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Abstract: A restricted path integral method is proposed to simulate a type of quantum sys-

tem or Hamiltonian called a sum of controlled few-fermions on a classical computer using Monte

Carlo without a numerical sign problem. Related methods and systems of Monte Carlo quantum

computing are disclosed for simulating quantum systems and implementing quantum computing

efficiently on a classical computer, including methods and systems for simulating many-variable

signed densities, methods and systems for decomposing a many-variable density into a combi-

nation of few-variable signed densities, and methods and systems for solving a computational

problem via Monte Carlo quantum computing.

BACKGROUND

Quantum mechanics and quantum field theories provide the most accurate description of almost everything

in the known physical world, with the only exception of extremely strong gravitation. Vastly many questions

in physics, chemistry, materials science, and even molecular biology could be answered definitively by solving

a set of well established quantum equations governing a quantum system, which refers to a generic physical

system consisting of particles and fields that mediate electromagnetic, weak and strong interactions, even non-

extreme gravitational forces, so long as said particles and fields conform to the laws of quantum mechanics.

Such a quantum system usually involves a large number of particles and modes of fields, and the noun

quantum system is often premodified by an adjective many-particle or many-body to stress that the sum of

the number of particles and the number of modes of fields is large, although such adjective many-particle or

many-body is sometimes omitted but implied and understood from the context.

The ability to simulate quantum systems efficiently on a classical computer [1,2] or a quantum machine [1,3,4]

is crucially important for fundamental sciences and practical applications. Of particular importance is to sim-

ulate the ground state of a quantum many-body system efficiently on a classical computer. Among many

numerical methods, quantum Monte Carlo [2] is uniquely advantageous as being based on first principles

without uncontrolled systematic errors and using polynomially efficient importance sampling from an ex-

ponentially large Hilbert space, until its polynomial efficiency is spoiled by the notorious numerical sign

problem [5,6]. On the other hand, many computational problems that are not directly related to simulations

of quantum systems can be solved by running a quantum algorithm on a quantum computer, which reduces to

simulating a quantum system, especially the ground state of a quantum many-body system. A fundamental

1



question in computational complexity theory is whether the class of bounded-error probabilistic polynomial

time (BPP) is the same as that of bounded-error quantum polynomial time (BQP) [7], which will be answered

affirmatively in this presentation, by firstly identifying and characterizing a type of Hamiltonian called a

sum of controlled few-fermions (CFFs), whose Gibbs kernels and ground states can be simulated rigorously

using path integral Monte Carlo (PIMC) on a classical computer, then demonstrating that a universal BQP

algorithm can be encoded into a sum of CFFs and PIMC-simulated efficiently with a mixing time [8] that is

provably polynomial-bounded.

Ostensibly due to the exponentially exploding dimension of the Hilbert space that is needed to describe

the state of a quantum system, it can be exceedingly hard to solve the quantum equations or simulate an

eigenstate or dynamics of even a moderately sized quantum system on a classical computer [1]. Various

quantum Monte Carlo (QMC) methods [2] have the potential to break the curse of dimensionality, by

mapping a non-negative ground state wavefunction or Gibbs kernel of a quantum system into a classical

probability density, and simulating a random walk that embodies importance sampling of such a probability

distribution. Given positivity of a concerned wavefunction or Gibbs kernel, QMC is arguably the only general

and exact numerical method that is free of uncontrollable systematic errors due to modeling approximations,

providing reliable and rigorous simulation results upon numerical convergence. Unfortunately, previous QMC

procedures for many quantum systems, especially those involving multiple indistinguishable fermions which

represent the vast majority of atomic, molecular, condensed matter, and nuclear systems, suffer from the

notorious sign problem [1, 2, 5] that leads to an exponential slowdown of numerical convergence, due to the

presence and cancellation of positive and negative amplitudes, when no computational basis is known to

represent the concerned ground or thermal state by a non-negative wavefunction or Gibbs kernel. At the

fundamental and theoretical level, as Feynman keenly noted, a defining characteristic, possibly the single most

important aspect, setting quantum mechanics and computing apart from classical mechanics and computing,

seemed to be the presence and necessity of a sort of “negative probability” in the quantum universe, endowing

the power to represent and manipulate “negative probabilities”. Indeed, their perceived inability to deal

with “negative probabilities” efficiently was believed to fundamentally limit the power of classical mechanics

and computers in terms of simulating their quantum counterparts and solving computational problems

that quantum computers are predicted and believed to excel. The persistently unsolved status of the sign

problem in the past, compounded by the piling of “evidence problems” that had an efficient quantum

solution but no good classical solution being known or even thought possible, had fueled a pervasive belief

that quantum computers were inherently more powerful than classical machines, and there existed certain

hard computational problems which were amenable to polynomial quantum computing processes but could

not be solved efficiently on classical computers, or in the terminology of quantum complexity theory [7], that

the computational complexity classes of BQP and quantum Merlin Arthur are strictly proper (i.e., larger)

supersets of the classical classes of BPP and 1-message Arthur-Merlin interactive proof.
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Bucking the common and popular belief, this presentation discloses general and systematic solutions to the

dreaded sign problem, thus establish BPP = BQP, by identifying and characterizing a number of classes of

quantum Hamiltonians/systems called strongly frustration-free (StrFF), ground sate frustration-free (GFF),

directly frustration-free (DFF), separately frustration-free (SepFF), whose Gibbs wavefunctions have a nodal

structure that can be efficiently computed by solving a small subsystem involving a small number of dynam-

ical variables associated with a constituent few-body interaction, as well as quantum Hamiltonians/systems

called sum of controlled few-fermions (sum-of-CFFs), whose Gibbs kernels and ground states can be simu-

lated rigorously via PIMC on a classical computer, where the rigorous PIMC uses restricted path integrals

(RPIs) to overcome the dreaded sign problem. As a first major utility, it is demonstrated that any StrFF,

GFF, DFF, SepFF, or sum-of-CFFs Hamiltonian can be efficiently simulated on a classical computer, in the

sense that ground state wavefunctions, Gibbs wavefunctions, Gibbs kernels, Gibbs transition amplitudes, and

Wiener densities associated with such Hamiltonians can be efficiently sampled via a Monte Carlo procedure

on a classical computer, subject to a polynomially small error in a properly defined sense. A particular class

of Hamiltonians/systems consist of distinguishable and interacting bi-fermions, each of which comprises two

non-interacting identical spinless fermions moving in a three-well potential on a circle. Then as a second

major utility, it is demonstrated that each of the classes of StrFF, GFF, DFF, SepFF, or sum-of-CFFs

Hamiltonians/systems consisting of only bi-fermions is universal for quantum circuits and computations by

homophysically implementing a Feynman-Kitaev construct.

Combining the first and second major utilities leads to a third major utility which asserts and demonstrates

that the two computational complexity classes BPP and BQP are actually one and the same. That quantum

computing and mechanics are just classical computing and probability up to polynomial reduction is of

great significance. Any quantum computing process or quantum circuit in BQP can be efficiently simulated

by a Monte Carlo procedure running on a classical computer. Such simulation, indeed implementation of

quantum computing, is called Monte Carlo quantum computing, which is not to be confused with the

still sign-problem-prone, conventional quantum Monte Carlo simulation of quantum systems and computing

processes. The methods, computing processes, and systems disclosed in this presentation not only solve the

sign problem that has plagued Monte Carlo simulations in many areas of science and technology, but also

open up new avenues for developing and identifying efficient classical computing processes from the vantage

point of quantum computing. All known and to be discovered BQP computing processes reduce to BPP

solutions. It should be noted that the BPP or BQP class of computational problems as referenced here is not

to be understood as limited strictly to the family of decision or promise problems on a classical or quantum

computer. Rather, the BPP or BQP class should be broadly interpreted as to represent general types of

computational problems that are efficiently solvable on a classical or quantum machine. Indeed, it has been

well established and widely known that a great number of computational problems for function evaluation,

objective optimization, and matching or solution search, etc., are reducible or polynomially equivalent to

BPP or BQP problems, in that, the answer to a function/optimization/search problem can be obtained
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efficiently by solving one or a polynomial-bounded number of BPP or BQP problem(s). Moreover, it is

usually straightforward in practice to modify and adapt only slightly a BPP or BQP computing process to

an efficient procedure for solving a function/optimization/search problem.

SUMMARY

Methods, software systems and related computer program products, involved computer-readable source and

machine codes as well as numerical data, signals, hardware systems and related physical devices storing,

processing, and executing involved computer-readable source and machine codes as well as numerical data

and signals, are disclosed in relation to methods and processes of simulating a many-variable system or a

many-variable signed density associated with a many-variable system, constructing a many-variable system

comprising a plurality of few-variable systems or processing data and signals describing and representing a

many-variable signed density into a combination of a plurality of few-variable signed densities, and solving

a computational problem by simulating a many-variable system or a many-variable signed density.

One method of simulating a many-variable signed density comprises providing a first means for decomposing

said many-variable signed density into a combination of a plurality of few-variable signed densities, providing

a second means for determining few-variable nodal surfaces corresponding to each of said few-variable signed

densities, providing a third means for producing a plurality of samples of few-variable restricted densities, and

providing a fourth means for producing a plurality of samples of an many-variable restricted density, whereby

said many-variable restricted density is substantially equivalent to said many-variable signed density.

Another method of simulating a many-variable signed density being generated by a many-variable transition

operator comprises providing a first means for decomposing said many-variable transition operator into a

combination of a plurality of few-variable transition operators, providing a second means for determining

few-variable nodal surfaces corresponding to each of said few-variable signed densities, providing a third

means for producing a plurality of samples of few-variable restricted densities, providing a fourth means for

producing a plurality of samples of a many-variable restricted density, whereby said many-variable restricted

density is substantially equivalent to said many-variable signed density.

One method of solving a computational problem being described by problem data comprises providing a

first means for processing said problem data to produce Gibbs data and providing a second means for

simulating a many-variable signed density. Said first means further comprises providing a first processing

means for producing circuit data, providing a second processing means for producing homophysics data,

and providing a third processing means for producing Gibbs data comprising a description of a many-

variable Gibbs operator and a plurality of few-variable Gibbs operators, with said many-variable Gibbs

operator generating said many-variable signed density, whereby said many-variable signed density encodes a

quantum result which in turn encodes a solution to said computational problem. Said second means further
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comprises providing a first simulating means for determining few-variable nodal surfaces, providing a second

simulating means for producing a plurality of samples of few-variable restricted densities, and providing a

third simulating means for producing a plurality of samples of a many-variable restricted density, whereby

said many-variable restricted density is substantially equivalent to said many-variable signed density.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a Feynman spindle from a start point (qn0 , τn0) to an end point (qn2 , τn2) on the left, and an

orbit of Feynman spindles from a start point (qn0
, τn0

) to an an orbit of end points (G∗qn2
, τn2

) on the right.

Fig. 2 shows an orbit of Feynman spindles from an orbit of start points (G∗qn0
, τn0

) to a midpoint (q, τ),

that is post-tethered by a segment of Feynman path γ1 from the midpoint to an end point (qn1
, τn1

).

Fig. 3 shows an orbit of Feynman spindles from a midpoint (q, τ) to an orbit of end points (G∗qn1
, τn1

), that

is pre-tethered by a segment of Feynman path γ0 from a start point (qn0 , τn0) to the midpoint.

Fig. 4 shows a square-shaped Feynman-Kitaev propagator using an auxiliary rebit.

Fig. 5 shows a diamond-shaped state filter using another auxiliary rebit.

Fig. 6 shows one method of simulating a many-variable signed density.

Fig. 7 shows another method of simulating a many-variable signed density.

Fig. 8 shows one method of solving a computational problem.

DETAILED DESCRIPTION

Let a triple (C,H,B) represent a general quantum system [9], where C is a configuration space consisting

of configuration points, each of which is a tuple or vector of variable values (e.g., eigenvalues) assigned to

an ensemble of coordinate variables that are dynamical variables associated with the quantum system, for

example but not limited to spatial positions of particles, while H def
= H(C) ⊆ L2(C) is a Hilbert space of

state vectors (i.e., wavefunctions) supported by C, and B def
= B(H) is a Banach algebra of bounded operators

acting on vectors in H, which contains a strongly continuous one-parameter semigroup of Gibbs operators

{exp(−τH)}τ∈[0,∞), whose infinitesimal generatorH is designated as the Hamiltonian governing the quantum

system. A Hamiltonian is the epitome of a general lower-bounded self-adjoint operator h, called a partial

Hamiltonian, whose eigenvalues are denoted by {λn(h)}∞n=0 ⊆ R in a strictly increasing order, and the

associated eigenstates are denoted by {ψn(h)}∞n=0, each of which is either a non-degenerate wavefunction or

a suitable representation of an eigen subspace. A partial Hamiltonian h and its associated Gibbs operators

{exp(−τh)}τ∈[0,∞) are also said to be supported by C for the sake of brevity.

It is almost always the case, here taken as an axiomatic premise, that all partial Hamiltonians in consideration
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are of the Schrödinger type, as a sum of an elliptic differential operator −∆ and a bounded potential V ,

so to substantiate the Hopf lemma and the strong Hopf extremum principle [9–11]. It is without loss of

generality (WLOG) to assume that C is a compact Riemannian manifold of a finite dimension dim(C) ∈ N,

and all wavefunctions are real-valued, so the Hilbert spaces and Banach algebras are over R [7,9,12,13]. The

Riemannian metric g defining C induces a length measure for curves and a volume measure Vg for subsets

on C. Being compact, C has a finite diameter diam(C) ∈ R, thus a finite size(C) def
= dim(C) + diam(C). It is

assumed that all fundamental equations of physics, especially the Schrödinger and quantum field-theoretic

equations, are nondimensionalized and written in a so-called natural unit system.

Consider a many-fermion system (MFS) of a variable size, comprising a number S ∈ N of fermion species, each

species labeled by s ∈ [1, S] consisting of a number ns ∈ N of identical fermions moving on a low-dimensional

Riemannian manifold Xs, where the total number of particles N∗
def
=
∑S

s=1 ns may go up unbounded, while

both ds
def
= dim(Xs) and Ds

def
= diam(Xs), ∀s ∈ [1, S] are always bounded by a fixed number. Mathematically,

the identical fermions of each species s ∈ [1, S] may be artificially labeled by an integer n ∈ [1, ns], so that

a configuration coordinate (point) qs
def
= (qs1, qs2, · · ·, qsns) ∈ Xns

s can represent their spatial configuration,

where ∀(s, d) ∈ [1, S] × [1, ns], qsn
def
= (xsn1, · · ·, xsnds) is a ds-dimensional coordinate of the n-th fermion

of the s-th species, and ∀d ∈ [1, ds], xsnd is a coordinate along the d-th dimension and counted as one

degree of freedom. But physically, the indistinguishability among identical fermions dictates that all of the

label-exchanged coordinates be equivalent and form an orbit Gsqs def
= {πsqs : πs ∈ Gs} for any qs ∈ Xns

s ,

where Gs is the symmetry group of permuting ns labels, πs ∈ Gs is a typical permutation. Straightforwardly,

the Cartesian product C def
=
∏S

s=1 Xns
s is a configuration space for the MFS, and the group direct product

G∗
def
=
∏S

s=1 Gs, called the exchange symmetry group of the MFS, acts on C and partitions it into disjoint

orbits. Clearly, every pair of permutations π ∈ Gs, s ∈ [1, S] and π′ ∈ Gs′ , s′ ∈ [1, S] with s 6= s′ commute,

hence each Gs, s ∈ [1, S] is straightforwardly a normal subgroup of G∗. All of the even permutations in G∗

form a subgroup A∗, called the exchange alternating group. It is an axiom of physics that any legitimate

quantum state ψ ∈ H(C) must be exchange-symmetric as [πψ](q) def
= ψ(πq) = (−1)πψ(q), ∀q ∈ C, ∀π ∈ G∗.

With respect to G∗ and its actions on C and H(C), a full exchange symmetrization operator is defined as

F def
= |G∗|−1

∑
π∈G∗(−1)π π, with |G∗| denoting the cardinality of G∗ as a set. Similarly, an even exchange

symmetrization operator is defined as E def
= |A∗|−1

∑
π∈A∗(−1)π π.

For any partial Hamiltonian h, and any (r, q, τ) ∈ C2 × (0,∞), let 〈r|e−τh|q〉 represent an artificial, non-

negative definite, boltzmannonic Gibbs transition amplitude from q to r in (imaginary) time τ due to h,

which ignores the fermionic exchange symmetry and regards all particles distinguishable, let

〈r|e−τh|Fq〉 def
= |G∗|−1

∑
π∈G∗(−1)π〈r|e−τh|πq〉 , (1)

〈Fr|e−τh|q〉 def
= |G∗|−1

∑
π∈G∗(−1)π〈πr|e−τh|q〉 , (2)

〈Fr|e−τh|Fq〉 def
= |G∗|−2

∑
π∈G∗

∑
π′∈G∗(−1)π+π′〈πr|e−τh|π′q〉 (3)
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denote a pre-, post-, and dual-symmetrized fermionic Gibbs transition amplitude. The function 〈·|e−τh|·〉 ∈

L2(C2) is called the boltzmannonic Gibbs kernel, and 〈·|e−τh|F·〉, 〈F·|e−τh|·〉, 〈F·|e−τh|F·〉 ∈ L2(C2) are

called the pre-, post-, dual-symmetrized fermionic Gibbs kernels respectively, being associated with a formal

Gibbs operator exp(−τh), τ ∈ (0,∞) generated by a partial Hamiltonian h. It is obvious that 〈·|e−τh|F·〉 ≡

〈F·|e−τh|·〉 ≡ 〈F·|e−τh|F·〉, either one may be referred to as the fermionic Gibbs kernel.

All Feynman path integrals, Gibbs transition amplitudes, and Gibbs kernels in this presentation should be

interpreted in the boltzmannonic sense as non-negative definite quantities, unless a full exchange symmetriza-

tion operator F is placed explicitly in front of one or more configuration coordinate(s) to signify full exchange

symmetrization and summation of signed contributions to yield a fermionic quantity.

Given an MFS governed by a Hamiltonian H, a computationally important number is the (descriptive) size

of H, denoted by size(H), which is basically, up to a constant factor, the minimum number of classical bits

needed to describe H. All computational complexities and singular values of operators will be measured

against size(H). Of great interests are the so-called (computationally) local Hamiltonians [14,15] of the form

H =
∑K

k=1Hk, K ∈ N, K = O(poly(N∗)), where each Hk, k ∈ [1,K] moves no more than a constant number

of degrees of freedom around any configuration point, the size of H is defined as size(H) def
= size(C) +K, so

size(H) = O(poly(N∗)). In this presentation, O(·), Ω(·), and Θ(·) are the traditional notations of asymptotics

in the Knuth convention, representing an upper bound, a lower bound, and a simultaneous upper and lower

bound, respectively [16]. An Hk, k ∈ [1,K] is said to move an (s, n, d)-th degree of freedom, (s, n, d) ∈

[1, S] × [1, ns] × [1, ds] around a configuration point q = (· · ·, qsnd, · · · ) ∈ C, when there exist a τ ∈ (0,∞)

and an r = (· · ·, rsnd, · · · ) ∈ C, such that rsnd 6= qsnd while the boltzmannonic Gibbs transition amplitude

〈r|e−τHk |q〉 6= 0 [9]. For any k ∈ [1,K] and any q ∈ C, let Rk(q) def
= {r ∈ C : ∃ τ > 0 such that 〈r|e−τHk |q〉 6=

0}, which is called the boltzmannonic reach of q by Hk.

One exemplary local Hamiltonian describes a type of MFS called a few-species fermionic system (FSFS),

which comprises a small number S ∈ N of different fermion species, one or more species having a large

number of identical particles, where the particles are artificially labeled so that a conventional Schrödinger

operator of the FSFS is rewritten deliberately into a local Hamiltonian H =
∑S

s=1

∑ns

l=1

∑ns

m=1Hslm, where

for each (s, l,m) ∈ [1, S]×[1, ns]
2, Hslm

def
= −(∆sl+∆sm)/2ns+V/

∑S

s=1 n
2
s moves only the l-th and the m-th

labeled particle of the s-th species through the Laplace-Beltrami operators ∆sl and ∆sm. A single-species

fermionic system is a special case of FSFS with S = 1, namely, involving a single fermion species having a

large number of identical particles being artificially labeled.

Another exemplary local Hamiltonian H =
∑K

k=1Hk describes an important type of MFS called a many-

species fermionic system (MSFS), which comprises a large number S ∈ N of fermion species, each of which

has no more than a small constant of identical fermions, where each Hk, k ∈ [1,K] moves particles of no

more than a small constant number of species around any given configuration point q ∈ C.
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Definition 1. Given an MSFS with a configuration space C coordinating a large number of fermions of a

variable number S ∈ N of species, a form sum H =
∑K

k=1Hk, K = O(poly(S)) defining a local Hamiltonian

is called a sum of CFFs, when each Hk, k ∈ [1,K], called a CFF interaction, is invariant under any exchange

of identical particles, namely, π−1Hkπ = Hk, ∀π ∈ G∗, and satisfies 〈r|e−τHk |q〉 = 0 for any r ∈ C and

q ∈ C that differ in more than a small constant number of degrees of freedom. Such an MSFS or Hamiltonian

H is said to be sum-of-CFFs (SCFF), with SCFF serving as an adjective.

For all q ∈ C and any k ∈ [1,K], the CFF interaction Hk, by its invariance under any exchange of identical

particles, moves either all or none of the particles of each species around q. The species and fermions being

moved by Hk, k ∈ [1,K] around q ∈ C constitute a subsystem called a controlled few-fermion (CFF), which

is associated with a factor subspace Ck(q) and a factor subgroup Gk(q) ≤ G∗, in the sense that, C′k(q) and

G′k(q) ≤ G∗ exist such that Ck(q) × C′k(q) ' C and Gk(q) ×G′k(q) ' G∗, with Ck(q) and Gk(q) respectively

coordinating and permuting the particles in said CFF. Clearly, each Gk(q) is a normal subgroup of G∗ and

itself a direct product of a small number of normal subgroups from the list {Gs}s∈[1,S]. Let Ak(q) denote the

associated exchange alternating group, and define the corresponding full and even exchange symmetrization

operators as Fk(q) def
= |Gk(q)|−1

∑
π∈Gk(q) (−1)π π and Ek(q) def

= |Ak(q)|−1
∑

π∈Ak(q) (−1)π π.

Despite an SCFF system having a large total number of particles N∗, it is always computationally easy to

compute the boltzmannonic and fermionic Gibbs kernels 〈·|e−τHk |q〉 and 〈·|e−τHk |Fq〉, either analytically or

numerically, with the complexity bounded by a constant, ∀(q, τ) ∈ C × (0,∞), ∀k ∈ [1,K], since dim(Ck(q))

is always upper-bounded by a small constant. In particular, ∀(r, q) ∈ C2, in the formula 〈Fr|e−τHk |q〉 =∑
π∈G∗(−1)π〈πr|e−τHk |q〉 = 〈r|e−τHk |Fq〉 =

∑
π∈G∗(−1)π〈r|e−τHk |πq〉, even though the whole group G∗

is used for the domain of exchange symmetry to simplify the mathematical notation, it is really only those

permutations in the much smaller subgroup Gk(q) or Gk(r) that are active and relevant, since 〈πr|e−τHk |q〉 =

0 for all π 6∈ Gk(q) or 〈r|e−τHk |πq〉 = 0 for all π 6∈ Gk(r). Such efficient computability of 〈F · |e−τHk |·〉 =

〈·|e−τHk |F·〉 for all k ∈ [1,K] is the key for efficient simulation of an SCFF system, and by its universality,

of any quantum system on a classical computer.

Definition 2. Let H =
∑K

k=1Hk be a form sum defining an SCFF Hamiltonian, where λ1(Hk)−λ0(Hk) =

Ω(1/poly(size(H))), ∀k ∈ [1,K]. The form sum is called a Lie-Trotter-Kato (LTK) decomposition, and H

is called LTK-decomposed, when ∀ε > 0, there exists an m ∈ N, m = O(poly(size(H) + ε−1)), such that the

absolute value of 〈r|{∏K

k=1 e
−Hk/m}m|Fq〉−〈r|e−H |Fq〉 is less than ε〈r|e−H |q〉, ∀(r, q) ∈ C2. The same form

sum is called a ground-state projection (GSP) decomposition and H0
def
= H is called GSP-decomposed, when

∀ε > 0, there exist an m ∈ N, m = O(poly(size(H) + ε−1)) and a constant Am > 0 depending only on m,

such that ‖Am{
∏K

k=1Πk}m−Π0‖ < ε, where ‖·‖ denotes the operator norm, Πk
def
= lim τ→∞ e−τ [Hk−λ0(Hk)]

are projections to the ground state subspaces of Hk, ∀k ∈ [0,K].

The definition of an LTK- or GSP-decomposed Hamiltonian is inspired by the LTK product formula e−τH =

limm→∞{
∏K

k=1 e
−τHk/m}m, τ ∈ (0,∞) in a suitable operator topology, which suggests to divide [0, τ ] into
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time intervals delimited by time instants {τn def
= n δτ/K}n∈[0, N ], δτ

def
= τ/m, N def

= mK, and break the

Gibbs operator e−τH down into a sequence of Gibbs operators {Gn def
= e−δτHn‖K}n∈[1, N ], so to compute the

boltzmannonic and fermionic Gibbs kernels using the Feynman path integral, also known as the functional

integration [17,18]. For all n ∈ Z and any K ∈ N, the expression n ‖K denotes the unique number such that

(n ‖K) ∈ [1,K] and (n ‖K) ≡ n (mod K). Each Gibbs operator Gn and the spacetime domain C× [τn−1, τn],

n ∈ [1, N ] constitute a Feynman slab, delimited by two Feynman planes (C, τn−1) def
= {(qn−1, τn−1) : qn−1 ∈ C}

and (C, τn) def
= {(qn, τn) : qn ∈ C} [9]. If necessary, each Feynman slab associated with a constant CFF

interaction Hn‖K , n ∈ [1, N ] can be further divided into thinner Feynman slices, each of which is defined by

two Feynman planes separated by an interval of imaginary time that is as small as desired.

For Feynman slabs or slices that are sufficiently thin, there are simple rules for Feynman flights [9], which

determine the associated Gibbs transition amplitude between two points q and r on two narrowly separated

Feynman planes respectively. Said rules for Feynman flights induce a Wiener measure that assigns a non-

negative Wiener density W (γ) = e−U(γ) to each Feynman path γ, where U(·) is an action functional that

is linear with respect to path concatenation, namely, U(γ) = U(γ1) + U(γ2) holds when two segments of

Feynman paths γ1 and γ2 concatenate into a continuous Feynman path γ def
= γ2 ∗ γ1, which starts at the

start point of a first segment γ1, goes to the end point of γ1 that coincides with the start point of a second

segment γ2, and continues till the end point of γ2.

A number of consecutive Feynman slabs with the corresponding sequence of Gibbs operators {Gn}n∈[n1, n2],

0 < n1 ≤ n2 ≤ N constitute a Feynman stack with the two Feynman planes (C, τn0) and (C, τn2) forming its

boundaries [9], where n0
def
= n1− 1, ∀n1 ∈ N. Pick two points (qn0 , τn0) and (qn2 , τn2) on the two boundary

Feynman planes, the set of all Feynman paths

Γ(qn2
, τn2

; qn0
, τn0

) def
= {γ(τ) : τ ∈ [τn0

, τn2
] 7→ C such that γ(τn0

) = qn0
, γ(τn2

) = qn2
} (4)

constitutes a Feynman spindle [9], which gives rise to a boltzmannonic Gibbs transition amplitude

ρ(qn2
, τn2

; qn0
, τn0

) def
=
∫
γ∈Γ(qn2

,τn2
;qn0

,τn0
)
W (γ) dγ (5)

=
∫
· · ·
∫
{∏n2

n=n1
〈qn|e−δτHn‖K |qn−1〉}{

∏n2−1

n=n1
dqn} ,

which can be exchange-symmetrized to produce a fermionic Gibbs transition amplitude

ρ(qn2
, τn2

;Fqn0
, τn0

) def
= |G∗|−1

∑
π∈G∗(−1)πρ(qn2

, τn2
;πqn0

, τn0
) . (6)

Note that the fermionic exchange symmetry is ignored in equation (5) and the integration over all particle-

distinguished Feynman paths yields a non-negative definite, boltzmannonic Gibbs transition amplitude.

Fig. 1 (left) shows a Feynman spindle from a start point (qn0 , τn0) to an end point (qn2 , τn2), with the

gray ellipses indicating the presence of infinitely many other Feynman paths connecting the points (qn0
, τn0

)

and (qn2
, τn2

), where each Feynman path is assigned a non-negative Wiener density, and the integration of

9



such Wiener density yields the boltzmannonic ρ(qn2 , τn2 ; qn0 , τn0). Fig. 1 (right) illustrates how exchange

symmetrization induces an orbit of Feynman spindles from the G∗-orbit of the start point G∗qn0
= {πqn0

:

π ∈ G∗} to the end point qn2
, where each Feynman spindle Γ(qn2

, τn2
;πqn0

, τn0
), π ∈ G∗ gives rise to

a boltzmannonic ρ(qn2
, τn2

;πqn0
, τn0

), which is weighted by (−1)π and makes a signed contribution to the

fermionic ρ(qn2 , τn2 ;Fqn0 , τn0). The ellipsis in Fig. 1 (right) indicates the presence of many Feynman spindles

starting from exchange-permuted configuration points.

Fig. 1: Left: A Feynman spindle from a start point (qn0 , τn0) to an end point (qn2 , τn2); Right: An

orbit of Feynman spindles from a start point (qn0 , τn0) to an an orbit of end points (G∗qn2 , τn2).

The formulation of Feynman path integral is rightly suited for simulating a Gibbs kernel via Monte Carlo

integration over a many- but finite-dimensional space. PIMC would realize BPP simulations of quantum

systems, were it not for the sign problem [5, 6] due to the presence of negative amplitudes, particularly in

fermionic systems. PIMC methods using restricted path integrals (RPIs) [6, 19–22] have been proposed and

applied to avoid negative amplitudes. But previous RPIs are only approximate methods as they rely on a

priori approximations for the nodal surfaces of Gibbs kernels associated with the Hamiltonian of a whole

system, which are unknown and hard to compute. Here I will show that for an SCFF Hamiltonian, negative

amplitudes can be avoided by restricting Feynman paths locally, with respect to the efficiently computable

nodal surface of a Gibbs kernel associated with an individual CFF interaction.

For a single Feynman slab associated with a CFF interaction Hn1‖K between two Feynman planes (C, τn0
),

(C, τn1
), τn1

> τn0
, n1 ∈ N, n0 = n1 − 1, the pre-symmetrized fermionic Gibbs kernel ρ(q, τ ;Fqn0

, τn0
) def

=

〈q|e−(τ−τn0
)Hn1‖K |Fqn0〉 is a (q, τ)-jointly continuous function of (q, τ) ∈ C × (τn0 ,∞) for any fixed qn0 ∈ C.

The preimage {(q, τ) : ρ(q, τ ;Fqn0
, τn0
} is an open set, in which the unique connected component that

contains the trivial path {(qn0
, τ) : τ ∈ (τn0

,∞)}, denoted by T (; qn0
, τn0

), is called the forward nodal tube

or Ceperley reach of (qn0
, τn0

) [6, 9]. For any τ ∈ (τn0
,∞), let N (τ ; qn0

, τn0
) def

= T (; qn0
, τn0

) ∩ (C × {τ}),

which is clearly the nodal cell of ρ(·, τ ;Fqn0 , τn0) containing the point · = qn0 . It follows from Hn1‖K

substantiating the Hopf lemma and the strong Hopf extremum principle that N (τ ; qn0 , τn0) as an open

set-valued function of τ ∈ (τn0
,∞) is continuous; ∀(q, τ) ∈ C × (τn0

,∞), (q, τ) ∈ T (; qn1
, τn1

) if and only if

q ∈ N (τ ; qn0
, τn0

) and a curve within N (τ ; qn0
, τn0

) exists to connect q and qn0
. Similarly, with respect to any

fixed (qn1 , τn1) and the post-symmetrized fermionic Gibbs kernel ρ(Fqn1 , τn1 ; q, τ), (q, τ) ∈ C × (−∞, τn1),

define a backward nodal tube or Ceperley reach T (qn1 , τn1 ; ), as the unique connected component of the

open set {(q, τ) : ρ(Fqn1
, τn1

; q, τ) > 0} that contains the trivial path {(qn1
, τ) : τ ∈ (−∞, τn1

)}, then define

10



N (qn1 , τn1 ; τ) def
= T (qn1 , τn1 ; ) ∩ (C×{τ}), ∀τ ∈ (−∞, τn1), which is clearly the nodal cell of ρ(Fqn1 , τn1 ; (·, τ)

containing the point · = qn1 . Also similarly, N (qn1 , τn1 ; τ) as an open set-valued function of τ ∈ (−∞, τn1) is

continuous; ∀(q, τ) ∈ C × (−∞, τn1
), (q, τ) ∈ T (qn1

, τn1
; ) if and only if q ∈ N (qn1

, τn1
; τ) and a curve within

N (qn1
, τn1

; τ) exists to connect q and qn1
.

In a direct fermion path integral method [19], the fermionic Gibbs kernel {ρ(qn1
, τn1

;Fqn0
, τn0

) : (qn1
, qn0

) ∈

C2 may be computed using two nested loops, where an outer loop walks the configuration points qn1 ∈ C and

qn0 ∈ C, while an inner loop regards qn1 and qn0 as being fixed, repeatedly draws a random Feynman path γ

from the orbit of Feynman spindles Γ(qn1
, τn1

;G∗qn0
, τn0

) def
=
⋃
π∈G∗Γ(qn1

, τn1
;πqn0

, τn0
) and integrates the

signed Wiener density (−1)πW (γ). The cancellation of positive and negative amplitudes severely degrades

the efficacy of such direct Monte Carlo integration of a signed measure. It turns out that any Feynman

path crossing or touching the boundary ∂T (; qn0 , τn0) of the nodal tube T (; qn0 , τn0) belongs to an orbit of

post-tethered Feynman spindles whose singed amplitude contributions cancel exactly.

Fig. 2: An orbit of Feynman spindles from an orbit of start points (G∗qn0 , τn0) to a midpoint (q, τ), that

is post-tethered by a segment of Feynman path γ1 from the midpoint to an end point (qn1 , τn1).

Fig. 2 illustrates an orbit of post-tethered Feynman spindle, which is a set of Feynman paths that come from

an orbit of start points (G∗qn0
, τn0

) to a midpoint (q, τ) via all the different ways, then share a common

segment of Feynman path γ1 from the midpoint to an end point (qn1
, τn1

). For each π ∈ G∗, the set of

concatenated Feynman paths γ1 ∗ Γ(q, τ ;πqn0
, τn0

) def
= {γ1 ∗ γ0 : γ0 ∈ Γ(q, τ ;πqn0

, τn0
)} constitutes one

post-tethered Feynman spindle, which yields a non-negative definite Wiener measure∫
γ0∈Γ(q,τ ;πqn0

,τn0
)
W (γ1)W (γ0) dγ0 = W (γ1) ρ(q, τ ;πqn0

, τn0
) . (7)

With π traversing the group G∗, or only the subgroup Gn1
(qn0

) indeed, the orbit of post-tethered Feynman

spindles γ1 ∗Γ(q, τ ;G∗qn0
, τn0

) def
= {γ1 ∗Γ(q, τ ;πqn0

, τn0
)}π∈G∗ is enumerated, with the corresponding Wiener

measures signed accordingly and summed up to yield a fermionic transition amplitude∑
π∈G∗ (−1)πW (γ1) ρ(q, τ ;πqn0

, τn0
) = W (γ1) ∗ ρ(q, τ ;Fqn0

, τn0
) , (8)

which becomes exactly zero when (q, τ) ∈ ∂T (; qn0 , τn0). Therefore, to compute the fermionic Gibbs kernel

ρ(qn1 , τn1 ;Fqn0 , τn0), it is sufficient to integrate over the set of T (; qn0 , τn0)-restricted Feynman paths

Γ∈(qn1
, τn1

; qn0
, τn0

) def
= {γ(τ) ⊆ T (; qn0

, τn0
) : τ ∈ [τn0

, τn1
], γ(τn0

) = qn0
, γ(τn1

) = qn1
} , (9)
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to obtain a forward restricted path integral

ρ∈(qn1
, τn1

; qn0
, τn0

) def
=
∫
γ∈Γ∈(qn1 ,τn1 ;qn0 ,τn0 )

W (γ) dγ (10)

=

 ρ(qn1 , τn1 ;Fqn0 , τn0) , ∀(qn1 , τn1) ∈ T (; qn0 , τn0) ,

0 , otherwise .

Γ∈(qn1
, τn1

; qn0
, τn0

) is called a forward restricted Feynman spindle connecting (qn0
, τn0

) and (qn1
, τn1

), which

comprises Feynman paths that never cross or touch the boundary ∂T (; qn0
, τn0

).

By the identity ρ(Fqn1
, τn1

; qn0
, τn0

) = ρ(qn1
, τn1

;Fqn0
, τn0

), ∀(qn1
, qn0

) ∈ C2, a post-symmetrized fermionic

Gibbs kernel ρ(;F·, τn1
·, τn0

) can always be computed via the equivalent pre-symmetrized ρ(·, τn1
;F·, τn0

)

using the forward restricted path integral. Alternatively, one may invoke the backward nodal cell T (qn1 , τn1 ; )

and consider an orbit of pre-tethered Feynman spindles Γ(G∗qn1 , τn1 ; q, τ) ∗ γ0
def
= {Γ(πqn1 , τn1 ; q, τ ; ) ∗ γ0 :

π ∈ G∗}, (q, τ) ∈ C × (−∞, τn1
) as depicted in Fig. 3, so to establish the sufficiency of integrating over the

set of T (qn1
, τn1

; )-restricted Feynman paths

Γ3(qn1 , τn1 ; qn0 , τn0) def
= {γ(τ) ⊆ T (qn1 , τn1 ; ) : τ ∈ [τn0 , τn1 ], γ(τn0) = qn0 , γ(τn1) = qn1} , (11)

to obtain a backward restricted path integral

ρ3(qn1 , τn1 ; qn0 , τn0) def
=
∫
γ∈Γ3(qn1 ,τn1 ;qn0 ,τn0 )

W (γ) dγ (12)

=

 ρ(Fqn1 , τn1 ; qn0 , τn0) , ∀(qn0 , τn0) ∈ T (qn1 , τn1 ; ) ,

0 , otherwise .

Γ3(qn1
, τn1

; qn0
, τn0

) is called a backward restricted Feynman spindle connecting (qn0
, τn0

) and (qn1
, τn1

),

which comprises Feynman paths that never cross or touch the boundary ∂T (qn1
, τn1

; ).

Fig. 3: An orbit of Feynman spindles from a midpoint (q, τ) to an orbit of end points (G∗qn1 , τn1), that

is pre-tethered by a segment of Feynman path γ0 from a start point (qn0 , τn0) to the midpoint.

Therefore, for each single Feynman slab associated with a CFF interaction Hn1‖K , n1 ∈ N, it is always

easy to compute the fermionic Gibbs kernel ρ(Fqn1
, τn1

; qn0
, τn0

) = ρ(qn1
, τn1

;Fqn0
, τn0

), ∀(qn1
, qn0

) ∈ C2,

∀τn1 > τn0 , n0 = n1 − 1, since the cardinality of the group Gn1(qn0) or Gn1(qn1) is always upper-bounded

by a small constant, and it is always easy to find a permutation π ∈ G∗ to satisfy πqn1 ∈ T (; qn0 , τn0) such

that ρ(qn1
, τn1

;Fqn0
, τn0

) = (−1)πρ(πqn1
, τn1

;Fqn0
, τn0

) = (−1)πρ∈(πqn1
, τn1

; qn0
, τn0

), or to fulfill πqn0
∈

T (qn1
, τn1

; ) such that ρ(Fqn1
, τn1

; qn0
, τn0

) = (−1)πρ(Fqn1
, τn1

;πqn0
, τn0

) = (−1)πρ3(qn1
, τn1

;πqn0
, τn0

),
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where ρ∈(πqn1 , τn1 ; qn0 , τn0) or ρ3(qn1 , τn1 ;πqn0 , τn0) can be efficiently simulated by Monte Carlo for the

forward or backward restricted path integral, so long as the nodal surface ∂T (; qn0
, τn0

) or ∂T (qn1
, τn1

; ) is

known or efficiently computable. Indeed, for any CFF interaction Hn1‖K , n1 ∈ N and a fixed q ∈ C, the

eigen system of Hn1‖K or an associated Gibbs operator e−τHn1‖K, τ > 0, restricted to the configuration space

Cn1‖K(q), can be solved either analytically or numerically at a constant computational cost, which enables

efficient computation of any related fermionic Gibbs kernel and nodal surfaces.

Now consider to compute the Gibbs transition amplitude ρ(qN , τN ;Fq0, τ0) for any given (qN , q0) ∈ C2 with

respect to a full Feynman stack associated with a sequence of Gibbs operators {Gn def
= e−δτHn‖K}n∈[1, N ],

N ∈ N. By the identity ρ(πqN , τN ;Fq0, τ0) = (−1)πρ(πqN , τN ;Fq0, τ0), ∀(qN , q0) ∈ C2, ∀π ∈ G∗ and the

fact that the orbit of any nodal cell tiles up the configuration space C under the group action of G∗ [6, 9],

it is sufficient and WLOG to limit qN to the nodal cell N (τN ; q0, τ0), which is the connected component

of the open set {q ∈ C : ρ(q, τN ;Fq0, τ0) > 0} that contains the point q = q0. On the other hand, the

identity ρ(EqN , τN ;Fq0, τ0) def
= |A∗|−1

∑
π∈A∗ ρ(πqN , τN ;Fq0, τ0) = ρ(qN , τN ;Fq0, τ0), ∀(qN , q0) ∈ C2 can be

used freely to multiply an point qN into an orbit of end points A∗qN , all of which lead to the same-valued

fermionic Gibbs transition amplitude. The same can be done for a start point. Such multiplication of an end

or start point to its A∗-orbit is called alternating broadcast.

By Feynman’s rule of amplitude multiplication for events occurring in succession [17], which may be viewed

as a generalization of the Chapman-Kolmogorov equation in probability theory to signed densities, the

fermionic Gibbs transition amplitude ρ(qN , τN ;Fq0, τ0) can be computed as

ρ(qN , τN ;Fq0, τ0)

=
∫
q1 ∈C

ρ(qN , τN ; q1, τ1) ρ(q1, τ1;Fq0, τ0) dq1

=
∫
q1 ∈G∗R1(q0)

ρ(qN , τN ; q1, τ1) ρ(q1, τ1;Fq0, τ0) dq1

= C1(q0)
∑

π∈G∗

∫
q1∈N1(q0)

ρ(qN , τN ;πq1, τ1) ρ(πq1, τ1;Fq0, τ0) dq1 (13)

= C1(q0)
∑

π∈G∗

∫
q1∈N1(q0)

ρ(qN , τN ;πq1, τ1) (−1)πρ(q1, τ1;Fq0, τ0) dq1

= C1(q0) |G∗|
∫
q1∈N1(q0)

ρ(qN , τN ;Fq1, τ1) ρ(q1, τ1;Fq0, τ0) dq1 ,

where R1(q0) is the boltzmannonic reach of q0 by H1‖K , G∗R1(q0) def
=
⋃
{πR1(q0) : π ∈ G∗} is the set of

points that are boltzmannonically reachable from any point in the orbit G∗q0, N1(q0) def
= N (τ1; q0, τ0), the

third equality follows from the fact that N1(q0) tiles up G∗R1(q0) under the group action of G∗ [6, 9], and

C−1
1 (q0) def

= |G∗|Vg(N1(q0)) / Vg(G∗R1(q0)) is an integer counting how many times each point q ∈ G∗R1(q0)

almost surely is covered by the orbit of nodal cells {πN1(q0) : π ∈ G∗}, which is efficiently computable for
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any q0 ∈ C since H1‖K is a CFF interaction. Then one uses alternating broadcast and proceeds as

ρ(qN , τN ;Fq0, τ0) = ρ(EqN , τN ;Fq0, τ0)

= C1(q0) |G∗|
∫
q1∈N1(q0)

ρ(EqN , τN ;Fq1, τ1) ρ(q1, τ1;Fq0, τ0) dq1

= C1(q0) |G∗|
∫
q1∈N1(q0)

ρ(EqN , τN ;Fq1, τ1) ρ(Eq1, τ1;Fq0, τ0) dq1 (14)

= 2C1(q0)
∑

π1∈A∗

∫
q1∈N1(q0)

ρ(EqN , τN ;Fq1, τ1) ρ(π1q1, τ1;Fq0, τ0) dq1

= 2C1(q0)
∑

π1∈A∗

∫
q1∈N1(π1q0)

ρ(EqN , τN ;Fq1, τ1) ρ∈(q1, τ1;π1q0, τ0) dq1 ,

so to have the first Feynman slab path-rectified, namely, represented by equivalent, non-negative definite,

restricted path integrals ρ∈(q1, τ1;π1q0, τ0), each of which with a π1 ∈ A∗ and a q1 ∈ N1(π1q0) sums up

non-negative Wiener densities of T (;π1q0, τ0)-restricted paths.

It is straightforward to repeat the same procedure inductively and have all of the Feynman slabs path-

rectified, so that ρ(qN , τN ;Fq0, τ0) becomes an integral of all non-negative definite contributions as

ρ(qN , τN ;Fq0, τ0) = ρ(EqN , τN ;Fq0, τ0)

= {2Cn(qn−1)
∑

πn∈A∗

∫
qn∈Nn(πnqn−1)

}N−1

n=1
ρ(EqN , τN ;FqN−1, τN−1)

×
∏N−1

n=1
ρ∈(qn, τn;πnqn−1, τn−1)

∏N−1

n=1
dqn (15)

= {2Cn(qn−1)
∑

πn∈A∗

∫
qn∈Nn(πnqn−1)

}N−1

n=1
ρ∈(qN , τN ;πNqN−1, τN−1)

×
∏N−1

n=1
ρ∈(qn, τn;πnqn−1, τn−1)

∏N−1

n=1
dqn ,

whereNn(qn−1) def
= N (τn; qn−1, τn−1) denotes the nodal cell of ρ(·, τn;Fqn−1, τn−1) containing the point qn−1,

C−1
n (qn−1) def

= |G∗|Vg(Nn(qn−1)) / Vg(G∗Rn(qn−1)) is an efficiently computable integer counting how many

times each point q ∈ G∗Rn(qn−1) is covered by the orbit of nodal cells {πNn(qn−1) : π ∈ G∗}, withRn(qn−1)

denoting the boltzmannonic reach of qn−1 by Hn‖K , for all n ∈ [1, N ] and any qn−1 ∈ C. It is worth noting

that all path rectifications in equation (15) are done on a per Feynman slab basis, only requiring a solution

for the nodal surface of the CFF interaction associated with each Feynman slab, which can be obtained at no

more than a polynomial computational cost to within a polynomial accuracy, because every CFF interaction

moves no more than a small constant number of degrees of freedom around any given configuration point. An

alternative derivation of equation (15) uses equation (13) repeatedly for each of the Feynman slabs indexed

by n ∈ [1, N−1] and takes advantage of the idempotency property of the exchange symmetrization operator

to insert an F to the start point of each of the Gibbs transition amplitudes associated with the Feynman

slabs [23,24] and obtain an identity

ρ(qN , τN ;Fq0, τ0) = {Cn(qn−1) |G∗|
∫
qn∈Nn(qn−1)

}N−1

n=1
ρ(qN , τN ;FqN−1, τN−1) (16)

×
∏N−1

n=1
ρ(qn, τn;Fqn−1, τn−1)

∏N−1

n=1
dqn ,
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then path-rectifies each of the Feynman slabs, replaces ρ(qn, τn;Fqn−1, τn−1) by ρ∈(qn, τn; qn−1, τn−1) in

accordance with equation (10), and uses alternating broadcast, for all n ∈ [1, N−1].

Equation (15) represents ρ(qN , τN ;Fq0, τ0) by an RPI comprising restricted Feynman paths of the form

γN ∗ γN−1 ∗ · · · ∗ γ2 ∗ γ1 with γn ∈ Γ∈(qn, τn; qn−1, τn−1), qn ∈ Nn(πnqn−1), πn ∈ A∗ for all n ∈ [1, N ], where

the restricted Feynman paths appear to undergo abrupt coordinate jumps in the space C× [τ0, τN ] due to the

frequent insertion of even permutations. In reality, such apparent coordinate jumps do not represent actual

physical discontinuities, since all points in any orbit A∗q, q ∈ C are physically equivalent and represent the

same physical reality. Indeed, the restricted Feynman paths are actually continuous in the space (C/A∗) ×

[τ0, τN ], where C/A∗ is an orbifold regarding each orbit A∗q, q ∈ C as a single point. A practical and

effective means to incorporate such exchange equivalence is to have each point on a Feynman plane at

time τn associated with a couple (πn, qn), n ∈ [0, N ], which specify two equivalent coordinates qn ∈ C and

πnqn ∈ A∗qn, with qn serving the Feynman stack or slice from τn−1 to τn, and πnqn being used by the

Feynman stack or slice from τn to τn+1. An even permutation πn ∈ A∗ could be interpreted as the effect of

a fermionic Gibbs kernel associated with an infinitesimally thin Feynman slice [25].

The insertion of a finite number of Feynman planes, here being done naturally for a Feynman stack associated

with a sequence of Gibbs operators {Gn def
= e−δτHn‖K}n∈[1, N ], N ∈ N, turns a Feynman path integral (or func-

tional integration) into a finite-dimensional integral over a so-called cylinder set Cyl def
= {(qN , · · ·, qn, · · ·, q0) :

qn ∈ M, ∀n ∈ [0, N ]} consisting of cylinder points, where M = C/A∗ or M = C depending upon whether

alternating broadcast is used, every cylinder point of the form (qN , · · ·, qn, · · ·, q0) actually represents a

series of connected Feynman spindles, each of which as specified by a pair of consecutive coordinates

(qn, qn−1) ∈M2, n ∈ [1, N ] integrates under a prescribed Wiener measure into a Gibbs transition amplitude

ρ(qn, τn;Fqn−1, τn−1). A restricted cylinder set ResCyl is a subset of Cyl consisting of restricted cylinder

points (RCPs) of the form (qN , · · ·, qn, · · ·, q0) subject to the constraint that ∀n ∈ [1, N ], qn ∈ Nn(qn−1),

or qn ∈ A∗Nn(qn−1) when alternating broadcast is used, in which case a (restricted) cylinder point may

be specified by a particular representative of the form (πN , qN ; · · ·;πn, qn; · · ·;π0 = 1, q0), with each couple

(πn, qn) ∈∈ C/A∗, n ∈ [0, N ] representing a configuration point on the quotient manifold C/A∗.

Equations (10), (12), and (15) provide a general method for simulating any quantum SCFF system or

Hamiltonian on a classical computer using Monte Carlo without a numerical sign problem. A Monte Carlo

procedure may employ either a homogeneous Markov chain sampling an RCP as a whole from the cylinder

set (C/A∗)N+1, or an inhomogeneous Markov chain driving a random walk in discrete time n ∈ [0, N ] over the

configuration space C/A∗, involving a Markov transition associated with ρ∈(·, τn; ·, τn−1) for each n ∈ [1, N ],

so to evolve an initial probability distribution Pr(π0 = 1, q0), (π0, q0) ∈∈ C/A∗ into a sequence of probability

distributions {Pr(πn, qn; · · · ;π0 = 1, q0) : n ∈ [0, N ]} for Markov sample paths, with P0 being essentially

the positive part of a wavefunction ψ0, while the probability Pr(πN , qN ; · · · ;π0, q0) of any Markov sample

path (πN , qN ; · · · ;π0, q0) at the end is proportional to the Wiener density of (πN , qN ; · · · ;π0, q0) as an RCP.
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Also, a suitable boundary condition should be chosen for the Feynman planes at the two ends. One usual

choice enforces periodicity by identifying the 0-th and N -th Feynman planes as one and the same. Another

frequent choice provides a known probability distribution in q0 or qN ∈ C/A∗ at each end.

In one exemplary embodiment of Markov chain Monte Carlo (MCMC) using a homogenous chain to sample

RCPs subject to the periodic boundary condition, a suitable random coordinate q0 ∈ C/A∗ is chosen such

that it extends into an initial RCP {qn = q0}Nn=1 as a suitable start point, then the RPI of equation (15)

is approximated by iterating three steps of random moves to wiggle the RCP for a predetermined and

poly(size(C))-bounded number of times. At the start of each iteration, let (πN , qN ; · · ·;πn, qn; · · ·;π0 = 1, q0)

denote the instantaneous RCP. The first step draws a random integer n ∈ [1, N ] uniformly to name the n-th

component of the instantaneous RCP, that is a couple (πn, qn) ∈∈ C/A∗ representing a configuration point on

the n-th Feynman plane. Let the couples (π(n−1)‖N , q(n−1)‖N), (π(n+1)‖N , q(n+1)‖N) ∈∈ C/A∗ be associated

with the Feynman planes immediately before or after the n-th Feynman plane. The second step simply

chooses a π ∈ A∗ uniformly and makes the substitutions πn ← ππn, qn ← πqn, π(n+1)‖N ← π(n+1)‖Nπ
−1.

The third step performs a random walk of qn∈ C using either Metropolis-Hastings or Gibbs sampling [26–28]

in accordance with a conditional probability

Pr(qn| · · · ) def
= Pr(qn|π(n+1)‖N , q(n+1)‖N ;πn; q(n−1)‖N)

∝ C(n+1)‖N(qn) ρ∈(q(n+1)‖N , τ(n+1)‖N ;π(n+1)‖Nqn, τn) (17)

× Cn(q(n−1)‖N) ρ∈(qn, τn;πnq(n−1)‖N , τ(n−1)‖N) ,

which vanishes whenever qn 6∈ Nn(πnq(n−1)‖N) or qn+1 6∈ N(n+1)‖N(π(n+1)‖Nqn). In an exemplary sampler,

a random coordinate rn is drawn according to the probability distribution Pr(rn| · · · ), rn ∈ C, then a

substitution qn ← rn is executed to update the coordinate. Note that the conditional probability Pr(qn| · · · )

is always efficiently computable, since all of the C·(·) and ρ∈(·) quantities involve CFF interactions and can

be computed either analytically or numerically at a constant cost.

Another exemplary embodiment uses the method of reptation quantum Monte Carlo (RQMC) [9, 29–31]

and path integral to compute a mirror-symmetric sequence of Gibbs operators {Gn}2Nn=1 with Gn
def
= e−δτHn ,

∀n ∈ [1, N ] and Gn
def
= G2N−n+1, ∀n ∈ [N + 1, 2N ], where N = (m + 1)K, K ∈ N, m ∈ N, and the constant

δτ ∈ (0,∞) is sufficiently small such that ∀l ∈ [0,m], the product operator
∏(l+1)K

n=lK+1
Gn is substantially

the same as the Gibbs operator exp[−δτH(l)], with H(l) def
=
∑(l+1)K

n=lK+1
Hn being an LTK-decomposed SCFF

Hamiltonian. With the boundary condition that assigns a probability density Pr(q0) = max(0, φ0(q0))/D0

for all q0 ∈ C/A∗ at the start on the first Feynman plane and similarly at the end, D0
def
= 1

2

∫
q∈C/A∗ |φ0(q)| dq,

φ0 ∈ L2(C/A∗) being any given MFS wavefunction, the method of RQMC computes the expectation value

of any G∗-invariant, (C/G∗)-diagonal operator V under G∗|φ0〉, G∗ def
=
∏N

n=1 Gn through

〈φ0|G+
∗ V G∗|φ0〉

〈φ0|G+
∗ G∗|φ0〉

=

∫
ξ∈ResCyl φ0(ξ[2N ][1])V (ξ[N ][1])W (ξ) dξ∫

ξ∈ResCyl φ0(ξ[2N ][1])W (ξ) dξ
, (18)
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where ξ def
= (π2N , q2N ; · · ·;πn, qn; · · ·;π0 = 1, q0) traverses the restricted cylinder set ResCyl, and ∀ξ ∈ ResCyl,

∀n ∈ [0, 2N ], ξ[n] def
= (πn, qn) denotes the n-th component of ξ, ξ[n][0] def

= πn, ξ[n][1] def
= qn, W (ξ) is the Wiener

density at the RCP ξ = (π2N , q2N ; · · ·;πn, qn; · · ·;π0, q0) evaluated as

W (ξ) def
= W (πn, qn; · · ·;π0, q0) def

= φ0(q0)
∏2N

n=1
{Cn(qn−1) ρ∈(qn, τn;πnqn−1, τn−1)} , (19)

where τn
def
= nδτ , ∀n ∈ [0, 2N ], the

∫
ξ∈ResCyl dξ operation on the right-hand side of equation (18) involves

integrating q0 over a nodal cell of φ0, then for each n ∈ [1, 2N ], integrating qn over the nodal cell Nn(πnqn−1)

and summing πn over A∗. In practice, the integration
∫
ξ∈ResCyl dξ is of course approximated by summing up

a finite number of RCPs obtained by importance sampling through an MCMC procedure.

Interestingly, the desired RCP samples can be generated by running an inhomogeneous Markov chain over

the state space C/A∗ when the CFF interactions satisfy a suitable condition. The inhomogeneous Markov

chain starts with a random walker having an initial probability density Pr(π0 = 1, q0), (π0, q0) ∈∈ C/A∗,

proceeds inductively in steps indexed by n ∈ [1, 2N ] and records a sequence of configuration coordinates as

a Markov sample path or trajectory of the random walker. At the beginning of each step n ∈ [1, 2N ], the

walker has reached a point (πn−1, qn−1) ∈∈ C/A∗ via a Markov sample path (πn−1, qn−1; · · ·;π0 = 1, q0),

which is associated with a probability density Pr(πn−1, qn−1; · · ·;π0, q0). The walker then undergoes a Markov

transition from the present position (πn−1, qn−1) to a new coordinate (πn, qn) ∈∈ C/A∗, qn ∈ Nn(πnqn−1)

in accordance with a Markov transition probability

Pr(qn |πnqn−1) =
Cn(qn−1) ρ∈(qn, τn;πnqn−1, τn−1)

Dn(qn−1) def
= {Cn(qn−1)

∫
ρ∈(rn, τn;πnqn−1, τn−1) drn}

, (20)

so to extend the Markov sample path into (πn, qn; · · ·;π0, q0) with a probability

Pr(πn, qn; · · ·;π0, q0) = Pr(qn |πnqn−1) Pr(πn−1, qn−1; · · ·;π0, q0) ,

where Dn(qn−1) is called the amplitude integral of ρ(·, τn;πnqn−1, τn−1) = 〈·|e−(τn−τn−1)Hn |qn−1〉 over the

nodal cell containing πnqn−1 ∈ C. At the end, the inhomogeneous Markov chain generates a Markov sample

path (π2N , q2N ; · · ·;π0, q0) with an associated probability density

Pr(π2N , q2N ; · · ·;π0, q0) = Pr(π0, q0)
∏2N

n=1 Pr(qn |πnqn−1) =
W (π2N , q2N ; · · ·;π0, q0)∏2N

n=1Dn(qn−1)
, (21)

which is substantially the same as the Wiener density W (π2N , q2N ; · · ·;π0, q0) at (π2N , q2N ; · · ·;π0, q0) as an

RCP representing a series of restricted Feynman spindles, when the sequence of Gibbs operators {Gn}Nn=1 is

amplitude integral-balanced as defined below, such that, running said inhomogeneous Markov chain repeat-

edly and independently generates a polynomial number of Markov sample paths that are effectively RCPs

and can be used to estimate to within a polynomial accuracy the expectation value of any G∗-invariant,

(C/G∗)-diagonal observable V according to equation (18).

Definition 3. A sequence of Gibbs operators {Gn def
= e−τHn}Nn=1, N ∈ N, τ ∈ (0,∞) in association with

a sequence of CFF interactions {Hn}Nn=1 is said to be amplitude integral-balanced (AIB), when the product
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∏N

n=1Dn(qn−1), with Dn(qn−1) being defined as in equation (20), always evaluates into the same constant

for any RCP (πN , qN ; · · ·;π0 = 1, q0) with (π0, q0) ∈∈ C/A∗, πn ∈ A∗, qn ∈ Nn(πnqn−1), ∀n ∈ [1, N ].

Yet another exemplary embodiment uses RQMC and path integral to compute a mirror-symmetric sequence

of Gibbs operators {Gn}2Nn=1 with Gn
def
= e−τHn , ∀n ∈ [1, N ] and Gn

def
= G2N−n+1, ∀n ∈ [N + 1, 2N ], where

N = (m+1)m0K, K ∈ N, m0 ∈ N, m ∈ N, Hlm0K+n = Hlm0K+(n‖K) for all l ∈ [0,m] and for all n ∈ [1,m0K],

the constant τ = O(poly(size(C))) ∈ (0,∞) is no longer small but sufficiently large such that ∀n ∈ [1, N ],

Gn is essentially the same as Πn = lim t→∞ e−t[Hn−λ0(Hn)] up to an error that is exponentially small, while

m0 = O(poly(size(C))) is sufficiently large such that ∀l ∈ [0,m], G(l) def
=
∏(l+1)m0K

n=lm0K+1 Gn is essentially the

same as Π (l) = lim t→∞ e−t{H(l)−λ0[H(l)]} up to a constant Am0 > 0 and an error that is O(1/poly(m0)), with

H(l) def
=
∑ (l+1)m0K

k=lm0K+1Hk being a GSP-decomposed SCFF Hamiltonian. If the sequence of Gibbs operators

{Gn}Nn=1 is AIB, then it is efficiently simulatable via Monte Carlo in exactly the same manner as described

above when dealing with LTK-decomposed Hamiltonians.

Theorem 1. Let {Gn def
= e−τHn}Nn=1, N ∈ N, τ ∈ (0,∞) be an AIB sequence of Gibbs operators associated

with a sequence of SCFF Hamiltonians {Hn}Nn=1 supported by a compact configuration space C and satisfying

λ1(Hn)− λ0(Hn) = Ω(1/poly(size(C))), ∀n ∈ [1, N ]. There is a fully polynomial randomized approximation

scheme (FPRAS) [32] to estimate 〈V 〉 def
= 〈φ0|G+

∗ V G∗|φ0〉/〈φ0|G+
∗ G∗|φ0〉 > 0 with G∗

def
=
∏N

n=1 Gn, for any

given MFS wavefunction φ0 ∈ L2(C/A∗) and any G∗-invariant, (C/G∗)-diagonal operator V ≥ 0.

Proof. As specified above, running an inhomogeneous Markov chain for an O(poly(size(C), ε−1)) number

of times can generate a sufficient number of RCPs to produce an estimate V∗ ∈ R according to equation

(18), such that Pr{|(V∗ − 〈V 〉)/〈V 〉| < ε} > 2/3. For any n ∈ [1, N ], any (πn, qn, qn−1) ∈ A∗ × C2, since

Hn is an CFF interaction with λ1(Hn) − λ0(Hn) = Ω(1/poly(size(C))), the Markov transition probabil-

ity Pr(qn |πnqn−1) of equation (20) is always efficiently computable with an O(poly(ε)) accuracy at an

O(poly(ε−1)) cost either analytically or using a deterministic or randomized numerical routine, the mixing

time of each said Markov transition moving no more than a small constant number of degrees of freedom is

always O(poly(size(C), ε−1))-bounded. The overall runtime is clearly O(poly(size(C), N, ε−1)).

A particular application of RQMC and Theorem 1 is to simulate the ground state of a given Hamiltonian,

where an AIB sequence of Gibbs operators {Gn def
= e−τHn}Nn=1, N ∈ N, τ ∈ (0,∞) is associated with sequence

of SCFF Hamiltonians {H(l)}ml=0, m ∈ N, which evolves adiabatically from an initial Hamiltonian H(0) with

a known non-degenerate ground state φ0
def
= ψ0(H(0)) to a final Hamiltonian H(m) [9] whose ground state

φm
def
= ψ0(H(m)) is of interest, where each H(l), l ∈ [0,m] is an SCFF Hamiltonian with a non-degenerate

and polynomial-gapped ground state, whose defining form sum H(l) =
∑K

k=1Hlm0K+k is LTK-decomposed

with m0 = 1 or GSP-decomposed with m0 = O(poly(size(C))) ∈ N, while Hlm0K+n = Hlm0K+(n‖K) for all

l ∈ [0,m] and all n ∈ [1,m0K] in both cases. Clearly, N def
= (m+1)m0K. For an LTK-decomposition, the time

constant τ is sufficiently small such that the difference between e−τH(l) and
∏K

k=1 e
−τHlK+k is sufficiently

small for all l ∈ [0,m], whereas for a GSP-decomposition, the time constant τ is sufficiently large such that
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the Gibbs operator Gn is exponentially close to Πn = lim t→∞ e−t[Hn−λ0(Hn)] for all n ∈ [1, N ], while m0 is

sufficiently large such that G(l) def
=
∏(l+1)m0K

n=lm0K+1 Gn is essentially the same as Π (l) = lim t→∞ e−t{H(l)−λ0[H(l)]}

up to a constant for all l ∈ [0,m]. Finally, m is chosen sufficiently large such that ‖H(l + 1) − H(l)‖ =

O(1/poly(m)) is sufficiently small comparing to λ1[H(l)] − λ0[H(l)] for all l ∈ [0,m]. As such, the final

H(m) is called an adiabatic-reachable SCFF Hamiltonian. Theorem 1 guarantees an FPRAS for simulating

the ground state φm of an adiabatic-reachable SCFF Hamiltonian H(m), producing a good estimate for the

expectation value 〈φm|V |φm〉/〈φm|φm〉 of any G∗-invariant, (C/G∗)-diagonal observable V ≥ 0.

Not only SCFF Hamiltonians can be simulated efficiently, but also they are universal for many-body physics

and quantum computing. For any θ ∈ [−π, π), let R(θ) def
= I cos θ + XZ sin θ denote a rotation gate and

R(θ) def
= Z cos θ+X sin θ denote an R-gate [9,13], where X def

= σx and Z def
= σz are the familiar Pauli matrices

acting on a single rebit as the simplest quantum system (C0,H0,B0), with C0 def
= {0, 1}, H0

def
= {α|0〉+ β|1〉 :

α, β ∈ R}, B0 being the Banach algebra of 2 × 2 real matrices. Define Z± def
= (I ± Z)/2. It is well known

that controlled rotation gates of the form I ⊗ Z+ + R(θ0) ⊗ Z− all using the same angle θ0 ∈ [−π, π) are

already universal for quantum computation, when θ0/π is irrational [9,12]. In this presentation, any universal

quantum algorithm is allowed to use any controlled rotation gate U(θ) def
= I⊗Z++R(θ)⊗Z− with any angle

θ ∈ [−π, π), each of which is realized by a controlled R-gate R(θ/2)⊗Z+ +R(−θ/2)⊗Z− followed by a free

R-gate R(θ/2) = R(θ/2)⊗ I. The following will show that any BQP algorithm given as an ordered sequence

of free or controlled R-gates {Ut(θt) def
= Ri(t)(θt) or Ri(t)(θt) ⊗ Z+

j(t) + Ri(t)(−θt) ⊗ Z−j(t)}t∈[1,T ], T ∈ N on

a quantum computer of n ∈ N rebits can be mapped to an LTK- or GSP-decomposed SCFF Hamiltonian

generating an AIB sequence of Gibbs operators, where each R-gate Ri(t)(θt), θt ∈ [−π, π) acts on a rebit

indexed by an i(t) ∈ [1, n], and Z±j(t) operate on a control rebit indexed by a j(t) ∈ [1, n], ∀t ∈ [1, T ]. Such a

BQP algorithm, or its associated quantum circuit, is said to have a computational size T + n.

Definition 4. A homophysics M : (C,H,B) 7→ (C′,H′,B′) between two quantum systems with Hamiltonians

H ∈ B and H ′ ∈ B′ is an injective mapping that sends any subset D ⊆ C to a unique D′ def
= M(D) ⊆ C′,

maps any ψ ∈ H to a unique ψ′ def
= M(ψ) ∈ H′, and sends any Q ∈ B to a unique Q′ def

= M(Q) ∈ B′,

such that C ⊇ D 7→ M(D) ⊆ C′ embeds the Boolean algebra of subsets [33] of C into the Boolean algebra of

subsets of C′; 2) H 3 ψ 7→M(ψ) ∈ H′ embeds the Hilbert space H into H′; 3) B 3 Q 7→M(Q) ∈ B′ embeds

the Banach algebra B into B′; 4) there exists a constant c > 0, c + c−1 = O(poly(size(H))), with which

〈M(ψ)|M(Q)|M(φ)〉 = c〈ψ|Q|φ〉 holds ∀ψ, φ ∈ H, ∀Q ∈ B; 5) size(H) = O(poly(size(H ′))) and size(H ′) =

O(poly(size(H))). A homophysics M is called an isophysics when the mapping M is also surjective.

Firstly, it is useful to construct a bi-fermion system (C1,H1,B1) consisting of two non-interacting identical

fermions moving on a circle T def
= R/2Z [9], governed by a single-particle Hamiltonian −(1/2)∂2/∂x2 +V (x),

x ∈ T, with an external potential V (x) = V0 [d(x, 0)> 1− a0]
Iver
−V0 [d(x, 0)<a0]

Iver
, x ∈ [−1, 1) (mod 2) '

T, a0 = γ−1
0 , V0 = γ2

0 , γ0 � 1 being a large constant, where d(x, y) denotes the geodesic distance between

x ∈ T and y ∈ T along the circle, [·]
Iver

is an Iverson bracket [34] which returns a number valued to 1 or 0
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depending on if the Boolean expression inside the bracket is true or false. When γ0 is sufficiently large, the

potential well and barrier become essentially Dirac deltas, V (x) ' γ0δ(x+ 1)− γ0δ(x), x ∈ [−1, 1) (mod 2),

such that a bi-fermion under a nominal Hamiltonian HBF = (γ2
0 −π2)/2 +

∑2
i=1[−(1/2)∂2/∂x2

i +V (xi)],

(x1, x2) ∈ T2 behaves like a rebit with two low-energy states

ψ+(x1, x2) = (1−π12) sinπ[d(x1, 0)− a0] e−γ0d(x2,0), (x1, x2) ∈ [−1, 1)2, (22)

ψ−(x1, x2) = (1−π12) sinπx1 e
−γ0d(x2,0), (x1, x2) ∈ [−1, 1)2, (23)

that are degenerate at E0 = 0, where π12 is the fermion exchange operator swapping the particle labels 1

and 2. Choose α0 = 2γ−1
0 log γ0, then for all x such that d(x, 0) > α0, the amplitude of the single-particle

bound state |e−γ0d(x,0)| < γ−2
0 , which is rather small. Construct potential functions

X(x1, x2) = γ0 (1 +π12) [ d(x1, 0)> 1− a0 ∧ d(x2, 0)<α0 ]
Iver
− (π2/4γ2

0) , (24)

Z+(x1, x2) = (1 +π12) [ d(x1,+1/2)< 1/2 ∧ d(x1, 0)>α0 ∧ d(x2, 0)<α0 ]
Iver

, (25)

Z−(x1, x2) = (1 +π12) [ d(x1,−1/2) < 1/2 ∧ d(x1, 0)>α0 ∧ d(x2, 0)<α0 ]
Iver

, (26)

∀(x1, x2) ∈ [−1, 1)2 ' T2, which can be regarded as {1, π12}-invariant, T2-diagonal operators. It is straight-

forward to verify that such a bi-fermion implements a rebit [9] through a homophysics M1 : (C0,H0,B0) 7→

(C1,H1,B1) such that, with |±〉 def
= (|0〉 ± |1〉)/

√
2,

M1 (|±〉 ∈ H0) = ψ±(x1, x2) ∈ H1 , (27)

M1 (X ∈ B0) = (2γ2
0/π

2) [HBF + X(x1, x2)] ∈ B1 , (28)

M1 (Z±∈ B0) = γ0HBF + Z±(x1, x2) ∈ B1 . (29)

Via linear combinations, the operators M1(X), M1(Z+), M1(Z−) generate all partial Hamiltonians that are

of interest for quantum computing on a single bi-fermion, because span{X,Z+, Z−} contains all Hermitian

elements in B0. It is noted in passing that, although it is preferred for the single-particle potential V (x),

x ∈ T to have a narrow and deep potential well around x = 0, approximating a fairly strong Dirac delta

to localize one of the two fermions in a small neighborhood of x = 0, there is no practical necessity other

than convenience of mathematical analysis, to require a steep potential barrier around x = ±1. Rather, it

is perfectly fine to place a relatively wide and low potential barrier, as long as its width and height are

chosen properly to be commensurate with the Delta-like potential well around x = 0, such that the nominal

bi-fermion Hamiltonian HBF defines a degenerate two-state Hilbert space implementing a rebit.

Next, it is straightforward to construct a homophysics M2 : (C2
0 ,H2

0,B2
0) 7→ (C2

1 ,H2
1,B2

1), with C2
i

def
= Ci × Ci,

H2
i

def
= Hi ⊗Hi, B2

i
def
= Bi ⊗Bi, ∀i ∈ {0, 1}, so to implement a pair of interacting rebits using two bi-fermions
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conditioned and interacting through the following partial Hamiltonians,

M2 (X1 ⊗ Z±2 ) = (2γ2
0/π

2) [HBF,1 + HBF,2 + X(x11, x12)Z±(x21, x22) ] , (30)

M2 (Z±1 ⊗ Z
±
2 ) = γ0HBF,1 + γ0HBF,2 + Z±(x11, x12)Z±(x21, x22) , (31)

where ∀i ∈ {1, 2}, Xi, Z
±
i , Zi = Z+

i − Z
−
i are the X- and Z-gates on the i-th rebit, HBF,i is the nominal

Hamiltonian of the i-th bi-fermion, (xi1, xi2) ∈ T2 is the two-fermion configuration of the i-th bi-fermion.

X1⊗Z±2 and Z1⊗Z±2 are called single-rebit-controlled gates, whose linear combinations include all single-rebit-

controlled R gates, which are already universal for ground state quantum computation (GSQC) [3,9,14,15,35]

in the sense that, using the so-called perturbative gadgets, up to an error tolerance ε > 0, the low-energy

physics of any system of n ∈ N rebits under a computationally k-local Hamiltonian, k ∈ N being a fixed

number, can be homophysically mapped to the low-energy physics of another system of poly(n, ε−1) rebits

under a Hamiltonian that involves only one-body and two-body interactions, especially the controlled R-

gates, whose operator norms are upper-bounded by poly(ε−1) [13, 36–38]. In particular, the “XX from XZ

gadget” of Biamonte and Love [13] can be employed to effect homophysically an X ⊗X interaction between

a first and a second rebits through X ⊗ Z interactions with a zeroth rebit,

I −X1 ⊗X2
M

=⇒ γ2
0 (I −X0) + (I −X1 ⊗X2)

M
=⇒ γ2

0 (I −X0) + γ0 (X1 +X2)⊗ Z0 + 2I +O(γ−1
0 ) , (32)

where
M

=⇒ reads and stands for “is homophysically mapped to”, γ0 � 1 is a large constant. Then the

linear combinations of X ⊗ X and X ⊗ Z include all two-rebit interactions of the form X ⊗ R(θ), with

R(θ) def
= Z cos θ +X sin θ, θ ∈ [−π, π). Alternatively, there is a special class of multi-rebit interactions called

multi-rebit-controlled gates of the form Ri(θ)⊗
∏
j∈J Z

±
j , with θ ∈ [−π, π), i indexing a rebit being operated

upon, J being a set indexing a fixed number of control rebits. Such a multi-rebit-controlled R-gate does not

require a decomposition into two-rebit couplings, but can be implemented through a linear combination of

the following homophysics,

M (Xi ⊗
∏
j ∈J Z

±
j ) = (2γ2

0/π
2) [HBF,i +

∑
j ∈J HBF,j + X(xi1, xi2)

∏
j ∈J Z

±(xj1, xj2) ] , (33)

M (Z±i ⊗
∏
j ∈J Z

±
j ) = γ0HBF,i + γ0

∑
j ∈J HBF,j + Z±(xi1, xi2)

∏
j ∈J Z

±(xj1, xj2) . (34)

At any rate, it has been established that any computationally k-local Hamiltonian H involving n ∈ N

rebits, with k ∈ N being a fixed number and n a variable, can be homophysically implemented as an SCFF

Hamiltonian M(H) involving no more than poly(n, ε−1) bi-fermions, such that the low-energy physics of H

and M(H) are homophysical up to an error tolerance ε > 0, where each CFF interaction in M(H) moves

no more than k′ ∈ N bi-fermions, with k′ being another fixed number, and has an operator norm that is

upper-bounded by poly(ε−1), while all bi-fermions are mutually distinguishable entities.

Given a universal BQP algorithm {Ut(θt) def
= Ri(t)(θt) or Ri(t)(θt)⊗ Z+

j(t) +Ri(t)(−θt)⊗ Z−j(t)}t∈[1,T ], T ∈ N,

with each free or controlled R-gate Ut(θt), θt ∈ [−π, π) operating on an i(t)-th, i(t) ∈ [1, n] and possibly a
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j(t)-th, j(t) ∈ [1, n] rebits in an n-rebit logic register represented by (CL def
= {0, 1}n,HL,BL) as a quantum sub-

system, ∀t ∈ [1, T ], where the successive applications of the free or controlled R-gates are meant to generate

a series of quantum states |φt〉L def
= Ut|φt−1〉L, t ∈ [1, T ], from a given initial state |φ0〉L till a computational

result |φT 〉L = (
∏T

t=1 Ut)|φ0〉L at the end, the celebrated Feynman-Kitaev construct [3,9,14,15] introduces a

clock register represented by (CC ,HC ,BC) as a quantum subsystem to support clock states {|t〉C}t∈[0,T ] ⊆ HC ,

so that the clock and logic registers constitute a GSQC system represented by (CC×CL,HC⊗HL,BC⊗BL), on

which the product states {|t〉C |φt〉L}t∈[0,T ] ⊆ HC ⊗HL map and encode the entire computational history of

the BQP algorithm. Then Feynman’s clocked Hamiltonians HFeyn, t
def
= |t〉C〈(t−1)|C ⊗Ut + |(t−1)〉C〈t|C ⊗Ut,

t ∈ [1, T ] ensure that the associated quantum gates Ut, t ∈ [1, T ] are applied to the logic register in the correct

order when the clock register undergoes transitions between what he called the program counter sites (namely,

the clock states, also referred to as clock sites) |t〉C , t ∈ [1, T ] [3]. Finally, Kitaev’s GSQC Hamiltonian (also

called the Feynman-Kitaev Hamiltonian) HFK
def
= Hclock + Hinit + Hprop enforces computational constraints

via energy penalties, with Hclock restricting the clock register to the manifold of span({|t〉C : t ∈ [0, T ]}),

Hinit setting the initial state, while Hprop performing the quantum computation as Feynman suggested, such

that the ground state ψ0(HFK) = (T + 1)−1/2
∑T

t=0 |t〉C |φt〉L is unique and polynomially gapped [14, 15]. It

is WLOG to assume that the initial state |φ0〉L is a CL-coordinate eigenstate, because, otherwise, it must

be preparable from a CL-coordinate eigenstate by another BQP algorithm. It is convenient and WLOG to

assume that all logic rebits are initially set to their |1〉 state [12].

There are several choices of encoding a clock register for the clock states {|t〉C}t∈[0,T ] [39,40]. Take Kitaev’s

domain wall clock for example, which can be realized by a clock register consisting of T + 2 rebits indexed

by integers within [0, T + 1] and using |t〉C def
= |1〉⊗(t+1)

C |0〉⊗(T−t+1)
C , t ∈ [0, T ], such that [9, 14,15]

HFK
def
= γ0Hclock + γ0Hinit +

∑T

t=1
Hprop, t , (35)

Hclock
def
= Z+

C, 0 + Z−C, T+1 +
∑T

t=1
Z+

C, t−1 ⊗ Z
−
C, t , (36)

Hinit
def
=
∑n

i=1
Z+

C, 1 ⊗ Z
+
L, i , (37)

Hprop, t
def
= Z−

C, t−1 ⊗ Z
+
C, t+1 ⊗ [I −XC, t ⊗ Ut(θt)] , ∀t ∈ [1, T ] , (38)

where θt ∈ [−π, π) for all t ∈ [1, T ], QδC, t means to apply a single-rebit operator Qδ to the t-th rebit of the

clock register, ∀Q ∈ {X,Z}, ∀δ ∈ {+,−, void}, ∀t ∈ [0, T + 1], the energy constant γ0 > 0 is sufficiently

large but still O(poly(T +n))-bounded such that the system can only move in the ground state subspace

of Hclock + Hinit, any escape from ψ0(Hclock + Hinit) is exponentially suppressed and negligible. It is clear

that size(HFK) = O(T + n). With each of Z±C, t, t ∈ [0, T + 1], Z+
L, i, i ∈ [1, n], and hprop, t

def
= I −XC, t ⊗ Ut,

t ∈ [1, T ] regarded as a single operator, the Feynman-Kitaev Hamiltonian HFK is a sum of few-body moving

(FBM) tensor monomials [9] as specified in equations (36-38), each of which is a tensor product of no more

than three single operators that involves no more than five interacting rebits in total. For each t ∈ [1, T ],

the single operator hprop, t and the FBM tensor monomial Hprop, t = Z−
C, t−1⊗Z

+
C, t+1⊗hprop, t are called the
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t-th free and controlled Feynman-Kitaev propagators respectively.

It is straightforward to implement such an HFK into an M(HFK) for a system of 2T +n+ 2 bi-fermions, where

each of the T + 2 clock rebits and n logic rebits corresponds to one unique bi-fermion, each of the FBM tensor

monomials in equations (36) and (37) is mapped to an interaction among the corresponding bi-fermions

as in equation (34), while the remaining T bi-fermions supply enough auxiliary rebits for perturbative

gadgets to implement logic gates of the form X ⊗ R(θ), θ ∈ [−π, π) for Feynman-Kitaev propagators. Such

an M(HFK) =
∑K

k=1 M(Hk), K def
= 2T + n + 2 as an SCFF Hamiltonian is both LTK-decomposed and

GSP-decomposed, with each FBM tensor monomial Hk, k ∈ [1,K] being either of the form Z±1 ⊗ Z
±
2 or

a tensor product of an FBM tensor monomial Z−1 ⊗ Z+
2 and a free Feynman-Kitaev propagator hprop, t,

t ∈ [1, T ], where Z1 and Z2 represent a Z-operator acting on a clock or logic rebit. The unique ground

state of M(HFK) can be simulated using Monte Carlo on a classical computer by repeating a sequence

of Gibbs operators {exp[−τM(Hk)]}Kk=1 with a suitable τ > 0 such that τ + τ−1 = O(poly(T + n)) for an

O(poly(T+n))-bounded number of times to approximates a Gibbs operator associated with M(HFK). It is also

straightforward to construct an adiabatic sequence of Feynman-Kitaev Hamiltonians {HFK(l) : l ∈ [0,m]}

that evolves from an initial HFK(0) with a known ground state ψ0(HFK(0)) to the final HFK(0) = HFK

of equation (35). An exemplary embodiment uses an adiabatic sequence of Feynman-Kitaev Hamiltonians

with the l-th Hamiltonian HFK(l) def
= γ0Hclock + γ0Hinit +

∑T

t=1Hprop, t (l), Hprop, t(l)
def
= Z−

C, t−1 ⊗ Z
+
C, t+1 ⊗

hprop, t (l), and hprop, t (l) def
= I − XC, t ⊗ Ut(lθt/m), ∀l ∈ [0,m], in conjunction with an initial ground state

ψ0(HFK(0)) def
= (T + 1)−1/2

∑T

t=0 |t〉C |φ0〉L.

For a sequence of Gibbs operators {exp[−τM(Hk)]}Kk=1, τ > 0 associated with a sequence of FBM tensor

monomials {Hk}Kk=1 LTK- and GSP-decomposing a Feynman-Kitaev Hamiltonian HFK =
∑K

k=1Hk, when

Hk, k ∈ [1,K] is (CC× CL)-diagonal of the form Z±1 ⊗ Z
±
2 , it is obvious that exp[−τM(Hk)] has the same

amplitude integral Dk(πkqk−1) with respect to any πk ∈ A∗ and any qk−1 in the support of any ground state

of M(Z±1 ⊗ Z
±
2 ), while the probability of encountering a qk−1 out of the supports of the ground states of

M(Z±1 ⊗Z
±
2 ) can be made negligible by choosing a sufficiently large energy constant γ0. For a Gibbs operator

of the form exp[−τM(X⊗R(2θ))], θ ∈ [−π/2, π/2), the only relevant states are the two ground states |+〉|θ+〉,

|−〉|θ−〉 and the two lowest excited states |+〉|θ−〉, |−〉|θ+〉, with |±〉 def
= (|0〉 ± |1〉)/

√
2, |θ+〉 def

= cos θ|0〉 +

sin θ|1〉, |θ−〉 def
= cos θ|1〉 − sin θ|0〉. It is easy to verify that for any of the cases of qk−1 falling into the

support of the basis state M(|0〉|0〉), M(|0〉|1〉), M(|1〉|0〉), or M(|1〉|1〉), the amplitude integral Dk(qk−1) of

〈·| exp[−τM(X⊗R(2θ))]|qk−1〉 always yields the same value (1+e−τ )+(1−e−τ )(| cos 2θ|+ | sin 2θ|), so long

as the strength of the Dirac potential barrier and well for each bi-fermion is set to γ0 > 0, which is sufficiently

large such that the wavefunction within each logic well of each bi-fermion always approximates a half-sine with

an O(γ−2
0 ) error [9]. Therefore, any Gibbs operator exp[−τM(X ⊗R(2θ))] associated with a free Feynman-

Kitaev propagator involving a free R-gate R(2θ) does not induce any path dependency of amplitude integrals.

It follows straightforwardly that the same is true for a Gibbs operator associated with a free Feynman-Kitaev
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propagator involving a controlled R-gate R(2θ)⊗ Z+ + R(−2θ)⊗ Z− because the amplitude integral yields

the same value regardless of the control logic rebit is in the null state of Z+ or Z−. Finally, any Gibbs

operator exp[−τM(Z−⊗Z+⊗(I−X⊗U))] associated with a controlled Feynman-Kitaev propagator with any

τ = O(poly(T +n)) can be realized by repeating applications of Gfree(δτ) def
= exp[−δτM(I−X⊗U)] followed

by Gctrl(δτ) def
= exp[−δτM(Z−⊗Z+⊗ (I −X ⊗U) + (I −Z−⊗Z+)⊗ (I +X ⊗U))] for m = O(poly(T +n))

times, δτ def
= τ/m, such that each of Gfree(δτ) and Gctrol(δτ) is already AIB, and the product operator

exp[−τM(Z−⊗ Z+⊗ (I −X ⊗ U))] = [Gctrl(δτ)Gfree(δτ)]m +O(1/poly(m)) is naturally AIB.

Theorem 2. A homophysics M exists, which maps the Feynman-Kitaev Hamiltonian HFK as defined in

equations (35-38) to an SCFF Hamiltonian M(HFK) that is both LTK- and GSP-decomposed into a sequence

of CFF interactions, such that any Gibbs operator generated by M(HFK) is well approximated by an AIB

sequence of Gibbs operators generated by said sequence of CFF interactions.

Proof. An M(HFK) as constructed above is obviously SCFF and frustrate-free [9,41,42], which is both LTK-

and GSP-decomposed into a sequence of CFF interactions, where each CFF interaction homophysically

implements one of the FBM tensor monomials in equations (36-38), involves no more than 6 bi-fermions and

moves even less. For any τ > 0, τ = O(poly(T + n)), an AIB sequence of an O(poly(T + n)) number of

Gibbs operators can be generated from the sequence of CFF interactions as described above, whose product

approximates exp[−τM(HFK)] to within an O(1/poly(T + n)) accuracy.

It is noted that the above-specified technique to render a sequence of Gibbs operators AIB is only by way

of example but no means of limitation. It should be obvious to one skilled in the art that many other

ways can achieve the same effect. Furthermore, the AIB property is only used for mathematical rigor in

theory to establish rapid mixing of one particular Monte Carlo sampling method. A practical Monte Carlo

simulation can sample restricted Feynman paths efficiently using an alternative method without requiring

an AIB property of the associated sequence of Gibbs operators.

Theorem 3. BQP ⊆ BPP, therefore BPP = BQP, as BPP ⊆ BQP is well known.

Proof. Using the Feynman-Kitaev construct as specified in equations (35-38), any BQP algorithm of T ∈ N

gates on a quantum register of n ∈ N rebits can be mapped to the ground state of a Feynman-Kitaev Hamilto-

nian HFK of an O(poly(T+n)) size, whose ground state is non-degenerate and polynomial-gapped. Moreover,

an adiabatic sequence of Feynman-Kitaev Hamiltonians {HFK(l)}ml=0, m ∈ N can be designed to reach the

final HFK(m) = HFK from an initial HFK(0) with trivial Feynman-Kitaev propagators hprop, t (0) def
= I−XC, t,

∀t ∈ [1, T ] and a trivial ground state ψ0(HFK(0)) def
= (T + 1)−1/2

∑T

t=0 |t〉C |φ0〉L.

By Theorem 2, each HFK(l), l ∈ [0,m] can be homophysically mapped to an SCFF Hamiltonian M[HFK(l)]

that is both LTK- and GSP-decomposed into a sequence of CFF interactions, which generates an AIB

sequence of Gibbs operators to project out the ground state ψ0(HFK(l)) to within an O(1/poly(T + n))

accuracy. Theorem 1 guarantees an FPRAS, which is in BPP, to simulate an AIB sequence of Gibbs operators
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comprising concatenated subsequences of Gibbs operators, each subsequence corresponding to an HFK(l),

l ∈ [0,m]. This establishes BQP ⊆ BPP, therefore BPP = BQP.

In conclusion, it has been proved that BPP and BQP are exactly the same computational complexity class. As

a consequence, any computational problem admitting a BQP algorithm has a BPP solution by mapping the

BQP algorithm into a GSQC problem, and simulating the GSQC system by Monte Carlo on a BPP machine.

The overall method is called Monte Carlo quantum computing (MCQC) [9]. The significance of BPP = BQP

can hardly be overstated. Despite providing a negative answer to the long outstanding question of whether

the laws of quantum mechanics endow more computational power, it opens up new avenues for developing

and identifying efficient algorithms for classical computers from the vantage point of quantum computing.

Any quantum based or inspired solution to a computational problem translates automatically into an efficient

classical probabilistic algorithm. For instance, it is now certain that integer factorization is in BPP, thanks

to Shor’s celebrated quantum discovery [43] that catalyzed the quest of quantum computing. Besides the

standard decision or promise problems [44–46] in BPP = BQP, there are a vast number of problems in the

forms of function evaluation, objective optimization, and target search, etc. [46] that are either equivalent

or polynomially reducible to a problem in BQP, therefore, also efficiently solvable via MCQC. An excellent

example is the quantum algorithm of Harrow, Hassidim, and Lloyd for linear systems of equations [47], which

now gets an efficient MCQC implementation.

Being able to simulate quantum systems efficiently was one of the reasons that Feynman and others proposed

quantum computing and quantum computers [3, 4]. One important application of MCQC without a sign

problem is naturally to simulate many-body quantum systems efficiently via Monte Carlo on a classical

computer, by just constructing a BQP algorithm simulating the quantum system, then mapping the BQP

algorithm to an efficient MCMC through a Feynman-Kitaev construct. Such many-body quantum systems

include any FSFS as a special case.

On the other hand, an FSFS can be directly simulated via a restricted path integral method without devising a

BQP algorithm then using a Feynman-Kitaev construct. In one exemplary embodiment for an FSFS of S ∈ N

species, each species s ∈ [1, S] having ns ∈ N identical fermions, the Hamiltonian is a Schrödinger operator

and written as H =
∑S

s=1

∑ns

l=1

∑ns

m=1Hslm, with Hslm = −(∆sl+∆sm)/2ns+V/
∑S

s=1 n
2
s moves only the l-

th and the m-th labeled particle of the s-th species through the Laplace-Beltrami operators ∆sl and ∆sm, for

each (s, l,m) ∈ [1, S]× [1, ns]
2. Using the method of LTK-decomposition, a Gibbs operator e−τH , τ ∈ (0,∞)

is approximated by applying a sequence of Gibbs operators {Gslm def
= e−τHslm/m}(s,l,m) for a polynomial-

bounded m ∈ N times, each Gslm associated with a single Feynman slice being partially fermionic exchange-

symmetrized with respect to an order-2 group Gslm that permutes the l-th and m-th identical fermions of

the s-th species, for all (s, l,m) ∈ [1, S]× [1, ns]
2}. By a theorem of Diaconis and Shahshahani [48], a typical

Feynman path with such partial fermionic symmetrizations effectively selects a sample of fully symmetrized

and signed Feynman path almost surely and uniformly, such that an integral of signed Wiener measure
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densities of said Feynman paths with partial symmetrizations well approximate the FSFS. It is important

to note that ∀(s, l,m) ∈ [1, S] × [1, ns]
2, ∀τ ∈ (0,∞), and any given configuration point q, the partially

fermionic symmetrized Gibbs kernels 〈·|e−τHslm |Fslm q〉 = 〈Fslm· |e−τHslm |q〉 = 〈Fslm· |e−τHslm |Fslm q〉, with

Fslm def
= |Gslm|−1

∑
π∈Gslm

(−1)π π, are all efficiently computable whose nodal surfaces can be determined at

an O(poly(size(H), ε)) computational cost, ε being any desired numerical accuracy.

Changing the perspective again, when an MFS comprises a certain fermion species that has many identical

fermions residing separately in multiple non-overlapping regions of a substrate space [9] or a phase space

(e.g., a position-momentum space) of single particles, then the identical fermions are divided into separated

clusters each of which corresponds to a specific spatial region separated from other spatial regions and be-

comes a unique effective species distinguishable from other effective species corresponding to other spatial

regions [49], where the identical fermions within each effective species residing in a separated spatial region

are indistinguishable and obey fermionic exchange symmetry, whereas different clusters of fermions resid-

ing in different spatial regions are mutually distinguishable as different effective species. Such an MFS is

homophysical to an effective system comprising multiple effective species.

It is useful to note that the analyses, algorithms, and methods presented supra can be extended straight-

forwardly to physical and computational systems over a discrete or continuous-discrete product configura-

tion space [9], only that the nodal restriction or path rectification may need to invoke the so-called lever

rule [9,50,51] using efficiently solved nodal structures of CFF interactions or their associated Gibbs kernels.

Besides, when a compact configuration space is approximated by a lattice with the spacing between neighbor

lattice points being sufficiently small, the error in localizing nodal surfaces becomes negligibly small and the

simulation results from continuous and discrete configuration spaces converge.

Definition 5. A partial Hamiltonian H =
∑K

k=1Hk, K ∈ N, with {Hk : k ∈ [1,K]} being FBM tensor

monomials, is called frustration-free if any ground state of H is necessarily a ground state of each Hk,

∀k ∈ [1,K]. Such a frustration-free Hamiltonian is called strongly frustration-free, when each Hk, k ∈ [1,K]

is O((size(H))−ξ)-almost node-determinate for a predetermined sufficiently large constant ξ ∈ R, ξ > 0, and

the ground state of H is non-degenerate, the excited states of H and of all {Hk : k ∈ [1,K]} are separated

from their corresponding ground states by an Ω(1/poly(size(H))) energy gap.

Definition 6. A partial Hamiltonian H on a configuration space C of size N def
= size(C) is called ground state

frustration-free, when it is polynomially Lie-Trotter-Kato decomposable in the form H =
∑J

i=1Hi, J ∈ N,

J = O(poly(N)) and has a non-degenerate ground state ψ0(H), that is separated from all of the excited states

by an energy gap sized as Ω(1/poly(N)), where each Hi is O(1/poly(N))-almost node-determinate and has

ψ0(H) as its ground state or one of its ground states, ∀i ∈ [1, J ]. Each such additive partial Hamiltonian Hi,

i ∈ [1, J ] is called GFF-compatible with respect to H.

Definition 7. A partial Hamiltonian H on a configuration space C of size N def
= size(C) is called directly

frustration-free, when it is a direct sum of partial Hamiltonians in the form H =
∑J

i=1Hi, J ∈ N, J =
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O(poly(N)), with the energy gap between the ground state and the excited states Ω(1/poly(N)) lower-bounded

for H and every Hi, i ∈ [1, J ], where each Hi, i ∈ [1, J ] has 0 as the smallest eigenvalue and moves an

O(log(N))-sized configuration subspace Ci, which is annihilated by any other Hj, j ∈ [1, J ], j 6= i, namely,

Hjφi = 0 holds true, ∀φi ∈ L2(Ci), so long as j 6= i. Each such additive partial Hamiltonian Hi, i ∈ [1, J ] is

called DFF-compatible with respect to H.

Definition 8. A partial Hamiltonian H that generates a Gibbs operator exp{−t[H−λ0(H)]} of interest at a

fixed t ∈ (0,∞] is called separately frustration-free, when it is a sum of partial Hamiltonians as H =
∑K

k=1Hk,

K ∈ N, K = O(poly(N)), N def
= size(H), with each shifted partial Hamiltonian Hk−λ0(Hk), k ∈ [1,K] being

either DFF or GFF, and the Gibbs operator exp{−t[H−λ0(H)]} can be simulated, to within an error no

more than O(1/poly(N)), by iterating a sequence of Gibbs operators {exp{−τ [Hk−λ0(Hk)]} : k ∈ [1,K]},

τ ∈ (0,∞] for no more than O(poly(N)) times.

Definition 9. Given a measurable space (CK ,F), K ∈ N, where C is a configuration space, CK def
=
∏K

n=1 C

is a product space of C, and F def
= F(CK) is a σ-algebra of subsets of CK, a scalar density associated with C

is a (CK ,F)-measurable function from CK to an algebraic field K. A density associated with C is a tuple- or

vector-valued function having either just one or a plurality of scalar densities as components. In particular,

a scalar density associated with C is a density associated with C that has just one component. A scalar or

a tuple or vector value f(qK , · · ·, q1) that a density f assumes is called a density value at a tuple, vector,

or sequence of configuration points (qK , · · ·, q1) ∈ CK. A density f associated with C is said to be signed,

when f has two components f1 and f2 as scalar densities that are not necessarily different, and two tuples

of configuration points q1
def
= (q1K , · · ·, q11) ∈ CK and q2

def
= (q2K , · · ·, q21) ∈ CK exist which need not to differ,

such that the value of the quotient f1(q1)/f2(q2) is different from zero and a positive number in K.

Definition 10. A density defined on a product space CK, K ∈ N of a configuration space C of a variable

size is said to be minimally entangled, when it can be written as f({gi}ni=1) def
= f(g1, · · ·, gn), with n =

O(poly(size(CK))), f being a Borel measurable function defined on Kn, K being a field, each gi, i ∈ [1, n]

being a K-valued scalar density associated with a submanifold Ci as a tensor factor of CK such that size(Ci) =

O(log(size(CK))), wherein all of the functions f and {gi}ni=1 have a representation in a closed mathematical

form that is efficiently computable, such that ∀q ∈ CK, K ∈ N, the point-value f({gi(q|Ci)}ni=1), with q|Ci
denoting the coordinate restriction of q to the submanifold Ci, ∀i ∈ [1, n], can be computed to within any

predetermined relative error ε > 0, at the cost of an O(poly(size(CK) + | log ε|)) computational complexity.

Definition 11. A density associated with a configuration space C of a variable size is said to be substantially

entangled when it is signed and can not be represented in the form of a minimally entangled density associated

with C. A density associated with the same C is said to be practically substantially entangled when it is signed

and has no known representation in the form of a minimally entangled density associated with C.

Definition 12. For any signed density f defined on a product space CK, K ∈ N of a configuration space C,

the integral
∫
q∈CK f(q) dq is called the signed integral of f over CK, the integral

∫
q∈CK |f(q)| dq is called the
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absolute integral of f over CK, where |f | def
= (|f1|, |f2|, · · ·, |fn|) when f is tuple- or vector-valued in the form

of f = (f1, f2, · · ·, fn), n ∈ N.

Definition 13. For any scalar-valued signed density f and any prescribed observable v as another function

defined on a product space CK, K ∈ N of a configuration space C, the value of 〈v〉f def
=
∫
q∈CK f(q) v(q) dq

is called the signed expectation value of v due to f , the value of 〈v〉|f | def
=
∫
q∈CK |f(q)| v(q) dq is called the

absolute expectation value of v due to f .

In one exemplary embodiment, the signed expectation value 〈v〉f of v due to f is normalized by dividing

by the integral
∫
q∈C f(q) dq. In another exemplary embodiment, the absolute expectation value 〈v〉|f | of v

due to f is normalized by dividing by the integral
∫
q∈C |f(q)| dq. In still another exemplary embodiment, the

prescribed observable v is the constant 1, and a plurality of discrete sample points and their f -values are

obtained and used to compute a signed expectation value
∑
q∈D f(q) /

∑
q∈D 1 to estimate the distribution

of f on C, or an absolute expectation value
∑
q∈D |f(q)| /

∑
q∈D 1 to estimate the distribution of |f | on C,

where D ⊆ C is a finite set of discrete sample points,
∑
q∈D 1 yields the cardinality of D. In yet another

embodiment, the prescribed observable v is another constant on C. In further alternative embodiments,

the prescribed observable v is a function on C that is, by way of example but no means of limitation, a

functional-analytic operator supported by C, a Hermitian operator as a physical or quantum observable

supported by C, a total or partial Hamiltonian supported by C, or a Gibbs operator generated by a total or

partial Hamiltonian supported by C.

Definition 14. Let f be a signed density associated with a configuration space C of a variable size N def
= size(C),

which is tuple- or vector-valued in the form of f = (f1, f2, · · ·, fn), n ∈ N. Let (s1, s2, · · ·, sn) =
∫
q∈CK f(q) dq

be the signed integral and (a1, a2, · · ·, an) =
∫
q∈CK |f(q)| dq be the absolute integral of f over CK, K ∈ N.

Such a signed density f is said to have a severe sign problem when an index k ∈ [1, n] exists such that ak/sk

is asymptotically greater than any prescribed polynomial of N , when N becomes sufficiently large.

It is useful to note that, in each of the above Definition 12, Definition 13, and Definition 14, both the signed

density f and the variable v can be scalar-valued as a special case with n = 1. It is also useful to note that,

in Definition 13, the signed and absolute expectation values of v due to f are one and the same when the

signed density f is non-negative-valued.

Definition 15. A linear operator T supported by a configuration space C and its associated integral kernel

〈·|T |·〉 : C×C 7→ K, with K being a field of scalars, are called quasi-stochastic if the right marginal distribution

defined as
∫
C
〈r|T |q〉 dVg(r) reduces to a constant scalar λ ∈ K, ∀q ∈ C. It follows that λ is an eigenvalue of T ,

associated with an eigenvector ψ0(T ) such that Tψ0(T ) = λψ0(T ), which is called the stationary distribution

of the quasi-stochastic operator T .

A quasi-stochastic operator T , also called a quasi-Markov transition matrix, is said to generate a quasi-

Markov chain (or called a quasi-Markov process) {Xt} indexed by a time variable t ∈ T , with the index set T
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being either finite or countably infinite or uncountable, if for every t ∈ T , Xt : Ω 7→ C is a measurable function

on a certain domain set Ω, which is associated with a t-dependent signed density ψ(·, ·) : C×T 7→ K, called a

t-dependent quasi-probability density, such that ψ(·, t+1) = Tψ(·, t) def
=
∫
C
〈·|T |q〉ψ(q, t) dVg(q) when T ⊆ Z is

discrete or dψ(·, t)/dt = Tψ(·, t) def
=
∫
C
〈·|T |q〉ψ(q, t) dVg(q) when T ⊆ R is continuous, where ∀(q, t) ∈ C×T ,

ψ(q, t) is a signed measure density assigned to the preimage X−1
t (q) def

= {ω ∈ Ω : Xt)(ω) = q}. The stationary

distribution ψ0(T ) of a quasi-stochastic operator T is called the stationary distribution of the quasi-Markov

chain (or called quasi-Markov process) generated by T . The configuration space C is called the state space of

the quasi-Markov chain.

It is noted that the quasi-Markov chain specified in definition 15 is homogeneous in the sense that the

generating quasi-stochastic operator T is independent of time. It is straightforward to extend the definition

and all derivations as well as related methods and processes to inhomogeneous quasi-Markov chains or

processes, where a generating quasi-stochastic operator T depends on time. In particular, the Lie-Trotter-

Kato product formula and decomposition as well as the related path integral method apply straightforwardly

to quasi-stochastic operators and lead to inhomogeneous quasi-Markov chains or processes.

Definition 16. For any prescribed K ≥ 0, let (tK , · · ·, tk, · · ·, t0) ∈ T K+1 with tk > tk−1 for all k ∈ [1,K]

be an ordered sequence of time instants, an inhomogeneous quasi-Markov chain is generated by a sequence

of quasi-stochastic operators (TK , · · ·, Tk, · · ·, T1) with each Tk, k ∈ [1,K] taking effect during the time in-

terval (tk−1, tk]. For each k ∈ [0,K], a single qk ∈ C realized at t = tk is a called a sample point of

the inhomogeneous quasi-Markov chain at time t = tk. An ordered sequence of sample points of the form

(qK , · · ·, qk, · · ·, q0) ∈ CK+1, K ≥ 0 is called a sample path of the inhomogeneous quasi-Markov chain. The set

of of all sample paths CK+1 def
= {(qK , · · ·, qk, · · ·, q0) : qk ∈ C, ∀k ∈ [0,K]} is called an (K + 1)-fold product

state space (or product sample space [52], or cylinder set [53]) of the inhomogeneous quasi-Markov chain

{Xt}. A signed density Ψ is defined on a product state space CK+1, K ≥ 0, called the joint quasi-probability

density of sample paths, which assigns to each sample path (qK , · · ·, qk, · · ·, q0) ∈ CK+1 a signed density value

Ψ(qK , · · ·, qk, · · ·, q0) def
= ψ(q0, t0)

∏K

n=1〈qk|T |qk−1〉, with ψ(·, t0) denoting an initial quasi-probability density

at the start time t0 ∈ T , which is often initialized to a point measure at a certain q0 ∈ C.

For any pair of time instants tm, tn ∈ T , a signed density 〈·|
∏n
k=m+1 Tk|·〉 : C × C 7→ K is defined to

assign to any (qn, qm) ∈ C2 a signed density value 〈qn|
∏n
k=m+1 Tk|qm〉

def
= 〈qn|Tn|qn−1〉 when n = m + 1 or

〈qn|
∏n
k=m+1 Tk|qm〉

def
= {

∫
qk∈C }

n−1

k=m+1
〈qn|Tn|qn−1〉

∏n−1
k=m+1〈qk|Tk|qk−1〉

∏n−1
k=m+1 dqk when n ≥ m+2, which

is called the quasi-Markov transition probability density from (qm, tm) to (qn, tn) due to the the inhomogeneous

quasi-Markov chain generated by the sequence of quasi-stochastic operators (TK , · · ·, Tn, · · ·, T1). In the special

case with all of the quasi-stochastic operators being the same, Tk = T , ∀k ∈ [1,K], the inhomogeneous quasi-

Markov chain is actually homogenous, and the signed density 〈qn|Tn−m|qm〉 def
= 〈qn|T |qn−1〉 when n = m+1 or

〈qn|Tn−m|qm〉 def
= {

∫
qk∈C }

n−1

k=m+1
〈qn|T |qn−1〉

∏n−1
k=m+1〈qk|T |qk−1〉

∏n−1
k=m+1 dqk when n ≥ m + 2 is called the

quasi-Markov transition probability density from (qm, tm) to (qn, tn) due to the homogeneous quasi-Markov
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chain generated by the quasi-stochastic operator T , for all (qn, qm) ∈ C2.

A quasi-stochastic operator is said to induce, generate, or be associated with a signed density when any the

following or similar relationships exist: said signed density is a ground state of said quasi-stochastic operator;

said signed density is a stationary distribution of said quasi-stochastic operator; said signed density is an

eigenvector or eigenstate of said quasi-stochastic operator; said signed density is an integral kernel of said

quasi-stochastic operator; said signed density is the result of applying said quasi-stochastic operator to

another predetermined signed density; said signed density is associated with said quasi-stochastic operator;

said signed density is due to a quasi-Markov chain generated by said quasi-stochastic operator; said signed

density is associated with a quasi-Markov chain generated by said quasi-stochastic operator.

It is noted that the notions of quasi-stochastic operator or quasi-Markov transition matrix, sample path,

product state space or cylinder set, quasi-probability density, quasi-Markov transition probability density, and

joint quasi-probability density of sample paths associated with a quasi-Markov chain respectively generalize

the notions of Gibbs operator, Feynman path or a series of connected Feynman spindles, Feynman stack

or cylinder set, Gibbs wavefunction, Gibbs transition amplitude or Gibbs kernel, and Wiener density of

Feynman paths or series of connected Feynman spindles associated with a quantum system governed by

a total Hamiltonian, with said total Hamiltonian generating said Gibbs operator. Most of the methods,

derivations, and demonstrations translate well from the particular context of Gibbs statistical mechanics of

quantum systems to the general context of quasi-Markov chains or processes.

On the other hand, a quasi-stochastic operator quasi-Markov transition matrix T becomes a bona fide

stochastic operator or Markov transition matrix, which generates a bona fide Markov chain, with the associ-

ated quasi-probability density and the quasi-Markov transition probability density becoming the conventional

probability density and the Markov transition probability density respectively, when the associated integral

kernel 〈r|T |q〉, (r, q) ∈ C×C is real-valued and nowhere negative, and the operator is scaled properly to have

a unit spectral radius, in which case, the meaning of stationary distribution coincides with the standard and

well-known definition in association with a stochastic matrix and a Markov chain.

This presentation discloses methods, processes, and systems for simulating many-variable signed densities

and solving computational problems using MCQC. Exemplary applications of said methods, processes, and

systems include, but are not limited to, simulating quantum systems via Monte Carlo sampling of signed

densities and solving computational problems by simulating a homophysical quantum system implementing

a quantum circuit. Signed densities occur naturally in representing quantum systems, particularly those

comprising many fermions that are not all distinguishable, more particularly those involving many species

of multiple fermion. Exemplary densities or signed densities associated with a quantum system include the

ground state wavefunction, Gibbs wavefunctions, Gibbs kernels, Gibbs transition amplitudes, joint quasi-

probability density of sample paths, and Wiener densities assigned to Feynman paths or Feynman spindles,

many of which are generated by a Gibbs operator that is in turn generated by a total Hamiltonian governing
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said quantum system. There are also densities or signed densities induced by quasi-stochastic operators

generating quasi-Markov chains or processes, examples of such densities or signed densities include, but are

not limited to, quasi-probability densities, quasi-Markov transition probability densities, and joint quasi-

probability densities of sample paths associated with quasi-Markov chains.

The present invention comprises methods, processes, and systems for simulating signed densities and/or solv-

ing computational problems. Means for simulating a signed density on a certain product space of a prescribed

configuration space include, but are not limited to, substantially computing the function values or called nu-

merical values of said signed density, substantially determining or selecting Markov chain state transitions or

walker moves during a random walk or Monte Carlo with importance sampling such as Metropolis-Hastings

sampling or Gibbs sampling using computed function values or numerical values of said signed density, and

substantially computing an expectation value of a prescribed observable due to said signed density.

The present invention provides advantages over the prior art in computational accuracy by providing meth-

ods, processes, and systems for simulating signed densities rigorously without suffering any systematic error

due to a heuristic approximation used in the prior art, such as the fixed-node approximation of either a

ground state or a density matrix associated with a quantum system for QMC, the local-density approxi-

mation and other approximations for the exchange and correlation interactions among electrons in compu-

tational quantum mechanical modeling methods using the density-functional theory. The present invention

provides advantages over the prior art in computational efficiency by providing methods, processes, and sys-

tems for simulating signed densities without the dreaded numerical sign problem, so that the computational

cost to simulate a signed density of a computational size N ∈ N up to a relative error ε > 0, or to solve a

computational problem of size N ∈ N up to an error tolerance ε > 0, is substantially upper-bounded by a

polynomial P (N, ε−1), when either N or ε−1 becomes or both N and ε−1 become substantially large-valued.

This is in contrast to the substantially exponential increase of computational cost with many conventional

methods, processes, and systems in the prior art. A polynomial P (N, ε−1) of variables N and ε refers to a

sum of a predetermined finite number of monomials of N and ε, with each of said monomials being of the

form C ×Na × ε−b, where each of a, b, C is a predetermined constant.

As it is a convention and standard practice in the fields of computing and computational complexity, the size

of a computational problem is substantially a descriptive complexity of the computational problem like how

many bits of information are needed to describe it, and similarly, the computational size of a signed density

is substantially its descriptive complexity such as how many coordinate variables are needed to describe it.

Measures of the computational cost include, but are not limited to, a computational runtime, a number

of clock cycles of either a central processing unit (CPU) or a graphics processing unit (GPU) or a tensor

processing unit (TPU) or a digital signal processing (DSP) chip, a number of basic mathematical function

applications, a number of basic arithmetic and logic operations, an amount of computer hardware being

used, a number of either CPUs or GPUs or TPUs or DSP chips being used, an amount of circuitry being
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used in either a CPU or a GPU or a TPU or a DSP chip, a number of transistors or logic gates being used

in either a CPU or a GPU or a TPU or a DSP chip, and the amount of data storage being used.

The present invention provides methods, processes, and systems for simulating a many-variable (MV) signed

density or solving a computational problem, which are advantageous over the prior art in either computa-

tional accuracy or computational efficiency, or in both computational accuracy and computational efficiency.

Exemplary MV signed densities are associated with many-particle or many-body quantum systems. Said

quantum systems have a configuration space CMV as a set of configuration points forming a manifold that

is also denoted by CMV , where each configuration point q ∈ CMV is an K-tuple or K-dimensional vector of

variable values assigned to an ensemble of coordinate variables, K ∈ N, said variable values are numerical

values (often eigenvalues) assigned to an ensemble of dynamical variables associated with an ensemble of

particles constituting the quantum system. Such exemplary densities or signed densities as function whose

domain is an K-dimensional configuration space, K ∈ N, are referred to as a many-variable densities or a

many-variable signed densities. Said dynamical variables include but are not limited to particle positions in

space, their linear or angular momenta, intrinsic properties of elementary and composite particles such as

electric charges, spins, spinors, and bispinors, as well as substantially all physical observables and quanti-

ties, such as those related to electric currents, voltages, magnetic fields, magnetic moments, electromagnetic

fields, electromagnetic waves, masses of matter, number of particles, strengths of forces, physical locations,

velocities of motion, linear momenta, angular momenta, mechanical energies, mechanical waves, chemical

and material properties.

Advantageously, the present invention uses a sum-of-CFFs (SCFF) Hamiltonian H which generates an SCFF

Gibbs operator that induces said MV signed density, where said SCFF Hamiltonian H is decomposed into

a plurality of CFF interactions {Hk : k ∈ [1,K]}, K ∈ N, each of said CFF interactions generates a

corresponding CFF Gibbs operator that induces a corresponding one of few-variable (FV) signed densities,

wherein said MV signed density is decomposed into a combination of said FV signed densities. Specifically,

a Gibbs wavefunction or Gibbs kernel or Gibbs transition amplitude as an MV signed density is decomposed

into and/or represented by a multi-dimensional integral of Wiener measures or Wiener measure densities or

Gibbs transition amplitudes assigned to Feynman paths or cylinder points or series of connected Feynman

spindles, where the Wiener measure or Wiener measure density or Gibbs transition amplitude assigned to

each Feynman path or cylinder point or a series of connected Feynman spindles is decomposed into and/or

represented by a product of said FV signed densities. Also specifically, said SCFF Hamiltonian H governing

a many-species fermionic system (MSFS) is invariant under the exchange symmetry group G∗ permuting

identical fermions of the same species, each of said CFF interactions Hk, k ∈ [1,K] is invariant under a

a corresponding subgroup Gk ≤ G∗ permuting a small number of particles, and importantly, sign changes

of said MV signed density under permutations in the group G∗ form a group homomorphism between G∗

and the cyclic group C2
def
= {{+1,−1}, ∗}, whereas for each k ∈ [1,K], sign changes of the corresponding
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FV signed density under permutations in the corresponding subgroup Gk form a group homomorphism

between Gk and the cyclic group C2
def
= {{+1,−1}, ∗}, with said group homomorphisms being compatible

with the decomposition of said MV signed density into said combination of said FV signed densities, such

that a method of restricted path integral (RPI) applies, which samples only restricted Feynman paths or

restricted cylinder points as combinations and/or products of restricted Feynman spindles associated with

non-negative-definite density values of said FV signed densities, and integrates the samples of said restricted

Feynman paths or restricted cylinder points to substantially estimate the expectation value of a prescribed

observable due to said MV signed density.

Also advantageously, the present invention employs a total Hamiltonian H selected from a group of sub-

stantially frustration-free Hamiltonians comprising strongly frustration-free (StrFF) Hamiltonians, ground

sate frustration-free (GFF) Hamiltonians, directly frustration-free (DFF) Hamiltonians, and separately

frustration-free (SepFF) Hamiltonians, such that the total Hamiltonian H is decomposed into a combi-

nation of substantially frustration-free interactions as H =
∑K

k=1Hk, wherein the ground state ψ0(H) as an

MV signed density is non-degenerate, the ground states ψ0(Hk) of each of the substantially frustration-free

interactions Hk as corresponding FV signed densities are substantially node-determinate and substantially

coincide with ψ0(H) on corresponding subsets of the support of ψ0(H), consequently, the MV signed density

ψ0(H) is simulated by an inhomogeneous quasi-Markov chain generated by a sequence of quasi-stochastic

operators each of which inducing a corresponding one of said FV signed densities, where said inhomogeneous

quasi-Markov chain converges to a stationary distribution that is substantially the same as a predetermined

function of ψ0(H) such as ψ0(H) itself or |ψ0(H)| or |ψ0(H)|2, after applying said sequence of quasi-stochastic

operators repeatedly for a predetermined number of times.

Still advantageously, the present invention uses a Feynman-Kitaev construct associated with or governed

by a Feynman-Kitaev Hamiltonian that is substantially frustration-free by preferably making each of the

involved Feynman-Kitaev propagators of the form I−XC⊗RL or I−|1〉〈0|C⊗UL−|0〉〈1|C⊗U+
L substantially

node-determinate, where the subscript “C” indicates either an operation on or a state of a single clock rebit in

a clock register, while the subscript “L” indicates either an operation on or a state of a plurality of logic rebits

in a logic register. A Feynman-Kitaev propagator of the form I − XC ⊗ RL is referred to as a Hermitian

Feynman-Kitaev propagator, which is suitable for a quantum gate RL called Hermitian unitary when it

satisfies both the condition of unitarity R+
LRL = RLR

+
L = I and the condition of Hermiticity R+

L = RL. A

Feynman-Kitaev propagator of the form I − |1〉〈0|C ⊗ UL − |0〉〈1|C ⊗ U+
L is referred to as a non-Hermitian

Feynman-Kitaev propagator, which is suitable for a quantum gate UL called non-Hermitian unitary when it

satisfies only the condition of unitarity U+
L UL = ULU

+
L = I.

Let GP
def
= {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} denote the 1-qubit Pauli group of quantum gates gener-

ated by the scalar coefficients {±1,±i} and the Pauli matrices or Pauli operators on a single qubit, and

G∗P denote the Pauli group consisting of all tensor products of a plurality of 1-qubit Pauli groups each of
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which acts on a corresponding one of a plurality of qubits [54]. It is noted that any Hermitian Feynman-

Kitaev propagator of the form I − XC ⊗ RL with a Hermitian unitary gate RL selected from the Pauli

group is straightforwardly node-determinate, with the knowledge that a scalar multiplication by the imag-

inary unit i def
=
√
−1 is isophysically implemented as an X gate one a flag rebit signifying a real-imaginary

conversion [12]. It is also well known that the combination of the controlled-NOT gate and single-qubit

unitary gates is universal for quantum computation. Since the controlled-NOT gate is straightforwardly

node-determinate, it suffices to ensure node-determinacy for either an arbitrary Hermitian Feynman-Kitaev

propagator I −XC ⊗ RL(θ) with an R-gate RL(θ) def
= Z cos θ + X sin θ, θ ∈ [−π, π) on a single rebit, or an

arbitrary non-Hermitian Feynman-Kitaev propagator I − |1〉〈0|C ⊗ UL(θ)− |0〉〈1|C ⊗ U+
L (θ) with a rotation

gate UL(θ) def
= RL(θ) def

= RL(θ)Z = I cos θ +XZ sin θ, θ ∈ [−π, π) on a single rebit.

To facilitate node-determinacy, it is advantageous to work with the {|+〉, |−〉} basis for a clock rebit and use

|+〉 def
= (|0〉+ |1〉)/

√
2 and |−〉 def

= (|0〉− |1〉)/
√

2 as the clock states, so that the Hermitian and non-Hermitian

Feynman-Kitaev propagators take the new forms of I −ZC⊗RL(θ) and I − |−〉〈+|C⊗UL(θ)− |+〉〈−|C⊗U+
L (θ)

respectively, θ ∈ [−π, π), whereby a Hermitian Feynman-Kitaev propagator I − ZC ⊗ RL(θ), θ ∈ [−π, π) is

straightforwardly node-determinate, while a non-Hermitian Feynman-Kitaev propagator

I − |−〉〈+|C ⊗ UL(θ) − |+〉〈−|C ⊗ U+
L (θ) =


1− cos θ 0 0 sin θ

0 1− cos θ − sin θ 0

0 − sin θ 1 + cos θ 0

sin θ 0 0 1 + cos θ

 (39)

is also node-determinate for all θ ∈ [−π, π), since the two ground states ψ+
0

def
= [0, cos(θ/2), sin(θ/2), 0]+ and

ψ−0
def
= [cos(θ/2), 0, 0,− sin(θ/2)]+ do not overlap in the two-rebit configuration space {00, 01, 10, 11}.

It is also advantageous to still work with the conventional {|0〉, |1〉} computational basis for each of a plurality

of clock rebits, but have every clock rebit associated with an auxiliary rebit operating in the {|+〉, |−〉} basis,

so to construct a Hermitian Feynman-Kitaev propagator of the form (I − ZA ⊗ RL(θ)) + (I − XC) or a

non-Hermitian Feynman-Kitaev propagator of the form (I−|−〉〈+|A⊗UL(θ)−|+〉〈−|A⊗U+
L (θ))+(I−XC),

θ ∈ [−π, π), whose Feynman-Kitaev lattice or state graph is square-shaped as illustrated in Fig. 4, where

“IZU” signifies (I−ZA⊗RL(θ)) or (I−|−〉〈+|A⊗UL(θ)−|+〉〈−|A⊗U+
L (θ)) for an auxiliary rebit controlled

R-gate or rotation gate, while “XII” represents a copy gate (I −XC) with only the clock rebit undergoing a

state transition. Both the Hermitian and the non-Hermitian Feynman-Kitaev propagators are substantially

frustration-free as desired, comprising two substantially frustration-free interactions that are strictly node-

determinate. However, neither a Z+
C time selection operator singles out an earlier or input |φ〉L logic state

tensor-multiplied by the |0〉C clock state, nor a Z−C time selection operator singles out a latter or output

U |φ〉L logic state tensor-multiplied by the |1〉C clock state, with U = RL(θ)) or UL(θ)). Rather, both the

earlier/input and the latter/output logic states are substantially half/half mixed at each of the clock states

or Feynman-Kitaev time instants.
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Fig. 4: A square-shaped Feynman-Kitaev propagator using an auxiliary rebit.

One exemplary embodiment provides an arrow of time and a means for propagating the probability amplitude

forward from an initial state to a final state of quantum computation by repeating the same square-shaped

Feynman-Kitaev propagator as illustrated in Fig. 4 for a number 2M of times, each time applying a non-

Hermitian Feynman-Kitaev propagator (I − |−〉〈+|A ⊗ UL(θ/M)− |+〉〈−|A ⊗ U+
L (θ/M)) + (I −XC) with a

different pair consisting of a clock rebit and an auxiliary rebit, where θ ∈ [−π, π) is a predetermined constant

angle or rotation, M ∈ N is substantially large. This creates a 4M -dimensional hypercube of Feynman-Kitaev

lattice or state graph. Each non-Hermitian Feynman-Kitaev propagator keeps intact substantially half of the

logic state amplitude it receives, and applies a small-angle rotation to substantially the other half of the logic

state amplitude, which is accompanied by a |+〉 to |−〉 state transition of the corresponding auxiliary rebit.

By the end of the sequence of 2M non-Hermitian Feynman-Kitaev propagators, the logic state is rotated

by different angles accompanied by different combinations of the |+〉 and |−〉 states of the auxiliary rebits.

By the central limit theorem and well known properties of the binomial coefficients [55], the rotation angle

is substantially Gaussian distributed with a mean substantially equal to M × (θ/M) = θ and a standard

deviation substantially equal to M1/2, therefore, most of the probability amplitude is concentrated in the

logic state being substantially rotated by the angle θ. This is a phenomenon of measure concentration [56].

With the number M ∈ N being chosen sufficiently large but still polynomial-bounded, the sequence of 2M

non-Hermitian Feynman-Kitaev propagators constitute an implementation of a single UL(θ) rotation gate

up to a polynomial-bounded error at a polynomial-bounded cost.

Another exemplary embodiment provides an arrow of time and a means for propagating the probability

amplitude forward from an initial state to a final state of quantum computation by filtering the |+〉 and

|−〉 states of the auxiliary rebit after a Hermitian or non-Hermitian Feynman-Kitaev propagator (I − ZA ⊗

RL(θ)) + (I − XC) or (I − |−〉〈+|A ⊗ UL(θ) − |+〉〈−|A ⊗ U+
L (θ)) + (I − XC), which produces a mixture of

quantum computational states of the form |t〉C |+〉A|φ〉L + |t〉C |−〉A|ULφ〉L, t ∈ N, |φ〉L being a logic state. To

enhance and extract out the desired |−〉A|ULφ〉L component while attenuating and removing the unwanted

|+〉A|φ〉L component down a Feynman-Kitaev construct to time instants later than t ∈ N, one exemplary
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embodiment uses a generalized Feynman-Kitaev propagator Z+
C ⊗ (I − bXA) − XC + Z−C ⊗ (I + bXA) or

Z+
C ⊗ (I − bXA) −XC ⊗XA + Z−C ⊗ (I + bXA), with b > 0 being a small energy bias, which mostly copies

the tensor-product state of the auxiliary and logic rebits, but slightly amplifies the |−〉A state while slightly

attenuating the |+〉A state as the corresponding clock rebit makes a |0〉C to |1〉C state transition. The

generalized Feynman-Kitaev propagator is not strictly node-determinate, but the probability of making a

wrong node determination or being unable to make a node determination is a higher-order infinitesimal,

while the effect of amplifying |−〉A and attenuating |+〉A is small but systematic, which accumulates to a

significant state filtering effect after being applied repeatedly for a substantial number of times. This small

energy bias-indued state filtering is similar to Feynman’s proposal [57] of driving a reversible computation

forward: A small energy bias does not prevent the computation going backward from time to time, but it

exerts a constant and persistent force to push the computation forward on the long run.

Fig. 5: A diamond-shaped state filter using another auxiliary rebit.

Still another embodiment of |±〉A state filtering uses a generalized Feynman-Kitaev propagator that comprises

another auxiliary rebit with the subscript “B” operating with the computational basis {|0〉B, |1〉B}, in addition

to the auxiliary rebit with the subscript “A” operating with the basis {|+〉A, |−〉A}. The related Feynman-

Kitaev lattice or state graph is illustrated in Fig. 5, where “XIG” represents a state filtering Feynman-

Kitaev propagator Z+
C ⊗ (I − bXA) − XC + Z−C ⊗ (I + bXA) or Z+

C ⊗ (I − bXA) − XC ⊗ XA + Z−C ⊗ (I +

bXA), with b > 0 being a small energy bias, while “IXX” signifies a strictly node-determinate Feynman-

Kitaev propagator I − XB ⊗ XA, which copies the |±〉A states faithfully for the “A” auxiliary rebit as

the “B” auxiliary rebit makes a transition between the |0〉B and |1〉B states. The “XIG” Feynman-Kitaev

propagator is not node-determinate, but its two ground states are chosen such that they only overlap in the

subspace span{|0〉C |1〉A, |1〉C |0〉A} and do not overlap in the subspace span{|0〉C |0〉A, |1〉C |1〉A}. Consequently,

an alternative method of MCQC employs an alternative solution to the sign problem using partial node-

determinacy, where an MCQC simulation step involving the “XIG” Feynman-Kitaev propagator invokes it

only when the current configuration point falls in the subspace span{|0〉C |0〉A, |1〉C |1〉A} where the ground

36



state being supported there can be determined, otherwise, the “XIG” Feynman-Kitaev propagator is skipped

for the round. The simulation does not get stuck because the “IXX” interaction I−XB⊗XA will eventually

move the configuration point out of the subspace span{|0〉C |1〉A, |1〉C |0〉A}.

More generally, GSQC can employ generalized Feynman-Kitaev constructs that involve a sequence of non-

unitary gates, such as a sequence of Gibbs operators representing imaginary time propagation (ITP) of

quantum states [58], or a sequence of quantum measurements to project out a desired quantum state [59].

Given a sequence of imaginary time propagators

{
Wt

def
= exp [−τ(H ′t + E′t)] , E

′
t ∈ R

}T

t=1
, T ∈ N , (40)

which represent a non-unitary state evolution of a logic register consisting of N ∈ N logic rebits to project

out a desired quantum state progressively, a non-unitary Feynman-Kitaev construct is built in substantially

the same manner as for a Feynman-Kitaev construct involving unitary quantum gates, which employs a clock

register with clock states {|t〉C}t∈[0,T ] mapping the indices of imaginary time, implements a Feynman-Kitaev

Hamiltonian H as an (T + 1)× (T + 1) block matrix

H =

T∑
t=0

Ht =



H ′0 + I −W−1
1

−W−1
1 W−2

1 + I −W−1
2

. . .
. . .

. . .

−W−1
t−1 W−2

t−1 + I −W−1
t

. . .
. . .

. . .

−W−1
T−1 W−2

T−1 + I −W−1
T

−W−1
T W−2

T


, (41)

with each Ht
def
= (Ht(i, j))

T+1

i,j=1, t ∈ [1, T ], called a non-unitary Feynman-Kitaev propagator, comprising

mostly zero entries except for a 2× 2 block as

Ht(i, j) =



I , when i = j = t ,

−W−1
t , when i = t , j = t+ 1 ,

−W−1
t , when j = t , i = t+ 1 ,

W−2
t , when i = j = t+ 1 ,

0 , elsewhere ,

(42)

and H0(i, j) = H ′0δij , H
′
0 being a Hamiltonian on the logic register that has a known state φ0 (the initial

state of a quantum algorithm) as a non-degenerate ground state with energy 0, namely, H ′0φ0 = 0, which is

separated from all excited states by a polynomial-bounded energy gap.

If all of the partial Hamiltonians {Ht : t ∈ [0, T ]} are non-negative definite, then the Feynman-Kitaev Hamil-

tonian H is non-negative definite and has 0 as the lowest eigenvalue with the ground state ψ0(H) def
= const×
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∑T

t=0 |t〉C |φt〉L, φt
def
= Wtφt−1, ∀t ∈ [1, T ], such that

Hψ0(H) = H



φ0

W1φ0

W2W1φ0

W3W2W1φ0

...

WT−1 · · ·W2W1φ0

WTWT−1 · · ·W2W1φ0


= 0 . (43)

Such a ground state ψ0(H), as well as any Gibbs kernel (also known as a Gibbs wavefunction) associ-

ated with a Gibbs operator e−τH , τ > 0 generated by a Feynman-Kitaev Hamiltonian representing a non-

unitary Feynman-Kitaev construct, can be simulated using MCQC in substantially the same manner as for a

Feynman-Kitaev construct involving unitary quantum gates, overcoming the numerical sign problem by one

of the methods specified supra as well as in the incorporated references, with the Feynman-Kitaev Hamil-

tonian being either strongly frustration-free, or ground state frustration-free, or directly frustration-free, or

separately frustration-free, or sum-of-controlled-few-fermions (sum-of-CFFs). The following equations H ′0 + I −W−1
1

−W−1
1 W−2

1

 φ0

W1φ0

 = 0 , (44)


H ′0 + I −W−1

1 0

−W−1
1 W−2

1 + I −W−1
2

0 −W−1
2 W−2

2




φ0

W1φ0

W2W1φ0

 = 0 , (45)


H ′0 + I −W−1

1 0 0

−W−1
1 W−2

1 + I W−1
2 0

0 W−1
2 W−2

2 + I W−1
3

0 0 −W−1
3 W−2

3




φ0

W1φ0

W2W1φ0

W3W2W1φ0

 = 0 , (46)

illustrate the Feynman-Kitaev Hamiltonians and their corresponding ground states for the simple cases of

T = 1, 2, 3, which compute a desired quantum state W1φ0, W2W1φ0, or W3W2W1φ0 respectively.

Alternatively, if it is desired to have positive powers of the {Wt}Tt=1 operators instead of their inverses in

the entries of a Feynman-Kitaev Hamiltonian, then it is advantageous to use non-unitary Feynman-Kitaev

propagators Ht
def
= (Ht(i, j))

T+1

i,j=1 with

Ht(i, j) =



W 2
t , when i = j = t ,

−Wt , when i = t , j = t+ 1 ,

−Wt , when j = t , i = t+ 1 ,

I , when i = j = t+ 1 ,

0 , elsewhere ,

(47)
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for all t ∈ [1, T ], and H0(i, j) = H ′0δij , so to construct a Feynman-Kitaev Hamiltonian

H =

T∑
t=0

Ht =



H ′0 +W 2
1 −W1

−W1 I +W 2
2 −W2

. . .
. . .

. . .

−Wt−1 I +W 2
t −Wt

. . .
. . .

. . .

−WT−1 I +W 2
T −WT

−WT I


, (48)

which has the same zero-energy ground state ψ0(H) def
= const×

∑T

t=0 |t〉C |φt〉L, φt
def
= Wtφt−1, ∀t ∈ [1, T ], just

like that in equation (43), provided that all of the partial Hamiltonians {Ht : t ∈ [0, T ]} are non-negative

definite. The following equations  H ′0 +W 2
1 −W1

−W1 I

 φ0

W1φ0

 = 0 , (49)


H ′0 +W 2

1 −W1 0

−W1 I +W 2
2 −W2

0 −W2 I




φ0

W1φ0

W2W1φ0

 = 0 , (50)


H ′0 +W 2

1 −W1 0 0

−W1 I +W 2
2 −W2 0

0 −W2 I +W 2
3 −W3

0 0 −W3 I




φ0

W1φ0

W2W1φ0

W3W2W1φ0

 = 0 , (51)

illustrate the Feynman-Kitaev Hamiltonians and their corresponding ground states for the simple cases of

T = 1, 2, 3, which compute a desired quantum state W1φ0, W2W1φ0, or W3W2W1φ0 respectively.

Another alternative is to use a Feynman-Kitaev Hamiltonian of the form

H =

T∑
t=0

Ht =



H ′0 +W1 −I

−I W−1
1 +W2 −I

. . .
. . .

. . .

−I W−1
n +Wn+1 −I

. . .
. . .

. . .

−I W−1
T−1 +WT −I

−I W−1
T


, (52)

with each non-unitary Feynman-Kitaev propagator Ht
def
= (Ht(i, j))

T+1

i,j=1, t ∈ [1, T ] comprising mostly zero
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entries except for a 2× 2 block as

Ht(i, j) =



Wt , when i = j = t ,

−I , when i = t , j = t+ 1 ,

−I , when j = t , i = t+ 1 ,

W−1
t , when i = j = t+ 1 ,

0 , elsewhere ,

(53)

and H0(i, j) = H ′0δij , which has the same zero-energy ground state ψ0(H) def
= const ×

∑T

t=0 |t〉C |φt〉L,

φt
def
= Wtφt−1, ∀t ∈ [1, T ], just like that in equation (43), provided that all of the partial Hamiltonians

{Ht : t ∈ [0, T ]} are non-negative definite. The following equations H ′0 +W1 −I

−I W−1
1

 φ0

W1φ0

 = 0 , (54)


H ′0 +W1 −I 0

−I W−1
1 +W2 −I

0 −I W−1
2




φ0

W1φ0

W2W1φ0

 = 0 , (55)


H ′0 +W1 −I 0 0

−I W−1
1 +W2 −I 0

0 −I W−1
2 +W3 −I

0 0 −I W−1
3




φ0

W1φ0

W2W1φ0

W3W2W1φ0

 = 0 , (56)

illustrate the Feynman-Kitaev Hamiltonians and their corresponding ground states for the simple cases of

T = 1, 2, 3, which compute a desired quantum state W1φ0, W2W1φ0, or W3W2W1φ0 respectively. In one

exemplary embodiment where all {Wn}Nn=1 are associated with substantially the same partial Hamiltonian h

up to a constant shift of potential energy, all of the matrix blocks W−1
n +Wn+1, ∀n ∈ [1, N ] are commutative

and simultaneously diagonalized by the eigenstates of h, the ground state of H can be made to coincide

with the ground state of h along the transverse dimensions that are perpendicular to the Feynman-Kitaev

time axis, while the potential energy profile along the Feynman-Kitaev time axis can be made convex by

adjusting the values of λ0(Wn), n ∈ N, such that the Hamiltonian H has a spectral gap that is provably

lower-bounded as Ω(1/poly(T )).

40



Still another alternative is to use a Feynman-Kitaev operator of the form

H =

T∑
t=0

Ht =



H ′0 + I −W−1
1

−W1 2I −W−1
2

. . .
. . .

. . .

−Wn 2I −W−1
n+1

. . .
. . .

. . .

−WT−1 2I −W−1
T

−WT I


, (57)

with each non-unitary Feynman-Kitaev propagator Ht
def
= (Ht(i, j))

T+1

i,j=1, t ∈ [1, T ] comprising mostly zero

entries except for a 2× 2 block as

Ht(i, j) =



I , when i = j = t ,

−W−1
t , when i = t , j = t+ 1 ,

−Wt , when j = t , i = t+ 1 ,

I , when i = j = t+ 1 ,

0 , elsewhere ,

(58)

and H0(i, j) = H ′0δij , which has the same zero-energy ground state ψ0(H) def
= const ×

∑T

t=0 |t〉C |φt〉L,

φt
def
= Wtφt−1, ∀t ∈ [1, T ] as the eigenvector corresponding to the lowest eigenvalue, just like that in equation

(43), and this zero eigenvector is separated from all other eigenstates by an Ω(T−2)-bounded spectral gap,

as manifested by the following matrix similarity transformation

A−1HA =



H ′0 + I −I

−I 2I −I
. . .

. . .
. . .

−I 2I −I
. . .

. . .
. . .

−I 2I −I

−I I



def
= H∗, (59)

with

A def
=



I

W1

W2W1

. . .

WNWN−1 · · ·W1


, (60)
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and

A−1 =



I

W−1
1

W−1
1 W−1

2

. . .

W−1
1 W−1

2 · · ·W−1
N


, (61)

which shows that the eigen values of H are the same as those of H∗, while the spectrum of H∗ is exactly

solvable and well known to be polynomial-gapped. Take N = 2 for a concrete example, a Feynman-Kitaev

operator H reads

H =


H ′0 +W1 −I 0

−I W−1
1 +W2 −I

0 −I W−1
2

 , (62)

with

A def
=


I

W1

W2W1

 , A−1 =


I

W−1
1

W−1
1 W−1

2

 , (63)

H is similarly-transformed into

A−1HA =


I

W−1
1

W−1
1 W−1

2



H ′0 + I −W−1

1 0

−W1 2I −W−1
2

0 −W2 I



I

W1

W2W1



=


I

W−1
1

W−1
1 W−1

2



H ′0 + I −I 0

−W1 2W1 −W1

0 −W2W1 W2W1

 (64)

=


H ′0 + I −I 0

−I 2I −I

0 −I I

 def
= H∗.

Therefore, a general Feynman-Kitaev operator H of equation (57) has nice spectral properties for GSQC,

with the only drawback being that the operator is non-Hermitian and does not directly correspond to a total

Hamiltonian governing a quantum system. One remedy is to Hermitian-square such a non-Hermitian operator

into either H+H or HH+, which becomes Hermitian and corresponds to a quantum system. Better yet, since

the Feynman-Kitaev operator H of equation (57) is a sum of an O(T )-bounded number of computationally

local operators each of which can be made FBM, the Hamiltonian H+H or HH+ is a sum of an O(T 2)-

bounded number of partial Hamiltonians each of which can be made FBM and a CFF interaction, as such, the

Hamiltonian H+H or HH+ is amenable to efficient simulations using Monte Carlo on a classical computer

without a sign problem, by virtue of a similar method as that employs a total Hamiltonian selected from the
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group consisting of strongly frustration-free Hamiltonians, ground sate frustration-free Hamiltonians, directly

frustration-free Hamiltonians, separately frustration-free Hamiltonians, and sum-of-CFFs Hamiltonians.

In one exemplary embodiment using a non-unitary Feynman-Kitaev construct, an adiabatic procedure is

adopted which starts with substantially H = H ′0 and the initial ground state ψ0(H) = |0〉C |φ0〉L, all reference

energies {E′t : t ∈ [1, T ]} being set at a very high positive value, then turns on the subsequent non-unitary

Feynman-Kitaev propagators {Ht : t ∈ [1, T ]} for the later clock sites one by one by lowering and adjusting

the reference energies. More specifically and inductively, at a t-th stage, t ∈ [1, T ] with the clock sites

0, 1, · · · , t − 1 already turned on, the reference energy E′t is initially set so high to make Wt ≈ 0, such that

the t-th clock site and the later clock sites with an index larger than t are effectively disconnected from the

earlier clock sites with an index smaller than t, then lowers the reference energy E′t gradually to allow the

wavefunction φt
def
= (

∏t
i=1Wi)φ0 increase its amplitude at the t-th clock site, until the quantum amplitude is

approximately equidistributed among the clock sites from 0 to t or distributed according to a desired profile

along the axis of clock sites called the axis of imaginary time.

In all of the embodiments using a non-unitary Feynman-Kitaev Hamiltonian, as a means to avoid complex-

ity due to boundary effects in an associated generalized Feynman-Kitaev construct, it is useful to set the

initial state at the center of a Feynman-Kitaev lattice and have non-unitary Feynman-Kitaev propagators

placed mirror-symmetrically about said center until reaching halting clock sites that are located mirror-

symmetrically about said center, then continue to have identity state-copying Feynman-Kitaev propagators

placed mirror-symmetrically about said center, such that, the ground state of the generalized Feynman-Kitaev

construct has quantum amplitude decaying exponentially as the Feynman-Kitaev clock sites get farther away

from said halting clock sites toward the boundaries of the generalized Feynman-Kitaev construct, until be-

coming negligibly small at said boundaries. Alternatively, it is useful to make the generalized Feynman-Kitaev

construct cyclic and form a ring or torus or hyper-torus for a one- or two- or many-dimensional lattice of a

generalized Feynman-Kitaev construct, where no boundary exists.

For a Feynman-Kitaev construct comprising either unitary Feynman-Kitaev propagators or non-unitary

Feynman-Kitaev propagators or both types of Feynman-Kitaev propagators combined, it is advantageous

to design and optimize the graph or topology of the Feynman-Kitaev construct or lattice in such a manner

as to achieve a favorable scaling of the spectral gap ∆λ(HFK) def
= λ1(HFK) − λ0(HFK) versus the number

T ∈ N of quantum gates needed to implement a predetermined quantum circuit, as exemplified in equations

(35-38), where the spectral gap ∆λ(HFK) is the energy gap separating the ground state of the associated

Feynman-Kitaev Hamiltonian ∆λ(HFK) from all of its excited states. The standard Feynman-Kitaev con-

struct with a linear Feynman-Kitaev lattice/chain/graph or a one-dimensional ring-shaped Feynman-Kitaev

lattice/chain/graph achieves a quadratic scaling as ∆λ(HFK) = Ω(T−2). As being specified in the incorpo-

rated references, a lifted Feynman-Kitaev construct that adapts the technique of lifting Markov chains or

lifted Markov chains [60–62] provides a linear scaling as ∆λ(HFK) = Ω(T−1) for the spectral gap and O(T )
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for the mixing time of a Monte Carlo procedure simulating the associated lifted Feynman-Kitaev Hamilto-

nian said lifted Feynman-Kitaev construct. Besides, the standard technique of lifting Markov chains or lifted

Markov chains as taught in references [60–62] applies at the level or layer of the Monte Carlo procedure

or random walk simulation, with or without a Feynman-Kitaev construct. The two-rings-at-two-elevations

lifted Markov chain provides an exemplary embodiment.

There have been techniques reported to obtain polynomially improved spectral gaps for adiabatic quantum

computations and efficient quantum simulations of classical Monte Carlo methods [63–66], culminating in

a systematic formulation and solution of spectral gap amplification [67], which transforms one substantially

frustration-free Hamiltonian in the form of a sum of substantially frustration-free interactions into another

Hamiltonian with a spectral gap that enjoys a polynomially improved scaling. Reference [35] has also alluded

to a GSQC Hamiltonian with a spectral gap that scales as Ω(T−1).

Also as being disclosed, a multi-dimensional or many-dimensional Feynman-Kitaev construct provides advan-

tages associated with the phenomena of measure concentration [56], which promotes substantial concentration

of probability amplitudes in a specific shell-shaped region with respect to an prescribed origin of an associated

multi-dimensional or many-dimensional Feynman-Kitaev lattice, due to either a central limit theorem-type

of probability concentration or a geometric volume concentration or another type of measure concentration,

such that a prescribed observable making a measurement at lattice points in said shell-shaped region reads

out a predetermined quantum result, and the phenomena of measure concentration advantageously accelerate

such read-out of said predetermined quantum result.

One skilled in the art would readily see ways and means for using the disclosed and specified methods

and embodiments to devise a multi-dimensional or many-dimensional Feynman-Kitaev construct, which has

program counter sites or called clock sites arranged into an N -dimensional lattice (called the Feynman-

Kitaev lattice), N ≥ 1, with each of most of the clock sites being connected to substantially N neighbor

clock sites via a Feynman-Kitaev propagator that executes a quantum gate of quantum computation as a

certain particle or quantum amplitude makes a transition from one clock site to a neighbor clock site, where a

certain clock site from the inner part of the N -dimensional Feynman-Kitaev lattice is chosen as the start clock

site at which a quantum register consisting of a plurality of qubits is set to an initial quantum state, while

the Feynman-Kitaev propagators connecting the clock sites are arranged such that a prescribed sequence of

quantum gates constituting a quantum circuit realizing a quantum algorithms are applied in order as said

certain particle or quantum amplitude moves away from the start clock site toward the outer part of the the

N -dimensional Feynman-Kitaev lattice, whereby the concentration of measure at the outermost part of the

N -dimensional lattice helps to propagate said certain particle or quantum amplitude outward and to boost

the probability of finding a desired computational result produced by said quantum circuit.

According to an exemplary embodiment, Fig. 6 illustrates one method 600 of simulating a many-variable
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Fig. 6: One method of simulating a many-variable signed density.

(MV) signed density as a function whose domain is an MV product space of an MV configuration space CMV

as a compact manifold, where CMV is a set of MV configuration points each of which is represented by a

tuple or vector of variable values assigned to a first ensemble of coordinate variables, with the first ensemble

of coordinate variables consisting of a variable number N ∈ N of members or elements, namely, each of

said MV configuration points is an N -tuple or N -dimensional vector of variable values. The configuration

space CMV is a compact manifold in the standard mathematical sense, that is, a topology is defined on

CMV with respect to which CMV is a compact set and a compact topological space [68, 69]. Method 600

comprises providing a first means 610 for decomposing said MV signed density into a combination of a first

plurality K ∈ N of few-variable (FV) signed densities each of which corresponds to a second ensemble of a

second plurality of coordinate variables, providing a second means 620 for determining FV nodal surfaces

corresponding to each of said FV signed densities, providing a third means 630 for producing a third plurality

of samples of FV restricted densities, and providing a fourth means 640 for producing a fourth plurality of

samples of an MV restricted density. The means 610, 620, 630, and 640 are combined to endow method 600

an advantage that said MV restricted density is non-negative-valued and substantially equivalent to said

MV signed density, in the sense that a signed expectation value of a prescribed observable due to said MV

restricted density is substantially equal to the signed expectation value of said prescribed observable due to

said MV signed density, where the prescribed observable is selected from the group consisting of the number

1, a predetermined constant, and a prescribed function whose domain is contained in said MV product space

of said MV configuration space CMV .

In relation to the first means 610, said second ensemble of coordinate variables corresponding to said each of

said first plurality K of FV signed densities consists of said second plurality L ∈ N of coordinate variables se-

45



lected from said first ensemble of coordinate variables, a set of variable values assigned to said corresponding

second ensemble of coordinate variables constitutes a corresponding FV configuration space or submanifold

CFV , where said first plurality K is substantially upper-bounded by a first predetermined polynomial P1(N),

while said second plurality L is substantially upper-bounded by a predetermined logarithm of a second pre-

determined polynomial P2(N), with N being said variable number N , such that, said each of said FV signed

densities is associated with a corresponding family of FV reduced configuration spaces, with said correspond-

ing family of FV reduced configuration spaces being substantially a corresponding family of FV cosets or

submanifolds of the form CFV ⊕r def
= {(q, r) : q ∈ CFV } ⊆ CMV , where CFV is said corresponding FV configura-

tion space or submanifold consisting of L-tuples or L-dimensional vectors of variable values assigned to said

corresponding second ensemble of coordinate variables, while r is any configuration point in an orthogonal

complementary submanifold C′FV which consists of (N−L)-tuples or (N−L)-dimensional vectors of variable

values assigned to coordinate variables that are in said first ensemble but out of said corresponding second

ensemble. That said second plurality L is substantially upper-bounded by said predetermined logarithm of

P2(N) means that said each of said FV signed density can always be efficiently computed and substantially

exhaustive-sampled over a product space of each of said corresponding family of FV reduced configuration

spaces, with said each of said corresponding family of FV reduced configuration spaces being of the form

CFV ⊕ r, r ∈ C′FV , which is a submanifold whose dimension is upper-bounded by said second plurality L.

In relation to the second means 620, a corresponding family of FV nodal surfaces are determined for each

of said FV signed densities, with each member of said corresponding family of FV nodal surfaces encloses a

corresponding FV nodal cell in which the corresponding FV signed density is non-negative-valued, with said

corresponding FV nodal cell being a corresponding FV reduced configuration space, inside which any pair

of MV configuration points differ from each other at most in variable values assigned to coordinate variables

selected from the corresponding second ensemble of coordinate variables.

In relation to the third means 630, an FV plurality of non-negative-valued samples of a sequence of FV re-

stricted densities are produced by repeatedly evaluating said sequence of FV restricted densities at a sequence

of sample points forming a sample path or Feynman path, where each of said sequence of sample points is

taken from a corresponding nodal cell of one of said FV signed densities, whereas each of said sequence of

FV restricted densities is substantially equal to a corresponding one of said FV signed densities restricted

to one of the corresponding nodal cells. Said FV plurality of non-negative-valued samples is substantially

upper-bounded by a predetermined polynomial of said variable number N .

In relation to the fourth means 640, an MV plurality of non-negative-valued samples of an MV restricted

density are produced by combining the FV plurality of non-negative-valued samples of FV restricted densities

obtained by the third means 630. Said MV plurality of non-negative-valued samples is substantially upper-

bounded by a predetermined polynomial of said variable number N .
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In a first exemplary embodiment of method 600, said MV configuration space CMV is a state space of a

homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV stationary

distribution of a corresponding one of FV quasi-stochastic operators, said each of said FV signed densities

is associated with each of said corresponding family of FV reduced configuration spaces of the form CFV ⊕ r,

r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce transitions among MV

configuration points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said

MV signed density is decomposed into a combination of said FV signed densities in the sense that said

MV signed density is substantially the single unique signed density associated with CMV which substantially

coincides with each of said FV signed densities associated with each of said corresponding family of FV

reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV .

In a second exemplary embodiment of method 600, said MV configuration space CMV is a state space of a

homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV quasi-Markov

transition probability density due to a quasi-Markov chain generated by a corresponding one of FV quasi-

stochastic operators, said each of said FV signed densities is associated with each of said corresponding

family of FV reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV , said corresponding one of FV

quasi-stochastic operators can only induce transitions among MV configuration points that are contained

in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said MV signed density is decomposed into

a combination of said FV signed densities in the sense that said MV signed density is substantially the

single unique signed density associated with CMV which is the stationary distribution or called stationary

distribution of an inhomogeneous quasi-Markov chain generated by a sequence of said FV quasi-stochastic

operators.

In a third exemplary embodiment of method 600, said MV configuration space CMV is a state space of a

homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV quasi-Markov transition probability density due to a homogeneous quasi-Markov chain generated by

an MV quasi-stochastic operator, said MV signed density is associated with said MV configuration space

CMV , while said each of said FV signed densities is an FV quasi-Markov transition probability density due

to a quasi-Markov chain generated by a corresponding one of FV quasi-stochastic operators, said each of

said FV signed densities is associated with each of said corresponding family of FV reduced configuration

spaces of the form CFV ⊕r, r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce

transitions among MV configuration points that are contained in the same coset CFV ⊕ r for a certain fixed

r ∈ C′FV , wherein said MV signed density is decomposed into a combination of said FV signed densities in the

47



sense that said MV quasi-Markov transition probability density is substantially equal to an FV quasi-Markov

transition probability density due to an inhomogeneous quasi-Markov chain generated by a sequence of said

FV quasi-stochastic operators.

In a fourth exemplary embodiment of method 600, said MV configuration space CMV is a cylinder set for

Feynman path integral in relation to an MV Gibbs operator, said MV signed density is a Gibbs wavefunction

or Gibbs transition amplitude due to said MV Gibbs operator, said MV signed density is associated with

said MV configuration space CMV , while said each of said FV signed densities is one of FV Gibbs transition

amplitudes due to a corresponding one of FV Gibbs operators, said each of said FV signed densities is

associated with each of said corresponding family of FV reduced configuration spaces of the form CFV ⊕ r,

r ∈ C′FV , said corresponding one of FV Gibbs operators can only induce transitions among MV configuration

points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said MV signed

density is decomposed into a combination of said FV signed densities in the sense that said MV signed

density is substantially equal to a Feynman path integral involving said FV Gibbs transition amplitudes in

relation to a Feynman stack associated with a sequence of said FV Gibbs operators.

In other alternative embodiments of method 600, other similar ways and means are employed to similarly

decompose said MV signed density into a combination of said FV signed densities and achieve the same

advantage in method 600 of simulating said MV signed density.

Fig. 7: Another method of simulating a many-variable signed density.

According to an exemplary embodiment, Fig. 7 illustrates another method 700 of simulating a many-variable

(MV) signed density as a function whose domain is an MV product space of an MV configuration space

CMV as a compact manifold, where said MV signed density is induced by an MV transition operator, said
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MV transition operator involves a first ensemble of coordinate variables, with first ensemble of coordinate

variables consisting of a variable number N ∈ N of members. An N -tuple or N -dimensional vector of

variable values assigned to said first ensemble of coordinate variables represents an MV configuration point,

a set of such MV configuration points constitute an MV configuration space. The MV signed density is

practically substantially entangled. The configuration space CMV is a compact manifold in the standard

mathematical sense, that is, a topology is defined on CMV with respect to which CMV is a compact set and

a compact topological space [68, 69]. Method 700 comprises providing a first means 710 for decomposing

said MV transition operator into a combination of a first plurality K ∈ N of few-variable (FV) transition

operators with each of said FV transition operators inducing a corresponding one of FV signed densities,

providing a second means 720 for determining FV nodal surfaces corresponding to each of said FV signed

densities, providing a third means 730 for producing a third plurality of samples of FV restricted densities,

and providing a fourth means 740 for producing a fourth plurality of samples of an MV restricted density

by combining said third plurality of samples of FV restricted densities. The means 710, 720, 730, and 740

are combined to endow method 700 an advantage that said MV restricted density is non-negative-valued

and substantially equivalent to said MV signed density, in the sense that a signed expectation value of a

prescribed observable due to said MV restricted density is substantially equal to the signed expectation value

of said prescribed observable due to said MV signed density, where the prescribed observable is selected from

the group consisting of the number 1, a predetermined constant, and a prescribed function whose domain is

contained in said MV product space of said MV configuration space CMV .

In relation to the first means 710, said MV transition operator is decomposed into a combination of a first

plurality K of FV transition operators, each of said FV transition operators involves a corresponding second

ensemble of coordinate variables selected from said first ensemble of coordinate variables and induces a cor-

responding one of FV signed densities, the corresponding second ensemble of coordinate variables consists of

a second plurality L ∈ N of members, a set of variable values assigned to said corresponding second ensem-

ble of coordinate variables constitutes a corresponding FV configuration space or submanifold CFV , where

said first plurality K is substantially upper-bounded by a first predetermined polynomial P1(N), while said

second plurality L is substantially upper-bounded by a predetermined logarithm of a second predetermined

polynomial P2(N), with N being said variable number N , such that, said each of said FV signed densities is

associated with a corresponding family of FV reduced configuration spaces, with said corresponding family

of FV reduced configuration spaces being substantially a corresponding family of FV cosets or submanifolds

of the form CFV ⊕ r def
= {(q, r) : q ∈ CFV } ⊆ CMV , where CFV is said corresponding FV configuration space or

submanifold consisting of L-tuples or L-dimensional vectors of variable values assigned to said corresponding

second ensemble of coordinate variables, while r is any configuration point in an orthogonal complementary

submanifold C′FV which consists of (N−L)-tuples or (N−L)-dimensional vectors of variable values assigned

to coordinate variables that are in said first ensemble but out of said corresponding second ensemble. That

said second plurality L is substantially upper-bounded by said predetermined logarithm of P2(N) means that
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said each of said FV signed density can always be efficiently computed and substantially exhaustive-sampled

over a product space of each of said corresponding family of FV reduced configuration spaces, with said each

of said corresponding family of FV reduced configuration spaces being of the form CFV ⊕ r, r ∈ C′FV , which

is a submanifold whose dimension is upper-bounded by said second plurality L.

In relation to the second means 720, a corresponding family of FV nodal surfaces are determined for each

of said FV signed densities, with each member of said corresponding family of FV nodal surfaces encloses a

corresponding FV nodal cell in which the corresponding FV signed density is non-negative-valued, with said

corresponding FV nodal cell being a corresponding FV reduced configuration space, inside which any pair

of MV configuration points differ from each other at most in variable values assigned to coordinate variables

selected from the corresponding second ensemble of coordinate variables.

In relation to the third means 730, an FV plurality of non-negative-valued samples of a sequence of FV re-

stricted densities are produced by repeatedly evaluating said sequence of FV restricted densities at a sequence

of sample points forming a sample path or Feynman path, where each of said sequence of sample points is

taken from a corresponding nodal cell of one of said FV signed densities, whereas each of said sequence of

FV restricted densities is substantially equal to a corresponding one of said FV signed densities restricted

to one of the corresponding nodal cells. Said FV plurality of non-negative-valued samples is substantially

upper-bounded by a predetermined polynomial of said variable number N .

In relation to the fourth means 740, an MV plurality of non-negative-valued samples of an MV restricted

density are produced by combining the FV plurality of non-negative-valued samples of FV restricted densities

obtained by the third means 730. Said MV plurality of non-negative-valued samples is substantially upper-

bounded by a predetermined polynomial of said variable number N .

In a first exemplary embodiment of method 700, said MV configuration space CMV is a state space of a

homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV stationary

distribution of a corresponding one of FV quasi-stochastic operators, said each of said FV signed densities

is associated with each of said corresponding family of FV reduced configuration spaces of the form CFV ⊕ r,

r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce transitions among MV

configuration points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said

MV signed density is decomposed into a combination of said FV signed densities in the sense that said

MV signed density is substantially the single unique signed density associated with CMV which substantially

coincides with each of said FV signed densities associated with each of said corresponding family of FV

reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV .

In a second exemplary embodiment of method 700, said MV configuration space CMV is a state space of a
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homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV quasi-Markov

transition probability density due to a quasi-Markov chain generated by a corresponding one of FV quasi-

stochastic operators, said each of said FV signed densities is associated with each of said corresponding

family of FV reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV , said corresponding one of FV

quasi-stochastic operators can only induce transitions among MV configuration points that are contained

in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said MV signed density is decomposed into

a combination of said FV signed densities in the sense that said MV signed density is substantially the

single unique signed density associated with CMV which is the stationary distribution or called stationary

distribution of an inhomogeneous quasi-Markov chain generated by a sequence of said FV quasi-stochastic

operators.

In a third exemplary embodiment of method 700, said MV configuration space CMV is a state space of a

homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density is

an MV quasi-Markov transition probability density due to a homogeneous quasi-Markov chain generated by

an MV quasi-stochastic operator, said MV signed density is associated with said MV configuration space

CMV , while said each of said FV signed densities is an FV quasi-Markov transition probability density due

to a quasi-Markov chain generated by a corresponding one of FV quasi-stochastic operators, said each of

said FV signed densities is associated with each of said corresponding family of FV reduced configuration

spaces of the form CFV ⊕r, r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce

transitions among MV configuration points that are contained in the same coset CFV ⊕ r for a certain fixed

r ∈ C′FV , wherein said MV signed density is decomposed into a combination of said FV signed densities in the

sense that said MV quasi-Markov transition probability density is substantially equal to an FV quasi-Markov

transition probability density due to an inhomogeneous quasi-Markov chain generated by a sequence of said

FV quasi-stochastic operators.

In a fourth exemplary embodiment of method 700, said MV configuration space CMV is a cylinder set for

Feynman path integral in relation to an MV Gibbs operator, said MV signed density is a Gibbs wavefunction

or Gibbs transition amplitude due to said MV Gibbs operator, said MV signed density is associated with

said MV configuration space CMV , while said each of said FV signed densities is one of FV Gibbs transition

amplitudes due to a corresponding one of FV Gibbs operators, said each of said FV signed densities is

associated with each of said corresponding family of FV reduced configuration spaces of the form CFV ⊕ r,

r ∈ C′FV , said corresponding one of FV Gibbs operators can only induce transitions among MV configuration

points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said MV signed

density is decomposed into a combination of said FV signed densities in the sense that said MV signed

density is substantially equal to a Feynman path integral involving said FV Gibbs transition amplitudes in
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relation to a Feynman stack associated with a sequence of said FV Gibbs operators.

In other alternative embodiments of method 700, other similar ways and means are employed to similarly

decompose said MV signed density into a combination of said FV signed densities and achieve the same

advantage in method 700 of simulating said MV signed density.

Fig. 8: One method of solving a computational problem.

According to an exemplary embodiment, Fig. 8 illustrates one method 800 of solving a computational prob-

lem which is described by problem data. Method 800 comprises providing a first means 810 for processing

said problem data to produce Gibbs data which describe a many-variable (MV) Gibbs operator that induces

an MV signed density in conjunction with a plurality of few-variable (FV) Gibbs operators, and providing

a second means 820 for simulating said MV signed density, whereby a solution to said computational prob-

lem is obtained substantially by said simulating said MV signed density to estimate substantially a signed

expectation value of a prescribed observable due to said MV signed density.

In relation to the first means 810, said problem data are processed to produce Gibbs data. Said first means
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810 further comprises providing a first processing means 811 for producing circuit data describing a quantum

circuit that produces a quantum result encoding said solution to said computational problem, providing a

second processing means 812 for producing homophysics data comprising coordinate data and Hamiltonian

data, and providing a third processing means 813 that produces Gibbs data comprising a description of an MV

Gibbs operator that induces said MV signed density in conjunction with said plurality of FV Gibbs operators,

whereby said MV signed density encodes said quantum result in the sense that the signed expectation value

of said prescribed observable due to said MV signed density is substantially equal to said quantum result,

said prescribed observable is selected from the group consisting of the number 1, a predetermined constant,

and a prescribed function associated with subset of an MV configuration space CMV , which is a compact

manifold, namely, a topology is defined on CMV with respect to which the manifold CMV is a compact set

and a compact topological space [68,69].

In relation to the first processing means 811, said circuit data are produced to describe a quantum circuit,

said circuit data comprise qubit data and gate data, said qubit data comprise a description of a plurality

Nb ∈ N of qubits, said gate data comprise a description of a plurality Ng ∈ N of quantum gates, wherein

each of said quantum gates involves at most a predetermined number of said qubits, said quantum circuit

produces a quantum result encoding said solution to said computational problem.

In relation to the second processing means 812, homophysics data comprising coordinate data and Hamil-

tonian data are produced. Said coordinate data comprise a description of a first ensemble of coordinate

variables, said first ensemble of coordinate variables consists of a variable number N of members, with said

coordinate variables homophysically implementing said qubits, such that an N -tuple or N -dimensional vector

of variable values assigned to said first ensemble of coordinate variables represent an MV configuration point,

a set of such MV configuration points constitute said MV configuration space CMV . Said Hamiltonian data

comprise a description of a plurality K ∈ N of FV Hamiltonians, with each of said FV Hamiltonians involv-

ing a corresponding second ensemble of coordinate variables selected from said first ensemble of coordinate

variables, where said corresponding second ensemble of coordinate variables consists of a plurality L ∈ N

of members, each of said FV Hamiltonians corresponds to one of said quantum gates, and said FV Hamil-

tonians combine into an MV Hamiltonian, wherein said variable number N is substantially upper-bounded

by a predetermined polynomial of (Nb + Ng), said plurality K is substantially upper-bounded by another

predetermined polynomial of (Nb +Ng), said plurality L is substantially upper-bounded by a predetermined

logarithm of yet another predetermined polynomial of (Nb +Ng).

In relation to the third processing means 813, Gibbs data are produced which comprise a description of said

MV Gibbs operator and said plurality of FV Gibbs operators, where said MV Gibbs operator is generated

by said MV Hamiltonian, each of said FV Gibbs operators is generated by a corresponding one of said

FV Hamiltonians, such that, said MV Gibbs operator induces said MV signed density, each of said FV

Gibbs operators induces a corresponding one of FV signed densities, wherein the number of members in said
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plurality of FV Gibbs operators is upper-bounded by a predetermined polynomial of (Nb + Ng), both said

MV signed density and each of said FV signed densities are associated with a subset of said MV configuration

space CMV .

The processing means 811, 812, and 813 are combined to endow the first means 810 an advantage with

which said MV signed density is decomposed into said FV signed densities such that said MV signed den-

sity is amenable to efficient simulations. Specifically, the first means 810 has said MV transition operator

decomposed into a combination of said plurality K of FV transition operators, where each of said FV tran-

sition operators involves said corresponding second ensemble of coordinate variables selected from said first

ensemble of coordinate variables and induces said corresponding one of FV signed densities, the correspond-

ing second ensemble of coordinate variables consists of said plurality L ∈ N of members, a set of variable

values assigned to said corresponding second ensemble of coordinate variables constitutes a corresponding

FV configuration space or submanifold CFV , wherein said plurality K is substantially upper-bounded by a

predetermined polynomial P1(Nb +Ng), such that, said each of said FV signed densities is associated with

a corresponding family of FV reduced configuration spaces, with said corresponding family of FV reduced

configuration spaces being substantially a corresponding family of FV cosets or submanifolds of the form

CFV ⊕ r def
= {(q, r) : q ∈ CFV } ⊆ CMV , where CFV is said corresponding FV configuration space or submani-

fold consisting of L-tuples or L-dimensional vectors of variable values assigned to said corresponding second

ensemble of coordinate variables, while r is any configuration point in an orthogonal complementary sub-

manifold C′FV which consists of (N−L)-tuples or (N−L)-dimensional vectors of variable values assigned to

coordinate variables that are in said first ensemble but out of said corresponding second ensemble. That said

plurality L is substantially upper-bounded by said predetermined logarithm of said predetermined polyno-

mial of (Nb + Ng) means that said each of said FV signed density can always be efficiently computed and

substantially exhaustive-sampled over a product space of each of said corresponding family of FV reduced

configuration spaces, with said each of said corresponding family of FV reduced configuration spaces being

of the form CFV ⊕ r, r ∈ C′FV , which is a submanifold whose dimension is upper-bounded by said second

plurality L.

In a first exemplary embodiment of the first means 810, said MV configuration space CMV is a state space of

a homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density

is an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV stationary

distribution of a corresponding one of FV quasi-stochastic operators, said each of said FV signed densities

is associated with each of said corresponding family of FV reduced configuration spaces of the form CFV ⊕ r,

r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce transitions among MV

configuration points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said

MV signed density is decomposed into a combination of said FV signed densities in the sense that said
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MV signed density is substantially the single unique signed density associated with CMV which substantially

coincides with each of said FV signed densities associated with each of said corresponding family of FV

reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV .

In a second exemplary embodiment of the first means 810, said MV configuration space CMV is a state space

of a homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density

is an MV stationary distribution of said MV quasi-stochastic operator, said MV signed density is associated

with said MV configuration space CMV , while said each of said FV signed densities is an FV quasi-Markov

transition probability density due to a quasi-Markov chain generated by a corresponding one of FV quasi-

stochastic operators, said each of said FV signed densities is associated with each of said corresponding

family of FV reduced configuration spaces of the form CFV ⊕ r, r ∈ C′FV , said corresponding one of FV

quasi-stochastic operators can only induce transitions among MV configuration points that are contained

in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein said MV signed density is decomposed into

a combination of said FV signed densities in the sense that said MV signed density is substantially the

single unique signed density associated with CMV which is the stationary distribution or called stationary

distribution of an inhomogeneous quasi-Markov chain generated by a sequence of said FV quasi-stochastic

operators.

In a third exemplary embodiment of the first means 810, said MV configuration space CMV is a state space of

a homogeneous quasi-Markov chain generated by an MV quasi-stochastic operator, said MV signed density

is an MV quasi-Markov transition probability density due to a homogeneous quasi-Markov chain generated

by an MV quasi-stochastic operator, said MV signed density is associated with said MV configuration space

CMV , while said each of said FV signed densities is an FV quasi-Markov transition probability density due

to a quasi-Markov chain generated by a corresponding one of FV quasi-stochastic operators, said each of

said FV signed densities is associated with each of said corresponding family of FV reduced configuration

spaces of the form CFV ⊕r, r ∈ C′FV , said corresponding one of FV quasi-stochastic operators can only induce

transitions among MV configuration points that are contained in the same coset CFV ⊕ r for a certain fixed

r ∈ C′FV , wherein said MV signed density is decomposed into a combination of said FV signed densities in the

sense that said MV quasi-Markov transition probability density is substantially equal to an FV quasi-Markov

transition probability density due to an inhomogeneous quasi-Markov chain generated by a sequence of said

FV quasi-stochastic operators.

In a fourth exemplary embodiment of the first means 810, said MV configuration space CMV is a cylinder

set for Feynman path integral in relation to an MV Gibbs operator, said MV signed density is a Gibbs

wavefunction or Gibbs transition amplitude due to said MV Gibbs operator, said MV signed density is

associated with said MV configuration space CMV , while said each of said FV signed densities is one of FV

Gibbs transition amplitudes due to a corresponding one of FV Gibbs operators, said each of said FV signed

densities is associated with each of said corresponding family of FV reduced configuration spaces of the
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form CFV ⊕ r, r ∈ C′FV , said corresponding one of FV Gibbs operators can only induce transitions among

MV configuration points that are contained in the same coset CFV ⊕ r for a certain fixed r ∈ C′FV , wherein

said MV signed density is decomposed into a combination of said FV signed densities in the sense that said

MV signed density is substantially equal to a Feynman path integral involving said FV Gibbs transition

amplitudes in relation to a Feynman stack associated with a sequence of said FV Gibbs operators.

In other alternative embodiments of the first means 810, other similar ways and means are employed to

similarly decompose said MV signed density into a combination of said FV signed densities and achieve the

same advantage in the first means 810 for processing said problem data to produce said Gibbs data.

In relation to the second means 820, said MV signed density is simulated. Said second means 820 further

comprises providing a first simulating means 821 for determining FV nodal surfaces corresponding to each

of said FV signed densities, providing a second simulating means for producing a plurality of samples of FV

restricted densities, and providing a third simulating means for producing another plurality of samples of

an MV restricted density, whereby said MV restricted density is substantially equivalent to said MV signed

density in the sense that the signed expectation value of said prescribed observable due to said MV restricted

density is substantially equal to the signed expectation value of said prescribed observable due to said MV

signed density.

In relation to the first simulating means 821, a corresponding family of FV nodal surfaces are determined

for each of said FV signed densities, with each member of said corresponding family of FV nodal surfaces

encloses a corresponding FV nodal cell in which the corresponding FV signed density is non-negative-valued,

with said corresponding FV nodal cell being a corresponding FV reduced configuration space, inside which

any pair of MV configuration points differ from each other at most in variable values assigned to coordinate

variables selected from the corresponding second ensemble of coordinate variables.

In relation to the second simulating means 822, an FV plurality of non-negative-valued samples of a sequence

of FV restricted densities are produced by repeatedly evaluating said sequence of FV restricted densities

at a sequence of sample points forming a sample path or Feynman path, where each of said sequence of

sample points is taken from a corresponding nodal cell of one of said FV signed densities, whereas each

of said sequence of FV restricted densities is substantially equal to a corresponding one of said FV signed

densities restricted to one of the corresponding nodal cells. Said FV plurality of non-negative-valued samples

is substantially upper-bounded by a predetermined polynomial of (Nb +Ng).

In relation to the third simulating means 823, an MV plurality of non-negative-valued samples of an MV re-

stricted density are produced by combining the FV plurality of non-negative-valued samples of FV restricted

densities obtained by the second simulating means 822. Said MV plurality of non-negative-valued samples is

substantially upper-bounded by a predetermined polynomial of (Nb +Ng).
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