On the Use of the Variance of Logits in
Tokenizing and Training

Adarsh Senthil
November 5, 2023

Abstract

A tokenizer and loss function for Large Language Models based on the
surmise that the meaningfulness of a sentence is related to the vanishing of
the variance of logits. Code repository link:
https://github.com/Adsen14/LLM-Logit-Variance

Large Language Models generate text by generating a logit vector at each
timestep and sampling a component from it. Each component of the logit
vector can be interpreted as the likelihood that the component is the correct
token for the next timestep. As text is being generated, the previous tokens in
the sentence act as constraints for the next token. The constraints change the
amount of equally likely tokens. For LLMs, we use the variance of the top-k
elements of the logit vector to infer the degree to which every token in the top-
k elements is equally likely. If the next timestep is highly constrained, only
a couple of tokens are likely to be the next token, and the variance would be
far from zero. If the next timestep is lightly constrained, almost every token
is likely to be the next, and the variance would be close to zero. A partial
sentence is likely to be meaningful if its final token is lightly constrained, and
meaningless/ambiguous if its final token is highly constrained. Measuring the
meaningfulness of a sentence in this way may help in:

e Splitting sentences into meaningful pieces

e Marking tokens that end a meaningful sentence, which may help the
LLM to generate meaningful text by ensuring that the variance of the
logits vanish at the marker tokens

For the sentence piece tokenizer, we take the prompt, the top-k value (k),
and the absolute tolerance (r) as inputs. We create an empty array to store
the pieces, and an empty array to store the current piece. For each timestep,
we append the current output token to the current piece, and apply the
softmax function to the evaluated logits. Let the variance of the logits of
the top-k tokens at the i timestep be o?(z;[: k]). If |o?(z;[: k])| < r (i.e.
o?(x;[: k]) € B(0;7)), we append the current piece to the pieces array, and
clear the current piece. When the model outputs the EOS token, we return
the pieces array P as the result.

For the loss function, we create a marker tokens array for the training
dataset. It contains only the indices of the marker tokens. We can manually
label the marker tokens, or we can specify a fixed set of marker tokens that
are used in common language, such as ”.” and ”,”. Let the marker tokens
array be denoted as M. We make the following modification to the cross-
entropy loss function to accomodate the marker tokens,

V]
l(ytugt) = - Zyt,j lOg Z/E,j; t ¢ M
j=1
vl vl 2
Uy, Oe) = — Zyt,j log yz,; + W(Z(m +yi)°), teM
e =1

We surmise that this loss function can help in speeding up training, since
the LLM has an additional constraint of bringing the variance of its log-
its down to zero when reaching a marker token, which may help the LLM
generate more meaningful text for the same training time.

References

1. Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola. Dive
into Deep Learning.

2. Li Deng, Yang Liu. Deep Learning in Natural Language Processing.
Springer Nature Singapore Pte Ltd., 2018.

