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Abstract

We present an analysis of the letters game from the TV show Countdown using Monte Carlo methods.
This game requires finding the longest possible words in a set of randomly chosen letters. We find that
the probability of finding a word of length k from N given letters follows a Fermi–Dirac Distribution with
k as the variable and N acting as control parameter. Increasing N we get to a fixed point where a phase
transition occurs before reaching the IR fixed point as N →∞. Lastly, we find the expected total number
of words per game, and the number of letters one must be given in order to have a significant probability
to find all words in the dictionary.

1 Introduction

The french TV programme Des chiffres et des lettres
has been airing in its present format since 1972 mak-
ing it one of the longest running game shows in the
world [1]. Since 1982 it has also been airing in the
United Kingdom with the name Countdown [2]. It
has also been adapted to several other languages.

The show consists of several rounds of two differ-
ent games: a numbers game that tests the numeracy
skills of the contestants, and a letters game that tests
their vocabulary. An analysis of the numbers game
has been performed in [4], here we turn our attention
to the letters game.

In this game a set of 9 letters is randomly cho-
sen from two pools, one containing only vowels and
one with consonants, and the contestants must find a
valid word1 built from those letters, each letter must
be used at most once. The contestant who finds the
longest word wins the game.

Each pool contains letters with a probability distri-
bution in accordance with their frequency in the dic-
tionary. The contestants can choose the total number
of vowels in the set.

1a word is valid if it can be found in the dictionary

In this paper we don’t take into account the abil-
ity of the players to find the hidden words, and just
consider whether they are constructible. The dictio-
nary that we used contains 276,663 words (one-letter
words are exluded). We’ve also performed the study
for French, German and Russian with the same qual-
itative results, not presented in this paper.

2 Monte Carlo Simulation

Our main concern will be the probability of finding
words of length k in a set of N letters. We’ll call this
probability P (k;N), with k ≤ N , and k,N ∈ N+.

As all letters of the alphabet are in the dictionary
we know that P (1;N) = 1, i.e. we can allways find
words of length 1.

Let kM be the length of the longest word in the
dictionary. Then, P (k > kM ;N) = 0, i.e. we can’t
find words with length greater than kM no matter
how many letters N are there in the set.

Naively we expect that P (k;N) is a decreasing
function of k: longer words are harder to find than
shorter ones. Varying N we expect that P (k;N) will
increase with k fixed, i.e. the more letters one has
the easier to build words of a given length.
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Figure 1: Probability of finding words of length k
with N = 9

In the large N limit we expect that P (k;N) will
be a step function: P (k ≤ kM ;∞) = 1 and P (k >
kM ;∞) = 0. So, when N is big enough we’ll always
find any word in the dictionary.

To find P (k;N) we’ve relied on Monte Carlo meth-
ods. To start with, we performed 10,000 simulated
games of Countdown (N = 9) for a different number
of vowels in the English version. This are plotted in
Figure 1. For the curve with the ‘no choosing’ label
there’s no fixed number of vowels and the letters are
retrieved from a single pool with both types.

As we can see, the probability function is a sig-
moid. For low values of k, P (k; 9) ∼= 1, i.e. we can
almost surely find short words. Then, as k increases
the probability drops to P (k; 9) ∼= 0, making it more
unlikely to find long words.

The number of vowels has a significant impact in
the probability, with the optimum at 3 or 4 vowels.
The 9-letter words of the English dictionary have an
average of 3.387 vowels. Any other number of vowels
gives a smaller probability and it would be convenient
only for tactical reasons and not giving the opponent
the chance to find long words.

The probability of finding a 9-letter word with 4
vowels is 9.4%, with 3 vowels is 6.6%, and approach-
ing zero for other values. In a sense, the game is fine-
tuned so that it’s hard but not impossible to find a
word with all the letters. For 8-letter words the prob-

ability rises to almost 50% in the optimal 3-4 vowels
case. There are 7-letter words in almost 85% of the
games.

Obtaining an analytic form for P (k;N) is hard, if
not impossible, as this depends on a number of fac-
tors: the number of possible combinations of the N
letters in groups of length k, the number of words of
length k in the dictionary, and the probability distri-
bution of the letters. It seems that this would be an
extremely complicated function of N and k.

But this plot suggests that this probability can be
explained by a simple curve. We may try to fit a
Fermi–Dirac distribution of the form:

P (k;N) =
1

eβ(k−µ) + 1
Θ(N − k)

The Heaviside step function Θ(N − k) is to ensure
that P (k;N) = 0 for k > N . The parameter µ is
the value of k where the probability drops to one half
P (µ;N) = 1/2, i.e. the place where the midpoint of
the fall is located. In general µ won’t be an integer.
We’ll see later that it also depends linearly on N . The
parameter β denotes the steepness of the curve and
seems to be almost the same in all cases, except for
the case of ‘no choosing’ which has a slower descent.
As we’ll see later, the dependace on N lies in the
parameters µ and β.

In Figure 2 we plot the same values as before
(dots), the dashed lines are the Fermi–Dirac fit
curves.

As we can see the fit is excellent in all cases. For
3 and 4 vowels µ = 7.90 ± 0.02, and β ≈ 2.5 ± 0.04
in all cases except ‘no choosing’ where β = 1.7. Note
that with this approximation we can treat k as a real
number.

Increasing the number of letters N we expect that
β will tend to infinity so the Fermi–Dirac distribution
will approximate a step function. On the other hand,
we expect that µ will approach kM , the size of the
longest words in the dictionary (kM = 15 in our case).

3 Varying N

We now let N vary, a game known as Street Count-
down [5]. From this point onwards we’ll no longer
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Figure 2: Fermi–Dirac fit of P (k; 9)

choose the number of vowels and consonants and re-
trieve the letters from a single pool. For each case
we’ll make 1,000 simulations.

Figure 3 shows the probability P (k;N) for N =
2, . . . , 17. We see that µ increases with N as ex-
pected: with each additional letter the point where
P = 1/2 moves closer to kN . The slope β is practi-
cally the same in every case.

The dotted line is P (N ;N), the probability of find-
ing words with length equal to the number of given
letters (that’s double points). This falls to zero when
N ≥ 13.

Figure 4 shows the probability of finding words of
length k as a function of the number of letters N .
The dotted line is again P (N ;N).

As expected, increasing the number of given let-
ters the probability of finding words of length k also
increases. This plot is helpful for determining an op-
timal value of N if our goal is to establish a given
probability of finding words of a certain length. So,
this one is for the producers of the show.

Figure 5 shows the probability P (k;N) as a func-
tion of k and N , for N ≤ 22. The diagonal line is
the function k = N and the horizontal is kM = 15.
Above this two lines the probability is equal to zero.

The probability P (N ;N) of finding words with all
the letters is crucial for determining an optimal value
of N such that the game is interesting. For N ≤ 7

Figure 3: P (k;N) as a function of k for each N

Figure 4: P (k;N) as a function of N for each k
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Figure 5: P (k;N)

is above 10% and the game would be too easy for
expert players. Draws would be common. On the
other hand, for N ≥ 12, P (N ;N) falls nearly to zero
and there would hardly ever be any game with top
words. So, the optimal value of N lies between 8 and
11.

Figure 6 shows the values of µ and β as we increase
the number of letters.

Strangely, β doesn’t seem to depend on N and
stays with a constant value of approximately 1.7
whereas µ grows linearly with N : µ = 2.94+0.52 ·N .
As we’ve seen in the introduction, we expect that the
probability distribution tends to a step function with
µ → 15 and β → ∞, at some point the actual ten-
dency must change. In the next section we study the
asymptotic behaviour.

4 Street Countdown

Let’s step it up. We’ve done simulations up to
N = 26, in figure 7 we show the parameter space
of µ and β as we increase N . At small N ’s the flow is
that explained in the previous section: β stays nearly
constant while µ grows linearly. When N ≈ 23 starts
a regime where there’s a significant probability to ob-
tain words of lenght 15, the maximum. At this point
the growth of µ stalls at 15 whereas β starts growing
rapidly. We’ve reached a phase transition.

Figure 6: µ, β as function ofN

Figure 7: µ vs. β
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In Renormalisation Group (RG) [6] lingo we’d say
that N acts as a control parameter of the flow of µ
and β. We expected a fixed point at (µ, β) = (kM ,∞)
and we’ve found another one at (µ, β) = (kM , β0).
The evolution is initialy governed by µ, which is an ir-
relevant deformation in the RG sense, until it reaches
a first unstable fixed point. Then a phase transition
occurs and the system flows to the infra-red stable
fixed point governed by the relevant coupling β.

5 Counting words

We now pay attention to the total number of words
of each length that can be expected in a game. In
the next table we show the expected value and the
standard deviation for each length in the canonical
N = 9 game:

length total length total
2 16.398 ± 6.46 3 47.212 ± 22.11
4 66.202 ± 42.67 5 44.341 ± 40.40
6 18.828 ± 21.81 7 5.197 ± 7.98
8 0.733 ± 1.65 9 0.058 ± 0.28

Small words are easier to find but there are also less
of them (see the appendix), for larger words is the op-
posite. This shows in the previous table: we typicaly
find more 4 letter words than any other length, with
about 66 per game. We’ll find fewer smaller words
than that just because there are fewer of them. And
we’ll find fewer larger words because they are harder
to find. We’ll see shortly that the distribution follows
a tilted bell shape.

We also see that the standard deviation is large.
That’s to be expected as the number of words we can
build depends strongly in the letters we are given,
which come from a random distribution with given
weights as explained earlier. For example, if we are
given among others two Q’s and an X it’s going to be
tough. We’ve also seen in the first section that it’s
very dependant on the number of vowels.

Let’s vary N : in figure 8 we show the average total
number of words of each length for games with N
between 2 and 26. No legend needed, it only messes
with the plot.

Figure 8: Total of words per game

Figure 9: Percentage over the total of words for each
length

As we increase N the number of words also in-
creases, obviously. The shape of the distribution
slowly approaches that of the total number of words
per length (see the appendix), but it’s a painfully
slow growth. In figure 9 we plot the percentage of
words per game relative to the total number of words
of each length.

This is a decreasing function with k as expected,
there are fewer possible combinations with fewer let-
ters and as N inceases we rapidly cover more of them.
But even then, with N = 26 we can’t find 50% of the
2-letter words. On the other hand, for larger words
the increase is ridicule. We’ll need a collossal number
of letters to get a combination with all the words in
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Figure 10: Percentage over the total of words with N

the dictionary in it. In figure 10 we plot the percent-
age of the total number of words per game over the
total number of words as a function of N .

For small N ’s the increase is quadratic but it gets
linear at higher values. We expect this function to
be a sigmoid, at some point the increase will be
smaller until we asymptoticaly reach 100%, just like
the Fermi–Dirac distribution of the first section but
viewed in a mirror. But what’s the actual shape of
this sigmoid? Well, we could just keep increasing N
and simulating more and more games, but with such
a small growth we could be doing this for eternity.
We better change tactics.

6 The Mother Of All Words

Let’s ask ourselves: what’s the minimum collection of
letters that contains all the words in the dictionary?
It’s simple, just count the maximum number of times
each letter appears in a single word. For example,
how many A’s contains the word with more A’s in it,
and so on. In the following table we list that, with
one example for each letter (there can be more, of
course).

A: 6 (TARAMASALATA) N: 5 (INCONVENIENCING)

B: 4 (BEBLUBBERED) O: 5 (HOMOEOMORPHOUS)

C: 4 (ACCIACCATURA) P: 4 (SNIPPERSNAPPER)

D: 4 (CONDIDDLED) Q: 2 (CHIQUICHIQUI)

E: 5 (AGREEABLENESSES) R: 4 (AGROTERRORISM)

F: 4 (CHIFFCHAFF) S: 7 (CLASSLESSNESSES)

G: 5 (GANGSHAGGING) T: 4 (AFTERTREATMENT)

H: 3 (BAKHSHISH) U: 5 (UNTUMULTUOUS)

I: 6 (DIRIGIBILITIES) V: 3 (OVERVIVID)

J: 2 (HAJJ) W: 3 (BOWWOW)

K: 4 (KNICKKNACK) X: 2 (COEXECUTRIX)

L: 4 (ALCOHOLICALLY) Y: 3 (SYZYGY)

M: 4 (MAMMECTOMIES) Z: 4 (BAZZAZZ)

To build the string that assures us that we can
construct all the words in the dictionary we just need
as much of each letter as the table says. So, behold
the Mother Of All Words (WOMA2):

AAAAAABBBBCCCCDDDDEEEEEFFFF
GGGGGHHHIIIIIIJJKKKKLLLLMMM
MNNNNNOOOOOPPPPQQRRRRSSSSSS
STTTTUUUUUVVVWWWXXYYYZZZZ

This combination contains every word in the dictio-
nary. It has the respectable length of 106 characters,
that’s the minimum of letters we must get if we want
AARDVARK and GLOBULARNESS and LAURE-
ATESHIP and PHOTOOXIDATION and every other
word. But the probability of getting a WOMA given
106 random letters with the according distribution is
about 10−160. You can play for an eternity but you’ll
never find a WOMA that way. You’ll need more let-
ters.

But how many? Well, we’ve simulated it, it
shouldn’t be surprising by now. We’ve build sets of
letters of size N from N = 400 upwards, with 1000
games each time as usual. Figure 11 shows the prob-
ability of finding a WOMA given N letters.

It’s a sigmoid, as we predicted in the previous
section. But in honesty, we’re plotting something
else here. Anyway, we see that below a 1000 letters
chances are slim of finding a WOMA, but from 3000
and up you’ll find any word you fancy. That must be
a bloody boring game if you ask me.

2we’re fond of anagrams here

6



Figure 11: Probability of finding a WOMA

7 Discussion

Who would have thought that the Countdown let-
ters game contains as much maths as the numbers
game? We’ve found that the probability of finding
words of a certain length follows a (discrete, if that
makes sense) Fermi–Dirac distribution, depending on
two variables: the middle point of the curve µ and the
slope β. These flow in accordance with the control
parameter N , the number of given letters, to a first
fixed point following the irrelevant coupling µ where
a phase transition occurs. And then to the IR fixed
point at infinity following the relevant deformation β.
This behaviour was observed for the other languages
we studied, we conjecture that it’s universal for all id-
ioms written with an alphabet of letters (as opposed
to say, Chinese, which follows a different pattern (how
would this game be played in Chinese?)).

With 9 letters, the optimal value of vowels is 3 or
4, with almost 10% of games getting 9-letter words.
With a set of 10 letters, as in the French version of
the game, the optimal number of vowels is 4. In this
case, the 4.7% of games get a 10-letter word. With
N = 11 and 5 vowels we get 11-letter words in 1.6%
of the games. Now it’s for the player to find them, as
it gets trickier.

The total number of words per game grows so
slowly with N , and with a big standard deviation.
You’ll need a set of about 3000 letters at least to get
the chance of composing any word of the dictionary

you fancy, in the most tedious game of Street Count-
down ever.
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A Distribution of lengths in the
dictionary

The dictionary we’ve used has a total of 276, 663
words. Figure 12 shows the number of words of each
length, the line is a Gamma distribution fit of the
form f = a · kb · cL, where k is the length of the word
and a = 0.3149, b = 10.34 and c = 0.2966.

Figure 12: Length distribution
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