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Abstract

Let X be a topological stack, and LocSys(X) a local system taking
varieties v ∈ X to their projective resolutions over an affine coordinate
system. Let α and β be smooth charts encompassing non-degenerate
loci of the upper-half plane, and let φ be the map β ◦ α−1. Our goal
is to describe a class of vector bundles, called geometric sub-bundles,
which provide holonomic transport for n-cells (for small values of n) over
a Gδ-space which models the passage X ⇒ LocSys(X). We will first
establish the preliminary definitions before advancing our core idea, which
succinctly states that for a pointed, stratified space Strat∗M , there is a
canonical selection of transition maps [φ] which preserves the intersection
of a countable number of fibers in some sub-bundle of the bundle BunV

over LocSys(X).

Contents

1 Preliminaries 1
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Topological stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Main Results 5
2.1 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Geometric Bundles 6

4 References 8

1 Preliminaries

1.1 Preamble

One of the motivating considerations in writing this paper, was that of a geometric multiverse,
in which there was an orthogonal time direction. Stack seemed to be a very
poignant word here. For each wordline, Wn for a particle pn, there seemed to
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be some sort of intuitively visualizable “stack” of moments in R3, represented
as flat screens. Orthogonal to this stack would then be a collection of things
and events which coexisted with what we would call the “actual” ones.

A further interest of mine, which I had established very early on, is in
“negative dimensions”, more specifically in negative-dimensional spaces. Keenly
enough, the idea of an inertia group of a topological stack, as presented by Noohi,
seems to yearn to be woven into this strand of thinking.

It was in a recent, very stimulating conversation, with sir Oliver Hancock,
that it became very apparent to me that the novelty of negative dimensioms
extended to something much further, and much more serious. Indeed, if we
were to take such an idea seriously, at face value, we would require an entire
algebra of dimensions! Moving forward, I work with the mission to develop such
a thing in the back of my mind, although I am ill-equipped to make real progress
here at the moment. I believe that topological stacks are the right generalization
to make if we are aiming for this sort of development.

1.2 Curvature

For any space S, we may select a point CentS which is its barycenter. Thus, any
point p ̸= CentS , there is a non-zero distance d(p, CentS) which parameterizes
the infimum of the set of paths between the two. The collection of such distance
functions over the set P ∋ p shall be written

DP =

p∩∂S∑
p=CentS+ε

d(p, CentS) (1)

Now, let us suppose we have an arbitrary comparison line, ℓ, which has
zero sectional curvature everywhere. We can express the curvature of a given
geodesic g ∈ S by Cg − l, where

Cg =

∫ 1

0

dθ

dL

where dL represents the difference in lengths along a path whose interval is
[0,1], and where

g = [0, 1] 7→ ℓ′

Write gϕ for the filter obtained by normalizing the value of every Cg to a
singular element in an overring R ⊃ (r ∈ rep(S)). We can construct a map
R −→ Fp to a p-adic field by assigning to each Cg a valuation v, such that each
p ∈ S receives a projective resolution p −→ v(p) ⊂ [CentS , ∂S]. We shall do so
now.

Definition 1. An intrinsic fiber of a space X is a fiber whose completion lies
in the interior of X.
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Fix a bundle Bunint(S) consisting of the intrinsic fibers of S. Denote a
standard fiber of this bundle by f : CentS → I → P , where I is the standard
interval. The composition of f with a metric µ produces a sub-bundle

˜Bunint(S) ⊆ Bunint(S)

such that isometries of the standard bundle may be decomposed into sections
of f together with some gluing condition which tells us how to refine our section
under composition. Let a, b ⊂ f , and let b ◦ a = a ⊕kε b. Suppose that k > 1.
Then,

Proposition 1. ˜Bunint(S) is piecewise linear.

Now, let

{
∞∑
k=1

a⊕kε b | k ∈ Z+} = 0 −→ 1 (2)

We can then define a map dL
∝7→ d(v(p)), such that the valuation of the point

increases proportionally with respect to the distance along a closed geodesic.

Proposition 2. Equation (2) defines a frame.

Proof. Since we have a bottom (k=1), and a top (k=∞), we have an object
in the category of toposes. Inverting this gives us an object in the category of
frames.

The inclusion

(dL
∝7→ d(v(p))) ↪→ Frm

effectively allows us to work with a Heyting algebra, equipped with whatever
additional structure the class of curvatures measured along [0,1] provides. In
addition, this gives us a natural stratification Frm 7→ StratM to a (possibly
anabelian) topological space. We shall now consider generalizations of this state
of affairs.

1.3 Topological stacks

A topological stack is a generalization of a topological space, invented by B.
Noohi. [1] An example of a topological stack is an orbifold. Essentially, a
topological stack is an object fibered in groupoids, which replaces the usual map
Sets → Top by the map Grpd → Stk. Noohi showed [1, prop. 3.5] that any
isomorphism of objects in the category of groupoids also admits an identical
stackification of said objects, written

(X ∼ Y) ∈ Grpd → (X a = Ya) (3)
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where a superscripted a denotes stackification. Substacks of a stack X are
called saturated, meaning that, whenever they contain an object o, they contain
the entire isomorphism class o/ ∼.

The usual notion of a point becomes replaced by that of an inertia group of
order n, written Ix. This allows us to effectively construct objects which are
essentially 1

n of a single point. The following diagram:

1
n {∗}

I1 ... In

×n

+ 1
2k + 1

2k

Rep Rep∗

is commutative. Here, Rep is the map from a W-group into a field of real-
valued numbers, and Rep∗ is the association of the closure of said field with a
solid point. By “solid,” we mean effectively a topological point, although there
may be some more subtleties with this terminology.

Definition 2. A map in the category StTop of topological stacks, shall be called
representable if a.) it is a morphism f : X → Y of stacks, and b.) the fiber
product Y := X ×X Y is equivalent to a topological space for all maps X → X
out of a topological space.

Essentially, the notion of a point is replaced by the notion of an “isomorphism
class” of quasi-points, which are objects of a given W -group. The representation
of the group W as a point is an epimorphism

p ∈ X (W)×n Ix −→ p ∈ Man (4)

between a (possibly anabelian) group, W, and a totally Abelian group Ix.
Thus, the representation p is classical, whereas W may be non-commutative,
and thus models a quantum point. We thus have

(p ∈ Man) ≃ WAb

where WAb is a W-valued point in some arbitrary base category C.
In all of the practical applications, topological stacks are 2-categories. Maps

out of every X ∈ StTop are 2-morphisms onto the set Pr(X), consisting of a stack

X and a path groupoid X<n>, where n denotes the rank of the fiber X n−→ X ′.
The universal property of StTop is that the following diagram:

W X

X X ×X X

prn

prn

∆

∆

commutes.
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2 Main Results

Let G be a Gδ-space, and X a topological space. Let there be an open subspace
G |o for every object o in the category of topological spaces. Let there be a
group W such that G ∩ W ⊃ o. Let H 2 denote the upper half-plane, and let
Aut∼(W ) denote the isogenies of the group W under the equivalence relation
∼.

Lemma 1. If X is a topological stack, with a map X ⇒ G ,X, then a countable
number of objects of X are representable.

Proof. Since a Gδ-set consists in the intersection of a countable number of open
sets, we must show that open sets in some way correspond to objects in X . We
can do so using set methods by letting the finest topology on X be the one in
which each object is a singleton set.

Then, for every point in X, there is a bijective morphism (o ∈ X ) ⇆ (o ∈
G ).

Definition 3 (Degeneracy). If ∆♯ is a simplicial complex, and if the map
(∆♯)−1 7→ X−1. is surjective, but not invertible, on objects, then we say the
map is degenerate.

Suppose ∆♯ is fibered in groupoids. Then, the canonical map

X ⇄ ∆♯ can7→ X

has an inverse projective resolution X , which is a topological stack.

2.1 Stratification

Let Strat∗M be a ∗-stratified space with base manifold M. We model this by
writing

X ∗−→ StratM ;

we may choose our group W appropriately, such that for every map α : u →
v ∈ W , we obtain the following data:

1. An induced norm, µ = inf(d(u, v))

2. A collection of charts, C ⊃ α ◦ α−1

Thus, we have, in W , every map α corresponds to an exit path.

α |= X → StratM

.
Let the right-hand side of the above expression be written as EP0, and

denote all future maps StratM
∗n

−→ StratM by EPn. We may prefer to treat
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the first exit path as the introduction of some local coordinate system over a
variety Xv of X . Thus, EPn = End(LocSys(Xv)) ∀v.

One of the most obviously ways to stratify a space is using the conical
stratification, S∆, by triangulating each pair of fibers. We do so by treating
each fiber f ∈ End(LocSys(Xv)) as an interval [u, v], and then mapping the
interval to a centralizer by

[u, v] ∈ f 7→ u+ v

2
∈ f ′

.

However, we could also choose to take every object o ≃ S1 in a topological
space, and let every vector η : o → o′ moving between sub-bundles be an exit
path of the second kind. In this case, it is helpful to have some intuitive concept
of a portable object, which is an idealized object with some pre-defined rules for
transporting it across strata.

Definition 4. A vector subbundle v ∈ V is a proper subset of a vector bundle
V.

3 Geometric Bundles

Let µ : B → E → B be a microbundle [2], and let, for every fiber i ∈ µ, there
is a path P : x → ... → x′. Let there be a smooth and proper embedding
µ ↪→ H 2. We can now introduce the definition of a geometric bundle.

Definition 5. A geometric bundle, BunGeom, is a microbundle with a non-zero
image in a geometric space.

Let us denote a section of BunGeom by γi.
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Definition 6. The discretization of a space S is a transformation of S such
that, for any given map between sections of a geometric bundle, γi → γj is an
exit path.

Proposition 3. For any given epimorphism k⃗ : γi → γj, if the span of k⃗ is ε,
then the underlying topological stack generates a discrete space.

Proposition 4. Let k⃗ ∈ G . Then, G is parallelizable.

The primary effect afforded by geometric bundles is the ease by which
visualizations of physical phenomena can be treated as geometric phenomenon.
We are particularly keen to observe this fact in connection with the so-called
“quasi-quanta” of Emmerson, et al. [3]

Let q̂ be a quasi-quantum, and let there be a bijectio q̂ ↔ Iq, where q is a
k-tuple corresponding to a real space R2,k with a single ordinary time dimension
and an additional orthogonal time dimension.

Lemma 2. For every particle, q, there is a corresponding neighborhood U(p).

We can construct this neighborhood by taking the fiber productBunGeom×T
for any topological object, for instance S1. As a matter of technicality, U(p) is
a bundle of rays from a fixed point related to one another by an appropriate Lie
action. If we normalize these rays to the metric of the underlying space, then
we obtain a differential vector space, V∂ .

Much of the work of geometric bundles is to describe transport across the
space V∂ , and geometric sub-bundles then formalize Lorentzian, Laplacian, and
Eularian submanifolds of a principle space-time manifold. Observe the following
partial equality:

V∂ ≃ LocSys(X, E)

where X is a topological space, and E is a vector bundle smoothly fibered
in groupoids, which we will recursively define to be any such bundle which is
equivalent to an isotopy class of leaves of a foliation, F . We are thus free to
write

E ≃ F/θ

Definition 7. A geometric subbundle, ˜BunGeom ⊂ BunGeom, is a portable,
saturated subset of a geometric bundle.

Let Ik be a collection of idempotents, and k be its rank, i.e., the maximal
n for an n-cell in I. Let Aut(Ik) → StTop be a proper injection, such that
each i ∈ Ik is representable. Let Man ◦ (StTop ◦ Ik) be non-degenerate. Then,
there is some non-trivial orientable locus in Man which has direct access to a
W -group.

Suppose that for each point p ∈ Man, there is a completion, p̄ which
is the nth weight for a W-group supporting p. Then, there is a rank-one
isomorphism p̂ ↔ wn. Thus, the weak equivalences of the W-group correspond
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to θ-isomorphisms of objects in the equivalence class of p. That is to say,
equivalences are stronger for the geometric representation of an object, then for
the underlying algebraic structures.
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