# A Truly Easy Proof: Pi is Irrational 

Timothy Jones

January 15, 2024


#### Abstract

Using the sum of the derivatives of an integer polynomial with Euler's formula we prove that $\pi$ is irrational. We show how the technique can be used to show $e$ and $\pi$ 's transcendence.


## Proof

Proofs of the irrationality of $\pi$ are numerous [1], but none are as easy and direct as the following.

Theorem 1. $\pi$ is irrational.
Proof. A simple case generalizes. Suppose $f_{3}(x)=x^{3}$ and consider the sum of its derivatives:

$$
F_{3}(x)=x^{3}+3 x^{2}+3!x+3!.
$$

It follows that $F_{3}(0)=3$ !. Now consider

$$
\begin{aligned}
F_{3}(0) e^{x} & =3!\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\sum_{k=4}^{\infty} \frac{x^{k}}{k!}\right) \\
& =F_{3}(x)+3!\sum_{k=4}^{\infty} \frac{x^{k}}{k!} \\
& =F_{3}(x)+3!\left(e^{x}-s_{3}(x)\right),
\end{aligned}
$$

where $s_{3}(x)$ is a partial sum of $e^{x}$.

Adding $F(0)$ we have

$$
\begin{equation*}
\left(e^{x}+1\right) F_{3}(0)=F_{3}(0)+F_{3}(x)+3!\left(e^{x}-s_{3}(x)\right) \tag{1}
\end{equation*}
$$

Now imaging $x=\pi i$ and applying Euler's formula, $e^{\pi i}+1=0$ makes (1)

$$
0=\frac{F_{3}(0)+F_{3}(x)}{3!}+\left(e^{x}-s_{3}(x)\right)
$$

after dividing by 3 !, the multiplicity of the single root of $f(x)$ factorial.
There is no reason to believe that for a general term of any polynomial this pattern would change. Nor is there any reason that all surviving non-zero coefficients of $F_{n}(r), r$ a root of $f_{n}(x)$ would not have factors of the multiplicity of the root factorial (like this easy case), if the coefficients of $f_{n}(x)$ are integers. Thus assuming $\pi=p / q$, we can use $x^{3}(q x-p i)^{3}$, for example, and these conditions are met. So, 0 is an integer plus a something less than 1 , a contradiction.

Of course this is a forest only proof. We are definitely not getting into the weeds, the details. The next two, slightly harder ideas, give credence to our evolving forest.

## The Mean Value Theorem

Another property of $F(x)$ is

$$
\begin{align*}
F(x)-F^{\prime}(x) & =\left(x^{3}+3 x^{2}+3!x+3!\right)-\frac{d}{d x}\left(x^{3}+3 x^{2}+3!x+3!\right)  \tag{2}\\
& =x^{3}=f(x) \tag{3}
\end{align*}
$$

and this is clearly the case for any polynomial, $f(x)$. We also notice the product formula for derivatives is of interest: $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$. Consider that $\left(e^{x} F(x)\right)^{\prime}=$ $e^{x} F(x)+F^{\prime}(x) e^{x}$ is close to $e^{x}\left(F(x)-F^{\prime}(x)\right)$. We need subtraction; $-e^{-x} F(x)$ does the trick:

$$
\begin{equation*}
\left(-e^{-x} F(x)\right)^{\prime}=e^{-x} F(x)+F^{\prime}(x)\left(-e^{-x}\right)=e^{-x}\left(F(x)-F^{\prime}(x)\right) . \tag{4}
\end{equation*}
$$

The mean value theorem can be combined with (4). Let $G(x)=-e^{-x} F(x)$, then

$$
\frac{G(x)-G(0)}{(x-0)}=G^{\prime}(\xi)=e^{-\xi} f(\xi)
$$

where $\xi \in(0, x)$. Translating back,

$$
-e^{-x} F(x)+e^{0} F(0)=x e^{-\xi} f(\xi)
$$

and then multiplying by $e^{x}$ gives

$$
-F(x)+e^{x} F(0)=x e^{x-\xi} f(\xi)
$$

This is our pattern: $e^{x} F(0)=F(x)+x e^{x-\xi} f(\xi)$.

## Integration

This pattern $e^{x} F(0)=F(x)+x e^{x-\xi} f(\xi)$ might be called Hermite's Formula. With it (and other things) he showed $e$ is transcendental and later Lindemann used it again to show $\pi$ is transcendental too. We can give the essence of their ideas. Before going there, here's another derivation of Hermite's formula using a definite integral.

Just integrating

$$
\frac{d\left(-e^{-x} F(x)\right)}{d x}=e^{-x} f(x)
$$

gives

$$
\int_{0}^{x} \frac{d}{d x}\left(-e^{-x} F(x)\right)=\left.\right|_{0} ^{x}\left(-e^{-x} F(x)\right)=-e^{-x} F(x)+F(0)
$$

on the left side and

$$
\int_{0}^{x} e^{-x} f(x) \mathrm{dx}
$$

on the right. Multiplying by $-e^{x}$ then gives

$$
F(x)-e^{x} F(0)=-e^{x} \int_{0}^{x} e^{-x} f(x) \mathrm{dx}
$$

or

$$
e^{x} F(0)=F(x)+e^{x} \int_{0}^{x} e^{-x} f(x) \mathrm{dx}
$$

## Transcendence

A number is transcendental if it is not the root of an integer polynomial. Naturally, to show a number is transcendental, we suppose that it is a root of polynomial and derive a contradiction. We can use Hermite's polynomial as a starting point. Consider that $\pi i=r_{0}$ and $r_{k}, 0<k \leq n$, are other roots an integer polynomial. Supposing we made the right Hermite polynomial, we might hope for something involving

$$
F(0)\left(e^{r_{0}}+e^{r_{1}}+\cdots+e^{r_{n}}\right)=-F(0)+F\left(r_{1}\right)+\cdots+F\left(r_{n}\right)+\sum_{k=0}^{n} \epsilon_{k}
$$

But this isn't equal to zero. We need a modification that will make this equal to 0 but also yield a way to sum those large capital $F$ values. We know $e^{\pi i}+1=0$, so we can say

$$
0=F(0)\left(\left(e^{r_{0}}+1\right)\left(e^{r_{1}}+1\right) \ldots\left(e^{r_{n}}+1\right)\right)
$$

and this will yield sums of $F$ at the various exponents generated. We will have to modify the small case $f$ used for our capitial $F$ to make the roots equal to these exponents. Will the resulting polynomial be the requisite integer polynomial or something close - i.e. with coefficients rationals awaiting a constant multiple to make them all integers.

That's $\pi$ and it seems complicated. Remember

$$
\begin{equation*}
\prod_{k=0}^{n}\left(x-r_{k}\right)=P_{0} x^{n}+P_{1} x^{n-1}+P_{2} x^{n-2}+\cdots+P_{n} \tag{5}
\end{equation*}
$$

where $P_{k}$ is the sum of roots multiplied $k$ at a time. You observe this with
$(x-1)(x-2)(x-3)=x^{3}-(1+2+3) x^{2}+(1 \cdot 2+1 \cdot 3+2 \cdot 3) x^{1}-1 \cdot 2 \cdot 3$.
And we can get these coefficients with Maple, Figure 1.

$$
\begin{aligned}
& >\operatorname{expand}((x-1) \cdot(x-2) \cdot(x-3)) \\
& \qquad x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

Figure 1: Maple's expand command in action.
This example gives some evidence that integer roots generate integer coefficients; a pretty obvious result. But what about $(x-\sqrt{2})(x+\sqrt{2})=x^{2}-2$ ? The
roots are not integers, but the coefficients are. So it isn't clear whether or not we can form a polynomial from the roots of an integer polynomial that will for sure also have integer coefficients. More on this in a separate article. Let's try an easier case of transcendence.

Suppose we wanted to prove $e$ is transcendental. As always we assume it isn't and attempt to derive a contradiction. Suppose $e$ is a root of $p(x)$

$$
p(x)=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n}
$$

where the coefficients are integers. Then

$$
p(e)=c_{0} e^{n}+\cdots+c_{n}=0 .
$$

It seems likely we can form a polynomial $f(x)$ with an $F(0)$ such that

$$
\begin{equation*}
0=F(0)\left(c_{0} e^{n}+\cdots+c_{n}\right)=c_{0} F(n)+\cdots+c_{n} F(0)+\sum_{i=0}^{n} \epsilon_{i} . \tag{6}
\end{equation*}
$$

We can read the necessary roots off of (6). They are just the integers $0, \ldots, n$; the exponents of $e$.

## Conclusion

This is a forest article. With it students might seek to happily learn what's needed to complete our sketches.

## References

[1] Eymard, P., Lafon, J.-P. (2004). The Number $\pi$. Providence, RI: American Mathematical Society.

