Multi-fold Dark Matter and Energy Effects Fit The Ratios to Normal Matter in the Universe

August 14, 2022

Abstract:

In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles, whether they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General Relativity (GR) at large scales and semi-classical models remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model resulting into what we define as SM_G. This can contribute to resolving several open issues with the Standard Model without New Physics other than gravity, i.e. no new particles or forces, or with the standard cosmological model (ACDM) in terms of dark matter and dark energy.

The present paper provides estimates for the ratios of normal matter to multi-fold dark matter effects (~ 1 to 5) and to dark energy (~ 1 to 14). These ratios match the estimates for our real universe, in particular the Λ -CDM model.

Such results increase the relevance of multi-fold theory. To our knowledge, being able to predict such ratios, ab initio, i.e., solely based on the underlying microscopic mechanisms is not a small feat, and the reasonings presented in this paper, would not be applicable to ratio estimates from the other mainstream theories. It is a strong validation of the multi-fold theory, and its potential applicability to our real universe and its cosmology. It also validates the E/G conjecture with its proposal that entanglement creates gravity like effects.

1. Introduction

The original multi-fold theory paper [1] proposes contributions to several open problems in physics, like the reconciliation of General Relativity (GR) with Quantum Physics, explaining the origin of gravity proposed as emerging from quantum (EPR- Einstein Podolsky Rosen) entanglement between (virtual) particles, detailing contributions to dark matter and dark energy effects, and explaining other Standard Model mysteries without requiring New Physics beyond the Standard Model with gravity effect non negligible at its scales, other than the addition of gravity to the Standard Model Lagrangian, and the consequences of being in a multi-fold universe. All this is achieved in a multi-fold universe that may well model our real universe, which remains to be validated. This paper may be another step in that direction.

With the proposed model of [1], spacetime and Physics are modeled from Planck scales to quantum, and macroscopic scales and semi-classical approaches appear valid till very small scales. In [1], it is argued that spacetime is discrete, with a random walk-based fractal structure, fractional and noncommutative at, and above Planck scales (with a 2-D behavior and Lorentz invariance preserved by random walks till the early moments of the universe). Spacetime results from past (2D) random walks of particles. Spacetime locations and particles can be

¹ <u>shmaes.physics@gmail.com</u>

Cite as: Stephane H Maes, (2022), "Multi-fold Dark Matter and Energy Effects Fit The Ratios to Normal Matter in the Universe", https://zenodo.org/doi/10.5281/zenodo.10071554, https://shmaesphysics.wordpress.com/2022/08/14/multi-fold-dark-matter-and-energy-effects-fit-the-ratios-to-normal-matter-in-the-universe/, August 14, 2022.

modeled as microscopic black holes (Schwarzschild for photons and concretized spacetime coordinates, and metrics between Reisner Nordstrom [2] and Kerr Newman [3] for massive, and possibly charged, particles – the latter being possibly extremal), minimum black holes [1,4], or random walk patterns for massless particles above the energy scales of the gravity electroweak symmetry breaking [2,61]. Although possibly surprising, [1] recovers results consistent with others (see [4] and its references), while also being able to justify the initial assumptions of black holes from the gravity or entanglement model in a multi-fold universe. The resulting gravity model recovers General Relativity at larger scale [1,6], as a 4D process, with massless gravity, but also with massive gravity components at very small scale that make gravity non-negligible at these scales [1,35]. Semi-classical models also turn out to work well till way smaller scales that usually expected.

Multi-folds are encountered in GR at Planck scales [5,6] and in Quantum Mechanics² (QM) if different suitable quantum reference frames (QRFs) are to be equivalent relatively to entangled, coherent or correlated systems [7]. This shows that GR and QM are different facets of something that each cannot well model: multi-folds. QFT, and the SM also encounters then as in [59,115]. Note added on November 3, 2023: References in italic were added on November 3, 2023.

The paper starts with an overview of the multifold dark matter and dark energy mechanisms [1,21,22,40] and past papers discussing qualitative alignment with observations and simulations [9-11]. Then, we discuss how back of the envelope combinatorics of the two mechanisms provide estimates of the ratios of normal matter to respectively dark matter and dark energy, and match observations in our real universe.

Such results, for the first time obtained from ab initio microscopic models or associated first principles , are a strong indication of the relevance of the multi-fold theory to characterize our real universe: to our knowledge, nobody has ever been able to motivate such ratios so far: at best simulation have estimated the values to match observation that is quite different [18]. The ratios are both a reflection of the degrees of freedom, and hence contributions, of gravity effect coming from entanglement (dark matter) and those coming from local embedding in a 7D space created by the multi-fold mechanisms responsible for gravity as an attractive effective potential [1,19,34,50,52,62].

For the multi-fold theory, this is key, especially, as multifold dark matter effects are one of the strongest avenue to a first experimental validation by confirming the E/G conjecture [14], based on the multi-fold mechanisms [1], and the discovery that entanglement is responsible for gravity fluctuations [1,12], between real particles as in the multi-fold dark matter effects, and gravity in general when adding entanglement between pairs of virtual particles and anti-particles emitted by sources of energy/masses. Dark matter effects are the easiest way to observe multi-fold effects beyond gravity [1,40]. Obtaining the correct ratios is a key step in that direction.

We acknowledge that the approach based on degrees of freedom may appear deceptively simple. Yet it directly relates to the multi-multi-fold dark matter and dark energy effects.

2. Multi-Fold Explanation to Dark Matter

[1,8,21,22,40] recovers automatically (cold) dark matter effects with its model of attractive effective potential appearing between physical (real) entangled systems [12], at the difference of virtual ones that already account for gravity.

Accordingly, emitted massless (or quasi massless, i.e. neutrinos) particles are entangled in pairs or with their source or intermediate systems. This account for extra gravity-like attraction towards the center and / or halos

² Standing in for Quantum Physics in general.

around galaxies. It is illustrated in figure 1 (from [40]). Whatever escapes further probably accounts for the wider distribution of dark matter and the associated cosmic web [128].

Figure 1: It illustrates how the different entanglements cases, discussed in the text, appear as dark matter with attraction towards the galaxy center and mass in the center or in halos. Green circles represent center of masses. (Reused from [1,40]).

[10] (see its figure 2 in [10]) explains that it can also account for globular galaxies where no significant dark matter is detected.

[9-11] provide additional analyses of astronomical observations that challenged conventional dark matter theories. It shows that we can account for all the reported behaviors.

[10,13,129] provide other examples where multi-fold dark matter effects match simulation results and/or observations: simulated loss of dark matter in galaxy close encounters, excess of disk galaxies vs. what is conventionally predicted thanks to less galaxy-to-galaxy attraction due to multi-fold dark matter effects and dark matter halo expansion with time. With multi-fold dark matter effects, MOND [17] are no more "the only alternative explanation" to such conventional dark matter challenges. MOND also encounters many challenges anyway [MOND] [17,119,129].

[60] further argues that there are no dark matter particle to be discovered.

3. Predicting the Ratio of Normal Matter to Multi-fold Dark Matter Effect Equivalents

Figure 2: Degrees of freedom and the basic cell to consider for multi-fold dark matter effects due to entangled black dots producing an attractive effective potential towards the blue dot. We see 6 degrees of freedom.

Figure 2 illustrates the degrees of freedom encountered with the multi-fold dark matter mechanisms.

Figure 3 shows it in the context of many cells, remembering per [1,6,15,16,96] that cells are 2D spacetime processes at microscopic dimensions.

Figure 3: When considering the spacetime as a 1D spatial (2D process) at small scales, per [1,6,15,16], we discover that the contributions (between two dots on a line) per cell is 5 degrees of freedom.

The entanglement contributions aimed at the blue dot in figure 3 result from the end points connected to it, but when considered in a 1D chain, one is shared with its neighbors and the contributing degrees of freedom are 5.

It is assuming that every (concretized) spacetime location contributes proportionally to the mass it hosts at its location, which could be 0. It is not a constraining assumption, which is why we know that the ration observed in the universe has to lead to a 1/5 ratio. Propagation further and further away remain in that same ratio.

As a result, on average, for every entanglement issued from the blue dot (e.g. entangled massless concretized locations or particles that interacted through it) we have 5 times more degrees of freedom which are aiming the resulting attractive effective potential V_{eff} at it: For 1 node of matter we have 5 nodes worth of dark matter effects. Just as in the real universe [20], and as illustrated for example in the Λ -CDM [18] also known as the standard cosmology model

To our knowledge, so far, no other model / theory has been able to explain ab initio this ratio. A theory assuming cold (or other) particles can't reuse this argument. MOND [17], or tensor vector gravity [130] are unrelated to the considerations that we used to predict 1/5.

4. Multi-fold Dark Energy Effects

Besides effect of random walks at very high energy (soon after the big bang) [1,16], the multi-fold dark energy effects, shown in figure 4, come from quantum fluctuations [1,19].

As described in [1,19], multi-fold dark energy effects/contributions to dark energy result from the effect of quantum fluctuations, for all particles, real and virtual, which create an effective potential, attractive towards the (7D) embedding space created by the multi-folds.

Figure 4: Multi-fold dark energy effects as proposed in [1,19].

5. Predicting the Ratio of Normal Matter to Multi-fold Dark Energy effects

Figure 5 shows the possible contribution to a ε fluctuation of entangled end points that have a nonzero contribution to the middle (geometrical center of the pair).

Figure 5: Contributions of different end point combinations that have a non-zero impact on the middle point for a give entanglement between the extreme points. Color coding reflect the contributions in (1).

Accordingly, we have:

$$4\varepsilon + (8\frac{\varepsilon}{2}) + (8\frac{\varepsilon}{2}) + (8\frac{\varepsilon}{4}) = 14\varepsilon$$
(1)

, for any available ε fluctuation that we can assume proportional to the only energy present that is relevant: the normal matter energy.

Therefore the ratio for regular matter to dark energy is 1 to 14. Again as observed in our real universe [20].

Note that this ratio is independent of what are the fluctuation amplitudes/energies, but that we may expect the resulting effect to be proportional to the amount of energy/mass at a given location, i.e., the origin in figure 5. It matters to relate to the ratio for dark matter.

To our knowledge, no other theory can ab initio predict this ratio. For example, a typical approach based on QFT vacuum fluctuations, and leading to the cosmological constant problem, would a priori rather produce a ~ 6 ε contribution (3 x 2 degrees of freedom in embedding space).

6. Matching the real universe

As is currently known, the composition of the universe seems to be roughly [18,20]:

- 5% Normal matter
- 25% Dark matter
- 70% Dark energy

This gives us ratio of 1 to 5 and 1 to 14 for normal matter respectively to dark matter and dark energy. Just as we obtained.

It closely matches the standard cosmology model [18], and many other models and experimental data evaluating these dark components.

Following [6], we argue that the real universe is most probably multi-fold. Hence these result apply to our universe. Fortunately, they match observation results so far.

7. Multi-fold implications

As far as we know, so far, no other model has actually been able to explain ab initio the proportions of dark matter, dark energy and normal matter. So it matters, even if the derivation may seem too simple and crude.

Furthermore, the model explains why no dark matter as ever been discovered (it is not matter/particles to discover) [1,40,60], and solves the cosmological constant problem [1,19], while essentially being compatible with all current aspects of the Λ -CDM [18], as well as being able to address the observation challenges with dark matter discussed in section 2. *Note added in November 3, 2023: [117] shows how the multi-fold theory address better many cosmological challenges.*

In particular the results of section 3, which stands on their own, in the sense that does not depend on the dark energy results, are strong indication of validations of key proposals of the multi-fold theory:

- The multi-fold mechanisms, associated to entanglement, and resulting into gravity attractive effective potentials V_{eff} [1,12,126,127]
- The E/G conjecture [14].
- Entanglement generating gravity effects [1,12,14].

We always saw this as a way to experimentally support the relevancy of the multi-fold proposal, with entanglement resulting into gravity.

Also, it is very important to us, as it is also the first time that we have managed to obtain convincing quantitative results, which we are slowly preparing to address based on the evolution of our work so far [1,21-23].

It really seems like our strongest sign of validation so far of the multi-fold theory as relevant to our real universe.

7. Conclusions

This paper provides quantitative prediction for the ratios of normal matter to dark matter and normal matter to dark energy. These ratios match Today's observations, and the Cosmological Standard model. They embody the multi-fold dark matter and dark energy effects and they do not similarly support most other theories, despite the almost childish concepts behind the degrees of freedom.

Following [6], we suggest that the real universe is most probably multi-fold. Hence these result apply indeed to our universe.

It is a resounding indication of the value behind the multi-fold theory, and its proposal like the multi-fold mechanisms [1,21,22], the E/G conjecture [1,12,14], the multi-fold dark matter effects [1,40], and multi-fold dark energy effects [1,19], as well as the broader SM_G: the standard model (SM) with gravity effects non-negligible at its scale [1,8,21,22,33,119].

We can only hope that these results will bring more attention of the Physics community to the Multi-fold theory.

Appendix A: Review of the Multi-fold theory

The multi-fold theory was introduced in [1]. Tutorials and overviews can be found at [8,22,23,33] while the latest developments, updates and discussions can always be found at [8].

In a multi-fold universe [1,22,23,33], gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles [1,12,14], whether they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles [1,12]. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales [1,35]. It is at the base of the E/G Conjecture [26], and the main characteristics of the multi-fold theory [33]. Multifolds mechanisms also result in a spacetime that is discrete, with a random walk fractal structure and noncommutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes [1,4,15,19,36-39]. All these recover General Relativity (GR) at large scales, and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model (SM) resulting into what we define as SM_G: the SM with gravity effects non-negligible at its scales. This can contribute to resolving several open issues with the Standard Model without new Physics other than gravity. These considerations hint at an even stronger relationship between gravity and the Standard Model, as finally shown in [34].

Figure 6 illustrates, in a simplified manner, the multi-folds, multi-fold mechanisms, their kinematics/dynamics and mappings for two entangled particles moving in opposite directions. From ([23])

Note added on November 3, 2023: Note that based on [125], the support domain defined in [1,126], is actually the historical path of the entangled particles, when the evolution is not in a line. [1,101] also describe the dynamic effects of multi-folds.

Justification of the multi-fold mechanisms and mappings as well as properties like tenancy, hierarchic entanglement and mappings have been presented in [1, 22,23,33,34,37,75,96,106,109,119].

Among the multi-fold SM_G discoveries, the apparition of an always-in-flight, and hence non-interacting, righthanded neutrinos, coupled to the Higgs boson is quite notable. It is supposedly always around right-handed neutrinos, due to chirality flips by gravity of the massless Weyl fermions, induced by 7D space time matter induction and scattering models, and hidden behind the Higgs boson or field at the entry points and exit points of the multi-folds. Massless Higgs bosons modeled as minimal microscopic black holes mark concretized spacetime locations. They can condensate into Dirac Kerr-Newman soliton Qballs to produce massive and charged particles [1,4], thereby providing a microscopic explanation for a Higgs driven inflation, the electroweak symmetry breaking, the Higgs mechanism, the mass acquisition and the chirality of fermions and spacetime; all resulting from the multi-fold gravity electroweak symmetry breaking. Massless particle on the other hand result from patterns of the random walks. The multi-fold theory has also concrete implications on New Physics like supersymmetry, superstrings, M-theory and Loop Quantum Gravity (LQG) [1,8,15,22,23-27,28-32]. The multi-fold paper [1] proposes contributions to several open problems in physics, like the reconciliation of General Relativity (GR) with Quantum Physics, explaining the origin of gravity proposed as emerging from quantum (EPR- Einstein Podolsky Rosen) entanglement between particles, detailing contributions to dark matter and dark energy, and explaining other Standard Model mysteries without requiring New Physics beyond the Standard Model other than the addition of gravity to the Standard Model Lagrangian [1,4-16,19,21-92,93-127,129]. All this is achieved in a multi-fold universe that may well model our real universe, which remains to be validated.

With the proposed model of [1], spacetime and Physics are modeled from Planck scales to quantum and macroscopic scales, and semi-classical approaches appear valid till very small scales. In [1], it is argued that spacetime is discrete, with a random walk-based fractal structure, fractional and noncommutative at, and above Planck scales (with a 2-D behavior and Lorentz invariance preserved by random walks till the early moments of the universe). Spacetime results from past random walks of particles. Spacetime locations and particles can be modeled as microscopic black holes (Schwarzschild for photons and concretized spacetime coordinates, and metrics between Reissner Nordström [2], and Kerr Newman [3] for massive, and possibly charged, particles – the latter being possibly extremal). Although possibly surprising, this recovers results consistent with others (see [4], and its references), while also being able to justify the initial assumptions of black holes from the models of gravity or entanglement in a multi-fold universe. The resulting gravity model recovers General Relativity at larger scale, as a 4D process, with massless gravity, but also with massive gravity components at very small scales, which make gravity non-negligible at these scales. Semi-classical models also turn out to work well till way smaller scales than usually expected.

Multi-folds are encountered in GR at Planck scales [5,6] and in Quantum Mechanics (QM) if different suitable quantum reference frames (QRFs) are to be equivalent relatively to entangled, coherent or correlated systems [7]. This shows that GR and QM are different facets of something that they cannot well model: multi-folds.

We have also shown the power of 2D random walks as key to understanding much of physics including QFT [1,15,16,28,60,61,73,93,96,109,117,118,125].

Considering results as in [5-7,28,34,59,74,81,102,106,109], and our answers to so many open issues with the SM and the Λ CDM can be qualitatively explained with the SM_G and multi-fold mechanisms, as discussed for example in [1,4-16,19,21-92,93-127,129], we can then argue that these conclusions can probably apply to our real universe, especially considering how the multi-fold mechanisms recover GR [1,6], and can be encountered in GR at Planck scales, with the spacetime reconstruction [1,93], and with the top-down-up-and-upper derivation of the multi-fold theory [6]. At the risk of repeating ourselves, as a result spacetime is, at very scales sales, discrete, generated by random (Levy) walks, and therefore (multi-fractal), non-commutative and yet Lorentz symmetric [1,6,28,38,61,81,93,96,106,109].

References:

[1]: Stephane H. Maes, (2020-2022) "Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe", HIJ, Vol 2, No 4, pp 136-219, Dec 2022, <u>https://doi.org/10.55672/hij2022pp136-219</u>, <u>https://shmaesphysics.wordpress.com/2020/06/09/paper-published-as-preprint-quantum-gravity-emergence-from-entanglement-in-a-multi-fold-universe/, https://shmaesphysics.wordpress.com/2022/11/09/quantum-gravity-emergence-from-entanglement-in-a-multi-fold-universe-2/, and viXra:2006.0088, (June 9, 2020). Errata/improvements/latest updates at <u>https://zenodo.org/doi/10.5281/zenodo.7792911</u>.</u> [2]: Wikipedia, "Reissner–Nordström metric", <u>https://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric</u>. Retrieved on March 21, 2020.

[3]: Wikipedia, "Kerr–Newman metric", <u>https://en.wikipedia.org/wiki/Kerr-Newman_metric</u>. Retrieved on March 21, 2020.

[4]: Stephane H Maes, (2021), "More on Multi-fold Particles as Microscopic Black Holes with Higgs Regularizing Extremality and Singularities", viXra:2210.0004v1, https://shmaesphysics.wordpress.com/2021/02/28/more-on-multi-fold-particles-as-microscopic-black-holes-with-higgs-regularizing-extremality-and-singularities/, February 25, 2021.

[5]: Stephane H Maes, (2020), "Multi-folds, The Fruit From The Loops? Fixing "Oops for The Loops" May Encounter Multi-folds in General Relativity And The E/G Conjecture", <u>viXra:2212.0206v1</u>, <u>https://shmaesphysics.wordpress.com/2021/12/31/multi-folds-the-fruit-from-the-loops-fixing-oops-for-loops-encounters-multi-folds-and-the-e-g-conjecturein-general-relativity/</u>, January 1, 2022.

[6]: Stephane H Maes, (2022), "Deriving the Multi-fold Theory from General Relativity at Planck scale", viXra:2302.0129v1, <u>https://shmaesphysics.wordpress.com/2022/02/22/deriving-the-multi-fold-theory-from-general-relativity-at-planck-scale/</u>, February 22, 2022.

[7]: Stephane H Maes, (2022), "From Quantum Relational Equivalence to Multi-folds Encounter in the Real Universe and Confirmation of the E/G conjecture", <u>viXra:2302.0108v1</u>, <u>https://shmaesphysics.wordpress.com/2022/02/12/from-quantum-relational-equivalence-to-multi-folds-encounter-in-the-real-universe-and-confirmation-of-the-e-g-conjecture/</u>, February 7, 2022.

[8]: Stephane Maes, (2020-23), "Web Site Tracking all Publications around the Multi-fold universe", Navigation page listing all papers, <u>https://shmaesphysics.wordpress.com/shmaes-physics-site-navigation/</u>.

[9]: Stephane H Maes, (2020), "Multi-Fold Universe Dark Matter Successful Explanation and the "Too Thin Universe" but "Too Strong Gravity Lensing by Galaxy Clusters", <u>viXra:2102.0079v1</u>, <u>https://shmaesphysics.wordpress.com/2020/09/15/multi-fold-universe-dark-matter-successful-explanation-and-the-too-thin-universe-but-too-strong-gravity-lensing-by-galaxy-clusters/, September 14, 2020.</u>

[10]: Stephane H Maes, (2020), "Multi-Fold Universe Dark Matter Effects Survive Low-Mass Galaxies with Dark Matter Deficits and Excesses", <u>viXra:2105.0042v1</u>, <u>https://shmaesphysics.wordpress.com/2020/10/14/multi-fold-universe-dark-matter-effects-survive-low-mass-galaxies-with-dark-matter-deficits-and-excesses/</u>, October 14, 2020.

[11]: Stephane H Maes, (2020), "Multi-Fold Dark Matter Effects and Early Supermassive Black Holes", <u>viXra:2105.0041v1</u>, <u>https://shmaesphysics.wordpress.com/2020/10/15/multi-fold-dark-matter-effects-and-early-supermassive-black-holes/</u>, October 15, 2020.

[12]: Stephane H Maes, (2020), "Gravity-like Attractions and Fluctuations between Entangled Systems?", viXra:2010.0010v1, <u>https://shmaesphysics.wordpress.com/2020/06/25/gravity-like-attractions-and-fluctuations-between-entangled-systems/</u>, June 24, 2020.

[13]: Stephane H Maes, (2022), "Hints of Multi-fold Dark Matter Effects in the Universe", <u>osf.io/krw7g</u>, <u>https://shmaesphysics.wordpress.com/2022/03/14/hints-of-multi-fold-dark-matter-effects-in-the-universe/</u>, March 14, 2022, <u>https://zenodo.org/record/7791678</u>.

[14]: Stephane H Maes, (2020), "The E/G conjecture: entanglement is gravity and gravity is entanglement", viXra:2010.0139v1, <u>https://shmaesphysics.wordpress.com/2020/10/15/the-e-g-conjecture-entanglement-is-gravity-and-gravity-is-entanglement/</u>, October 15, 2020.

[15]: Stephane H Maes, (2021), "Quantum Gravity Asymptotic Safety from 2D Universal Regime and Smooth Transition to Dual Superstrings", viXra:2208.0151v1, https://shmaesphysics.wordpress.com/2021/02/07/quantumgravity-asymptotic-safety-from-2d-universal-regime-and-smooth-transition-to-dual-superstrings/, January 29, 2021.

[16]: Stephane H Maes, (2021), "Spacetime and Gravity are 2D around Planck Scales: A Universal Property of Consistent Quantum Gravity", <u>viXra:2211.0001v1</u>, <u>https://shmaesphysics.wordpress.com/2021/03/23/spacetime-and-gravity-are-2d-around-planck-scales-a-universal-property-of-consistent-quantum-gravity/</u>, March 20, 2021.

[17]: Wikipedia, "Modified Newtonian dynamics", <u>https://en.wikipedia.org/wiki/Modified Newtonian dynamics</u>. Retrieved on March 2, 2019.

[18]: Wikipedia, "Lambda-CDM model", <u>https://en.wikipedia.org/wiki/Lambda-CDM model</u>. Retrieved for this paper on August 14, 2022.

[19]: Stephane H Maes, (2020), "Explaining Dark Energy, Small Cosmological Constant and Inflation Without New Physics?", <u>viXra:2006.0261v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/19/explaining-dark-energy-small-cosmological-constant-and-inflation-without-new-physics/</u>, June 19, 2020.

[20]: B. Clegg (2019), "Dark Matter and Dark Energy: The Hidden 95% of the Universe", Icon Books Ltd.

[21]: Stephane H Maes, (2021), "The Multi-fold Theory: A synopsis",

viXra:2112.0144v1, https://shmaesphysics.wordpress.com/2021/12/24/the-multi-fold-theory-a-synopsis-so-far-v2end-of-2021/, December 24, 2021. Note that additional links will always be available at <u>https://shmaesphysics.wordpress.com/2021/05/03/the-multi-fold-theory-a-synopsis-so-far/</u> to track the latest and interim versions of the synopsis, as they may be published under different tittle or URL/publication numbers.

[22]: Stephane H Maes, (2022), "Understanding the Multi-fold theory principles and the SM_G", <u>osf.io/xc74t</u>, <u>https://shmaesphysics.wordpress.com/2022/03/11/understanding-the-multi-fold-theory-principles-and-the-sm_g/</u>, March 11, 2022. Also as Stephane H Maes, (2022), "A tutorial on the Multi-fold theory principles and the SM_G", <u>viXra:2303.0154v1</u>, <u>https://shmaesphysics.wordpress.com/blog-2/a-tutorial-on-the-multi-fold-theory-principles-and-the-sm_g/</u>, March11, 2022.

[23]: Stephane H. Maes, (2022), "Comment on LQG, Superstrings, Supersymmetry and most GUTs/TOEs, all have big problems exposed by the Multi-fold Theory", <u>https://shmaesphysics.wordpress.com/2021/12/27/the-multi-fold-theory-a-synopsis/#comment-3293</u>. Published on January 9, 2022.

[24]: Stephane H. Maes, (2020), "Comment on why no supersymmetry", <u>https://shmaesphysics.wordpress.com/2020/10/11/circular-arguments-in-string-and-superstring-theory-from-a-</u> <u>multi-fold-universe-perspective/#comment-934</u>. Published on October 12, 2020.

[25]: Stephane H Maes, (2020), "Renormalization and Asymptotic Safety of Gravity in a Multi-Fold Universe: More Tracking of the Standard Model at the Cost of Supersymmetries, GUTs and Superstrings", <u>viXra:2102.0137v1</u>, <u>https://shmaesphysics.wordpress.com/2020/09/19/renormalization-and-asymptotic-safety-of-gravity-in-a-multi-fold-universe-more-tracking-of-the-standard-model-at-the-cost-of-supersymmetries-guts-and-superstrings/, September 18, 2020.</u>

[26]: Stephane H Maes, (2020), "Circular Arguments in String and Superstring Theory from a Multi-fold Universe Perspective", <u>viXra:2103.0195v1</u>, <u>https://shmaesphysics.wordpress.com/2020/10/11/circular-arguments-in-string-and-superstring-theory-from-a-multi-fold-universe-perspective/</u>, October 5, 2020.

[27]: Stephane H Maes, (2021), "The String Swampland and de Sitter Vacua: A Consistent Perspective for Superstrings and Multi-fold Universes", <u>viXra:2208.0078v1</u>,

https://shmaesphysics.wordpress.com/2021/01/12/the-string-swampland-and-de-sitter-vacua-a-consistentperspective-for-superstrings-and-multi-fold-universes/, January 9, 2021.

[28]: Stephane H Maes, (2020), "A Non-perturbative Proof of the Asymptotic Safety of 4D Einstein Gravity, With or Without Matter", <u>https://doi.org/10.5281/zenodo.7953796</u>, <u>https://shmaesphysics.wordpress.com/2022/05/04/a-non-perturbative-proof-of-the-asymptotic-safety-of-4d-einstein-gravity-with-or-without-matter/</u>, May 4, 2022, <u>viXra:2305.0138</u>.

[29]: Stephane H Maes, (2020), "Dualities or Analogies between Superstrings and Multi-fold Universe", viXra:2006.0178v1, https://shmaesphysics.wordpress.com/2020/06/14/dualities-or-analogies-between-superstrings-and-multi-fold-universes/, June 14, 2020.

[30]: Stephane H Maes, (2020), "Alignments and Gaps Between Multi-fold Universes And Loop Quantum Gravity", <u>viXra:2006.0229v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/19/multi-fold-universes-analysis-of-loop-quantum-gravity/</u>, June 18, 2020.

[31]: Stephane H Maes, (2020), "Superstrings Encounter of the Second, Third or Fourth Types?", <u>viXra:2010.0140v1</u>, <u>https://shmaesphysics.wordpress.com/2020/07/19/superstrings-encounter-of-the-second-third-or-fourth-types/</u>, July 5, 2020.

[32]: Stephane H Maes, (2022), "Oops For The Loops II: Real Oops; LQG Does Not Optimize the Hilbert Einstein Action", <u>viXra:2301.0036v1</u>, <u>https://shmaesphysics.wordpress.com/2022/01/05/oops-for-the-loops-ii-real-oops-lqg-does-not-optimize-the-hilbert-einstein-action/</u>, January 5, 2022.

[33]: Stephane H. Maes, (2022), "What is the Multi-fold Theory? Its Main Characteristics in a Few Words", vixra:2207.0172v1, https://shmaesphysics.wordpress.com/2022/07/28/what-is-the-multi-fold-theory-its-maincharacteristics-in-a-few-words/, July 28, 2022.

[34]: Stephane H. Maes, (2022), "Justifying the Standard Model U(1) x SU(2) x SU(3) Symmetry in a Multi-fold Universe", <u>https://doi.org/10.5281/zenodo.8422911</u>, <u>https://shmaesphysics.wordpress.com/2022/08/08/justifyin</u> g-the-standard-model-u1-x-su2-x-su3-symmetry-in-a-multi-fold-universe/, August 8, 2022, (viXra:2310.0040v1).

[35]: Stephane H Maes, (2020), "Massless and Massive Multi-Gravity in a Multi-fold Universe", <u>viXra:2010.0095v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/30/massless-and-massive-multi-gravity-in-a-multi-fold-universe/</u>, June 19, 2020.

[36]: Stephane H Maes, (2020), "Multi-fold Higgs Fields and Bosons", <u>viXra:2204.0146v1</u>, <u>https://shmaesphysics.wordpress.com/2020/11/10/multi-fold-higgs-fields-and-bosons/</u>, November 6, 2020.

[37]: Stephane H Maes, (2021), "Multi-fold Gravity-Electroweak Theory and Symmetry Breaking", <u>viXra:2211.0100</u>, <u>https://shmaesphysics.wordpress.com/2021/03/28/multi-fold-gravity-electroweak-theory-and-symmetry-breaking/</u>, March 16, 2021.

[38]: Stephane H Maes, (2021), "Multi-fold Non-Commutative Spacetime, Higgs and The Standard Model with Gravity", <u>viXra:2212.0037v1</u>, <u>https://shmaesphysics.wordpress.com/2021/04/18/multi-fold-non-commutative-spacetime-higgs-and-the-standard-model-with-gravity/</u>, April 11, 2021.

[39]: Stephane H Maes, (2022), "Unruh effects, Hawking Black Hole Evaporation, Quantum Corrected Larmor Formula, Numbers of Particles in Curved Spacetime: "Same-Same, but Just A Bit Different"", <u>https://doi.org/10.5281/zenodo.8306942</u>, <u>https://shmaesphysics.wordpress.com/2022/07/25/unruh-effects-hawking-black-hole-evaporation-quantum-corrected-larmor-formula-numbers-of-particles-in-curved-spacetime-same-but-just-a-bit-different/</u>, July 25, 2022, (viXra:2309.0005).. [40]: Stephane H Maes, (2020), "Explaining Dark Matter Without New Physics?", <u>viXra:2007.0006v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/21/explaining-dark-matter-without-new-physics/</u>, June 21, 2020.

[41]: Stephane H Maes, (2020), "Derivation of the Equivalence Principle in a Multi-fold Universe", viXra:2010.0090v1, <u>https://shmaesphysics.wordpress.com/2020/06/29/derivation-of-the-equivalence-principle-in-</u> <u>a-multi-fold-universe/</u>, June 19, 2020.

[42]: Stephane H Maes, (2020), "Gravity Induced Anomalies Smearing in Standard Model so that Protons May Never Decay, Except in Black holes", <u>viXra:2006.0128v1</u>,

https://shmaesphysics.wordpress.com/2020/06/13/gravity-induced-anomalies-smearing-in-standard-model-sothat-protons-may-never-decay-except-in-black-holes/, June 13, 2020.

[43]: Stephane H Maes, (2022), "Gravity or Magnetic Monopoles? You Cannot Have Both! II", <u>viXra:2006.0190v2</u>, <u>https://shmaesphysics.wordpress.com/2022/08/20/gravity-or-magnetic-monopoles-you-cannot-have-both-2/</u>, August 20, 2022; Stephane H Maes, (2020), "Gravity or Magnetic Monopoles? You Cannot Have Both!", <u>viXra:2006.0190</u>, <u>https://shmaesphysics.wordpress.com/2020/06/15/gravity-or-magnetic-monopoles-you-cannot-have-both/</u>, June 15, 2020.

[44]: Stephane H Maes, (2020), "Ultimate Unification: Gravity-led Democracy vs. Uber-Symmetries", viXra:2006.0211v1, https://shmaesphysics.wordpress.com/2020/06/16/ultimate-unification-gravity-leddemocracy-vs-uber-symmetries/, June 16, 2020.

[45]: Stephane H Maes, (2020), "Right-handed neutrinos? Mass? Ask Gravity", <u>viXra:2007.0018v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/21/right-handed-neutrinos-ask-gravity/</u>, June 23, 2020.

[46]: Stephane H Maes, (2020), "Strong CP Violation Tamed in The Presence of Gravity", <u>viXra:2007.0025v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/23/strong-cp-violation-tamed-in-the-presence-of-gravity/</u>, June 21, 2020.

[47]: Stephane H Maes, (2020), "Gravity Dictates the Number of Fermion Generations: 3", <u>viXra:2007.0068v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/24/gravity-dictates-the-number-of-fermion-generations-3/</u>, June 24, 2020.

[48]: Stephane H Maes, (2020), "Gravity Stabilizes Electroweak Vacuum – No Bubble of Nothing to Worry About!", viXra:2007.0173v1, <u>https://shmaesphysics.wordpress.com/2020/06/24/gravity-stabilizes-electroweak-vacuum-no-bubble-of-nothing-to-worry-about/</u>, June 24, 2020.

[49]: Stephane H Maes, (2020), "More Matter Than Antimatter, All Falling Down", <u>viXra:2010.0121v2</u>, <u>https://shmaesphysics.wordpress.com/2020/07/05/more-matter-than-antimatter-all-falling-down/</u>, July 5, 2020. (V2: April 8, 2021)

[50]: Stephane H Maes, (2020), "Tracking Down The Standard Model With Gravity In Multi-Fold Universes", viXra:2011.0208v1, <u>https://shmaesphysics.wordpress.com/2020/08/30/tracking-down-the-standard-model-with-gravity-in-multi-fold-universes/</u>, August 20, 2020.

[51]: Stephane H Maes, (2020), "No Conventional Sterile Neutrinos In a Multi-fold Universe: just SMG business as usual", viXra:2103.0202v1, https://shmaesphysics.wordpress.com/2020/10/02/no-conventional-sterile-neutrinosin-a-multi-fold-universe-just-smg-business-as-usual/, October 1, 2020.

[52]: Stephane H. Maes, (2020), "Particles of The Standard Model In Multi-Fold Universes", <u>viXra:2111.0071v1</u>, <u>https://shmaesphysics.wordpress.com/2020/11/05/particles-of-the-standard-model-in-multi-fold-universes/</u>, November 4, 2020.

[53]: Stephane H Maes, (2022), "Can Chirality Flips Occur in a Multi-Fold Universe? What About Conservation Laws? II", <u>viXra:2204.0152v2</u>, <u>https://shmaesphysics.wordpress.com/2022/08/20/can-chirality-flips-occur-in-a-multi-fold-universe-what-about-conservation-laws-ii/</u>, August 20, 2022 & Stephane H Maes, (2020), "Can Chirality Flips Occur in a Multi-Fold Universe? What About Conservation Laws?", <u>viXra:2204.0152</u>, <u>https://shmaesphysics.wordpress.com/2020/12/07/can-chirality-flips-occur-in-a-multi-fold-universe-what-aboutconservation-laws/</u>, December 6, 2020.

[54]: Stephane H Maes, (2020), "Viable Lattice Spacetime and Absence of Quantum Gravitational Anomalies in a Multi-fold Universe", <u>viXra:2205.0143v1</u>, <u>https://shmaesphysics.wordpress.com/2020/12/13/viable-lattice-spacetime-and-absence-of-quantum-gravitational-anomalies-in-a-multi-fold-universe/</u>, December 4, 2020.

[55]: Stephane H Maes, (2021), "New Physics with LHCb to explain loss of lepton universality, or just gravity?", <u>viXra:2103.0191v1</u>, <u>https://shmaesphysics.wordpress.com/2021/03/29/new-physics-with-lhcb-to-explain-loss-of-lepton-universality-or-just-gravity/</u>, March 29, 2021.

[56]: Stephane H. Maes, "A bold prediction on the muon anomalous magnetic moment, and expected results to be published on April 7, 2021 by the Fermilab Muon g-2, and its explanation", <u>viXra:2104.0030v1</u>, <u>https://shmaesphysics.wordpress.com/2021/04/01/a-bold-prediction-on-the-muon-anomalous-magnetic-moment-and-expected-resulted-to-be-published-on-april-7-2021-by-the-fermilab-muon-g-2-and-its-explanation/, April 1, 2021.</u>

[57]: Stephane H Maes, (2021), "New Physics is often not so new", <u>osf.io/z3sj6</u>, <u>https://shmaesphysics.wordpress.com/2021/04/27/new-physics-is-often-not-so-new/</u>, April 27, 2021, <u>https://zenodo.org/records/7791704</u>.

[58]: Stephane H Maes, (2022), "Direction of Possible Multi-folds Corrections to the W Boson Mass", <u>osf.io/qvewa</u>, <u>https://shmaesphysics.wordpress.com/2022/04/08/direction-of-possible-multi-folds-corrections-to-the-w-boson-mass/</u>, April 8, 2022, <u>viXra:2304.0020</u>.

[59]: Stephane H Maes, (2022), "Multi-folds in Yang Mills Feynman Diagrams", <u>osf.io/y8fpd</u>, <u>https://shmaesphysics.wordpress.com/2022/04/05/multi-folds-in-yang-mills-feynman-diagrams/</u>, April 5, 2022, <u>viXra:2303.0161</u>.

[60]: Stephane H. Maes, (2022), Stephane H. Maes, (2022), "A Conjecture: No Dark Matter will be discovered at LHC, or elsewhere", (v2) <u>https://doi.org/10.5281/zenodo.8175806</u>,

https://shmaesphysics.wordpress.com/2022/07/08/a-prediction-no-dark-matter-will-be-discovered-at-lhc-orelsewhere/, July 8, 2022, viXra:2307.0119.

[61]: Stephane H. Maes, (2022), "Invalidation and Proof of the Mass Gap, and Viability of The Standard Model on a Discrete Spacetime", <u>https://doi.org/10.5281/zenodo.8237456</u>,

https://shmaesphysics.wordpress.com/2022/07/15/invalidation-and-proof-of-the-mass-gap-and-viability-of-thestandard-model-on-a-discrete-spacetime/, July 15, 2022. (viXra:2308.0059).

[62]: Stephane H Maes, (2021), "Multi-fold Embeddings, Space Time Matter Induction or Gravity Asymptotically Safe and The AdS/CFT Correspondence Conjecture, they all can recover the Standard Model", <u>viXra:2212.0120v1</u>, <u>https://shmaesphysics.wordpress.com/2021/12/20/multi-fold-embeddings-space-time-matter-induction-or-gravity-asymptotically-safe-and-the-ads-cft-correspondence-conjecture-they-all-can-recover-the-standard-model-or-smg/, December 20, 2021.</u>

[63]: Stephane H Maes, (2020), "Multi-Fold Black Holes: Entropy, Evolution and Quantum Extrema", viXra:2105.0136v1, https://shmaesphysics.wordpress.com/2020/11/01/multi-fold-black-holes-entropy-evolution-and-quantum-extrema/, October 31, 2020.

[64]: Stephane H Maes, (2020), "The W-type Multi-Fold Hypothesis and Quantum Physics Interpretation of wave Functions and QFT", <u>viXra:2207.0118v1</u>, <u>https://shmaesphysics.wordpress.com/2020/12/24/the-w-type-multi-fold-hypothesis-and-quantum-physics-interpretation-of-wave-functions-and-qft/, December 20, 2020.</u>

[65]: Stephane H Maes, (2020), "Implicit Multi-Fold Mechanisms in a Neural Network Model of the Universe", viXra:2012.0191v1 <u>https://shmaesphysics.wordpress.com/2020/09/12/implicit-multi-fold-mechanisms-in-a-neural-network-model-of-the-universe/</u>, September 12, 2020.

[66]: Stephane H Maes, (2020), "Interpretation of "Neural Network as the World"", <u>viXra:2012.0197v1</u>, <u>https://shmaesphysics.wordpress.com/2020/09/14/interpretation-of-neural-network-as-the-world/</u>, September 14, 2020.

[67]: Stephane H Maes, (2020), "Entangled Neural Networks from Multi-fold Universes to Biology", viXra:2207.0174v1, <u>https://shmaesphysics.wordpress.com/2020/12/31/entangled-neural-networks-from-multi-fold-universes-to-biology/</u>, December 25, 2020.

[68]: Stephane H Maes, (2020), "Area Laws Between Multi-Fold Universes and AdS", <u>viXra:2010.0207v1</u>, <u>https://shmaesphysics.wordpress.com/2020/08/10/area-laws-between-multi-fold-universes-and-ads/</u>, August 10, 2020.

[69]: Stephane H Maes, (2022), "Trans-Planckian Censorship Conjecture: Factual in Multi-fold Universes as well as GR Universes", <u>viXra:2303.0025v1</u>, <u>https://shmaesphysics.wordpress.com/2022/03/13/trans-planckian-censorship-conjecture-factual-in-multi-fold-universes-as-well-as-gr-universes/</u>, March 12, 2022.

[70]: Stephane H Maes, (2020), "No Gravity Induced Wave Function Collapse in a Multi-fold Universe", viXra:2012.0152v1, https://shmaesphysics.wordpress.com/2020/09/11/no-gravity-induced-wave-functioncollapse-in-a-multi-fold-universe/, September 11, 2020.

[71]: Stephane H Maes, (2020), "Multi-fold Gravitons In-N-Out Spacetime", <u>viXra:2010.0155v1</u>, <u>https://shmaesphysics.wordpress.com/2020/07/27/multi-fold-gravitons-in-n-out-spacetime/</u>, July 27, 2020, (posted September 6, 2020).

[72]: Stephane H Maes, (2022), "Gravitational Bootstrap, S-matrix, Superstrings, and The Plausible Unphysicality of Gravitons", <u>viXra:2301.0155v1</u>, <u>https://shmaesphysics.wordpress.com/2022/02/06/gravitational-bootstrap-s-matrix-superstrings-and-the-plausible-unphysicality-of-gravitons/</u>, February 6, 2022.

[73]: Stephane H Maes, (2021), ""Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe": 2D or 2+1D spacetime at small scales", <u>viXra:2103.0142</u>, <u>https://shmaesphysics.wordpress.com/2021/03/20/quantum-gravity-emergence-from-entanglement-in-a-multi-fold-universe-2d-or-21d-spacetime-at-small-scales/</u>, March 20, 2021.

[74]: Stephane H Maes, (2022), "The Replica Trick, Wormholes, Island formula, and Quantum Extremal Surfaces, and How the AdS/CFT Correspondence Conjecture, and Hence the M-theory, Encounters Multi-folds", <u>https://shmaesphysics.wordpress.com/2022/09/20/the-replica-trick-its-wormholes-islands-and-quantum-extremal-surfaces-and-how-the-ads-cft-correspondence-conjecture-and-hence-the-m-theory-encounters-multi-folds/, September 26, 2022.</u>

[75]: Stephane H. Maes, "Right-handed neutrinos in the multi-fold stabilize the multi-fold unconstrained KK space time matter induction and scattering", <u>https://shmaesphysics.wordpress.com/2021/04/03/right-handed-neutrinos-and-traversable-wormholes-the-key-to-entanglement-gravity-and-multi-folds-extensions-to-erepr/comment-page-1/#comment-6875.</u>

[76]: Stephane H. Maes, (2022-2023), "Confusing mathematical duality to predict quantum computing algorithm, with building a wormhole", https://shmaesphysics.wordpress.com/2020/10/11/circular-arguments-in-string-and-superstring-theory-from-a-multi-fold-universe-perspective/comment-page-1/#comment-5093, and following related comments, November 30, 2022.

[77]: Stephane H Maes, (2020), "Progress on Proving the Mass gap for Yang Mills and Gravity (maybe it's already proved...)", <u>viXra:2006.0155v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/12/progresses-on-proving-the-mass-gap-for-yang-mills-and-gravity-maybe-its-already-proven/</u>, June 12, 2020.

[78]: Stephane H Maes, (2021), "Oops For The Loops: Mounting LQG Woes And A Challenge To The LQG Community", <u>viXra:2212.0168v2</u>, <u>https://shmaesphysics.wordpress.com/2021/12/30/oops-for-loops-mounting-lqg-woes-and-a-challenge-to-the-lgq-community/</u>, December 29, 2021.

[79]: Stephane H. Maes, (2021-2022), "Our universe is 4D", Comments and following comments at https://shmaesphysics.wordpress.com/2020/09/19/renormalization-and-asymptotic-safety-of-gravity-in-a-multi-fold-universe-more-tracking-of-the-standard-model-at-the-cost-of-supersymmetries-guts-and-superstrings/#comment-1416. January 16, 2021 and after.

[80]: Stephane H Maes, (2021), "Multi-fold gravity and double copy of gauge theory", <u>osf.io/xun82</u>, <u>https://shmaesphysics.wordpress.com/2021/05/04/multi-fold-gravity-and-double-copy-of-gauge-theory/</u>, May 4, 2021, <u>viXra:2303.0114</u>.

[81]: Stephane H Maes, (2022), "The Yang Mills Double Copy leads to New AdS/CFT + Gravity Correspondences, or How the M-theory encounters Multi-fold Universes", v1.1, <u>https://doi.org/10.5281/zenodo.7827248</u>, <u>https://shmaesphysics.wordpress.com/2022/04/22/the-yang-mills-double-copy-leads-to-new-ads-cft-gravity-</u> correspondences-or-how-the-m-theory-encounters-multi-fold-universes/, April 22, 2022. (v1: at <u>zenodo.7827249</u>).

[82]: Stephane H Maes, (2020), "Entanglement Concretizes Time in a Multi-fold Universe", <u>viXra:2010.0083v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/28/entanglement-concretizes-time-in-a-multi-fold-universe/</u>, June 28, 2020.

[83]: Stephane H Maes, (2021), "Right-handed Neutrinos and Traversable Wormholes: the key to entanglement, gravity and multi-folds extensions to ER=EPR?", <u>viXra:2211.0173v1</u>, <u>https://shmaesphysics.wordpress.com/2021/04/03/right-handed-neutrinos-and-traversable-wormholes-the-key-to-entanglement-gravity-and-multi-folds-extensions-to-erepr/, April 3, 2021.</u>

[84]: Stephane H Maes, (2021), "How the ER = EPR, GR = QM and AdS/CFT correspondence conjectures, can be explained in multi-fold theory, along with the E/G conjecture. A call to the Physics Community!", viXra:2111.0144v2, https://shmaesphysics.wordpress.com/2021/11/28/how-the-er-epr-gr-qm-and-ads-cft-correspondence-conjectures-can-be-explained-in-multi-fold-theory-and-the-e-g-conjecture-explains-and-realize-in-a-multi-fold-universe-a-call-to-the-physics-comm/, December 28, 2021.

[85]: Stephane H Maes, (2020), "Particles, Especially Virtual Particles, in a Multi-fold Universe vs. QFT", viXra:2010.0133v1, https://shmaesphysics.wordpress.com/2020/07/11/particles-especially-virtual-particles-in-a-multi-fold-universe-vs-qft/, July 10, 2020.

[86]: Stephane H Maes, (2020), "A Multi-fold Universe Genesis Inspired By Explosive Total Collision: The Source Of The Big Bang?", <u>viXra:2208.0082v1</u>, <u>https://shmaesphysics.wordpress.com/2021/01/17/a-multi-fold-universe-genesis-inspired-by-total-explosion-collision-the-source-of-the-big-bang/</u>, January 12, 2021.

[87]: Stephane H Maes, (2020), "Different approaches to compute Hawking Black Holes Decay", <u>viXra:2208.0009v1</u>, <u>https://shmaesphysics.wordpress.com/different-approaches-to-compute-hawking-black-holes-decay/</u>, August 1, 2022. (Originally published July 11, 2020).

[88]: Stephane H Maes, (2020), "Comments to "Yes, Stephen Hawking Lied To Us All About How Black Holes Decay"", <u>https://osf.io/v7thb/, https://shmaesphysics.wordpress.com/2020/07/11/comments-to-yes-stephen-hawking-lied-to-us-all-about-how-black-holes-decay/</u>, July 11, 2020.

[89]: Stephane H Maes, (2020), "No Gravity Induced Wave Function Collapse in a Multi-fold Universe", viXra:2012.0152v1, <u>https://shmaesphysics.wordpress.com/2020/09/11/no-gravity-induced-wave-function-collapse-in-a-multi-fold-universe/</u>, September 11, 2020.

[90]: Stephane H. Maes, (2021), "Neutrons are forming an external skin in Nuclei and Neutron Stars", <u>https://shmaes.wordpress.com/2021/05/08/neutrons-are-forming-an-external-skin-in-nuclei-and-neutron-stars/</u>, May 8, 2021.

[91]: Stephane H Maes, (2022), "Charm of the proton", <u>https://shmaesphysics.wordpress.com/2021/03/29/new-physics-with-lhcb-to-explain-loss-of-lepton-universality-or-just-gravity/#comment-3791</u>, March 27, 2022.

[92]: Stephane H Maes, (2020), "No Gravity Shield in Multi-folds Universes", <u>viXra:2010.0032v1</u>, <u>https://shmaesphysics.wordpress.com/2020/06/26/no-gravity-shields-in-multi-folds-universes/</u>, June 26, 2020.

References added on November 3, 2023

[93]: Stephane H Maes, (2022), "Multi-fold Discrete Fractal Spacetime, and the Viability of Local vs. Non-Local Hidden Variable Viability", <u>https://shmaesphysics.wordpress.com/2022/10/30/multi-fold-discrete-fractal-spacetime-and-the-viability-of-local-vs-non-local-hidden-variable-viability/</u>, October 30, 2022.

[94]: Stephane H. Maes, (2022), "Time-Varying Multi-fold Dark Energy Effects and Implications for the Hubble Tension", <u>https://shmaesphysics.wordpress.com/2022/11/13/time-varying-multi-fold-dark-energy-effects-and-implications-for-the-hubble-tension/</u>, November 13, 2022.

[94]: Stephane H. Maes, (2022), "Multi-fold Gravity can Violate P-Symmetry. It is Aligned With Observations of Asymmetry of the Orientation of Tetrahedra of Galaxies",

https://shmaesphysics.wordpress.com/2022/12/10/multi-fold-gravity-can-violate-p-symmetry-it-is-aligned-withobservations-of-asymmetry-of-the-orientation-of-tetrahedra-of-galaxies/, December 10, 2022.

[96]: Stephane H Maes, (2022), "2D Random Walks of Massless Higgs Bosons as Microscopic Interpretation of the Asymptotic Safety of Gravity, and of the Standard Model", <u>https://shmaesphysics.wordpress.com/2022/12/28/2d-random-walks-of-massless-higgs-bosons-as-microscopic-interpretation-of-the-asymptotic-safety-of-gravity-and-of-the-standard-model/</u>, December 28, 2022.

[97]: Stephane H. Maes, (2022), "Multi-folds, Non-Commutative Spacetime, Spin, and All That", <u>https://shmaesphysics.wordpress.com/2022/12/31/the-principles-of-quantum-mechanics/</u>, December 31, 2022.

[98]: Stephane H Maes, (2022), "Comments on Multi-fold mechanisms as Hermitian vs. Unitary processes", <u>https://shmaesphysics.wordpress.com/2020/06/25/gravity-like-attractions-and-fluctuations-between-entangled-systems/#comment-4359</u>, July 27, 2022.

[99]: Stephane H. Maes, (2022), "A Better Quantum Extremal Surface and Island Interpretation that explains the Associated Massive Gravity", <u>https://shmaesphysics.wordpress.com/2022/12/03/a-better-quantum-extremal-surface-and-island-interpretation-that-explains-the-associated-massive-gravity/</u>, December 3, 2022.

[100]: Stephane H. Maes, (2023), "Yeah or Nay on Black Holes as Explanation for Dark Energy?", <u>osf.io/369pd</u>, <u>https://shmaesphysics.wordpress.com/2023/03/01/yeah-or-nay-on-black-holes-as-explanation-for-dark-energy/</u>, V3, March 26, 2023. (V2: March 12, 2023, V1: Stephane H. Maes, (2023), "Yeah or Nay on Black Holes as Explanation for Dark Energy?", <u>viXra:2303.0031</u>, <u>https://shmaesphysics.wordpress.com/2023/03/01/yeah-or-nay-on-black-holes-as-explanation-for-dark-energy/</u>, <u>on-black-holes-as-explanation-for-dark-energy/</u>, March 1, 2023).

[101]: Stephane H. Maes, (2023), "Dynamic sources, Dynamic Multi-folds, and General Relativity Lense-Thirring and Frame Dragging Effects", <u>https://shmaesphysics.wordpress.com/2023/03/12/dynamic-sources-dynamic-multi-folds-and-general-relativity-lens-thirring-and-frame-dragging-effects/</u>, March 12, 2023.

[102]: Stephane H. Maes, (2023), "The Multi-fold Least Action Principle, a Quasi Theory Of Everything", <u>https://shmaesphysics.wordpress.com/2023/02/19/the-multi-fold-least-action-principle-a-quasi-theory-of-everything/</u>, February 19, 2023.

[103]: Stephane H. Maes, (2023), "Maybe, black holes do not systematically decohere quantum states", <u>https://shmaesphysics.wordpress.com/2020/11/01/multi-fold-black-holes-entropy-evolution-and-quantum-extrema/#comment-6315</u>, March 7, 2023.

[104]: Stephane H. Maes, (2023), "No electroweak / Higgs mass hierarchy problem in multi-fold theory", <u>https://shmaesphysics.wordpress.com/2021/03/28/multi-fold-gravity-electroweak-theory-and-symmetry-breaking/#comment-6794</u>, March 30, 2023.

[105]: Stephane H. Maes, (2023), "No lack of clumpiness, just as needed", <u>https://shmaesphysics.wordpress.com/2020/06/21/explaining-dark-matter-without-new-physics/comment-page-1/#comment-6974</u>. April 12, 2023.

[106]: Stephane H. Maes, (2023), "Multi-fold Universes, Multiverses and Many Worlds", <u>https://shmaesphysics.wordpress.com/2023/04/08/multi-fold-universes-multi-folds-and-many-worlds/</u>, April 8, 2023.

[107]: Stephane H. Maes, (2023), 'Comment on black hole decoherence", <u>https://shmaesphysics.wordpress.com/2020/11/01/multi-fold-black-holes-entropy-evolution-and-quantum-extrema/#comment-6315</u>, March 7, 2023.

[108]: Stephane H Maes, (2023), "Comments of the universe is too smooth", <u>https://shmaesphysics.wordpress.com/2020/06/21/explaining-dark-matter-without-new-physics/#comment-6086</u>, February 9, 2023, and <u>https://shmaesphysics.wordpress.com/2020/06/21/explaining-dark-matter-without-new-physics/#comment-6974</u>, April 12, 2023.

[109]: Stephane H Maes, (2023), "Our real universe is macroscopically 4D. Hints come from every direction & show that it had to be so", <u>https://shmaesphysics.wordpress.com/2023/04/23/our-real-universe-is-macroscopically-4d-hints-come-from-every-directions-show-that-it-had-to-be-so/</u>, April 23, 2023.

[110]: Stephane H. Maes, (2022), "Explaining Imbalance of Tidally Ejected Stars from Open Stars Clusters Without MOND", <u>https://shmaesphysics.wordpress.com/2022/11/19/explaining-imbalance-of-tidally-ejected-stars-from-open-stars-clusters-without-mond/</u>, November 19, 2022.

[111]: Stephane H. Maes, (2022), "JWST and the Big Bang invalidation", https://shmaesphysics.wordpress.com/2021/01/17/a-multi-fold-universe-genesis-inspired-by-total-explosioncollision-the-source-of-the-big-bang/#comment-4577, and following comments. August 21, 2022.

[112]: Stephane H. Maes, {2022), "Black holes effects outside the black holes do not mean that Hawking radiation is not occurring at its horizon", <u>https://shmaesphysics.wordpress.com/different-approaches-to-compute-hawking-black-holes-decay/#comment-5027</u>, November 23, 2022.

[113]: Stephane H. Maes, (2022), "Schwinger effect dominates near the horizon of charged black holes near extremality and reduces the charge", <u>https://shmaesphysics.wordpress.com/2022/07/25/unruh-effects-hawking-black-hole-evaporation-quantum-corrected-larmor-formula-numbers-of-particles-in-curved-spacetime-same-same-but-just-a-bit-different/#comment-4687, September 23, 2022.</u>

[114]: Stephane H Maes, (2023), "No Gravitational Evaporation of Everything à la Schwinger, only for Black Holes", <u>https://shmaesphysics.wordpress.com/2023/07/15/no-gravitational-evaporation-of-everything-a-la-schwinger-only-for-black-holes/</u>, July 15, 2023.

[115]: Stephane H Maes, (2023), "Unstable QFT and SM with Gravity except in a Multi-fold Universe", <u>https://shmaesphysics.wordpress.com/2023/07/19/unstable-qft-and-sm-with-gravity-except-in-a-multi-fold-universe/</u>, July 19, 2023.

[116]: Stephane H. Maes, (2023), "Comments about massive galaxies without dark matter", <u>https://shmaesphysics.wordpress.com/2020/10/14/multi-fold-universe-dark-matter-effects-survive-low-mass-galaxies-with-dark-matter-deficits-and-excesses/#comment-7430</u>, July 20, 2023.

[g117 131]: Stephane H Maes, (2023), "Less Cracks in the Standard Cosmology in a Multi-fold Universe with its Quantum Random walks", <u>https://shmaesphysics.wordpress.com/2023/06/20/less-cracks-in-the-standard-cosmology-in-a-multi-fold-universe-with-its-quantum-random-walks/</u>, June 19, 2023.

[118]: Stephane H Maes, (2023), "2D gravity and 2D Yang Mills Physics is all what matters", <u>https://shmaesphysics.wordpress.com/2023/04/23/our-real-universe-is-macroscopically-4d-hints-come-from-every-directions-show-that-it-had-to-be-so/comment-page-1/#comment-7588</u>, August 5, 2023.

[119]: Stephane H Maes (2023), "The Multi-fold Theory – Draft Raw Compendium of Research Papers (till August, 2023)", <u>https://doi.org/10.5281/zenodo.8242021</u>, <u>https://shmaesphysics.wordpress.com/2023/08/12/the-multi-fold-theory-draft-raw-compendium-of-research-papers-till-august-2023/</u>, August 12, 2023. (<u>https://osf.io/swqmb</u>).

[120]: Stephane H Maes, (2023), "Barnett's resolution of the Minkowski – Abraham dilemma holds, no 4-vector issue", <u>https://shmaes.wordpress.com/2023/08/11/barnetts-resolution-of-the-minkowski-abraham-dilemma-holds-no-4-vector-issue/</u>, August 13, 2023.

[121]: Stephane H. Maes, (2023), "Persisting on No Decoherence due to Gravity, Black Holes, or Spacetime Curvature Superpositions", <u>https://shmaesphysics.wordpress.com/2023/08/18/persisting-on-no-decoherence-due-to-gravity-black-holes-or-spacetime-curvature-superpositions/</u>, August 18, 2023.

[122]: Stephane H. Maes, (2022), "Schwinger effect and charged black holes", <u>https://shmaesphysics.wordpress.com/2020/11/01/multi-fold-black-holes-entropy-evolution-and-quantum-extrema/#comment-4686</u>, September 25, 2022.

[123]: Stephane H. Maes, (2023), "No supersymmetry at D<=4 with a positive cosmological constant", <u>https://shmaesphysics.wordpress.com/2022/07/08/a-prediction-no-dark-matter-will-be-discovered-at-lhc-or-</u> <u>elsewhere/#comment-7563</u>. July 23, 2023.

[124]: Stephane H. Maes, (2023), "The universe is exactly the only thing that it could be if it is a 4D multi-fold universe! No fine-tuning problem, no invocation of God or multiverses", <u>https://shmaesphysics.wordpress.com/2023/04/08/multi-fold-universes-multi-folds-and-many-worlds/comment-page-1/#comment-8037</u>, October 7, 2023.

[125]: Stephane H. Maes, (2023), "Justification for the multi-fold mappings, and dynamic multi-fold mechanism", <u>https://shmaesphysics.wordpress.com/2020/12/24/the-w-type-multi-fold-hypothesis-and-quantum-physics-interpretation-of-wave-functions-and-qft/comment-page-1/#comment-8092</u>, October 29, 2023.

[126]: Stephane H. Maes, (2023), "Update to section 4.1 of "Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe" – Multi-folds for Entanglement and EPR", <u>https://zenodo.org/doi/10.5281/zenodo.10059877</u>, <u>https://shmaesphysics.wordpress.com/2023/10/29/update-to-section-4-1-of-quantum-gravity-emergence-from-entanglement-in-a-multi-fold-universe-multi-folds-for-entanglement-and-epr/, October 29, 2023,</u>

(<u>https://osf.io/54ycm/</u>). Also as Stephane H. Maes, (2023), "Multi-folds for Entanglement and EPR", <u>https://shmaesphysics.wordpress.com/2023/11/01/multi-folds-for-entanglement-and-epr</u>, October 29, 2023, (viXra:2311.0001v1).

[127]: Stephane H. Maes, (2020-2023), "Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe", V3, <u>https://zenodo.org/doi/10.5281/zenodo.7792911</u>, October 29, 2023.

[128]: Astronomy, (2023), "What is the cosmic web made of? The cosmic web is part of the universe's large-scale structure. It is composed of dark matter, gas, and galaxies", <u>https://www.astronomy.com/science/what-is-the-cosmic-web-made-of/</u>. Retrieved on November 3, 2023.

[129]: Stephane H. Maes, (2023), "Multi-Fold dark Matter effects & Rotation Curve Differences in Galaxies in Clusters, Yet Respect of the Strong Equivalence Principle",

https://shmaesphysics.wordpress.com/2023/01/29/multi-fold-dark-matter-effects-rotation-curve-differences-in-galaxies-in-custers-yet-respect-of-the-strong-equivalence-principle/, January 29, 2023.

[130]: Wikipedia, "Tensor-vector-scalar gravity",

https://en.wikipedia.org/wiki/Tensor%E2%80%93vector%E2%80%93scalar_gravity. Retrieved for this paper on November 2, 2023.