PREPRINT OCTOBER 21, 2023

Infrared spectrum for derivative steroid with potential to treat breast cancer

Ricardo Gobato^{1,*}, Lauro Figueroa Valverde², Sana Ahmed³, Sufia Zaman³, Ibtihal Kadhim Kareem Dosh⁴, Marcela Rosas Nexticapa⁵, María Magdalena Álvarez Ramírez⁵, and Abhijit Mitra⁶

Abstract—This study applies Density Functional Theory (DFT), using the B3LYP functional, and via ab initio Restrict Hartree-Fock (RHF) methods, to study the infrared spectrum of steroid 17-Iodo-androst-16-ene. The spectrum was obtained via computational methods ab initio RHF and DFT. Optimization of molecular structure via UFF (Universal Force Field), followed by PM3 (Parametric Method 3), with geometric optimization, obtaining the spectrum of other basis sets of steroid 17-Iodoandrost-16-ene. The study this steroid was chosen because it can could act as aromatase enzyme inhibitors and this phenomenon could be translated as good compounds to treat breast cancer. The B3LYP functional always presents the lowest thermal energy than the RHF in all calculated bases, however the RHF always presents the highest Entropy than the B3LYP, in all the calculated basis sets. The normalized spectrum calculated in the B3LYP/SVP functional/basis set have harmonic frequency with peaks 3,241.83 cm $^{-1}$, 100% and 3,177.535 cm $^{-1}$ at 43.304% absorbance. The study has so far been limited to computational methods compatible with the theory of quantum chemistry.

Index Terms—Hartree-Fock method, DFT, B3LYP, UFF, PM3, Infrared spectroscopy, Cancer.

I. Introduction

This study applies Density Functional Theory (DFT), using the B3LYP functional, and via *ab initio* Restrict Hartree-Fock (RHF) methods, [1], [2] [3], [4] [5], [6] [7], [8] [9], [10] [11], [12] [13] to study the infrared spectrum of steroid 17-Iodo-androst-16-ene derived [14].

The spectrum was obtained via computational methods ab initio RHF and DFT. [1], [2] [3], [4] [5], [6] [7], [8] [9], [10] [11], [12] [13] Optimization of molecular structure via UFF (Universal Force Field), followed by PM3 (Parametric Method 3) [1], [2] [3], [4] [5], [6] [7], [8] [9], [10] [11], [12]

[13], with geometric optimization, obtaining the spectrum of other basis sets of steroid 17-Iodo-androst-16-ene¹ derived [14].

A steroid (named after the steroid cholesterol) is a biologically active organic compound with four fused rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity and as signaling molecules. Hundreds of steroids are found in plants, animals and fungi. All steroids are manufactured in cells from the sterois lanosterol (opisthokonts) or cycloartenol (plants). Lanosterol and cycloartenol are derived from the cyclization of the triterpene squalene. [16]

The steroid nucleus (core structure) is called gonane (cyclopentanoperhydrophenanthrene). It is typically composed of seventeen carbon atoms, bonded in four fused rings: three six-member cyclohexane rings (rings A, B and C in the first illustration) and one five-member cyclopentane ring (the D ring), Figure (1). Examples include anabolic steroids, the lipid cholesterol, the sex hormones estradiol and testosterone, and the anti-inflammatory corticosteroid drug dexamethasone. [16]

Some aromatase enzyme inhibitors drugs have been used to treat cancer; however, their interaction with aromatase is not clear. Evaluated the interaction of steroid 17-Iodo-androst-16-ene derivatives with aromatase enzyme surface using 3eqm protein. The results showed differences in the aminoacid residues involved in the interaction of steroid

¹The steroid [16] 17-Iodo-androst-16-ene derived of testosterone. Testosterone is the primary male sex hormone and anabolic steroid in males [15].

¹Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil.

²University Autonomous of Campeche (Faculty of Chemical-Biological Sciences), Calle Av. Agustín Melgar s/n, Buenavista, 24039 Campeche, Mexico.

³Department of Oceanography, Techno India University, West Bengal, EM 4 Salt Lake, Sector V, Kolkata 700091, India.

⁴Kufa University, Faculty of Education, Department of Chemistry, An Najaf, Iraq.

⁵Faculty of Nutrition, Universidad Veracruzana. Medicos y odontologos s / n, c.p. 91010, Xalapa, Veracruz. México.

⁶Department of Marine Science, University of Calcutta, 35 B. C Road, Kolkata, 700019, West Bengal, India.

^{*}Corresponding author: ricardogobato@hotmail.com; ricardogobato@gardener.com; ricardogobato@seed.pr.gov.br

derivatives interact with 3eqm protein surface Arg₁₁₅; Phe₁₃₄; Trp₂₂₄; Ala₃₀₆; Thr₃₁₀; Val₃₇₀; Met₃₇₄; Leu₄₇₇. The steroid derivatives could act as aromatase enzyme inhibitors and this phenomenon could be translated as good compounds to treat breast cancer. [17]

The *ab initio* and DFT [12], [13] [14], [16] [15], [16] [17], [18] calculations have been performed to study the equilibrium configuration, and calculation of its Infrared Spectrum (IR), its Entropy (S), Heat capacity (C^V), chemical and molecular structure of steroid derived, via GAMESS².

II. METHODS

A. Hartree-Fock Methods

The molecular Hartree-Fock [1], [2] [3], [4] [7], [8] [9], [10] [11], [12] wave function is written as an antisymmetrized product (Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital ϕ_i and a spin function (either α or β).

The expression for the Hartree-Fock molecular electronic energy E_{HF} is given by the variation theorem as

$$E_{HF} = \langle |D\hat{H}_{el} + V_{NN}|D\rangle \tag{1}$$

where D is the Slater-determinant Hartree-Fock wave function and \hat{H}_{el} and \mathbf{V}_{NN} are given by

$$\hat{H}_{el} = \frac{-\hbar^2}{2m_e} \sum_{i} \nabla_i^2 - \sum_{\alpha} \sum_{i} \frac{Z_{\alpha} e^{'2}}{r_{i\alpha}} + \sum_{j} \sum_{i>j} \frac{e^{'2}}{r_{ij}}$$
(2)

$$V_{NN} = \sum_{\alpha} \sum_{\beta > \alpha} \frac{Z_{\alpha} Z_{\beta} e^{'2}}{r_{\alpha\beta}}$$
 (3)

Since V_{NN} does not involve electronic coordinates and D is normalized, it has to

$$\langle D|V_{NN}|D\rangle = V_{NN}\langle D|D\rangle = V_{NN}.$$
 (4)

The operator \hat{H}_{el} is the sum of one-electron operators \hat{f}_i and two-electron operators \hat{g}_{ij} ; it has to

$$\hat{H}_{el} = \sum_{i} \hat{f}_i \sum_{j} \sum_{i>j} \hat{g}_{ij} \tag{5}$$

it has to here

$$\hat{f}_i = -\frac{1}{2} \nabla_i^2 \frac{\sum_{\alpha} \sum_{\alpha}}{r_{ij}} \tag{6}$$

and

$$\hat{g}_{ij} = -1/r_{ij}. (7)$$

²Computational chemistry software program and stands for General Atomic and Molecular Electronic Structure System (GAMESS) [19], [20]

The Hamiltonian \hat{H}_{el} is the same as the Hamiltonian \hat{H} for an atom except that

$$\sum_{\alpha} \sum_{\alpha} / r_{i\alpha} \tag{8}$$

replaces Z/r_i in \hat{f}_i . Hence

$$E = \langle D|\hat{H}|D\rangle = 2\sum_{i}^{n/2} \langle \phi_{i}(1)|\hat{f}_{i}|\phi_{i}(2)\rangle$$

$$+ \sum_{j=1}^{n/2} \sum_{i=1}^{n/2} (2\hat{\mathbf{J}}_{ij} - \hat{\mathbf{K}}_{ij})$$
(9)

where

$$\hat{J}_{ij} = \langle \phi_i(1)\phi_j(2)|e^{'2}/r_{12}|\phi_i(1)\phi_j(2)\rangle \tag{10}$$

and

$$\hat{K}_{ij} = \langle \phi_i(1)\phi_j(2)|e^{'2}/r_{12}|\phi_j(1)\phi_i(2)\rangle$$
 (11)

$$\hat{f}_{i} = -(\hbar^{2}/2m_{e})\nabla_{i}^{2} - Ze^{'2}/r_{i}$$
(12)

can be used to give $D|\hat{H}_{el}|D$.

Therefore, the Hartree-Fock energy of a diatomic or polyatomic molecule with only closed shells is

$$E_{HF} = 2\sum_{i}^{n/2} \hat{H}_{i}^{core} + \sum_{j}^{n/2} \sum_{i}^{n/2} -(2\hat{J}_{ij} - \hat{K}_{ij}) + \hat{V}_{NN}$$
(13)

$$\mathbf{H}_{i}^{core} \equiv \langle \phi_{i}(1) | \hat{H}^{core}(1) | \phi_{i}(1) \rangle$$

$$\equiv \langle \phi_{i}(1) | -\frac{1}{2} \nabla_{i}^{2} \sum_{\alpha} Z_{\alpha} / r_{1\alpha} | \phi_{i}(1) \rangle \qquad (14)$$

$$\hat{J}_{ij} = \langle \phi_i(1)\phi_j(2)|1/r_{12}|\phi_i(1)\phi_j(2)\rangle$$
 (15)

and

$$\hat{K}_{ij} = \langle \phi_i(1)\phi_j(2)|1/r_{12}|\phi_j(1)\phi_i(2)\rangle \tag{16}$$

where the one-electron-operator symbol was changed from \hat{f}_i to $\hat{H}^{core}(1)$ [6]

The vast literature associated with these methods suggests that the following is a plausible hierarchy:

$$HF << MP2 < CISD < CCSD < CCSD(T) < FCI$$

The extremes of 'best', FCI, and 'worst', HF, are irrefutable, but the intermediate methods are less clear and depend on the type of chemical problem being addressed. The use of HF [1], [2] [3], [4] [7], [8] [9], [10] [11], [12] [18], [21] [22] [19], [20] in the case of FCI was due to the computational cost.

B. **DFT**

Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functional, i.e. functions of another function. In the case of DFT, these are functional of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry. [1], [2] [3], [4] [18], [21] [22] [19], [20]

As usual in many-body electronic structure calculations, the nuclei of the treated molecules or clusters are seen as fixed (the Born–Oppenheimer approximation), generating a static external potential V, in which the electrons are moving. A stationary electronic state is then described by wavefunction $\Psi(\mathbf{r}_1,...,\mathbf{r}_n)$ satisfying the many-electron time-independent Schrödinger equation

$$\hat{H}\Psi = \hat{T} + \hat{V} + \hat{U} = E\Psi \tag{17}$$

where, for the n-electron system, \hat{H} is the Hamiltonian, E is the total energy, \hat{V} is the kinetic energy, \hat{U} is the potential energy from the external field due to positively charged nuclei, and \hat{U} is the electron–electron interaction energy. The operators \hat{T} and \hat{U} are called universal operators, as they are the same for any n-electron system, while \hat{H} is system-dependent. This complicated many-particle equation is not separable into simpler single-particle equations because of the interaction of term \hat{H} . [1], [2] [3], [4] [18], [21] [22] [19], [20]

There are many sophisticated methods for solving the many-body Schrödinger equation based on the expansion of the wave function in Slater determinants. While the simplest one is the Hartree–Fock method, more sophisticated approaches are usually categorized as post-Hartree–Fock methods. However, the problem with these methods is the huge computational effort, which makes it virtually impossible to apply them efficiently to larger, more complex systems. [1], [2] [3], [4] [18], [21] [22] [19], [20]

The Hybrid functionals are a class of approximations to the exchange–correlation energy functional in density functional theory (DFT) that incorporate a portion of exact exchange from Hartree–Fock theory with the rest of the exchange–correlation energy from other sources (*ab initio* or empirical). The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals rather than the density, so is termed an implicit density functional. One of the most commonly used versions is B3LYP, which stands for "Becke, 3-parameter, Lee–Yang–Parr" [1], [2] [3], [4] [18], [21] [22] [19], [20]

the B3LYP (exchange-correlation functional is

$$\begin{split} E_{XC}^{B3LYP} &= (1-a)E_x^{LSDA} + aE_x^{HF} + b\Delta E_x^B \\ &\quad + (1-c)E_c^{LSDA} + cE_c^{LYP}, \end{split} \tag{18}$$

where: a = 0.20, b = 0.72, and c = 0.81. E_x^B is a generalized gradient approximation: the Becke 88 exchange functional and the correlation functional of Lee, Yang and Parr for B3LYP, and E_c^{LSDA} is the VWN local spin density approximation to the correlation functional. [1], [2] [3], [4] [18], [21] [22] [19], [20]

The three parameters defining B3LYP have been taken without modification from Becke's original fitting of the analogous B3PW91 functional to a set of atomization energies, ionization potentials, proton affinities, and total atomic energies. [1], [2] [3], [4] [15] [18], [21] [22] [19], [20]

III. HARDWARE AND SOFTWARE

Computer used for was a Desktop AMD Ryzen 7 1800X processor [23], ASUS [24] Prime A320M-K motherboard, 16GB of RAM, with 500GB SSD [15], with SUSE Linux Enterprise Desktop [25].

The *ab initio* and B3LYP [18], [21] [22] [19], [20] calculations have been performed to study the equilibrium configuration, for the calculation of chemical and molecular structure, its IR, S, C_V , of the steroid. The set of programs GaussView 5.0.8 [26], GAMESS [19], [20], BIOVIA Draw 2017 [27], and CHARMM22 [28], [29] were used.

IV. RESULTS

A. Properties

 $\begin{array}{lll} IUPAC & name: & rac\text{-}(5R,8S,9R,10S,13S,14S)\text{-}17\text{-}iodo\text{-}\\ 10,13\text{-}dimethyl\text{-}2,3,4,5,6,7,8,9,11,12,14,15\text{-}dodecahydro\text{-}1H\text{-}\\ \end{array}$

cyclopenta[a]phenanthrene [27]

Dipole Moment: 1.8778 Debye; [19], [20]

Degree of freedom: 141; [19], [20] Molecular Formula: C₁₉H₂₉I; [cite21,22

E(B3LYP) = -7660.80047960 a. u.; [19], [20]

Polarizability (α) = 218.035129 a. u.; [19], [20]

E (Thermal) = 288.606 KCal/Mol; [19], [20]

Heat Capacity $(C_V) = 72.217 \text{ Cal/Mol-Kelvin}; [19], [20]$

Entropy = 132.406 Cal/Mol-Kelvin. [19], [20]

B. Analyses, Figures and Tables

The Figure (1) show Molecular structure of steroid steroid 17-Iodo-androst-16-ene derived.

The Figure (2) show the plot of the normalized spectrum calculated in the B3LYP/SVP functional/basis set, for harmonic frequency peaks 3,241.83 cm⁻¹, 1.0 and 3,177.53

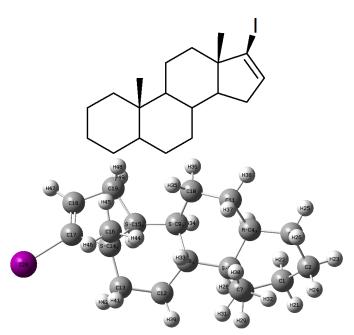


Fig. 1: Molecular structure of steroid steroid 17-Iodo-androst-16-ene derived, via B3LYP/SVP [7], [16] [15], [17] [18], [21] [19], [22] functional /basis sets, via GAMMES, Gaussview. Represented in gray is Carbon, in white is Hydrogen and in purple is Iodine. **Source**: Authors.

 cm^{-1} at 0.43304 absorbance.

The Table (1) has the E (Thermal), Heat Capacity (C_V) and Entropy (S) for basis set calculated.

The Table (2) represented the Harmonic frequencies (cm⁻¹) for Intensity (km/mol) of the steroid 17-Iodo-androst-16-ene [15] molecule via B3LYP functional [7], [16] [15], [17] [18], [21] [19], [22] SVP basis set for the infrared spectrum.

The lowest ET (Thermal Energy) calculated is 288.606 KCal/Mol in the B3LYP/SVP functional /basis sets and the highest 344.895 KCal/Mol in the RHF/STO-3G method/basis sets.

The lowest Entropy (S) calculated is 110.839 Cal/Mol-Kelvin in the B3LYP/CEP-4G functional/basis sets and the highest 138.035 Cal/Mol-Kelvin in the RHF/def2SV method/basis sets.

The Heat Capacity (C_V) calculated is 54.211 Cal/Mol-Kelvin in the B3LYP/CEP-4G functional/basis sets, and the highest 73.614 Cal/Mol-Kelvin in the RHF/SVP method/basis sets.

It can be seen that for the given molecule, the B3LYP functional always presents the lowest thermal energy than the RHF in all calculated bases, however the RHF always presents the highest Entropy than the B3LYP, in all the calculated basis sets. Better bases were not used because they are out of reach for the Iodine atom.

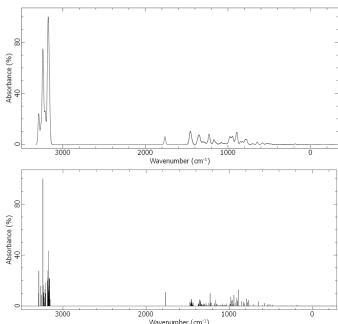


Fig. 2: Plot of the normalized spectrum calculated in the B3LYP/SVP [7], [16] [15], [17] [18], [21] [19], [22] functional/basis set. Vibrational frequency peaks 3,241.83 cm $^{-1}$, 100% and 3,177.535 cm $^{-1}$ at 43.304% absorbance. **Source**: Authors.

As expected, both RHF and B3LYP functional show similar results on the STO-3G and LanL2MB basis sets.

Table 1: E_T (Thermal)(KCal/Mol), Heat Capacity (C_V) (Cal/Mol-Kelvin) and Entropy (S)(Cal/Mol-Kelvin) for basis set calculated. [19], [20]

	E_T	C_V	S
B3LYP/STO-3G	316.348	59.594	119.201
RHF/STO-3G	344.895	65.810	130.057
B3LYP/3-21G	292.533	69.586	130.041
RHF/3-21G	309.802	71.690	132.448
B3LYP/CEP-4G	303.939	54.211	110.839
RHF/CEP-4G	326.008	54.260	116.632
B3LYP/CEP-31G	290.441	65.369	121.983
RHF/CEP-31G	311.292	70.159	133.044
B3LYP/CEP-121G	288.725	68.334	129.011
RHF/CEP-121G	308.332	71.739	135.093
B3LYP/LanL2MB	316.365	59.658	119.935
RHF/ LanL2MB	344.855	65.923	131.401
B3LYP/SV	290.893	66.858	124.753
RHF/SV	309.770	70.806	137.027
B3LYP/SVP	288.606	72.217	132.406
RHF/SVP	307.899	73.614	135.954
B3LYP/Def2SV	289.118	69.969	128.420
RHF/Def2SV	309.007	73.552	138.035
RB3LYP/SDD	291.647	69.945	131.533
RHF/SDD	310.530	70.939	131.878

Source: Authors.

Table 2: Table containing the harmonic frequencies (cm⁻¹) for Intensity (km/mol) of the steroid 17-Iodo-androst-16-ene [15] molecule via B3LYP functional, [7], [16] [15], [17] [18], [21] [19], [22] SVP basis set for the infrared spectrum.

ν (cm ⁻¹)	I(km/mol)								
33.48	0.0464	685.07	0.2898	1080.87	23.257	1335.94	20.341	3168.65	202.326
53.06	0.1524	702.90	14.162	1094.29	0.3815	1336.64	13.738	3169.84	95.870
84.69	0.0873	744.90	0.1195	1102.08	0.8204	1342.91	54.354	3173.46	124.607
123.50	0.0010	756.25	0.3975	1115.55	0.3262	1345.73	39.468	3174.74	158.114
133.59	0.0282	770.84	57.007	1124.86	0.4039	1356.02	63.424	3177.53	561.518
149.34	0.0909	779.33	35.906	1143.66	15.803	1357.76	46.641	3178.37	241.253
180.22	0.4360	793.53	72.734	1151.17	20.904	1365.56	13.727	3180.55	359.988
186.87	0.5555	814.85	26.389	1162.13	0.1365	1370.11	16.079	3181.93	286.840
208.34	0.0497	827.90	38.593	1168.81	60.287	1372.96	26.183	3186.39	255.467
244.51	0.2453	849.32	48.306	1174.24	25.359	1432.38	11.594	3206.91	237.495
247.75	0.1043	873.37	0.2613	1187.59	0.1919	1434.55	32.322	3212.25	129.553
270.98	0.0411	889.48	165.080	1199.27	0.3966	1434.87	0.5560	3216.76	168.817
296.80	0.1721	897.11	51.766	1214.44	30.657	1438.69	0.5215	3219.44	85.942
323.73	0.1903	907.72	82.487	1223.95	31.939	1441.37	0.9029	3220.83	33.741
329.90	0.0038	922.67	0.1300	1229.54	129.082	1445.90	21.507	3222.15	0.8039
341.65	0.2909	928.03	31.319	1233.00	14.512	1448.04	34.818	3231.53	135.916
384.39	0.2317	942.72	110.899	1247.06	30.392	1452.78	68.980	3237.39	103.298
406.43	0.1051	952.71	15.820	1256.63	0.5116	1454.24	24.984	3238.58	212.661
428.53	0.0474	957.67	60.343	1272.47	0.6238	1458.67	59.623	3241.83	1296.674
447.92	0.0741	969.44	53.170	1278.90	27.105	1460.12	31.140	3261.61	112.698
476.86	0.9117	979.75	92.767	1288.69	0.1669	1463.31	22.764	3266.21	203.019
493.03	0.1846	985.77	17.521	1291.99	0.3366	1472.39	41.549	3290.24	357.684
509.00	16.175	999.71	22.023	1293.67	15.111	1763.34	140.294	3291.10	55.952
532.51	14.172	1029.66	22.721	1304.18	23.039	3154.39	67.089	3292.53	129.516
542.30	0.4716	1046.99	0.7888	1307.85	12.962	3159.83	273.431		
577.60	27.528	1057.28	10.681	1318.04	0.8485	3163.20	138.985		
596.51	0.7976	1066.75	0.6410	1319.93	0.6160	3166.14	287.559		
645.51	43.702	1079.53	0.7508	1328.04	14.183	3167.11	127.501		

Source: Authors.

V. CONCLUSIONS

The study this steroid was chosen because it can could act as aromatase enzyme inhibitors and this phenomenon could be translated as good compounds to treat breast cancer.

The normalized spectrum calculated in the B3LYP/SVP functional/basis set have harmonic frequency with peaks 3,241.83 cm⁻¹, 100% and 3,177.53 cm⁻¹ at 43.304% absorbance.

It can be seen that for the given molecule, the B3LYP functional always presents the lowest thermal energy than the RHF in all calculated bases, however the RHF always presents the highest Entropy than the B3LYP, in all the calculated basis sets. Better bases were not used because they are out of reach for the Iodine atom.

The study has so far been limited to computational ab initio methods. The results are compatible with the theory of quantum chemistry.

ACKNOWLEDGEMENTS

(In memory) To Professor (Full) Ph.D. Mikhail Borisovich Belonenko (in memory) from Volgograd State University, Russia, for participating as a voluntary member of the PJSE (*Parana Journal of Science and Education*. ISSN 2447-6153) editorial team.

REFERENCES

- A. Szabo and N. S. Ostlund, Modern Quantum Chemistry. Dover Publications, New York., 1989.
- [2] K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Material Science. Springer-Verlag, Berlin., 1999.
- [3] K. Wolfram and M. C. Hothausen, Introduction to DFT for Chemists. John Wiley & Sons, Inc. New York, 2nd ed., 2001.
- [4] J. J. W. McDouall, Computational Quantum Chemistry. Molecular Structure and Properties in Silico. JThe Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK., 2013.
- [5] R. Skoda-Földes, P. Pfeiffer, J. Horváth, Z. Tuba, and L. Kollár, Microwave-assisted Stille-coupling of steroidal substrates. Steroids, vol. 67. 2002.
- [6] R. Gobato, "Infrared Spectrum for the New Nanomolecules Asi, Csi, Tsi and Gsi," Arch Biomed Eng & Biotechnol., vol. 5, no. 3, 2021.
- [7] R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra., "Applying, "Ab Initio" Hartree-Fock Methods to Exobiological Nanomolecules," *Physics of Biology*, 2021.
- [8] R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra, "Applying Ab Initio Hartree-Fock Methods to Exobiology Nano-Molecules," *ResearchGate*, 2021.
- [9] R. Gobato, A. Heidari, L. F. Valverde, and A. Mitra., "Applying Ab Initio Hartree-Fock Methods to Exobiology Nano-Molecules," *J Current Eng Technol*, vol. 3, no. 2, p. 134, 2021.
- [10] R. Gobato, A. Heidari, A. Mitra, and M. R. R. Gobato, "Infrared Spectrum for the New Exobiological Nanomolecules Asi, Csi, Tsi and Gsi," Sumerianz Journal of Scientific Research, vol. 4, no. 1, pp. 25–31, 2021.
- [11] R. Gobato, M. R. R. Gobato, A. Heidari, and A. Mitra, "Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G**(3df, 3pd)," American Journal of Quantum Chemistry and Molecular Spectroscopy, vol. 2, no. 1, pp. 9–17, 2018.
- [12] Quantum Chemistry. Pearson Education (Singapore) Pte.Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed. edition., 2003.

- [13] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," *Phys. Rev.*, vol. 140, no. A1133, 1965.
- [14] R. Skoda-Földes, P. Pfeiffer, J. Horváth, Z. Tuba, and L. Kollár, Microwave-assisted Stille-coupling of steroidal substrates. Steroids, vol. 67. 2002.
- [15] Creative Commons. CC-BY 4.0, 2023.
- [16] "Steroid," Creative Commons. CC-BY 4.0, Oct, 2023.
- [17] L. F. Valverde et al., "Interaction of a nine steroid derivatives with aromatase enzyme surface using a theoretical model," *Parana Journal* of Science and Education, vol. 9, no. 6, pp. 14–19, 2023.
- [18] J. M. Thijssen, Computational Physics. Cambridge University Press, Cambridge, 2001.
- [19] "Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of C]omputational Chemistry: the first forty years, author=M. S. Gordon, M. W. Schmidt, pages=1167-1189, year=2005, publisher=Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G.E.Scuseria (editors), Amsterdam,"
- [20] M. S. Gordon et al., "General atomic and molecular electronic structure system (gamess)," J. Comput. Chem., vol. 14, p. 1347–1363, 1993.
- [21] A. K. Wilson, T. van Mourik, and T. H. D. Jr., "Gaussian basis sets for use in Correlated Molecular Calculations. Sextuple zeta correlation consistent basis sets for boron through neon," *J. Mol. Struct. (Theochem)*, vol. 388, pp. 339–349, 1996.
- [22] E. Polak, Computational Methods in Optimization, vol. 77. Elsevier, 111 Fifth Avenue, New York, New York 10003, 1971.
- [23] "Ryzen," Creative Commons. CC-BY 4.0, 2023.
- [24] Suse, "SUSE Linux Enterprise Desktop," 2023.
- [25] "Ryzen," Creative Commons. CC-BY 4.0, Oct, 2023.
- [26] "Asus," Creative Commons. CC-BY 4.0, 2023.
- [27] BIOVIA Draw 2017 Enterprise. MDL Draw Editor 17.1.0.900, Computational results obtained using software programs from Dassault Systèmes BIOVIA. The ab initio calculations were performed with the DMol3 program, and graphical displays generated with Draw. BIOVIA Draw 2017 Enterprise, 2017.
- [28] R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, "CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations," *J. Comput. Chem.*, vol. 4, pp. 187–217, 1983.
- [29] B. R. Brooks, C. L. B. III, A. D. M. Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, M. Karplus, and et al., "CHARMM: The Biomolecular Simulation Program," J. Comput. Chem., vol. 30, pp. 1545–1614, 2009.