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Abstract

Here we approach the problem of FLT using the Binomial Theorem
and two cases: n even or odd.

1 Fermat’s Last and the Binomial Theorem

a, b, c ∈ R+

and n ≥ 2 ∈ Z+

(a+ b− c)n =

n∑
j=0

(
n
j

)
(−c)j(a+ b)n−j

1.1 n, even

Suppose n is even, we get that

= cn +

n−1∑
j=1

(
n
j

)
(−c)j(a+ b)n−j + (a+ b)n

Now we expand the last term,

(a+ b)n = an +

n−1∑
j=1

(
n
j

)
ajbn−j + bn

So,

(a+ b− c)n = cn +

n−1∑
j=1

(
n
j

)
(−c)j(a+ b)n−j + an +

n−1∑
j=1

(
n
j

)
ajbn−j + bn

an + bn = cn =⇒
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(a+ b− c)n = 2cn +

n−1∑
j=1

(
n
j

)
(−c)j(a+ b)n−j +

n−1∑
j=1

(
n
j

)
ajbn−j

= 2cn +

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j + ajbn−j ] (1)

If we can show that this polynomial is divisible by (c− a), then it must also be
divisible by (c − b) since a and b are interchangeable. To do this, we will look
at the same polynomial, but expanded differently.

(a+ b− c)n = (−1)n(c− a− b)n = (c− a− b)n =⇒

= bn +

n−1∑
j=1

(
n
j

)
(−b)j(c− a)n−j + an +

n−1∑
j=1

(
n
j

)
(−a)j(c)n−j + cn

= 2cn +

n−1∑
j=1

(
n
j

)
[(−b)j(c− a)n−j + (−a)jcn−j ]

This shows that if (c− a) is a factor of the polynomial, we only need to look at
the second part of the sum along with the leading coefficient to check.

We must show that

(c− a) | 2cn +

n−1∑
j=1

(
n
j

)
(−a)jcn−j .

If we plug in c = a and get this equal to 0, then the original polynomial has a
factor of (c− a) (as well as (c− b)) for all n.

We get that c = a =⇒

2an+
n−1∑
j=1

(
n
j

)
(−a)jan−j = 2an+

n−1∑
j=1

(
n
j

)
(−1)jajana−j = 2an+an

n−1∑
j=1

(
n
j

)
(−1)j

If we look at Pascals Triangle, we can clearly see why this alternating sum
would be = −2. Let’s look at the 5th and 6th row of Pascals’s Triangle as an
example when n = 6.

For n = 6, the terms of the polynomial would be

2a6 + a6(−6 + 15− 20 + 15− 6).
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This can be rewritten with the 5th line of pascals coefficients:

2a6 + a6(−(1 + 5) + (5 + 10)− (10 + 10) + (10 + 5)− (5 + 1)).

So we can see that no matter what even n’th row we are in (without the 1’s)
we can use the (n-1)th row to rewrite the sum and show all middle coefficients
cancel except the leading and last 1, so we get that

n−1∑
j=1

(
n
j

)
(−1)j = −2 for all even n.

This =⇒ 2an + an
n−1∑
j=1

(
n
j

)
(−1)j = 0 for all n, even.

This shows us that (c − a) and (c − b) are factors of the original equation.
Finally, we get that for n, even:

(a+ b− c)n = (c− a)(c− b)g1(n) where

g1(n) =

2cn +

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j + ajbn−j ]

(c− a)(c− b)
.

We note here that c − a and c − b divide this polynomial just once each for
any n. In other words, g1 is not a rational equation and each terms has integer
coefficients.

1.2 n, odd

For n odd, we do something similar. We get that

(a+ b− c)n = −cn +

n−1∑
j=1

(
n
j

)
(−c)j(a+ b)n−j + an +

n−1∑
j=1

(
n
j

)
ajbn−j + bn

And an + bn = cn =⇒

(a+ b− c)n =

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j + ajbn−j ]
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= (a+ b)

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j−1 +

ajbn−j

(a+ b)
] (2)

We can show that (a + b) |
n−1∑
j=1

(
n
j

)
ajbn−j by plugging in a=-b. If the

result is zero,then (a+b) is a factor.

n−1∑
j=1

(
n
j

)
(−b)jbn−j = bn

n−1∑
j=1

(
n
j

)
(−1)j = bn · 0 = 0

This is, again, because the odd rows of Pascal’s Triangle would cancel each
other out as each term would have it’s negative in the same row.

Let’s define g(n) s.t.

g(n) =

{
(c− a)(c− b)g1(n), if n is even

(a+ b)g2(n), if n is odd .

Where g1(n) =

2cn +

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j + ajbn−j ]

(c− a)(c− b)
.

and g2(n) =

n−1∑
j=1

(
n
j

)
[(−c)j(a+ b)n−j−1 +

ajbn−j

(a+ b)
].

1.3 Fermat’s Last Theorem, proof

We have that

(a+ b− c)n = g(n).

If a, b, c are integers, then a + b − c = k and kn should also be integers. Since
g(n) can be factored, this means that this integer would have to be a multiple
of (c− a) and (c− b) for n, even. And for n, odd it would have to be a multiple
of (a+ b).

Let k̂ be some integer s.t. for n even,
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k = (c− a)k̂ =⇒ kn = (c− a)nk̂n = g(n)

=⇒ k̂n = g(n)/(c− a)n.

We’ll show this works for all factors of g(2), where the factor of ′2′ will be
a general case.

For n = 2, we get that g(2) = 2(c− a)(c− b) and

k2 = 22k̂2 =⇒ k̂2 = (c− a)(c− b)/2

We can let

a = (c− b) + g(2)1/2,
b = (c− a) + g(2)1/2, and
c = (a+ b)− g(2)1/2

and define r,s such that

r = (c− a)1/2, s = [2(c− b)]1/2.

So we get

a = s2/2 + rs

b = r2 + rs

c = s2/2 + r2 + rs

Finally we get

k̂2 = (c− a)(c− b)/2 = (r2)(s2/2)/2 = (rs/2)2.

We let s is be the even integers (since s is integer factors of
√
2), we get that k̂

is always an integer.

We will show this also works for k = (c− a)k̂ and k = (c− b)k̂.

We get that
k2 = (c− a)2k̂2 =⇒ k̂2 = 2(c− b)/(c− a) = 2(s2/2)/r2 = (s/r)2.And,

k̂2 = 2(c− a)/(c− b) = (2r/s)2

k̂ are integers if (s/r) and (2r/s) are integers respectively.
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For n ≥ 4, g1(n)/(c − a)n−1 has only nonzero remainders, so we get a con-

tradiction that k̂ is an integer so k is also not an integer.

For example, for n = 4 we get that

k̂4 = (c− b)g1(4)/(c− a)3

Where g1(4) = 2(c− a)(c− b) + 4(a2 + ab+ b2).

k̂ clearly will not be an integer if we are dividing by (c− a)3.

We have shown that only when n = 2 can we have integer solutions to an+bn =
cn.

The proof for n, odd is the same except we use the fact that for any odd n,
g(n) can be factored by (a+b).

End proof.

Note: We could also show that for n odd, g(n) is also factorable by (c-a)(c-
b) for all n odd (and thus all n). This would generalize the proof further.
However, for n odd, given that it was divisible by (a+b) was easier to show and
enough.

2 n=2

(a+ b− c)2 = g(2) = 2(c− a)(c− b) (3)

2.1 Pythagorean Triples and
√
2

(a+ b− c)2 = g(2) = 2(c− a)(c− b) =⇒

We have the Pythagorean Triple generator where s is any even integer, r any
integer using the substitution from before:

a = s2

2 + rs

b = r2 + rs

c = s2

2 + r2 + rs
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Because of the relevance of right triangles, we get trigonometry.

a = k(cosθ), b = k(sinθ), c = k

=⇒

(cosθ) + sinθ − 1)2 = 2(1− cosθ)(1− sinθ)

Figure 1: This shows the identity as a function of theta. Notice the identity is
≥ 0. It also has an interesting rhythm to it.

θ

y = (cosθ + sinθ − 1)2 = 2(1− cosθ)(1− sinθ)
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Figure 2: The derivative resembles the rhythm of a heartbeat.

θ

y′ = 2(cosθ + sinθ − 1)(cosθ − sinθ)
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A special case if r = s:

This gives us,

a = 3 s2

2

b = 4 s2

2

c = 5 s2

2

Which is the famous 3,4,5 triple and its multiples.
We can see this when we let s =

√
2k1 where k1 = (c− b).

Finally, we also get a form of
√
2 and a form of 3

√
3.

√
2 = a+b−c√

(c−a)(c−b)

3
√
3 = (a+b−c)

3
√

(a+b)(c−a)(c−b)

Which could also be written in an infinite power form since 2 = (a+b−c)2

(c−a)(c−b)

and 2−1 = (c−a)(c−b)
(a+b−c)2

Let A = a+ b− c and B = (c− a)(c− b)

√
2 = A

B2−1 = A

B
B
A2

= ...
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