
Linear-Time
Estimation of Smooth Rotations in
ARAP Surface Deformation

Mauricio Cele Lopez Belon

Abstract. In recent years the As-Rigid-As-Possible with Smooth Ro-
tations (SR-ARAP [5]) technique has gained popularity in applications
where an isommetric-type of surface mapping is needed. The advan-
tage of SR-ARAP is that quality of deformation results is comparable
to more costly volumetric techniques operating on tetrahedral meshes.
The SR-ARAP relies on local/global optimization approach to minimize
the non-linear least squares energy. The power of this technique resides
on the local step. The local step estimates the local rotation of a small
surface region, or cell, with respect of its neighboring cells, so a local
change in one cell’s rotation affect the neighboring cell’s rotations and
viceversa. The main drawback of this technique is that the local step re-
quires a global convergence of rotation changes. Currently the local step
is solved in an iterative fashion, where the number of iterations needed
to reach convergence can be prohibitively large and so, in practice, only
a fixed number of iterations is possible. This trade-off is, in some sense,
defeating the goal of SR-ARAP. We propose a linear-time closed-form
solution for estimating the codependent rotations of the local step by
solving a sparse linear system of equations. Our method is more effi-
cient than state-of-the-art since no iterations are needed and optimized
sparse linear solvers can be leveraged to solve this step in linear time.
It is also more accurate since this is a closed-form solution. We apply
our method to generate interactive surface deformation, we also show
how a multirresolution optimization can be applied to achieve real-time
animation of large surfaces.
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1. Introduction

Quatily of surface deformation aims to preserve local properties of shapes as
much as possible, removing distortion in the form of shear and stretch. As-
Rigid-As-Possible with Smooth Rotations (SR-ARAP) [5] aims to create a
surface mapping that minimize the deviation from rigid behavior on the local
scale. It also makes rigid transformations smoothly vary on local neighbor-
hoods distributing the distortions uniformly over the surface. The resulting
deformations not only preserves the shape at small scale but also at large
scale significantly increasing the quality of the final result.

There are two main disadvangates on the current SR-ARAP method.
First is the local step, which looks for best rotations of corresponding surface
cells while keeping neighbor rotations similar to each other. It needs to reach
global convergence for the whole mesh. Currently the local step is solved with
a relaxation method i.e., optimizing rotations for individual cells keeping cell’s
neighbor rotations fixed and also optimizing neighbor rotations in the same
manner repeating that process until convergence. Although the cost per re-
laxation iteration can be reduced considerably by avoiding SVD calculations
([11]) usually a fixed number of iterations is used in order to bound the solver
time. That compromises the quality of results since a fixed number of itera-
tions (usually two or three) is not enough to reach optimal rotations across
the surface. Second is the high computational cost, that increases drastically
when the number of vertices grows. The SR-ARAP is a non-linear technique
that requires several iterations of local/global optmimization to converge.

In this paper we address both drawbacks of SR-ARAP, first we propose a
method to solve the local step as a single linear system of equations, avoiding
the need of iteratively solve a series of SVD problems which are codependant
to each other. Second we propose a simple multiresolution method based on
solving the non-linear system on a simplified surface mesh first and then use
harmonic interpolation of rotations to transfer the optimized rotations to
the full resolution mesh, leveraging the Laplacian matrix needed to solve the
global step of the optimization.

2. Related Work

Since the focus of this paper is on As-Rigid-As-Possible (ARAP) surface
deformation methods we will only review previous works on ARAP defor-
mation. The ARAP Surface Modeling was introduced by Sorkine and Alexa
[10] to produce robust and physically plausible deformation by minimizing
the local rigid transformation of the laplacian coordinates associated to every
vertex. Although results on low resolution meshes looks close to physical de-
formations the method fails to achieve satisfactory results on high resolution
meshes. The reason is that the ARAP energy is minimized by preserving
rigidity on large parts of the mesh at the expense of concentrating all the
distortion on small parts of the mesh. This problem has been solved in the



Linear-Time Estimation of Smooth Rotations in ARAP Deformation 3

Smooth Rotation enhanced ARAP method (SR-ARAP) of Levi and Gots-
man [5] where the deformation energy is extended with a further factor that
penalizes too different rotations of close vertices, significantly increasing the
quality of the final result. Chao et al [1] derives the ARAP enegry from the
elastic energy of continuum mechanics showing a consistent discretization for
volumetric ARAP with tetrahedron cells and for 2D ARAP with triangle cells
in 2D. However the ARAP energy doesn’t have a consistent discretization for
triangle surfaces in 3D. The SR-ARAP method [5] also address this issue pro-
viding an energy with a consistent discretization for surfaces in 3D. Further
enhancements have been proposed to the SR-ARAP deformation technique
addressing performance issues on large meshes [8, 11], making it able to ad-
just physical stiffness [2, 4] and Introducing local scaling to the rotation i.e.,
turning rigid transforms into a similarity transforms [3].

3. As-Rigid-As-Possible Shape Deformation with
Smooth Rotations

Given two meshes Q and P consisting of vertices qi and pi respectively, and
directed edges pij = pj − pi and qij = qj − qi , the discrete As-Rigid-As-
Possible with Smooth Rotations (SR-ARAP) energy is defined as:

E(Q,P ) =

m∑
i=1

(
∑

j∈N(i)

cij‖Ri(qj − qi)R̃i − (pj − pi)‖2 + αA
∑

j∈N(i)

wij‖Rj −Ri‖2)

where R1, ..., Rm ∈ H are local quaternions, N(i) denote the set of 1-ring
neighbors of vertex at position i, cij are weighting coefficients such that∑n

j cij = 1, typically the familiar cotangent weights, wij are positive weight-

ing coefficients such that
∑n

j wij = 1, A is the mesh area used to make the
energy scale invariant and α is a positive scalar parameter.

The main idea of this method is breaking the surface into overlapping
cells and seek for keeping the cells transformations as rigid as possible in the
least squares sense. Overlap of the cells is necessary to avoid surface stretching
or shearing at the boundary of the cells. The first term is a membrane energy
which penalizes stretching and shearing of a cell and the second term is the
bending energy which penalizes the difference between a cell’s rotation and
the rotations of its neighboring cells. The objective of the membrane term is
to lower the distortion of a cell by keeping the map differential close to rigid.
The objective of the bending term is to keep the variation in the rotations
in a cell neighborhood low, such that the neighborhood would transform as
a unit, as much as possible.

The vertices of mesh Q are in original position while vertices of mesh
P are the deformed vertices and the quaternion Ri is the best rigid trans-
formation, in the least squares sense, relating the original and the deformed
vertices. This is a non-linear optimization problem that is tipically solved by
a iterative local/global method that solves two linear sub-problems on each
iteration.
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The first step, so called local step, is to consider the vertices of P con-
stant and obtain the best rigid transformation Ri for each cell. The second
step, so called global step, is to consider the rotations Ri constant and com-
puting the optimal deformed vertices pi in the least squares sense.

4. Global Step

The global step is computing the optimal vertices {pi} ∈ P .

E(P ) = min
p1,...,pm∈R3

m∑
i=1

(
∑

j∈N(i)

cij‖RiqijR̃i − pij‖2

+αA
∑

j∈N(i)

wij‖Ri −Rj‖2)

Taking the partial derivatives of E(P ) w.r.t. pi and equating the result to
zero lead us to obtain the linear system of Equation (4.1) ([6]):∑

j∈N(i)

cij(pj − pi) =
∑

j∈N(i)

cij
2

(RiqijR̃i +RjqijR̃j) (4.1)

which can be expressed in matrix form as L P = C, where L is the discrete
Laplace-Beltrami operator, P is the column of target positions and C a col-
umn vector whose ith row is the right hand side of equation (4.1). Constraints
of the form pi = pconsti are incorporated into the system by substituting the
corresponding variables i.e., erasing respective rows and columns from L and
updating the right-hand side of equation (4.1) with the values pconsti . The
system is then solved in the least squares sense:

(LT L) P = LT C (4.2)

5. Local Step

As described in a previous sections, the rotations matching cell’s are codepen-
dent to each other over the whole mesh. The current approach is to optimize
the rotations with a relaxation method in which the rotation of each cell is
independently computed, while keeping the neighbor rotations fixed, repeat-
ing it until global convergence is reached. At least two relaxation iterations
must be done per each global iteration. In this section we show how the local
step can be solved in closed form as a single sparse linear system eliminating
entirely the need of relaxation iterations.
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5.1. Closed Form of Local Step

We attempt to minimize the SR-ARAP energy function:

E(R) = min
R1,...,Rm∈H

m∑
i=1

(
∑

j∈N(i)

cij‖RiqijR̃i − pij‖2 (5.1)

+αA
∑

j∈N(i)

wij‖Ri −Rj‖2) (5.2)

Ignoring temporarily the sum over all vertices, the energy to minimize
in the neighborhood of a point pi is Ei(Ri):

Ei(Ri) =
∑

j∈N(i)

cij‖RiqijR̃i − pij‖2 + αA
∑

j∈N(i)

wij‖Rj −Ri‖2

Notice that the first term
∑

j∈N(i) cij‖RiqijR̃i − pij‖2 can be written in ma-

trix language as the quadratic form RT
i MiRi where Mi is a 4 × 4 matrix

constructed from vectors qij and pji (see Section 7):

Ei(Ri) = RT
i MiRi + αA

∑
j∈N(i)

wij‖Rj −Ri‖2 (5.3)

Differentiating with respect to Ri we get:

∂Ei(Ri)

∂Ri
= 2MiRi + 2αA

∑
j∈N(i)

wij(Ri −Rj) (5.4)

= MiRi + αARi − αA
∑

j∈N(i)

wijRj (5.5)

Setting the partial derivatives to zero ∂Ei(Ri)
∂Ri

= 0

(Mi + αAI)Ri = αA
∑

j∈N(i)

wijRj (5.6)

Which is a linear system of equations. The system (5.6) can be solved
for all quaternions in closed form. Writing (5.6) in matrix form we get:

M R = W R (5.7)

(M−W)R = 0 (5.8)

Where M is a symmetric sparse matrix with dimensions 4n× 4n which
is stacking Mi at its diagonal, W is a discrete Laplacian matrix with dimen-
sions 4n × 4n derived from RHS of (5.6) i.e.,

∑
j∈N(i) αAwijRj holding the

coefficients αAwij . R is column matrix of dimensions 1 × 4n stacking the
coefficients of quaternions Ri.
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The sparse linear system of (5.7) can be solved by imposing quaternion
constraints Rconst

i which corresponds to best rotation of constrained points
pconsti :

(M−W)R = 0 (5.9)

s.t. Ri = Rconst
i

Constraints of the form Ri = Rconst
i are incorporated into the system

by substituting the corresponding variables i.e., erasing respective rows and
columns from (M −W) and updating the right-hand side of (5.9) with the
values Rconst

i . The system is then solved in the least squares sense.
Since the constraint RT

i Ri = 1 is not honored by the linear system
the quaternion Ri given as solution must be normalized. As shown in [11] the
solution of (5.6) gives a linear approximate solution to the optimal quaternion
in the least squares sense. Our results confirm that the proposed linearization
is accurate for the SR-ARAP rotations and it is not affecting accuracy in any
significant way.

5.2. Rotation constraints Rconst
i

The rotation constraints Rconst
i in (5.9) have to be computed directly from

equation (5.6) for each constrained point pconsti :

Rconst
i = (Mi + αAI)−1

∑
j∈N(i)

αAwijR
prev
j

where neighbor rotations Rprev
j are known from previous iteration. So com-

puting constraint quaternionss amounts to solve a small 4× 4 linear system.
The resulting quaternion Rconst

i must be normalized.

5.3. Rotation’s Feedback

The linear system of (5.9) find quaternions from scratch i.e., it doesn’t take
into account the previous state of the quaternions i.e., the temporal coher-
ence. That might lead to undesired results in an animation sequence. In par-
ticular, the sense of the rotations found by (5.9) for some animation step are
not always respecting the sense of rotations from previous time. The abrupt
change in the sense of rotation cause animation artifacts specially for large
rotations.

The equation (5.9) allow us to introduce feedback quaternions to the
RHS which acts as hints to find quaternions close to the ones in previous
iteration. Given the quaternion Rprev

i and a positive small scalar value εi we
augment equation (5.6) in the following way:

(Mi + αAI)Ri = αA
∑

j∈N(i)

wijRj + εRprev
i (5.10)

where
∑

j∈N(i) wij = 1− ε. Our intention is to make Ri a neighbor of itself,

in some sense. The strength of feedback is given by ε. So the global system
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is changed as follows:

(M−W)R = εRprev (5.11)

s.t. Ri = Rconst
i

where Rprev is a 1× 4n column vector stacking all the unconstrained quater-
nions Rprev

i from previous iteration.

6. Multiresolution Optimization

For achieving real-time performance we optimize the SR-ARAP energy in a
low resolution version of the input mesh and then we transfer that solution
to the full resolution mesh. To obtain the low resolution mesh we simplify the
mesh using half edge collapses (i.e., the simplified mesh is a triangulation of
a subset of the original vertices) while minimizing the Quadrics error metric.
After we obtained the optimal deformed shape on the simplified mesh we
transfer the optimized rotations to the full resolution mesh using Harmonic
Interpolation of quaternions (see Section 6.1) and then solve the following
linear system using the optimized vertices of the low resolution mesh as po-
sitional constraints:∑

j∈N(i)

cij(pj − pi) =
∑

j∈N(i)

cij
2

(RiqijR̃i +RjqijR̃j)

6.1. Harmonic Interpolation of Quaternions

The seminal work of Pinkall and Polthier [9] shows how to interpolate given
data over a discrete domain using harmonic maps. Harmonic maps are critical
points of the Dirichlet energy (stretching energy)

∫
Ω
|∇f |2dA, which gener-

ates minimal surfaces. The discrete harmonic energy of a map f defined on
mesh vertices {pi} has the form:

E(f) =
∑
i,j

cij‖f(pj)− f(pi)‖2 (6.1)

where wij are the (symmetric) cotangent weights [9] defined on triangle edges
going from pi to pj . The discrete Laplacian operator can be identified in that
energy as:

∆f =
∑
j∈Ni

cij(f(pj)− f(pi)) (6.2)

where Ni is the set of indices of the neighbors of vertex pi. It is known that
harmonic energy minimizes angular distortions. That means that harmonic
functions smoothly blend boundary conditions over the domain. Harmonic
functions are intrinsic to surfaces and independent of the discretization used
to produce meshes. In spirit similar to [12], we propose the interpolation of
quaternions over a mesh using harmonic functions. The harmonic quaternion



8 Mauricio Cele Lopez Belon

interpolation over a surface mesh can be formulated as the solution to the
following discrete harmonic equation:∑

j∈N(i)

cij(Rj −Ri) = 0 (6.3)

subject to Dirichlet boundary conditions Rk = Rconst
k , where {Rconst

k } are
the optimized quaternions from the lower resolution mesh and {cij} are the
cotangent weights. This leads to the solution of a sparse linear matrix system.
This interpolation produces a smooth field of quaternions by “averaging” the
boundary conditions gradually over the surface. This is in effect equivalent
to a linear interpolation of boundary conditions across the surface. It can be
written in matrix form as:

L R = 0 (6.4)

s.t. Rk = Rconst
k

where L is discrete Laplacian operator used to solve the global step. Note
that interpolated quaternons are not of unit length and must be normalized
afterwards. Despite the simplicity of this approach, it works surprisingly well,
it is extremely efficient, and it provides a natural propagation at no extra cost.

7. The form of Mi

Notice that the membrane term
∑

j ‖RiqijR̃i−pij‖2 is equivalent to
∑

j ‖Riqij−
pijRi‖2 under the L2 norm. Also notice that Riqij − pijRi can be rewriten
as (wi + Bi)qij − pij(wi + Bi) for some a scalar wi and pure quaternion Bi

such that Ri = wi + Bi. Expanding the quaternion product in terms of the
inner product and the cross product we get:

(qij − pij)wi − (qij − pij) ·Bi − (qij + pij)×Bi (7.1)

The expression above can be written in matrix form to get the matrix system
MijRi:

MijRi =

[
0 −dTij
dij [sij ]

T
×

] [
wi

Bi

]
=

[
−dTijBi

widij − sij ×Bi

]
(7.2)

dij = qij − pij sij = pij + qij

where dij and sij are 3 × 1 column vectors holding pure quaternion coeffi-
cients, Mij is a skew-symmetric 4× 4 real matrix, so that MT

ij = −Mij . The
quaternion Ri is represented as 4 × 1 column vector made of the scalar wi

and the 3×1 column vector Bi holding the pure quaternion components. The
3× 3 matrix [sij ]× is representing the skew-symmetric cross-product matrix

as usually defined for vectors in R3.
We can express

∑
j ‖Riqij − pjiRi‖2 as the quadratic form RT

i MiRi

where Mi =
∑n

j cijM
T
ijMij . Note that since Mij is skew-symmetric, the prod-

uct MT
ijMij is symmetric and positive semi-definite. Consequently the matrix
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Mi is also symmetric positive semi-definite. It follows that all eigenvalues of
Mi are real and λi ≥ 0.

MT
ijMij =

[
‖dij‖2 (sij × dij)T
sij × dij dijd

T
ij − [sij ]

2
×

]
(7.3)

dij = qij − pij sij = pij + qij

7.1. Efficient Computation of Mi

The symmetric matrix MT
ijMij has a simple form:

MT
ijMij =

[
‖dij‖2 (sij × dij)T
sij × dij dijd

T
ij − sijsTij + ‖sij‖2I3×3

]
dij = qij − pij sij = pij + qij

Writing it in terms of pij and qij we get:

MT
ijMij = 2

[
qTijpij (qij × pij)T
qij × pij qijp

T
ij + pijq

T
ij − qTijpijI3×3

]
(7.4)

+(‖pij‖2 + ‖qij‖2)I4×4

All terms of 7.4 can be derived from the dyadic tensor qijp
T
ij plus the quantity

‖pij‖2 + ‖qij‖2. Since matrix qijp
T
ij is of 3× 3 its computation is efficient.

8. Implementation

The author’s source code is publicly available at github [7].

9. Results

10. Conclusion
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