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Observing quantum interference 

properties in macroscopic objects is difficult 

because the size of the diffraction grating must 

be of the same order of magnitude as the de 

Broglie wavelength. The article shows a simple 

method of experimental observation and 

theoretical description of the interference 

pattern in experiments with macroscopic 

objects. The results obtained coincide with the 

solutions of the Schrödinger equation for 

quantum particles and can complement these 

solutions for macroscopic objects. 

 

 

1. Introduction 

Interference effects play a decisive role in quantum mechanics; the principle 

of superposition is one of the basic quantum postulates. De Broglie wave functions 

do not have a physical meaning, but they well control the behavior of microparticles 

at the quantum level. The wave properties of microparticles have been confirmed 

by all experiments. One of the most famous experiments is the observation of 

interference of electrons through a screen with two slits [1][2]. 

The behavior of macroscopic particles in a double-slit experiment differs from 

the behavior of electrons. This discrepancy leads to the fact that for objects with 

large masses, the wave properties are, as a rule, neglected and the concept of the 

trajectory of the body is used. It is believed that a body that has a trajectory cannot 

show interference effects in an experiment and vice versa [3]. It can be shown that 

for macroscopic particles, the use of corpuscular and wave approaches is possible 

simultaneously, for the same physical objects. 

Let's consider several thought experiments in which a football player kicks a 

ball inside a certain room. In the same room there is an observer who can catch the 

ball at a certain, precisely specified moment in time. In all experiments we will 

assume that the initial coordinate of the ball is known. We will also assume that the 

absolute value of the initial speed 0V  with which a football player can hit the ball is 



known. For simplicity, we will assume that the only way we have to find out 

something about the coordinates and speed of the ball is visual observation. 

 

2. Thought experiments 

Experiment 1. If there is lighting in the room, then the observer can measure 

any coordinate 1 1( , )x y  at an arbitrary moment in time, then calculate the direction 

of the speed and trajectory of the ball. 
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In this experiment, we can place the goal as accurately as possible at the right 

time in the right place so that the probability of catching the ball is as high as 

possible. 
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Experiment 2. If there is no lighting in the room, but the exact time 0 0t =  of 

hitting the ball is known. The observer cannot in any way know the initial direction 

of 
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velocity; in this case it is impossible to calculate the exact trajectory. In this 

experiment, at any moment in time, it is possible to determine the geometric 

location of the points at which the ball can be with equal probability ( , )P r t . 

This is a probability wave, but the wave with a single maximum. The observer 

can figure out in what neighborhood the gate should be installed but cannot know 

the specific point at any given time unless the lighting is turned on. There is no point 

in using the concept of trajectory in this experiment. However, the probability of 

catching the ball is still high, this probability can be calculated. 
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With increasing time, the probability wave in a small neighborhood can be 

considered flat, then the probability of detecting the object in this neighborhood 

can be considered a positive real constant, less than one. 
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Further in the text we will always assume that the wave is plane and we will 

not write a limit. 

Experiment 3. There is no lighting in the room, the football players are running 

towards the ball, one by one, at equal intervals t const = , and trying to hit it in the 

dark. Only one strikes, but who exactly is unknown. In this case, the observer does 

not have the exact time of impact. A probability wave with many maxima diverges 

from the point of impact. There will be as many maximums as there are football 

players participating in the experiment. By analogy, we can write the formula for 

probability: 
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Let's move to a reference frame in which the plane wave is fixed 0 0V t = , then 

the probability of finding particles at points 0nr V n t=   will be constant 0P , as shown 

in Fig. 3. 

 

Representing the probability function as a set of individual points is 

mathematically inconvenient and has no physical meaning, since any real 

experiment contains non-zero errors. It can be considered that in a non-ideal 
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experiment, the resulting maxima should be blurred. Indeed, if we assume that the 

time to swing a leg, the time to hit the ball, the time to accelerate and lift the ball 

off the foot, etc. is finite, then the probability wave is more correctly described by 

a normal distribution: 
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It is possible to select experimental conditions so that distribution (6) is 

approximately described by the squared cosine function. To do this, the standard 

deviation must satisfy the condition: 
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Substituting (7) into (6), we get: 
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Thus, a simple approximate formula can be used for probability waves: 
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In the third experiment we still can try to determine the probability of where 

the ball would be at a particular time. The maximums of the probability wave will 

give the geometric location of the points where the gates need to be placed to have 

at least some chance of success. Now it is not difficult to find a wave equation 

whose solution is functions (9): 
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From here we get: 
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Let's move in (11) from speed to kinetic energy: 
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Let's move from kinetic energy to total and potential energies: 
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It can be noted that (13) completely coincides with the stationary Schrödinger 

equation if the following equality is achieved in the experiment: 
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Where D  is the de Broglie wavelength. 

Indeed, let us combine (13) and (14): 
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From here we get: 
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Equation (16) coincides with the Schrödinger equation, however, the solution 

here is not the complex amplitude, but the real function  , which is related to the 

probability by relation (10): 
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The maximum probability 0P  must be determined so that for any values of   

the inequality 00 ( )P r P  . 

Experiment 4. Let's modify the third experiment. Let us place an impenetrable 

obstacle with two slits in the path of the ball. The ball can fly through slits, but not 

through obstacles. If the ball flies through the slit, its trajectory changes randomly. 

An observer behind the slits can predict the points where the probability of finding 

the ball will be maximum and where this probability will be minimum. The 

probability wave will superimpose on itself, giving a pattern like the interference 

pattern of a light wave. 

3. Case of a rectangular potential well 



Let's consider the solution to equation (13) for an experiment with a 

macroscopic object in a potential well with infinitely high walls. 
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We will look for a solution in the form of an exponential function: 
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We impose boundary conditions so that the probability of finding the object 

at the edges of the well will be zero: 
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Substitute (20) into (19): 
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Assuming the initial phase to be zero, now we can find the energy levels in the 

potential well: 
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If we substitute the time from (14) into (22), we get: 
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As can be seen, energies (23) differ from the energy levels of a quantum 

particle in the potential well. However, if instead of (14), choose a wavelength half 

as large: 
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then we get complete agreement with the classical result, which is obtained 

by solving the Schrödinger equation: 
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Let's find the probability distribution: 
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The obtained result completely coincides with the solution of the stationary 

Schrödinger equation for a particle in an infinitely deep potential well. 

4. Conclusion 

Calculations show that if the experiment is set up correctly, wave properties 

can also be observed in macroscopic particles. The probability distribution can be 

obtained from solving the stationary Schrödinger equation directly, without 

resorting to complex amplitudes. 
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