A Truly Easy Proof: Pi is Irrational

Timothy Jones

November 15, 2023

Abstract

Using the derivative of an integer polynomial composed with Euler's formula we prove that π is irrational.

Proof

Proofs of the irrationality of π are numerous [1], but none are as easy and direct as the following.

Theorem 1. π is irrational.
Proof. A simple case generalizes. Suppose $f_{3}(x)=x^{3}$ and consider the sum of its derivatives:

$$
F_{3}(x)=x^{3}+3 x^{2}+3!x+3!.
$$

It follows that $F_{3}(0)=3$!. Now consider

$$
\begin{aligned}
F_{3}(0) e^{x} & =3!\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\sum_{k=4}^{\infty} \frac{x^{k}}{k!}\right) \\
& =F_{3}(x)+3!\sum_{k=4}^{\infty} \frac{x^{k}}{k!} \\
& =F_{3}(x)+3!\left(e^{x}-s_{3}(x)\right),
\end{aligned}
$$

where $s_{3}(x)$ is a partial sum of e^{x}.

Adding $F(0)$ and imagining $x=\pi i$, we have

$$
\begin{align*}
\left(e^{x}+1\right) F_{3}(0) & =F_{3}(0)+F_{3}(x)+3!\left(e^{x}-s_{3}(x)\right) \tag{1}\\
0 & =\frac{F_{3}(0)+F_{3}(x)}{3!}+\left(e^{x}-s_{3}(x)\right) \tag{2}
\end{align*}
$$

There is no reason to believe that for a general term of any polynomial this pattern would change. Nor is there any reason that all surviving non-zero coefficients of $F_{n}(r), r$ a root of $f_{n}(x)$ would not have factors of the multiplicity of the root, if the coefficients of $f_{n}(x)$ are integers. Thus assuming $\pi=p / q$, we can use $x^{3}(q x-p i)^{3}$, for example, and these conditions are met. So (2) gives, using Euler's formula in (1), 0 is an integer plus a fraction less than 1 , a contradiction.

References

[1] Eymard, P., Lafon, J.-P. (2004). The Number π. Providence, RI: American Mathematical Society.

