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Abstract

Using techniques that show show that e and π are transcendental, we

give a short, elementary proof that π is irrational based on Euler’s formula.

The proof involves evaluation of a polynomial using repeated applications

of Leibniz formula as organized in a Leibniz table.

Introduction

Paul Nahin’s recent book, Dr. Euler’s Fabulous Formula [9] celebrates the identity

eπi +1 = 0 and in it he gives an Euler’s Identity-based proof of the irrationality of

π using techniques of Legendre [7] of 1808. Here we give another, shorter proof

using Euler’s formula. Ours requires only basic calculus and the evaluation of the

sum of the derivatives of a polynomial. The latter task is aided by a device we call

a Leibniz table [5].

The Idea

Imagine that we have a complex polynomial Fp(z) of degree a function of p, p
a prime, and such that Fp(0) + Fp(πi) is a non-zero Gaussian integer; that is a

number of the form x + iy with x and y integers both divisible by (p − 1)!. We

will show that

eπiFp(0) = Fp(πi) + ε(p), (1)
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where

lim
p→∞

ε(p)

p!
= 0. (2)

Adding Fp(0) to both sides of (1), and using Euler’s formula,

0 = Fp(0)(e
πi + 1) = Fp(0) + Fp(πi) + ε(p), (3)

hence

0 =
Fp(0) + Fp(πi)

(p − 1)!
+

ε(p)

(p − 1)!
. (4)

Now the right hand side of (4) can not be zero for sufficiently large p. This con-

tradiction is the idea of the proof.

Some Details

Suppose, contrary to what we want to prove, that π = m/n where m > n > 0
are natural numbers. We assume, for the time being, that the sum Fp(z) of the

derivatives of

fp(z) = zp−1(nz − mi)p,

where p is a prime greater than m, is such that Fp(0) + Fp(πi) is a non-zero

Gaussian integer. We establish next the right hand side of (3).

Differentiation of e−zFp(z) gives

d

dz
(e−zFp(z)) = −e−zFp(z) + e−zF ′

p(z) = −e−zfp(z),

since Fp(z) − F ′

p(z) = fp(z). Integrating along a suitable path from 0 to πi, we

have
∫ πi

0

d

dz
(e−zFp(z)) = (e−zFp(z))

∣

∣

∣

πi

0
= −

∫ πi

0

(e−zfp(z))dz.

This gives

e−πiFp(πi)− Fp(0) = −

∫ πi

0

(e−zfp(z))dz,

and, using Euler’s formula,

0 = Fp(0) + F (πi)−

∫ πi

0

(e−zfp(z))dz,
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which is (3) with

ε(p) =

∫ πi

0

(e−zfp(z))dz.

Now the absolute value of this integral is bounded by the absolute value of its

integrand on the path of integration times the length of the path [11]. We can use

the product of the upper bounds for the absolute value of each of e−z, zp−1 and

(nz−mi)p to construct this upper bound. The first is bounded by a constant R, the

second by mp−1, and the third by (2m)p – recall that m > n > 0. An upper bound

is given, then, by R(2m)p−1, an exponential. The length of the path of integration

is a constant. Thus ε(p) has an exponential upper bound. Dividing by (p−1)! and

knowing that factorial growth beats exponential, (2) is established.

Leibniz Tables

At this juncture, all that remains is to show that Fp(0) + Fp(πi) is a non-zero

Gaussian integer divisible by (p− 1)!. We prove this for p = 5 using an argument

that applies to the general case.

If you were asked to sum the derivatives of f5(z) = z4(nz − mi)5, one ap-

proach would be to expand this complex polynomial, calculate each derivative,

one after the other, and then add them up. A potentially quicker method is to use

Leibniz’ formula, which gives the nth derivative of a product: if f(z) = g(z)h(z),
then

f (n)(z) =
n

∑

k=0

(

n

k

)

g(k)(z)h(n−k)(z).

We need to sum these nth derivatives, so an additional summation is necessary.

F5(z) =
9

∑

j=0

j
∑

k=0

(

j

k

)

[z4](k)[(nz − mi)5](n−k).

Now we only need take derivatives of each of the multiplicands zk and (nz−mi)5,

but still must generate the binomial coefficients and organize the derivatives to

reference them several times.

A table provides a way to accomplish both tasks. In Table 1, the derivatives

of z4 are listed along the top row; the derivatives of (nz − mi)5 are along the

left column; and the binomial coefficients are the interior cells. Notice how the
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z4 4z3 12z2 24z 4!

(nz −mi)5 1 1 1 1 1

5n(nz − mi)4 1 2 3 4 5

20n2(nz − mi)3 1 3 6 10 15

60n3(nz − mi)2 1 4 10 20 35

120n4(nz −mi) 1 5 15 35 70

5!n5 1 6 21 56 126

Table 1: The Leibniz table for z4(nz − mi)5.

derivatives build factorial expressions and taper down to a constant. The binomial

coefficients are formed exactly as in Pascal’s triangle.

Once the Leibniz table is complete, the zero through the ninth derivatives of

the product can be read from the interior diagonals, starting with the upper left

zeroth derivative 1z4(nz − mi)5 and finishing with the ninth 126(4!)(5!n5) in the

lower right. Further examples are the first derivative

1(z4)(5n(nz − mi)4) + 1(4z3)((nz − mi)5)

and the eighth

56(24z)(5!n5) + 70(4!)(120n4(nz − mi)).

Properties of F5(0)+F5(mi/n)

The evaluation of F5(0) and F5(mi/n) is aided by Table 1. For F (0), set z = 0
and only the right column is non-zero. This shows F (0) equals

4!(−mi)5 + 5!x1(−mi)4 + 5!x2(−mi)3 + 5!x3(−mi)2 + 5!x4(−mi) + 5!x5,

where each xk is an integer. For F5(mi/n), set z = mi/n and only the last row is

non-zero. This shows F5(mi/n) is

5!n5

(

(mi)4

n4
+ y1

(mi)3

n3
+ y2

(mi)2

n2
+ y3

(mi)

n
+ y4

)

,

where each yk is again an integer.
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Clearly F5(0)+F5(mi/n) is of the form a + bi where a and b are integers; the

odd powers of (±mi) give the complex part of the number, and the even the real.

A 4! can be factored out, so (a+bi)/4! = c+di with c and d integers. Assuming 5
does not divide m, we can conclude that 5 does not divide d and hence d can’t be

zero, so c + di 6= 0. Thus (F5(0) + F5(mi/n))/4! is a non-zero Gaussian integer.

The proof of π’s irrationality is completed by applying this Leibniz-table-based

proof to an arbitrary prime p. Note that for sufficiently large p, p will not divide a

given m.

Conclusion

Nahin’s treatment of π’s irrationality is quite long. The central technique is to

use a rational approximation to the exponential function. The techniques used

here derive from those used for transcendence proofs of e and π [1, 2, 4, 8]. As an

exercise look at the transcendence proofs for e [3, p. 216] and π [10] and construct

Leibniz tables at key junctures. They help. It is while investigating these tables I

discovered the proof given in this article.

The proof of π’s irrationality given here might well usefully find its way into

a calculus or advanced calculus course. Leibniz tables are clearly amenable to

treatment in such a class. The other element of this proof not currently in typical

calculus books is also relatively simple: given a polynomial on a finite interval,

find its upper bound. These two techniques, having been introduced and perhaps

drilled, the above proof distills down to a few logically evolving steps. Notes on

presenting this article to undergraduates are provided are in [6].
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