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Abstract

The present article investigates whether the drag coe�cient of low density objects can be determined by

free fall experiments with su�cient accuracy. Among other things, the drag coe�cient depends on the �ow

velocity, which can be controlled in wind channels experiments. Free fall experiments do not o�er an exper-

imental environment with constant �ow velocity. Especially the later part of the movement gets relevantly

in�uenced by air drag deceleration. We theoretically estimate an average sphere drag coe�cient for the

relevant part of the movement of falling spheres. The results are veri�ed by examining the drag coe�cient

from experimental data. Finally, we determine the drag coe�cient of a model rocket, which is compered to

the result of the corresponding wind channel experiment.

1. Introduction

Air resistance can have signi�cant in�uence on the motion of objects. The associated drag force depends

on several properties, like geometry, mass, velocity and surface roughness of the object. Generally, the drag

coe�cient is measured in wind channels since it cannot be determined analytically. While wind channel

experiments provide the possibility to preset a constant �ow velocity, free fall experiments do not. Our

aim is to estimate the air drag coe�cient with a test setup that is as simple as possible. 1971 Lindemuth

described a free fall experiment �to measure the e�ect of air resistance on falling balls� in [1]. �The time

of fall was measured [...] by using an array of mirrors to produce a ladder of light from a laser. [...]�. On

the one hand, Lindemuth's experiment requires an elaborate experimental setup. On the other hand, he

presupposes the air drag as cD ≈ 0.5 for Reynolds numbers 103 < Re < 105. Numerous publications are

concerned with drag in�uence on free fall movements. Vial investigates the rise and fall of a mass in one

dimension in the linear drag case, see [2]. Houari proposes �a kinematic approach for measuring the drag

coe�cient of rotational symmetric objects falling through liquids [...] by numerically solving the equation of

motion describing its fall through a known liquid contained in a vertical tube.� [3]. During free fall in air,

we have to deal with the quadratic drag case: �At speeds less than about 1 m/s, the drag force on a sphere
1
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is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to

the velocity squared and is usually small compared with the gravitational force if the object mass is large and

its speed is low.� [4]. In our paper we use a method similar to that given in [4] to estimate the air drag

coe�cient: The drop height and the falling time is measured. By solving the di�erential equation for free fall

including air resistance, one gets the velocity and from this the vertical position of the object as a function

of time. The drag coe�cient of the falling object can be determined numerically from the zeros of this

function. For the most part, the current article is concerned with the question how to interpret this result.

Obviously the introduced method provides some kind of average drag coe�cient which may correspond to

an average �ow velocity of the relevant part of the free fall. At the beginning, the velocity of the object

is small and air drag negligible. But with increasing speed, drag force gets more and more in�uence. In

order to be able to analyze our results, we �rst estimate the drag coe�cient of spheres with our method.

Adequate functions can be found in literature to describe the drag of a sphere as a function of the Reynolds

number, see for example [5, 6]. We choose an approximation given in [5], which is valid up to Re = 106,

to determine a constant average drag coe�cient for the spheres. Therewith, one receives a suitable average

drag coe�cient which can be compared to the experimental result. Later we investigate whether the above

mentioned method can be transferred to estimate the drag coe�cient for other bodies. Therefore the drag

coe�cient of a model rocket is determined and compared to the results of a wind channel experiment. The

results indicate, that this simple method is suitable for a rough drag coe�cient estimation for low density

objects.

2. Air resistance on free-falling objects

Air resistance is modeled by the drag force FD = 1
2ρaircDARv

2, cf. [7, 6], where ρair is the density of the air,

cD the drag coe�cient, AR the reference area or characteristic area, and v the velocity of the object. For our

concernes AR can be choosen as the frontal area of the body, see [8, p.484]: �Drag coe�cients are de�ned

by using a characteristic area A, which may di�er depending on the body shape [...]. The area A is usually

one of three types: 1. Frontal area, the body as seen from the stream; suitable for thick, stubby bodies, such

as spheres, cylinders, cars, trucks, missiles, projectiles, and torpedoes. [...].� If the falling object is a sphere

with mass m, average density ρs and reference area AR = πr2, drag force causes the deceleration

(2.1) aD =
FD
m

=
1
2ρaircDARv

2

ρsV
=

3ρaircDv
2

2ρsr
∝ cDv

2

ρsr
.

In order to get experimental data with su�cient accuracy, the in�uence of air drag must be noticeable. As

it can be seen from (2.1), aD increases for increasing velocity and drag coe�cient or in case of decreasing

average density ρs and radius of the sphere. Our aim is to determine the drag coe�cient cD, thus we can not

adjust this parameter. The velocity v is bounded by the con�guration of our experiment, i.e. it is limited by

the height from which we are able to drop the object. The radius of the sphere has to be big enough for the

video analysis. Hence, it is most feasible for us to choose a sphere with low average density in order to get

evaluable data from our experiment. We compare our experimental data with theoretical approximations

and try to transfer our method to other objects. In [5, p. 624] the drag coe�cient of a sphere is modeled by

(2.2) cD (Re) =
24

Re
+

2.6
(
Re
5.0

)
1 +

(
Re
5.0

)1.52 +
0.411

(
Re

2.63·105
)−7.94

1 +
(

Re
2.63·105

)−8.00 +
0.25

(
Re
106

)
1 +

(
Re
106

) ,
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see equation (8.83), which is �valid from the creeping-�ow limit through Re = 106�. The Reynolds number

Re is determined by

(2.3) Re =
v L

ν

where v is the velocity of the object, L its characteristic length, and ν the kinematic viscosity of the surround-

ing atmosphere, cf. [17, eq. 7.61]. The kinematic viscosity of air at 15◦C is ≈ 1.5 ·10−5m2

s
. NASA provides a

�Similarity Parameter Calculator� which calculates the Reynolds number: https://www.grc.nasa.gov/www/k-

12/airplane/viscosity.html.

Figure 2.1. Sphere drag by (2.2) compared to experimental data, see [5, �gure 8.13].

2.1. Stokes drag.

Objects that move very slowly through a �uid without generating turbulence are subject to Stokes' friction.

In our case the �uid is the surrounding air. Drag force is approximately proportional to velocity:

FD = −bv

The proportionality constant is the coe�cient of viscosity, in case of small spherical objects b = 6πηr where

r is the radius and η is the �uid viscosity. The viscosity of air at 15◦C is roughly η ≈ 1.8 · 10−5kgm−1s−1.

Further more, due to Archimedes' principle, an object submerged in a �uid experiences an upward buoyant

force equal to the weight of the �uid displaced by the object. Let V be the volume of the falling sphere,

ρ its density and ρair the density of air. The upward buoyant force FA = ρairV g acts against the force of

gravity FG = mg = ρV g. The force approach results in mdv
dt = FG−FA−FD and we recieve the di�erential

equation
dv

dt
=

(ρ− ρair)V g

m
− 6πηr

m
v.

The corresponding integral equation ∫ t

0

dτ =

∫ v

0

dx
(ρ−ρair)V g

m − 6πηr
m x

leads to the solution

(2.4) v (t) =
(ρ− ρair)V g

6πηr

(
1− exp

(
−6πηr

m
t

))
.

https://www.grc.nasa.gov/www/k-12/airplane/viscosity.html
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From (2.4) one can easily compute the Reynolds number as a function of time, see (2.3).

Figure 2.2. Free fall with Stokes friction for a sphere with radius 10 cm and a mass of
169g. Further parameters for air at 15◦C: viscosity η ≈ 1.8 · 10−5kgm−1s−1, kinematic

viscosity ν ≈ 1.5 · 10−5m2

s
and density ρair ≈ 1.23 kgm−3.

As can be seen from �gure 2.2, the in�uence of Stokes friction can be completely neglected in our case. On

one hand, within the �rst 2 seconds, there is hardly any deviation in the velocity of the fall compared to the

fall in a vacuum. On the other hand, the Reynolds number exceeds 103 after 10 milliseconds which is the time

measurement uncertainty in our experimental setup due to technical limitations. As a result, the range in

which we are dealing with Stokes friction is so small that it falls below our measurement capabilities. Figure

2.2 was created with wxMaxima, for the sourcecode see https://github.com/tguent/airdrag_by_freefall.git.

As can be inferred from equation (2.3), a model that neglects Stokes friction loses its applicability for very

small objects. While the Reynolds number still increases proportionally with the falling velocity, a small

characteristic length ensures that the increase occurs much more slowly. Accordingly, small particles fall at

lower Reynolds numbers, where Stokes friction has a signi�cant impact on the motion of the fall. For this

case, reliable alternatives are needed, such as a model in which the falling motion is evaluated piecewise.

With that, the initial phase of the falling motion, where the Stokes friction dominates, can also be incorpo-

rated into the modeling. However, the falling motion of very small objects is indeed in�uenced by even the

slightest air movements. This e�ect can be clearly observed, for example, in dust particles, which sometimes

even seem to �oat in the air. Since our simple experimental setup can only be applied to small objects to

a limited extent, we will omit such a piecewise model within the scope of this article. Therefore, we will

restrict our experiment to objects of low density and with a su�ciently large reference area. Speci�cally, we

will focus on spheres with small masses and adequately large radii.

2.2. Velocity and distance for constant drag coe�cient.

Consider a free falling object with mass m. The object is dropped from height h at t = 0 with zero initial

speed. Let us adopt the abbreviation

(2.5) ψ =
ρair cD AR

2m

https://github.com/tguent/airdrag_by_freefall.git
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from [9]. Additionally, we consider cD to be constant, therefore ψ is also a constant. Therewith the deceler-

ation due to air drag takes the form aD = ψv2. Gravity and drag force point in the opposite direction which

leads to

(2.6)
dv

dt
= g − ψv2

The corresponding integral equation
∫ t
0
dτ =

∫ v
0

dx
g−ψx2 has the solution

(2.7) v (t) =

√
g

ψ
tanh

(√
ψg t

)
,

cf. [10]. Equation (2.7) can be integrated by substitution of ξ = cosh
(√
ψg τ

)
to receive the vertical position:

(2.8) s (t) =

√
g

ψ

∫ t

0

tanh
(√

ψg τ
)
dτ =

1

ψ
ln
(
cosh

(√
ψg t

))
.

In our case, the movement stops when the body hits the ground. Then s (t) has reached the drop height h.

If the free fall phase is long enough, a falling body reaches its terminal velocity v∞ when the air resistance

force becomes equal to the weight force. From (2.7) one gets

(2.9) v∞ = lim
t→∞

[√
g

ψ
tanh

(√
ψg t

)]
=

√
g

ψ
=

√
2mg

ρair cD AR
.

2.3. Velocity for changing drag coe�cient.

As mentioned above, free fall experiments do not provide an experimental environment with constant �ow

velocity. The drag coe�cient is actually a function that depends on the Reynolds number. The following

considerations demonstrate that despite this, we still receive very good results using an approximation with

a constant drag coe�cient within our experimental framework. Following [5, p. 624], the function cD (Re)

for the drag coe�cient of a falling sphere can be estimated by (2.2). Combination of (2.3), (2.5), (2.6) and

(2.2) yields
dv

dt
= g − ρairAR

2m

[
cD

(
vL

ν

)]
v2.

In this model, the fall occurs towards increasing values along the vertical axis. We obtain the following two

models for comparison

dv

dt
= g − ρairAR

2m

[
24ν

vL
+

2.6
(
vL
5.0ν

)
1 +

(
vL
5.0ν

)1.52 +
0.411

(
vL

2.63·105ν
)−7.94

1 +
(

vL
2.63·105ν

)−8.00 +
0.25

(
vL
106ν

)
1 +

(
vL
106ν

) ] v2(2.10)

v (t) =

√
g

ψ
tanh

(√
ψg t

)
.(2.11)

We solved equation (2.10) numerically with the Runge Kutta Algorithm. A wxMaxima code is provided here

https://github.com/tguent/airdrag_by_freefall.git. The following considerations demonstrate that when

choosing an appropriate constant drag coe�cient in (2.11), both curves hardly di�er from each other. The

value of this drag coe�cient can be determined from the terminal velocity (2.9) by

(2.12) cD =
2mg

ρairAR v2∞
.

https://github.com/tguent/airdrag_by_freefall.git
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The code is also included in the above mentioned wxMaxima �le. As an example, the Runge Kutta Algorithm

for (2.10) with the parameters r = 10 cm, m = 169 g, ρair = 1.23 kgm−3 and ν = 1.5 · 10−5m2s−1 outputs a

terminal velocity of v∞ ≈ 14.12ms−1. Equation (2.12) leads to cD ≈ 0.43.

Figure 2.3. Velocity of the falling sphere given by (2.10) and velocity of the falling sphere
modelled with constant drag coe�cients given by equation (2.7).

Figure 2.3 shows the �tting of the solutions for the above mentioned parameters. Due to the good agreement,

a mean value for cD can be obtained. For the sphere this is cD = 0.43.

2.4. In�uence of air drag within the experimental framework.

Let vair (t) denote the falling velocity including air drag, see equation (2.7):

(2.13) vair (t) =

√
g

ψ
tanh

(√
ψg t

)
.

We compare (2.13) to the velocity vvac (t) = gt of a free falling object in a vacuum. Therewith we can

calculate the di�erence of velocity ∆av (t) := vvac (t)− vair (t) and de�ne the function

(2.14) Dv (t) :=
∆av (t)

vair (t)
=
gt−

√
g
ψ tanh

(√
ψg t

)
√

g
ψ tanh

(√
ψg t

) .

Later we use the latter function Dv to gain some insights at which point the air drag becomes relevant for

our concerns. Furthermore the free fall time in vacuum case tvac =
√
2hg−1 is a lower limit to the free fall

time tair with air resistance. Although it is not necessary to calculate the time tair, since it is measured in

our experiment, it can be easily obtained from (2.8). The object hits the ground at s (tair) = 0 and therefore

we get

(2.15) tair =
1√
ψg

Arcosh
(
eψh
)
.



7

Interestingly, tvac is the �rst order Taylor approximation of tair. It is

(2.16) tair =
1√
ψg

Arcosh
(
eψh
)
=

√
2h

g

(
1 +

ψ

6
h+O

(
h2
))

= tvac

(
1 +

ψ

6
h+O

(
h2
))

.

For our concerns it is advantageous to compare the measured time tair with the lower limit tvac in order

to early detect measurement error. To get an impression of how air resistance a�ects our experiment, we

evaluate the function (2.14). Here we give an example: Consider a ball with a mass of 169g and radius of

0.1m. This data roughly corresponds to Object B, see �gure (3.1). Based on the considerations above, we

estimated the drag coe�cient of a ball of this size to 0.43, see section 2.3. That allows us to get an impression

of the impact that air resistance will have on the ball in our experiment. Figure (2.4) shows the function

(2.14) for the above data.

Figure 2.4. Function 100Dv (t) shows the percentage deviation of free fall with air drag
from vacuum case for a sphere with radius 10 cm, mass of 169 g and drag coe�cient cD = 0.43
for the �rst 1.4 seconds of free fall.

When the sphere hits the ground in our case (at t = 1.38s ± 0.01s), the deviation due to air drag is in the

range of 30%. The corresponding calculations were done by the computer algebra system wxMaxima [11].

The corresponding source code is available at https://github.com/tguent/airdrag_by_freefall.git.

3. The Experiment

For our experimental data we dropped seven di�erent balls and a model rocket, see �gure 3.1, from a height

of 8.4m± 0.1m. The drag coe�cient of the model rocket is already known from previous research [9], where

Prof. Dr. Andreas Brümmer kindly provided us the opportunity to determine the drag coe�cient in a wind

tunnel at TU Dortmund University.

https://github.com/tguent/airdrag_by_freefall.git
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Figure 3.1. Objects

3.1. Determination of air drag coe�cient from experimental data.

A simple method to get at least some kind of average drag coe�cient is to calculate it from (2.15). Obviously,

we receive the same result directly from equation (2.8) with s (tair) = 0, it is ψ−1 ln
(
cosh

(√
ψg tair

))
= h.

Nevertheless, the equation in either form cannot be solved analytically. With the hyperbolic cosine and the

de�nition

(3.1) f (ψ) := exp
(√

ψg tair

)
+ exp

(
−
√
ψg tair

)
− 2 exp (ψh)

where ψ = ρair cD ARm
−1/2, cf. (2.5), the equation can be written in the form f (ψ) = 0. This equation can

be solved numerically with the Newton�Raphson method. The corresponding algorithm is implemented in the

computer algebra system wxMaxima [11], available at https://github.com/tguent/airdrag_by_freefall.git.

The measurement inaccuracies of ψ can be calculated from tair = (ψg)
−1/2

Arcosh
(
eψh
)
, see (2.15). From

the Gaussian error propagation law

∆tair =

√(
∂tair
∂ψ

∆ψ

)2

+

(
∂tair
∂h

∆h

)2

one gets

∆ψ =

√√√√(∂tair
∂ψ

)−2
[
(∆tair)

2 −
(
∂tair
∂h

∆h

)2
]

Together with
∂tair
∂ψ

=
heψh√

ψg (e2ψh − 1)
−

Arcosh
(
eψh
)

2
√
ψ3g

and
∂tair
∂h

=
ψeψh√

ψg (e2ψh − 1)

we �nally receive for the error of ψ

(3.2) ∆ψ =

√√√√√( heψh√
ψg (e2ψh − 1)

− Arcosh (eψh)

2
√
ψ3g

)−2
(∆tair)2 −( ψeψh√

ψg (e2ψh − 1)
∆h

)2


The above formula allows for the indirect calculation of the Gauss error. Contrary to the usual addition of

squares in the formula for Gaussian error, algebraically, a negative sign appears inside the square brackets

under the square root. It is open for discussion whether this sign should be adjusted accordingly in order to

calculate the maximum error. But this would be inconsistent with the algebraic transformations. Therefore,

it is mathematically more consistent to calculate the error using the �rst-order Taylor expansion from (2.16).

If one neglects the higher-order terms, the result is tair ≈ tvac

(
1 + ψ

6 h
)
with tvac =

√
2h
g . Thus, we obtain

https://github.com/tguent/airdrag_by_freefall.git
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a formula,

ψ ≈
√

18g

h3
tair −

6

h
,

that allows us to calculate the Gauss error of psi directly. With

∂ψ

∂tair
=

√
18g

h3
and

∂ψ

∂h
= −

√
81g

2h5
tair +

6

h2

it remains

(3.3) ∆ψ =

√√√√18g

h3
(∆tair)

2
+

(
6

h2
−
√

81g

2h5
tair

)2

∆h2

The drag coe�cient cD can be determined from equation (2.5)

(3.4) cD =
2mψ

ρairAR

and its error is again calculated using the Gaussian error propagation law

∆cD =

√(
2m

ρairAR
∆ψ

)2

+

(
2ψ

ρairAR
∆m

)2

+

(
− 2mψ

ρairA2
R

∆AR

)2

.

Using again (3.4) one receives

(3.5) ∆cD = cD

√(
∆ψ

ψ

)2

+

(
∆m

m

)2

+

(
∆AR
AR

)2

In case of a falling sphere with radius r, the reference area is AR = πr2. This leads to an error for the

reference area of ∆AR = 2πr∆r which can be implemented in (3.5). In the following, we will �rst provide a

detailed example using Object D, cf. �gure 3.1. The remaining results for the spherical objects are listed in

the table below. Ball D has a mass of 169g ± 1g. Its circumference could be measured with an accuracy of

about 3mm. We received a radius of 0.1± 5 · 10−4m from this. The time of the movement was measured by

210 fps slow motion video analysis with a results of 1.38s± 0.01s, as we presume that there is an inaccuracy

of one frame at the start and at the end of the movement in this case. As mentioned above, the falling

height was 8.4m ± 0.1m. The air density (at a temperature of about 15◦C) is roughly 1.23 kgm−3. With

the above introduced method we receive for object D the drag coe�cient cD = 0.34±0.06. Interestingly, the

error calculation using (3.3) yields ∆cD ≈ 0.0646, a similar magnitude as calculating an upper error bound

using the algebraically inconsistent sign change in equation (3.2), which leads to ∆cD ≈ 0.0629. Only the

algebraically consistent and exact version, with the unchanged equation (3.2), yields a signi�cantly smaller

error ∆cD ≈ 0.0199. In summary, it can be concluded that the error calculated through Taylor expansion,

using equation (3.3), appears to be the most suitable for providing an upper error bound in this context.

3.1.1. The rocket's drag coe�cient.

The model rocket was made from a 1-liter plastic bottle which has a radius of 4 cm. The empty rocket has

a mass of 143g. We estimated the time for the 8.4m ± 0.1m free fall to 1.35s ± 0.01s. The characteristic

length lies in the range of 0.35m, cf. [9]. This leads to an upper limit for the Reynolds number of roughly
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Object mass in g radius in cm falling time in s drag coe�cient cD cD from theory

A 72± 1 3.3± 0.05 1.25± 0.01 N/A 0.402

B 154± 1 3.7± 0.02 1.23± 0.01 N/A 0.404

C 56± 1 3.3± 0.05 1.31± 0.01 0.04± 0.18 0.402

D 169± 1 10± 0.05 1.38± 0.01 0.34± 0.06 0.429

E 155± 1 7.9± 0.1 1.40± 0.01 0.63± 0.10 0.422

F 342± 1 10.4± 0.05 1.33± 0.01 0.19± 0.11 0.431

G 267± 1 10.3± 0.1 1.37± 0.01 0.43± 0.10 0.431

Table 1. Experimental results for the objects in �gure 3.1. There are di�erences in mea-
surement errors of the radius due to the di�erent stability of the objects.

3 · 105. Numerical evaluation of (3.1) leads to a drag coe�cient of

cD = 1.04± 0.39

The error interval includes the more precise result of cD = 0.6± 0.2 from the wind tunnel measurement, see

cf. [9]. One reason why a higher drag coe�cient was measured in our experiment could be attributed to

the fact that the rocket falls partially at a slight angle during free fall, resulting in a di�erent angle relative

to the �ow. As a result, this could increase the e�ective reference area and alter its shape. In an improved

experimental setup, it could be investigated whether there are ways to stabilize the angle of descent of the

rocket, such as by attaching a small mass that can be later accounted for in the analysis.

3.2. Analysis of measurement uncertainties. As one can see, the deviations of the drag coe�cient can

be quite big with deviations up to the drag coe�cient itself. Our measurement errors for height, radius, fall

time, and mass yield an upper and a lower limit for the drag coe�cient. Of course, ∆cD depends on the

above mentioned measurement errors. The following considerations are intended to show the limitations of

our experimental setup with regard to the density of the test objects. For this purpose, we are investigating

how the error of the drag coe�cient changes when only the mass of the object or only the radius is varied.

It is not surprising that a change in the radius also a�ects ∆cD, since this changes the relative error of the

radius. Same holds for the mass. But by doing so, we can try to get an idea of the range in which our

method provides su�ciently accurate results.

Figure 3.2 shows that our experimental setup is not very suitable for spheres with a small radius, since the

error scales with r−2. Thus it is recommended to use bigger spherical objects. But on the other hand, one

has to keep the mass of the objects in mind: Graph 3.3 shows how the error depends on the mass.

Obviously, our experimental setup is not suitable for determining the aerodynamic drag coe�cient of heavy

objects. In combination with the above considerations concerning the radial dependence of the error one
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Figure 3.2. Error of drag coe�cient for di�erent radii and m = 0.169 kg. Similarly, the
height and the fall time remain the same. The graph indicates that ∆cD ∝ r−2.

can conclude that our experimental setup is recommended to be used for spheres with low masses and high

radii, ergo for spheres with low densities. The relative error for the spheres with low densities tend to have

a smaller relative drag coe�cient error than spheres with bigger densities, see table 2:

It is noticeable that the measured value of the drag coe�cient of the tennis ball (object C) in our experiment

deviates signi�cantly both from the theoretically calculated value and from the value measured in [12, see

�g. 2]. As a rough rule of thumb, it can be inferred that our experimental setup is suitable for spheres with
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Figure 3.3. Error of drag coe�cient for di�erent masses and r = 0.1m. The graph
indicates that ∆cD ∝ m.

average density ρ in kg
m3 ratio ρ/ρair upper limit Re drag coe�cient cD ∆cD in percent

A 478.30 389 5.6 · 104 N/A N/A

B 725.82 590 6.3 · 104 N/A N/A

C 372.01 302 5.6 · 104 0.04± 0.18 225%

D 40.35 33 1.7 · 105 0.34± 0.06 8.82%

E 75.05 61 1.4 · 105 0.63± 0.10 17.46%

F 72.58 59 1.8 · 105 0.19± 0.11 26.32%

G 58.33 47 1.8 · 105 0.43± 0.10 9.30%

H 143 116 3.0 · 105 1.04± 0.33 37.50%

Table 2. density as a multiple of the ambient density

low density up to roughly 100 times the air density. Even for the rocket, whose density is 116 times that of

the surrounding density, the drag coe�cient can be determined with our experiment. As expected, the error

is larger compared to measurements in a wind tunnel.
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4. Conclusion

As this study shows, estimation of the air drag coe�cient by free fall experiments is suitable for rough

approximations. It just needs a simple setup consisting of a camera and video cutting tools. We analyzed

the data using the open source computer algebra system wxMaxima. Our error analysis shows, that this

method gives good results for objects with low density up to about 100 times the air density. These results

are in the range of the average drag coe�cients in theory. For objects whose density is several hundred

times that of the surrounding density, our experiment fails due to measurement inaccuracy. However, the

experiment could be improved by using higher camera resolution and suitable slow-motion techniques. We

investigated di�erent balls as well as a D.I.Y model rocket, whose drag coe�cient was previously determined

in a wind tunnel. To sum up, this study shows that it is possible to estimate drag coe�cients for low density

objects that are topologically similar to a sphere with simple methods. Errors can be minimized by using

objects with big reference areas and low masses.

References

[1] J. Lindemuth: The e�ect of air resistance on falling balls, Am. J. Phys. 39, 757�9 , 1971

[2] A. Vial: Fall with linear drag and Wien's displacement law: approximate solution and Lambert function, Eur. J. Phys.

33, 751, 2012

[3] A. Houari: Determining the drag coe�cient of rotational symmetric objects falling through liquids, Eur. J. Phys. 33, 947,

2012

[4] R. Cross, C. Lindsey: Measuring the Drag Force on a Falling Ball, The Physics Teacher 52, 169, 2014; DOI:

10.1119/1.4865522

[5] A. Morrison, An Introduction to Fluid Mechanics, Cambridge University Press, New York, 2013

[6] P. Timmerman, J. P. van der Weele : On the rise and fall of a ball with linear or quadratic drag, American Journal of

Physics 67 (6), 1999

[7] H. Stöcker, Taschenbuch der Physik, Verlag Harri Deutsch, Frankfurt am Main, 1998, ISBN 3-8171-1556-3

[8] F. M. White: Fluid Mechanics, McGraw-Hill, ISBN 978-0-07-352934-9, seventh edition, 2011

[9] L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F. G. Schürmann, M. Wollek, �Approximation

of D.I.Y. Water Rocket Dynamics Including Air Drag,� International Journal of Scienti�c Research in Mathematical

and Statistical Sciences, Vol.6, Issue.6, pp.1-13, 2019. https://www.isroset.org/pdf_paper_view.php?paper_id=1620&1-

IJSRMSS-02725-114.pdf

[10] I. N. Bronstein: Taschenbuch der Mathematik. B.G.Teubner Stuttgart-Leipzig, ISBN-3-8154-2001-6, 1996

[11] A. Vodopivec: wxMaxima 18.02.0. http://andrejv.github.io/wxmaxima/

[12] R. Mehta, F. Alam, A. Subic: Review of tennis ball aerodynamics, Sports Technology. 1:1, 7-16, DOI:

10.1080/19346182.2008.9648446, 2008

https://www.isroset.org/pdf_paper_view.php?paper_id=1620&1-IJSRMSS-02725-114.pdf
https://www.isroset.org/pdf_paper_view.php?paper_id=1620&1-IJSRMSS-02725-114.pdf
http://andrejv.github.io/wxmaxima/

	1. Introduction 
	2. Air resistance on free-falling objects 
	2.1. Stokes drag
	2.2. Velocity and distance for constant drag coefficient
	2.3. Velocity for changing drag coefficient
	2.4. Influence of air drag within the experimental framework

	3. The Experiment
	3.1. Determination of air drag coefficient from experimental data
	3.2. Analysis of measurement uncertainties

	4. Conclusion
	References

