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Abstract

The kernel of a linear loss functional is given by the set of functions
orthogonal to its inverse Fourier transform. If the range of the loss

functional is the non-negative real numbers, its global minimum is zero,
which implies that the functions in the kernel are the models that minimize

the loss functional.

In machine learning, a loss functional is used to measure the training er-
ror of a model [4:129]. Loss functionals are usually of the form L(y; f(x)),
where x is an input vector, y is a label vector and f is a model. Some exam-
ples are mean squared error L(y; f(x)) = 1

2n jjy « f(x)jj2 and cross-entropy
L(y; f(x)) = «hy; log(f(x))i. The main objective of training is to Ñnd the
model that minimizes the loss functional. If the range of the loss functional
is the set of non-negative real numbers, its global minimum is zero, which
implies that the model that solves the loss functional, minimizes it. Addi-
tionally, if the loss functional is linear, the set of models that minimize the
training error is given by the kernel of the loss functional.

LetH be a Hilbert space of models with Hilbert basis O = fu1; u2; : : : g.
Let L(y; f(x)) Ô L(f) be a bounded linear functional on H. We have,

L(f) = L(
1X

k=1

hf; ukiuk)

=
1X

k=1

hf; ukiL(uk)
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For any bounded linear functional L, the Riesz representation theorem
[1:333] states that there is a unique rL 2 H such that L(f) = hf; rLi for all
f 2 H. Thus,

ker(L) = ff 2 H j L(f) = 0g
= ff 2 H j hf; rLi = 0g
= frLg?

LetH = L2(Rn). Every f 2 H can be represented by f(x) = 1p
2Ü

R
Rnhf; eik¬xieik¬x dk

[2:265, 3:175] where, hf; gi =
R
Rn f(x)g(x) dx. Since hrL; uki = L(uk),

Z

Rn
rL(x)eik¬x dx = L(y; eik¬x)

1p
2Ü

Z

Rn
rL(x)eik¬x dx =

1p
2Ü
L(y; eik¬x)

F [rL(x)] =
1p
2Ü
L(y; eik¬x)

F«1[F [rL(x)]] = F«1[ 1p
2ÜL(y; e

ik¬x)]

=) rL(x) =
1p
2Ü
F«1[L(y; eik¬x)]

Therefore, the kernel of the linear loss functional L(y; f(x)) is,

ker(L) = ff(x) 2 L2(Rn) j hf(x);F«1[L(y; eik¬x)]i = 0g

= ff(x) 2 L2(Rn) j
Z

Rn
f(x)F«1[L(y; eik¬x)] dx = 0g

= fF«1[L(y; eik¬x)]g?
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