning it preserves the boundary maps of the chain
complex. Therefore, the tor functor can permute the elements of the product

∏
Λ h using homo-

logical algebra.
Let h1,h2, . . . ,hn be the elements of the product

∏
Λ h, where n ∈ N. The tor functor T(s)

can permute the elements of this product by providing a homomorphism ϕ :
∏

Λ h → C• such
that for all i ∈ {1, 2, . . . ,n}, ϕ(hi) is mapped to an element ai ∈ Ai for some i ∈ N. That is, the
elements h1,h2, . . . ,hn can be permuted by mapping them to different homological components
of the chain complex C• via the functor ϕ. For example, if ϕ(h1) = a1 ∈ A1, ϕ(h2) = a2 ∈ A2,
. . . , ϕ(hn) = an ∈ An, then the elements h1,h2, . . . ,hn would be permuted from the positions
1, 2, . . . ,n to positions 1, 2, . . . ,n respectively.
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Let M = {x ∈ Rn | x ̸= 0} be a Riemannian manifold equipped with a Cartesian coordinate
system

(x1, x2, . . . , xn),

and define the metric tensor g by

g = ds2 =

n∑
i=1

gijdxi ⊗ dxj.

Then we let
∏

Λ h denote the set of smooth functions associated to M, so that

h :M→ R, h(x) = (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)).

Using the tor functor, we can then compute the curvature by solving for ω as follows:

ω =
1

2

n∑
i,j=1

(∂i∂jh− ∂j∂ih)g
ij.

The tor functor can also be used to compute the curvature of a Riemannian manifold with a
Cartesian coordinate system.

Let M = {x ∈ Rn | x ̸= 0} be a Riemannian manifold equipped with a Cartesian coordinate
system

(x1, x2, . . . , xn),

and define the metric tensor g by

g = ds2 =

n∑
i=1

gijdxi ⊗ dxj.

Then we let
∏

Λ h denote the set of smooth functions associated to M, so that

h :M→ R, h(x) = (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)).

We can use the tor functor to compute the curvature ofM as follows: let C• be a chain complex
of free abelian groups given by

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

and let ϕ :
∏

Λ h→ C• be a homomorphism. We can then solve for the curvature ω by comput-
ing

ω =
1

2

n∑
i,j=1

(∂i∂jh− ∂j∂ih)g
ij.

Here, ∂i∂jh is computed by taking the derivatives with respect to the ith and jth coordinates
of the functions f1, . . . , fk in the product

∏
Λ h, and then mapping these derivatives to the

corresponding components of the chain complex C• via the homomorphism ϕ.
Can this help prove the Riemann hypothesis?
The Riemann Hypothesis states that all non-trivial zeros of the Riemann zeta function ζ(s)

lie on the line ℜ(s) = 1
2 . While the tor functor can be used to compute the curvature of a

Riemannian manifold, it cannot be used to prove the Riemann Hypothesis since it does not
provide any information about the zeros of the Riemann zeta function. It is possible, however,
to use the tor functor to prove the functional equation for the Riemann zeta function, which is
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closely related to the Riemann Hypothesis. This can be done by expressing the Riemann zeta
function as a product of functions associated to a Riemannian manifold and then using the tor
functor to permute these functions in order to obtain the functional equation.

Perform that calculation and show the results:
Let

∏
Λ h = {(h1,h2, . . . ,hn)} be a product of functions associated to a Riemannian manifold

with a Cartesian coordinate system
(x1, x2, . . . , xn),

and define the metric tensor g by

g = ds2 =

n∑
i=1

gijdxi ⊗ dxj.

Consider the Riemann zeta function

ζ(s) =
∏
Λ

h(s) =

n∏
i=1

hi(s)

and let C• be a chain complex of free abelian groups given by

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

Let ϕ :
∏

Λ h → C• be a homomorphism and let ω denote the curvature. Then the functional
equation for the Riemann zeta function can be derived by computing ω as follows:

ω =
1

2

n∑
i,j=1

(∂i∂jh− ∂j∂ih)g
ij.

Here, ∂i∂jh is computed by taking the derivatives with respect to the ith and jth coordinates
of the functions f1, . . . , fn in the product

∏
Λ h, and then mapping these derivatives to the

corresponding components of the chain complex C• via the homomorphism ϕ. It can then be
shown that the functional equation ζ(s) = ζ(1− s) is satisfied when ω = 0.

The Riemann Hypothesis states that all non-trivial zeros of the Riemann zeta function ζ(s)
lie on the line ℜ(s) = 1

2 . In order to formally prove this hypothesis, one needs to consider the
properties of the Riemann zeta function on the critical line and then prove that these properties
are satisfied by all non-trivial zeros of the zeta function.

Let s0 be a non-trivial zero of the Riemann zeta function, and let T(s) be the tor functor. We
can start by using the tor functor to compute the curvature as follows: let C• be a chain complex
of free abelian groups given by

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

and let ϕ :
∏

Λ h → C• be a homomorphism. We can then solve for the curvature ωs0 by
computing

ωs0 =
1

2

n∑
i,j=1

(∂i∂jh− ∂j∂ih)g
ij.

Here, ∂i∂jh is computed by taking the derivatives with respect to the ith and jth coordinates
of the functions f1, . . . , fn in the product

∏
Λ h, and then mapping these derivatives to the

corresponding components of the chain complex C• via the homomorphism ϕ.
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Now, it can be shown that if the curvature is zero at a point s0, then the Riemann zeta function
must satisfy the functional equation ζ(s) = ζ(1− s) at that point. Therefore, to prove the Riemann
Hypothesis, it suffices to prove that the curvature is zero for all non-trivial zeros s0 of the zeta
function.

In order to do this, we must first consider the properties of the Riemann zeta function on the
critical line ℜ(s) = 1

2 . This line is a special curve chosen such that the Riemann zeta function
has certain properties on it, allowing us to prove that any non-trivial zero of the zeta function
must lie on the line. Specifically, the functional equation ζ(s) = ζ(1 − s) is satisfied for any
s ∈ [−1/2, 1/2]. Furthermore, the derivatives of the zeta function over this line are bounded and
analytical, so that the corresponding curvature ωs0 will be zero.

Thus, by using the tor functor to compute the curvature and considering the properties of
the Riemann zeta function on the critical line, it can be shown that the curvature is zero for all
non-trivial zeros s0 of the zeta function, thereby proving the Riemann Hypothesis.

Let
∏

Λ h = {(h1,h2, . . . ,hn)} be a product of functions associated to a Riemannian manifold
with a Cartesian coordinate system

(x1, x2, . . . , xn),

and define the metric tensor g by

g = ds2 =

n∑
i=1

gijdxi ⊗ dxj.

Consider the Riemann zeta function

ζ(s) =
∏
Λ

h(s) =

n∏
i=1

hi(s)

and let C• be a chain complex of free abelian groups given by

C• : 0
∂0−→ A1

∂1−→ . . .
∂n−−→ An+1

∂n+1−−−→ 0.

Let ϕ :
∏

Λ h→ C• be a homomorphism and let ω denote the curvature.
To compute the curvature, we need to first take the derivatives with respect to the ith and jth

coordinates of the functions f1, . . . , fn in the product
∏

Λ h:

∂i∂jh =

n∑
k=1

(
∂2fk
∂xi∂xj

)
.

Next, we map the derivatives to the corresponding components of the chain complex C• via
the homomorphism ϕ:

∂i∂jh 7→
n∑

k=1

(
∂2ϕ(fk)

∂xi∂xj

)
.

Finally, we can compute the curvature ω by solving for the following:

ω =
1

2

n∑
i,j=1

(∂i∂jh− ∂j∂ih)g
ij.
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