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This paper gives an explicit isomorphic mapping from the 240 real R8 roots of the E8 Gossett 421
8-polytope to two golden ratio scaled copies of the 120 root H4 600-cell quaternion 4-polytope using
a traceless 8×8 rotation matrix U with palindromic characteristic coefficients and a unitary form
eiU. It also shows the inverse map from a single H4 600-cell to E8 using a 4D↪→8D chiral left↔right
mapping function, φ scaling, and U−1. This approach shows that there are actually four copies of
each 600-cell living within E8 in the form of chiral H4L⊕φH4L⊕H4R⊕φH4R roots. In addition,
it demonstrates a quaternion Weyl orbit construction of H4-based 4-polytopes that provides an
explicit mapping between E8 and four copies of the tri-rectified Coxeter-Dynkin diagram of H4,
namely the 120-cell of order 600. Taking advantage of this property promises to open the door to
as yet unexplored E8-based Grand Unified Theories or GUTs.
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I. INTRODUCTION

Fig. 1 is the Petrie projection of the Gosset 421 8-
polytope derived from the Split Real Even (SRE) form
of the E8 Lie group with unimodular lattice in R8. It
has 240 vertices and 6,720 edges of 8-dimensional (8D)

length
√
2. E8 is the largest of the exceptional simple Lie

algebras, groups, and lattices. An important and related
higher dimensional structure is the R24 (C12) Leech lat-
tice (Λ24 ⊃E8⊗E8⊗E8), with its binary (ternary) Golay
code construction.

FIG. 1. E8 421 Petrie projection

It is widely known [1]-[14] that the E8 can be pro-
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jected, mapped, or ”folded” (as shown in Fig. 2) to two

golden ratio (φ = 1
2

(
1 +

√
5
)
≈ 1.618) scaled copies of

the 4 dimensional 120 vertex 720 edge H4 600-cell. Fold-
ing an 8D object into a 4 dimensional one can be done
by projecting each vertex using its dot product with a
4×8 matrix[11]. This produces H4⊕φH4, where H4 is
the binary icosahedral group 2I of order 120, a subgroup
of Spin(3). It covers H3 as the full icosahedral group Ih
of order 120, a subgroup of SO(3). The binary icosahe-
dral group can be considered as the double cover of the
alternating group alternating group A5.

Despite others’[2][9] recent attempts, the inverse mor-
phism or ”unfolding” from H4 to E8 is less trivial
given that the matrix is not square and lacks an in-
verse. Yet, a real (R) symmetric volume preserving
Det(U)=1 rotation matrix(1) was derived in 2012 and
documented[11][12][13]. The quadrant structure of U ro-
tates E8 into four 4D copies of H4 600-cells, with the
original two (L)eft and (R)ight side unit scaled 4D copies
related to the two L/R φ scaled copies which we now
identify as H4(L⊕R⊕1⊕φ). This traceless form of U has
palindromic characteristic coefficients and provides for
an explicit isomorphic mapping of E8↔H4(L⊕R⊕1⊕φ).
This involves using a bidirectional L↔R mapping func-
tion (mapLR) and U−1(2). The process is described and
visualized in Section II.

U =



1− φ 0 0 0 0 0 0 −φ2

0 −1 φ 0 0 φ 1 0
0 φ 0 1 −1 0 φ 0
0 0 −1 φ φ 1 0 0
0 0 1 φ φ −1 0 0
0 φ 0 1 −1 0 φ 0
0 1 φ 0 0 φ −1 0

−φ2 0 0 0 0 0 0 1− φ


/(2

√
φ)

(1)
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U−1=



φ− 1 0 0 0 0 0 0 −φ2

0 −φ 1 0 0 1 φ 0
0 1 0 φ −φ 0 1 0
0 0 −φ 1 1 φ 0 0
0 0 φ 1 1 −φ 0 0
0 1 0 φ −φ 0 1 0
0 φ 1 0 0 1 −φ 0

−φ2 0 0 0 0 0 0 φ− 1


/(2

√
φ)

(2)

A. Generating Polytopes

The quaternion (H) Weyl group orbit O(Λ)=W(H4)=I
of order 120 is constructed from the parent orbit (1000)
of the Coxeter-Dynkin diagram for H4 shown in Fig. 2b.
This results in the 600-cell 4-polytope of order 120 la-
beled here and in [3] as I. In addition, U provides for a
direct mapping from E8 to four L⊕R⊕1⊕φ copies of the
tri-rectified parent of H4 (i.e. the filled node 1 is shifted
right 3 times giving 0001), which is the 120-cell of order
600 labeled here and in [3] as J. Both of these 4-polytopes
are shown in Appendix A Figs. 14-16. The detail of the
quaternion Weyl orbit construction is described in Sec-
tion III.

FIG. 2. a) E8 Dynkin diagram in folding orientation
b) The associated Coxeter-Dynkin diagram of H4

In addition to the 240 root 421 E8 8-polytope iden-
tified by its Coxeter-Dynkin diagram in Fig. 3a, there
are 28 possible orbits using only 0’s↔1’s, empty↔filled,
or ringed nodes of the E8 Coxeter-Dynkin diagram, in-
cluding the snub (00000000) orbit. Several other orbit
permutations are commonly represented visually using
the Petrie projection basis. They are the 2,160 root 241
and 17,280 root 142 8-polytopes, which are constructed
by generating the resulting roots by moving the filled (or
ringed) node to each of the two other ends of the Dynkin
diagram, as shown in Figs. 3b and 3c respectively.

B. 8D Platonic Rotation

Interestingly from [13], U can be generated using a
combination of the unimodular matrices commonly used
for Quantum Computing (QC) qubit logic, namely those
of the 2 qubit CNOT (3) and SWAP (4) gates. Tak-
ing these patterns, combined with the recursive functions

FIG. 3. E8 Dynkin diagrams a) 421, b) 241, c) 142

Also shown are the Cartan and simple root matrices which
correspond to the common Coxeter-Dynkin representation of

the diagrams.

that build φ from the Fibonacci sequence, it is straight-
forward to derive U from scaled QC logic gates.[14]

CNOT=

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

SWAP=

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4)

C. 2D and 3D Projection

Projection of E8 to 2D (or 3D) requires 2 (or 3) basis
vectors {X,Y, Z}. For the Petrie projection shown in Fig.
1, we start with the basis vectors in (5), which are simply
the two 2D Petrie projection basis vectors of the 600-cell
(a.k.a. the Van Oss projection), with an optional 3rd (z)
basis vector added for an interesting 3D projection[11].

x={ 0, φ2Sin 2π
15 , 2Sin 2π

15 , 0, 0, 0, 0, 0}
y={ −φ2Sin 2π

30 , 0, 0, 1, 0, 0, 0, 0}
z={ 1, 0, 0, φ2Sin 2π

30 , 0, 0, 0, 0}
(5)

{X,Y, Z} = U.{x, y, z} as shown in (6).

X={0 .252 .427 −.319 .319 .427 .781 0}
Y={.821 0 −.393 .636 .636 .393 0 .348}
Z={−.242 0 −.132 .215 .215 .132 0 −1.03}

(6)
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D. 3D Platonic Solid Projection

This basis is derived from the icosahedral symme-
try of H3-based Platonic solid. The twelve vertices of
the icosahedron can be decomposed into three mutually-
perpendicular golden rectangles (as shown in Fig. 4),
whose boundaries are linked in the pattern of the Bor-
romean rings. Rows (or columns) 2-4 (or 5-8) of U con-
tain 6 of the 12 vertices of this icosahedron, including 2
at the origin with the other 6 of 12 icosahedron vertices
being the antipodal reflection of these through the origin.
These 2 (or 3) rows can then used as a kind of “Platonic
solid projection prism” to form the 2 (or 3) 8D basis vec-
tors used in the 2D (or 3D) projection of 421, 241, and
142.

FIG. 4. The icosahedron formed from 3 mutually-
perpendicular golden rectangles

Orthogonal projection to 3D after U folding (i.e. se-
lecting one of 56 unique subsets of 3 (of 8) dimensions,
here we use {1, 2, 3}) manifests a large number of con-
centric hulls with Platonic and Archimedean solid re-
lated structures. The eight projected 3D hulls of 421
include two φ scaled sets of four hulls from two 600-cells
(H4 ⊕ φH4) as shown in Appendix A Fig. 14. 241 and
142 projections of E8 are shown in Figs. 5-6.

a)

b)

c)

FIG. 5. 241 projections of its 2,160 vertices
a) 2D to the E8 Petrie projection using basis vectors X and
Y from (6) with 8-polytope radius 2

√
2 and 69,120 edges of

length
√
2

b) 3D projections with vertices sorted and tallied by their 3D
norm generating the increasingly transparent hulls for each
set of tallied norms. Notice the last two outer hulls are a
combination of two overlapped Icosahedrons (24) and a Icosi-
dodecahedron (30).
c) Combined 3D hulls with the overlapping vertices color
coded by overlap count. Also shown is a list (in red) the
normed hull distance and the number of vertices in the group.
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a)

b)

FIG. 6. 142 projections of its 17,280 vertices
a) 2D to the E8 Petrie projection using basis vectors X and
Y from (6) with 8-polytope radius 4

√
2 and 483,840 edges of

length
√
2 (with 53% of inner edges culled for display clarity)

b) 3D projections with vertices sorted and tallied by their 3D
norm generating the increasingly transparent hulls for each
set of tallied norms. Notice the last two outer hulls are a
combination of two overlapped Dodecahedrons (40) and a ir-
regular Rhombicosidodecahedron (60).

II. THE PALINDROMIC UNITARY MATRIX

The particular maximal embedding of E8 at height
248 that we are interested in for this work is shown
in Appendix C Fig. 19 as the special orthogonal
group of SO(16)=D8 at height (120=112+4+4)+128’,
where 112 is interpreted as the subgroup embed-
dings of SO(8)⊗SO(8)=D4⊗D4 and 128’ is inter-
preted as symplectic subgroup embeddings of C8 where
Sp(8)⊗Sp(8)=C4⊗C4 at height 136=128+4+4. These
selected embeddings correspond to the 112 integer D8

vertices and the 128 half-integer BC8 vertices given by
SRE E8, in addition to the 8⊕8 generator roots for a total
of 28. This is in 1::1 correspondence with the canonical
root vertex ordering from the 9th row of the palindromic
Pascal triangle {1, 8, 28, 56, 3535, 56, 28, 8, 1}, where each
entry in the list gives the number of vertices that al-
ternate between half-integer BC8 and integer D8 vertex
sets, with the right 5 overbar sets of 128 vertices being
the negated vertices of the left 5 sets of 128 in reverse
order.
It is these embeddings that have an isomorphic connec-

tion to U and provide the E8↔H4(L⊕R⊕1⊕φ) mapping
via mapLR. The MathematicaTM code for mapLR and the
code to validate the E8 ↔ H4 isomorphism is shown in
Appendix D Fig. 21. It demonstrates that E8 rotates
into four 4D copies of H4 600-cells, with the original two
(L)eft side φ scaled 4D copies related to the two (R)ight
side unscaled 4D copies.
Due to the palindromic structure of U, the H4L and

H4R are also palindromic with each R vertex being the
reverse order of the L vertex, along with mapLR exchanges
in the (S)nub 24-cell vertices. For each L vertex that is
not a member of the (T)etrahedral group’s self-dual D4

24-cell (or φT), the R vertex will be a member of the
scaled φS (or S) respectively. This is due to the exchange
of φ3/2↔φ−3/2 in mapLR which changes the norm (i.e.
to/from a large norm=1 or a small norm=1/φ). The
24-cell T vertices are unaffected by mapLR exchange and
have L and R vertex values of the palindromic opposite
sign and the same norm.

It is clear that U is traceless, but it is not unitary. Since
U is Hermitian, it is easily made unitary as eiU. While
that is unitary it is not traceless, so it is not an A7 group
SU(8) symmetry. For the identification of their palin-
dromic characteristic polynomial coefficients, see Figs.
7-8.

See Appendix D Figs. 22-23 showing the detail of the
E8↔H4(L⊕R⊕1⊕φ) isomorphism for each vertex.

III. QUATERNIONIC WEYL ORBIT
CONSTRUCTION

The content within this paper was generated using
a computational environment the author has written in
MathematicaTM by Wolfram Research, Inc.. In order to
deal effectively with quaternions, it supplants the native
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FIG. 7. The trace, determinant, Eigenvalues, Eigenvector
matrix, and characteristic polynomial coefficients of U

FIG. 8. The Eigenvalues, Eigenvector matrix, and character-
istic polynomial coefficients of the unitary form of U as eiU

showing a Tr@Re@eiU ≈ 4 and a traceless imaginary part

Quaternion package with a more flexible symbolic octo-
nion (O) capability. This allows for the selection of a
multiplication table from any of the 480 possible octo-
nion tables, including their split and bi-octonion forms.
It also handles the sedenion forms as well and has been
used to verify the octonion forms of E8 from Koca[1],
Dixon[15], Pushpa and Bisht[16], R. A. Wilson, Dray,
and Monague[17], including the complexified octonions
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of Günaydin-Gürsey[18] and Furey[19]. To ensure that
our quaternion (and bi-quaternion) math is consistent
with the standard multiplication convention related to
quaternions, we need to select one of the 48 octonions
with a first triad of 123 and a Cayley-Dickson construc-
tion where e4-e7 quadrant multiplication remains within
the quadrant. See Fig. 9 showing the selected triads,
Fano plane, and multiplication table of the octonion used
in this and several of the referenced papers1.

FIG. 9. The selected octonion Fano plane mnemonic and mul-
tiplication table based on its 7 structure constant triads . The
first triad (123) defines standard convention for quaternions.

It has been shown that the 3D symmetry groups of
A3, B3, and H3[3] and 4D symmetry groups of A4, D4,
F4, and H4 are related to the higher dimensional groups
of D6 and E8[5][9]. A quaternionic Weyl group orbit
O(Λ)=W(H4)=I of order 120 can be constructed fromH3

which generates some of the Platonic, Archimedean and
dual Catalan solids shown in Appendix B Fig. 18, includ-
ing their irregular and chiral forms[4]. The polytopes for
a particular orbit of O(Λ)=W(group) are generated us-
ing a function Λ[group , orbit , perm : ”Rotate”], where
perm can be one of 18 combinations of sign and position
permutation functions (e.g. ”oSign” gives all odd sign
permutations and cyclic rotations of position and the de-
fault ”Rotate” gives all sign permutations of cyclicly ro-
tated positions). The first column in these figures show

1 It is interesting to note that this particular octonion is close
to (but not) palindromic. Using an algorithmic identification
and construction of all of the possible 480 unique permuta-
tions of octonions[20], we find that a small change in triads to
{123,145,167,264,257,347,356} with 5↔7 ordering swaps creates
a palindromic E8. This octonion is shown in Fig. 10

FIG. 10. An alternative set of structure constant triads, oc-
tonion Fano plane mnemonic, and multiplication table, with
decorations showing the palindromic multiplication.

the set of calls to the Λ function. This same method is
used to generate the H4-based 4-polytopes of the 120-cell
and 600-cell shown in Appendix A Figs. 14-16.

The A3 in A4 group embedding of SU(5)⊃SU(4)⊗U1[5]
are shown in Appendix C Fig. 20 in combination with
these 3 and 4-polytope visualizations. 2

We identify the parent orbit (1000) of W(D4) as the
self-dual 24-cell T, which is the combination of the 4D
octahedron (aka. 16-cell) and the 4D cube (aka. 8-cell
with a 3D hull of the cuboctahedron derived from the tri-
rectified (0001) W(BC4)). T’ is identified as the set of 3
orbits {(0100), (0010), (0001)} of W(D4) with 8 vertices
each made of 2-component (vector) quaternions and has
a 3D hull of the rhombic dodecahedron. See Fig. 11 for
their specific symbolic and numeric values.

From T (and T’) we can take any one vertex to de-
fine a c (and c’=cp) respectively. For this paper, we
use as an example c=t1 from eq. (18) from Koca[3]
which is our 13’th T (and T’) shown in Fig.11 such
that c= 1

2 (1 + e1 − e2 − e3) (and c’= e2−e3√
2

). Here c’ is

used with A’ to generate the parent W(A4), or sim-
ply A as the 5-cell[3]. Specifically, A=(c′ ◦ A′)∗ with

2 In the methods and coding descriptions, since Mamone[6] identi-
fies the 5-cell as S, but Koca uses S to identify the (S)nub 24-cell
(a convention which we use here), Mamone’s A4-based 5-cell is
now identified as A which is the 4D version of the tetrahedron.
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FIG. 11. The values of the D4 24-cell T and its alternate T’

FIG. 12. Explicit MathematicaTM computation of A from
the ΛA4[Λ , orbit ] generated A’
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FIG. 13. Visualization of the 144 root vertices of S’+T+T’
now identified as the dual snub 24-cell

A’=ΛA4[{0, 1, 4, 2, 3}, {1, 0, 0, 0}]. 3 See Fig. 12 for the
explicit MathematicaTM computation related to A and
A’.

The snub orbit (0000) of W(D4) will generate the ver-
tices of the snub 24-cell or S=I-T, as with the alternate
snub 24-cell S’=I’-T’ as shown in (7) and (8). We can
generate S (or S’) by taking the odd (or even) sign and
cyclic position permutations of a seed quaternion p∈I
(or I’) to be assigned to α (or β) for generating S (or
S’) respectively. There are only 48 that satisfy the nec-
essary constraint where p5 = ±1. Those quaternions
that satisfy the constraint are identified with an * in Ap-
pendix D. For this paper, we took the 8’th permutation

of the generated S for α = 1
2

(
1
φ + φe2 + e1

)
(and S’ for

β =
−φ− e2

φ +
√
5e1√

8
). This process of generating the snub

24-cell can be visualized as generating four quaternion
4D rotations of T (and T’). The 3D hulls of I’ is shown
in Fig. 15.

3 The 4-polytopes for a particular orbit of O(Λ)=W(group) are
generated using a function Λ[group , orbit , perm ] which is called
by ΛA4[Λ , orbit ] for the subgroup embeddings in A4 as de-
scribed in [5]. In addition, SmallCircle (◦) is the symbolic opera-
tor for quaternion (octonion) multiplication that operates across
lists, along with the expected symbolic exponentials (* and †)
for Conjugate and ConjugateTranspose respectively. The func-
tion prq[p , r , q , left:False] := If[left, q ◦ (p ◦ r), p ◦ (r ◦ q)]
implements the operation of [p,q]:r from eq. (6) in [3],
which is defined for any combinations of inputs as elements
or lists in order to add flexibility to quaternion and octonion
operators, including left or right (default) non-commutative
multiplication ordering. Other operators are also available
for scalar product+(⊕), scalar product-(⊖), commutator(⊙),
anti-commutator(∧), derivation(2), Kronecker product(⊗), and
octExp for exponential powers of octonions.

S = I − T =
∑4

i=1 α
i ◦ T

or
I = prq[α0−4, 1, T]

(7)

S′ = I ′ − T ′ =
∑4

i=1 β
i ◦ T ′

or
I ′ = prq[β0−4, 1, T′]

(8)

The 3D hulls for one copy of I (or φI) are represented
in Fig. 14 hulls {2,3,5} (or {6,7,8}) respectively plus 1/2
of the vertices in hull 4. The vertex values of I are listed
in either of the center columns of either Appendix D Fig.
22 or Fig. 23.
Koca[3] has also identified the dual to the snub 24-cell

as being made up of the 144 root vertices of S’+T+T’.
This 4-polytope is visualized in Fig. 13.
The equations for the generation of J (and J’) are

shown in (9) and (10). As it was for I (and I’) ver-
tices each mapping to 5 quaternion rotations of T (and
T’), J (and J’) vertices each map to 5 quaternion rota-
tions of I (and I’) or 25 quaternion rotations of T (and
T’). Given the isomorphism between each E8 root vertex
and 4 copies of I (i.e. L and R each at unit and 1/φ
scales) as demonstrated in Section II, this means quater-
nionic Weyl orbit construction, when used with U and
mapLR, provides for an explicit map between each of the
240 E8 root vertices and 20 J (or J’) vertices (i.e. 20=4
L⊕R⊕1⊕φ copies of each I (or I’) vertex⊗5 quaternion
rotations).

J =
∑4

i=0 c
′ ◦ ᾱ†i ◦ αi ◦ T

or
J = prq[A′,α0−4, T]

(9)

J ′ =
∑4

i=0 c ◦ β̄†i ◦ βi ◦ T ′

or
J ′ = prq[A′,β0−4, T′]

(10)

See Figs. 16-17 for the 120-cell (J) and its alternate
(J’) as generated by J=prq[A′, 1, I] and J’=prq[A′, 1, I′]
respectively.

IV. CONCLUSION

This paper has given an explicit isomorphic mapping
from the 240 R8 root E8 Gossett 421 8-polytope to two
φ scaled copies of the 120 root H4 600-cell quaternion
4-polytope using U. It has also shown the inverse map
from a single H4 600-cell to E8 using a 4D↪→8D chi-
ral L↔R mapping function, φ scaling, and U−1. This
approach has shown that there are actually four copies
of each 600-cell living within E8 in the form of chi-
ral H4L⊕φH4L⊕H4R⊕φH4R roots. In addition, it has
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demonstrated a quaternion Weyl orbit construction of
H4-based 4-polytopes that provides an explicit map from
E8 to four copies of the tri-rectified Coxeter-Dynkin di-
agram of H4, namely the 120-cell of order 600. Taking
advantage of this property promises to open the door to
as yet unexplored chiral E8-based Grand Unified Theo-
ries or GUTs. It is anticipated that these visualizations
and connections will be useful in discovering new insights

into unifying the mathematical symmetries as they relate
to unification in theoretical physics.
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FIG. 14. Concentric hulls of 421 in Platonic 3D projection
with numeric and symbolic norm distances
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FIG. 15. Concentric hulls of I’ as the parent H4 600-cell of or-
der 120 in Platonic 3D projection with numeric and symbolic
norm distances. This is generated by I′ = prq[α0−4, 1, T′].
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FIG. 16. Concentric hulls of J as the tri-rectified H4

120-cell of order 600 in Platonic 3D projection with nu-
meric and symbolic norm distances. This is generated by
J = prq[A′, 1, I] = prq[A′,α0−4, T].
Note: The numeric and symbolic tally list of unpermuted ver-
tex values in the lower-right corner
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FIG. 17. Concentric hulls of J’ as the tri-rectified H4

120-cell of order 600 in Platonic 3D projection with nu-
meric and symbolic norm distances. This is generated by
J′ = prq[A′, 1, I′] = prq[A′,β0−4, T′].
Note: The numeric and symbolic tally list of unpermuted ver-
tex values in the lower-right corner
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FIG. 18. Archimedean and dual Catalan solids, including
their irregular and chiral forms. These were created using
quaternion Weyl orbits directly from the A3, B3, and H3 group
symmetries[4] listed in the first column.
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FIG. 19. Breakdown of E8 maximal embeddings at height
248 of content SO(16)=D8 (120,128’)
a) Height 248 SO(16) content 120=(112+4+4)+128’
b) Height 120 and 128’ SO(8)⊗SO(8) content w/8⊗2

v,c,s triality
c) Height 136 Sp(8)⊗Sp(8) content (32+4)⊗1, 1⊗(32+4), 8⊗2

Note: This output was created in MathematicaTM with sup-
port from the GroupMath[21] and SuperLie[22] packages.
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FIG. 20. A3 in A4 embeddings of SU(5)⊃SU(4)⊗U1

These include the specified 3D quaternion Weyl orbit hulls
for each subgroup identified.
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FIG. 21. MathematicaTM code to generate the output show-
ing E8 ↔ H4 isomorphism
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FIG. 22. Output showing detail of E8↔H4(L⊕R⊕1⊕φ)
isomorphism for each vertex
Note: Red rows indicate D4 24-cell membership and the *
identifies those satisfying the constraint of p∈I where p5 =
±1.
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FIG. 23. Output showing detail of E8↔H4(L⊕R⊕1⊕φ)
isomorphism for each vertex.
Note: Red rows indicate D4 24-cell membership and the *
identifies those satisfying the constraint of p∈I where p5 = ±1
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