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Abstract

This paper utilizes the fact that the prime factor among all factors in the root number rad (c)
can only be a power of 1. Then, analyze all combinations of c¢ that satisfy rad (c)=c,
calculate the value of the combination, and find the maximum and minimum values of the
root number rad, as well as the maximum exponent between them. Using this maximum
exponent then an equivalent inequality is constructed to prove the ABC conjecture.
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The positive integers a, b, and ¢, satisfying the following conditions: a+ b= c, and (a, b)
=1 (a, b are mutually prime).

It is not difficult to find that when all factors in rad (c) are prime numbers and the powers of
prime numbers are all 1, then rad (c) = c.

€9: rad(165)=rad(3'-5'-11')=3x5x11=165

Through the prime number theorem, we know that given a positive integer x, the number
of prime numbers that do not exceed x is approximately: 7(x)~ x/n(x)
Now let's set the value range of the positive integer ¢ to:l<c<x
We set the number of prime numbers not exceeding x to be a positive integer #, so the
value of p is:

h=[n(x)~x/In(x)],he N*

We use the set x ={p p,..p,} torepresentthe set of all prime numbers that do not exceed
the integer x.
Easy to detect: when ¢=p'or c=p'.p' or c=p'-p,' p' - p,, etc,The value of rad(c) is

exactly equal to ¢, that is:

c=rad(c)
We can calculate the maximum number of combinations in the set of
prime numbers where rad(c)=c is:

1 2 3 h
C,+C,+C, +--+C,



Because (a,b) =1, then (a,b, c) =1

Proof:

If a and c are not prime each other, there must be a common divisor k, and because b=c-a,
then b and a must also have a common divisor k, which contradicts the prime of a and b,
S0 a, b, and c¢ are also prime each other

If the power of all prime factors in the radical rad(c)is 1.
Then ¢= rad(c)
Then rad(a-b-c)=rad(a-b)-rad(c)

Now let's return to ,44(.-5.c) for analysis:

We know that the minimum value of prime factors in qd(a-b-¢) is 2, and the minimum

number of these prime factors is 1. Therefore, the minimum value of ,ad(a-b-c)is:
rad(a-b-c),, =2'

Similarly, when the power of the prime factor in ,44(a-5-¢) is equal to 1 and the maximum

number of these prime factors is the integer h=[n(x)~x/In(x)] » then the maximum value of

rad(a-b-c) IS:

rad(a-b.c),, = ﬁ = P,(p,. eX,Pe N*)
i=1

So we can immediately launch:
2<rad(a-b-c)< P (1)

Now let's set (rada-b-c) ) =rada-b-c) .meR, ie. 2"=p , to find the maximum

min max ’

exponent between the minimum and maximum values. by taking the logarithm of both
sides of the equation, we can obtain the value of m as:

= log P (2)
log2

Let's analyze the value of c:

We know that the value range of cis: 1<c=<x

We know that the set x ={p p,.p } is asetofall prime numbers that does not exceed the

n

integer x , so the construction of the value of the integer ¢ must be:
c=|—]pln (pleX,ieNJ',neN*,csx)

We know that in the integer interval [3.n] ,when 7>3 according to the prime number
theorem: 7 (n) ~n/1ﬂ(n)>2, there must be an odd prime number in the interval [.n], we can
set it as:

pri=n—k (kl eN'0<k, <n)



Meanwhile, according to the Bertrand Chebyshev theorem, when 5 >3, in the interval
(n,zn_z), there is at least one odd prime number, we can set it as:
pr,=n+k, (kz eN",0<k, <n—2)

There must be three different scenarios for the value of x.
The first scenario:
If « is an even number, then we can set -2 nen’
There must be an odd prime number . -, and an odd prime number ,, -+, .and
2,pr, ,preX
So the following two inequalities always hold:
1.
2. 2pr - pry—x=2(n—k,)n+k,)-2n>0
Immediately available: c<xs<p

Pz2-pr-pr,

Second scenario:
Similarly,if » is an odd number, then we can set ,_2,_1,en"
There must be an odd prime number ., -, and an odd prime number . -,+,. and
pr.preX
1. P=propn
i pi—x=(n—k \n+k,)~(2n-1)
=r* ~2n+1+kn—kn—kk,
(”_1)2 +”<k2 —k )_klkz
(n=1F + (ke +2)(k, =k )~k
(n=1) +k,” +2k, ~ke, ~2k ~kik,
(=1 +k,” + 2k, +1-2k e, — 2k 1
1y
)

2.

v

S

(1) +(k, +1] =2k (k, +1)-1
(=1} +(ky + 1), +1-2k )1
(1) +(k, +1)(k, 1)1
(n—=1) +k’ —220

v

I\

Immediately available: c<x<p

The third scenario:
If x is an odd number, then we can set y_o,:14en*

There must be an odd prime number . -, and an odd prime number ,, - ,+t, .and
2, pr,pr,e X
1.
2. 2pn-pry—x=2(n—k)n+k,)-(2n+1)22(n+k,)-2n-1>0
Similarly,Immediately available: c<x<p
So whether :is odd or even,we can obtain: c<x<r

Pz2-pr-pr,

h
And because r=[]p, =rd (a-b-c),, =2", We can immediately obtain:

i=1

csP=2 (3)



Because 2:rd@-b-c) = P,then inequality (3) can be transformed as follows:

1 m—1 1 m—1 1+¢
cs2 -2 <2 (rad(a-b-c)) <2 (rad (a-b-c)) Ve>0
m—1 l+e
=c¢<2 (rad (a-b-c))

We setc=2"",and now we have found the constant that always holds the inequality above,

namely:
C — 2m—]

CONCLUSION

In positive integers, there is equation a+b=c,and @ =1, when ve>0,3c can make these
triplets (abc) satisfy the following inequality, namely:

c< C-(rad(a-b~c))l+g
Example:

a=3,b=5,and c=8,rad(a)=3,rad(b)=5,rad(c)= 2,

rad(ab) =15, rad(abc) = 30,50 X = {7,5,3,2}

So,

rad(c) .

min

=2,rad(c)max =P=7x5x3x2=210

The following inequality holds:

l+e l+e
c=8<C-(rad (a-b-c)) =10500x2 ,Ve>0

Conclusion: The ABC conjecture holds.
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