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Abstract 

In the Quantum Electrodynamics (QED), the perturbation propagators do not all 

have the same Weyl scale weight when integration is carried out over all 

momentum spaces. A dynamic scale factor is introduced to all dynamic variables 

in physics in this paper. The requirements for physics equations, including the 

Maxwell equations to be invariant under scale factor transformation is 

investigated. If a Planck type term with energy momentum dependence (not 

coordinate dependent) as scale factor is introduced to the propagator of QED, the 

renormalization theory is no longer needed.  Instead of inventing different 

scheme of removing infinites, more experimental data collection is needed to 

determine the scale factors for different scenarios. The scale factor can also be 

introduced through replacing the momentum by a re-gauged momentum. 

Another approach of introducing the scale factor is to replace Fourier 

Transformation by Laplace Transformation in all quantum mechanics.  The 

quantum gravity self-interaction terms shall no longer be infinite by choosing 

different scale factors.  

 

 Key Words:  Renormalization, Weyl theory, Planck distributions, curved 

momentum space, Laplace Transformation, and quantum gravity  

  



 

1. Introduction 

Quantum mechanics and relativity theory are the two great discoveries of the 20th 

century in physics. The quantum electrodynamics is the application of quantum 

theory into the electromagnetism.  There are limited number infinities in the 

perturbation theory of quantum electrodynamics which are removed through the 

renormalization theory (Ref.1).   A very straight forward next step in modern 

physics would be applying the quantum theory into gravitation, the quantum 

gravity.  Unfortunately, in the quantum perturbation theory of gravitation there 

are many different infinites which was not able to be renormalized (Ref.2, 3).   

Even though the super-string theory does not suffer from ultraviolet divergences 

caused by shrinking one of the internal lines of Feynman diagram to zero.  But the 

string theory up to date is still a mathematical collection of folklore, rules of 

thumb, and intuition (Ref.4).   

As we recall, in the early development of the theory of quantum mechanics, in the 

blackbody radiation theory there is also ultraviolet divergence. The Planck term 

with exponential convergence in the blackbody radiation was introduced to 

describe the elementary particle behavior which is different from that of macro 

objects. The author thinks that a new theory by re-visiting the emitting property 

of virtual particles of current quantum theory may lead to a rediscover of the 

quantum interior structure of elemental particles. 

Within the current quantum physics domain, because the perturbation terms are 

a combination of energy-momentum terms kn where n is integer of a greater than 

zero or less than zero, there is no way to remove the infinites when integrate the 

perturbation term over all energy momentum because the integrand goes to 

infinite when k goes to infinite (zero) when n greater than zero (less than zero).  

The best way to solve these infinite problems is to re-introduce the Planck type 

term to all perturbation theory of QED, QCD and Quantum Gravity.  But the 

current physics equations does not allow to introduce such a term.   

Also, in the quantum mechanics domain, the electron in the atom does not 

radiates the electromagnetic waves in the ground state.  The Feynman diagram of 

free electron emits virtue particles and re-absorbed.  To maintain the electron in 



the ground states and to be consistent with the classic theory of 

electromagnetism, as extension of blackbody radiation theory, the virtue particles 

emitted shall be limited to a certain pattern in related to the wavelength just like 

the blackbody radiation, not equal opportunity for all energy-momentum of 

virtual particles.  But the Dirac Theory does not have the possibility to add 

another term in the perturbation theory.  In this paper, section 2, we would like 

to propose a new Weyl-type of scale factor which allow a new Planck type term is 

introduced into all physics variables.   

Section 3 to section 7, all possible scale factor is analyzed for different physics 

equations.  This new scale factor will be convergent in the ultraviolet limit and 

infrared limit. Just like the quantum mechanics, this Planck type of term can be 

used to study the virtue particle relationship with the elemental particles and 

hopefully this scale factor can be used to study the sub-structure of elemental 

particles.   

Dirac and many other authors have introduced the Weyl theory to gravitation and 

cosmology (Ref.5,6). The interpretation of Weyl gauge field has not been properly 

defined in different area of physics.  When Weyl introduce the gauge field, the 

field is introduced through geometrical object, the metrical tensor to transform 

like 𝑔𝜇𝜈 − >  𝜆2𝑔𝜇𝜈 to make affine connection invariant.  It is equivalently, d2s  -- >  

2 d2s.   

ds has much more implication in physics than metric tensor which is used as a 

geometrical representation of gravity. To the author that 𝜆 may connect different 

inertial system as a global variable.  

Thought experiment:  A physicist A in the laboratory, chose to accelerate an 

electron, the electromagnetic field path through a thought membrane (a) around 

the electron is adsorbed by the electron.    Another physicist B try to accelerate 

the laboratory, large amount of gravitational field pass through the thought 

membrane (b) around the laboratory, which exclude the electron and the 

membrane (a).  To an observer C sitting on the membrane (a), sees no field pass 

through his membrane (a) when physicist B accelerate the laboratory.   Both 

systems are equivalent kinematically to the observer C if observer C does not care 

about the history of field passing through the membrane.  This “hardness” 

difference between physicist A and B  as well as the history of field passing 



through the membrane (a) may means a global property difference of the inertia 

system reflected by 𝜆.   In the later section of this paper, we will define a scale 

weight based on ds to re-visit most of the dynamic variables and some of the field 

equations.  

 

2. The scale factor for different variables 

Weyl theory defines the metrical tensor transformation as following: 

 𝑔𝜇𝜈 ---> 𝜆2𝑔𝜇𝜈 

where 𝜆(𝑥, 𝑝) is a complete arbitrary scalar function of position or momentum. 

𝜆(𝑥, 𝑝) can be a complex number in order to also include the phase factor of 

quantum mechanics.  A variable Z is invariant under this transformation shall not 

change (Weyl co-tensor weight 0), or Z ---->  𝜆0𝑍= Z.  

The affine connection:  

 Γ𝜇𝜈
𝛼 ={ 𝛼

𝜇𝜈
} +𝛿𝜇

𝛼𝜙𝜈+𝛿𝜈
𝛼𝜙𝜇-𝑔𝜇𝜈𝑔𝛼𝛽𝜙𝛽    (1) 

is invariant under transformations 

 𝑔𝜇𝜈 ---->  𝜆2𝑔𝜇𝜈       (2.1) 

And 

 𝜙𝜇  ->  𝜙𝜇 - 𝜕𝜇ln      (2.2).  

The curvature tensor 𝑅𝜇𝜈𝜙
𝛼  and 𝑅𝜇𝜆 are typical invariant for Weyl theory, co-

tensor of gauge weight 0.  

When Weyl proposed the transformation, he has unification of gravitation and 

electromagnetism in mind.  𝜙𝜈 serves as electromagnetism potential, and  

𝐹𝜇𝜈 = 
𝜕𝜙𝜇

𝜕𝑥𝜈
 -

𝜕𝜙𝜈

𝜕𝑥𝜇
  is Weyl transformation invariant by definition. 

Equation (2.1)  𝑔𝜇𝜈 ----> 𝜆2𝑔𝜇𝜈 leads to ds  ---->  ds.  The change of ds has far 

more implication than in gravity.  

 In special relativity ds is invariant between different inertial systems and for 

general relativity, ds varies at different space time, locally we can define an 



inertial Minkowski system, but ds is different for different space time.  ds can be 

eliminated from the kinematics which ds is not observables.   But in the dynamics, 

ds may have implication of the global properties.  

 In this paper, a scale factor weight (to be different from Weyl gauge weight) is 

defined based on its relationship with ds. 𝑥𝜇 and 
𝜕

𝜕𝑥𝜇
 is defined to be zero scale 

factor weight.  

If charge q has a scale weight zero, 𝑗𝜇 shall have scale weight -3 because 

∫ √𝑔d3x𝑗0= Q (√𝑔 in 3-space has scale weight 3). By the same argument, if mass 

m has a scale weight zero, 𝑇𝜇𝑣 has scale weight -3 because ∫ √𝑔d3x𝑇00= M. 

From Einstein’s field equation: 

𝑅𝑖𝑗 −
1

2
𝑔𝑖𝑗𝑅 =  −8𝜋𝐺𝑇 𝑖𝑗  

G has scale weight of -1. 

Table 1:  The scale weight of Common dynamic variables for electromagnetism 

and gravitation 

variable Scale weight  Variable  Scale weight 

𝐴𝜇 -1 𝑝𝜇 -1 

𝐴𝜇 +1 𝑝𝜇 +1 

𝑔𝜇𝜈 +2 𝐹𝜇𝜈 +1 

𝑔𝜇𝜈 -2 𝐹𝜇𝜈 -3 

𝐽𝜇 -3 𝑇𝜇𝜈 +1 

𝐽𝜇 -1 𝑇𝜇𝜈 -3 

𝑅𝜇𝜈 0 R -2 

G -1 𝐿𝜇𝜈 +1 

  𝐿𝜇𝜈 -3 

 

In quantum mechanics,  

𝑝𝜇𝜙 = 𝑖ℏ
𝜕𝜙

𝜕𝑥𝜇
     (3) 

To bridge the relationship between quantum mechanics and classic dynamics, 

ℏ must have scale weight +1. 



In the Schrödinger equation, If 𝜙 is define has scale weight of +1 just like the 

gauge theory, 𝜙∗has scale weight of -4 because of the  

∫ 𝜙∗𝜙√𝑔 ⅆ3𝑥 = 1 

For the Dirac wave function if 𝜓 has scale weight of +1,  �̅� has a scale weight of -3 

because 𝐽𝜇 = �̅�𝛾𝜇𝜓 has a scale weight -3.  There are other possible definitions of 

scale factor weight for wave functions.  The following is the list of the scale weight 

of quantum variables.   

Table 2:  The scale weight of quantum field theory 

variable Scale weight  Variable  Scale weight 

ℏ +1 𝜙∗ -4 

𝐴𝜇 -1 𝜙 +1 

𝐴𝜇 +1 𝛾𝜇 +1 

𝑝𝜇 +1 𝛾𝜇 -1 

𝑝𝜇 -1 Dirac wave function  

𝜓 
+1 

𝐽𝜇 -3 �̅� -3 

𝐽𝜇 -1 𝑘𝜇 0 

𝑇𝑖𝑗 +2 𝑘𝜇 -2 

 

It is clearly that Klein-Gordon equations are not invariant unless  is constant or  

satisfies a certain relationship.  Also, the Lagrangian L for several field has scale 

weight of non-zero.  We will do the analysis of the impact of scale invariant 

requirement on to the different field equations.  

Due to the assumption that mass and charge has zero scale factor weight, the 

momentum of virtual photon 𝑘𝜇 has zero weight of scale factor because it is a 

partial derivative of the 𝐴𝜈 in the 𝑥𝜇 direction. 

Weyl’s first introduction of the transformation Eq.(2) is to interpret the 𝜙𝜇 as 

electromagnetism in the affine connections.  From our scale factor weight 

analysis, 𝜙𝜇 is scale weight zero based on the definition of affine connection as in 

Eq.(1) while 𝐴𝜇 has scale weight 1 from Table 1.  Now, most of physicists give up 

the Weyl’s original idea of 𝜙𝜇 as electromagnetism potential.  



Einstein’s objection to the Weyl theory is as following:  When a vector is 

transported, the length of a vector would change： 

dS = S 𝜙𝜇 d𝑥𝜇         (4) 

Integrating equation (4), we get  

    S=S0 exp∫ 𝜙𝜇 d𝑥𝜇                    (5) 

Where S0 is the length a vector would have in the absence of 𝜙𝜇 field.  Einstein 

noted that vector length can be made proportional to the ticking of a clock by 

transport the vector along a closed curve.  If 𝜙𝜇 has different value from point to 

point, the clock’s setting would change more and more with time.  The spacing of 

atomic spectral lines would be depending on their history and be subject to 

change with unpredictable results.  Since the reality is not the case, Einstein 

declared Weyl’s theory to be unphysical.   

In this paper, a scale factor is defined like Weyl’s proposal.  For those variables or 

equations which cannot be scale invariant by choosing the right scale factor, is not 

observable in quantum mechanics.  There are variables, like the momentum 

which is not observable.  The introduction of scale factor to the physics variables, 

may explain which variables are not observables and which variables are 

observable in quantum mechanics.   

It is easy to clear up Einstein’s objection to Weyl’s proposal by requiring that 

 ∮ 𝜙𝜇 d𝑥𝜇 =i2πn           (6) 

Then eq.(5) would leads to S invariant. It is easy to derive that a single electron 

circulates the proton in the time t with an orbit of Bohr radius (Ref. 7).  It is easy 

to derive using the simple Bohr model that  

   𝜙0= 
𝑖𝑒

ℏ𝑐
 A0         (7) 

From our scale weight analysis, 𝜙𝜇 has scale weight 0, 𝐴𝜇 and ℏ both has scale 

weight 1.  It is acceptable to assign 𝜙𝜇 like Eq.(7) which has scale weight 0.   

 

3. Scale factor for scale invariant Maxwell equations 

 



A has the scale weight of +1, the field variable 𝐹𝜇𝜈will vary as following: 

 

𝐹𝜇𝜈 = 
𝜕𝐴𝜇

𝜕𝑥𝜈
 -

𝜕𝐴𝜈

𝜕𝑥𝜇
   ===>   𝐹𝜇𝜈 = 𝜆 (

𝜕𝐴𝜇

𝜕𝑥𝜈
 - 

𝜕𝐴𝜈

𝜕𝑥𝜇
) + 𝐴𝜇

𝜕𝜆

𝜕𝑥𝜈
 - 

𝜕𝜆

 𝜕𝑥𝜇
𝐴𝜈  (8) 

Obviously from Eq.(8), besides  = constant,  if  𝛿𝜆 ∝ 𝐴𝜇 ⅆ𝑥𝜇, 𝐹𝜇𝜈 will be linear in 

the scale factor .  

The scale factor requirement (see (9) of the following) for field variable to be 

linear in scale factor  

   

𝛿𝜆 ∝ 𝐴𝜇 ⅆ𝑥𝑢    (9) 

is an interesting conclusion because this is same as the Randers’s metric and also 

the same term appears in Eq.(6). 

For the Maxwell equation:  

𝜕𝜇𝐹𝜇𝑣 = −𝐽𝑣 

The formal equation with g to raise and lower index shall be written as  

 

𝜆−2𝑔𝜌𝜈𝜕𝜇(𝜆−1𝑔𝜇𝜃𝐹𝜃𝜌) = −𝜆−3𝐽𝜈 

For the Maxwell equation to be invariant,  

𝜕𝜇(𝜆−1𝑔𝜇𝜃) = 0   (10) 

Is needed.  Using the Eq.(9), Eq.(10) can be rewritten as: 

−𝐴𝜇𝑔𝜇𝜃 + 𝜆𝜕𝜇𝑔𝜇𝜃 = 0 

One of the choices for g is: 

    𝑔𝜇𝜈 = 𝜂𝜇𝜈ⅇ∫
𝐴𝛿
𝜆

ⅆ𝑥𝛿

   (11) 

Which will make Maxwell equation become invariant  

𝑔𝜌𝜈𝑔𝜇𝜃𝜕𝜇𝐹𝜃𝜌 = −𝐽𝜈 



The extra term ⅇ∫
𝐴𝛿
𝜆

ⅆ𝑥𝛿

embedded in the g is interesting because its similarity to 

Eq.(6).  We will come back to this term in another paper of exploring the origin of 

quantum mechanics.  Eq.(11) indicates that maxwell equation is scale invariant in 

the conformal flat space time, the scale factor defined in this present paper is a 

conformal factor.  If the term ∫
𝐴𝛿

𝜆
ⅆ𝑥𝛿 = 𝑖2𝜋𝑛, g is equal to 𝜂𝜇𝜈.  From Eq.(6) 

we see that 𝜆 =   
ℏ𝑐

𝑖𝑒
.   This complex scale factor makes the assumption of 

converting the Fourier Transformation to Laplace Transformation reasonable in 

Quantum Mechanics.  

The other part of Maxwell equation is: 

𝐹𝜇𝜈,𝑝 + 𝐹𝜈𝜌,𝜇 + 𝐹𝜌𝜇,𝜈 = 0   (12) 

Eq.(12) is scale invariant by substitution of 

 𝐹𝜇𝜈 =𝜆 (
𝜕𝐴𝜇

𝜕𝑥𝜈
 -

𝜕𝐴𝜈

𝜕𝑥𝜇
) +𝐴𝜇

𝜕𝜆

𝜕𝑥𝜈
 -

𝜕𝜆

 𝜕𝑥𝜇
𝐴𝜈  

into the above Eq.(12) without assumption of any property of scale factor 𝜆.   

With the choice of Eq.(10), the Maxwell equation is scale invariant for both parts 

of the Maxwell equations.   

 

4. Scale factor of scale invariant quantum mechanics variables and Dirac 

equation 

Eq.(3), the definition of quantum momentum, is not invariant because after the 

scale transformation,  

𝑝𝜇𝜙 = −𝑖ℏ
𝜕𝜙

𝜕𝑥𝜇
 −  𝑖ℏ𝜕𝜇(ln 𝜆)𝜙    (13) 

It makes sense that the momentum in quantum mechanics is not observable 

because −𝑖ℏ𝜕𝜇(ln 𝜆)𝜙 is zero only when 𝜆(𝑥, 𝑝) 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or is a function of 

momentum only. 

If 𝜆 is a function of momentum 𝜆(𝑝) only, then 𝑝𝜇 -- > 𝑝𝜇𝜆−1(𝑝).  The ∫ ⅆ4 𝑝 

becomes ∫ 𝜆−4(𝑝)ⅆ4 𝑝 after the transformation.  In the section 8, we will use this 

re-gauge of the momentum to replace renormalization.   



In consideration of the scale weight of ℏ and 𝜙, Klein-Gordon equation is varied 

as: 

𝑝𝜇𝑝𝜇𝜆𝜙 = 𝑚2𝜆𝜙 = −𝜆ℏ2
𝜕(𝑔𝜇𝜈 𝜕𝜙

𝜕𝑥𝜇)

𝜕𝑥𝜈
 −  𝜆ℏ2

𝜕(𝑔𝜇𝜈𝜕(ln 𝜆)

𝜕𝑥𝜇 𝜙)

𝜕𝑥𝜈
       (14) 

If last term of Eq.(14) is zero, Eq.(14) becomes the standard Klein-Gordon 

equation 

(ℏ2𝜕𝜇𝜕𝜇 + 𝑚2)𝜙  =  0 

Define a vector 
𝜕 ln 𝜆

𝜕𝑥𝜇
 =  Λ𝜇, the Klein-Gordon equation is invariant if the  

𝜕𝜈(𝑔𝜇𝜈𝜙 Λ𝜇) =  0    (15) 

Eq.(15) has a solution of  

𝑔𝜇𝜈  =  𝜂𝜇𝜈𝜙−1   (15.1) 

And      𝜆 =  ⅇΛ𝜇𝑥𝜇
    (15.2) 

where Λ𝜇 is only a function of momentum p.  Eq.(15) will be re-visited in the 

future paper regarding the origin of quantum behavior of particles.  Eq.(15.2) 

indicates if Λ𝜇is a constant vector, then 𝜆 will make the equation (13) become a 

Laplace transformation instead of the Fourier transformation.  

Schrödinger equation,  

𝐸𝜙 =
−ℏ2

2𝑚

𝜕2𝜙

𝜕𝑥2
+ 𝑉𝜙 

is scale invariant if 𝜕𝑖(𝑔𝑖𝑗Λ𝑗) =  0 where i or j =1,2 or 3. Please note that E in 

Schrödinger equation is scale 0 because E is part of the 𝑝𝜇𝑝𝜇. Obviously, E shall be 

observable because the Schrödinger equation is invariant with the right choice of 

scale factor, metric tensor and wave function satisfying  𝜕𝑖(𝑔𝑖𝑗Λ𝑗) =  0.  In the 

relativity theory, the metric tensor is related to measurement of physics 

quantities, scale factor is a re-gauge of the metric tensor, the study of Eq. (15) 

may reveal something interesting regarding the quantum behavior from the 

geometric point of view.  

In the current physics, for both Dirac equation and Schrodinger equation:   



𝑃𝜇 → 𝑃𝜇  + ⅇ𝐴𝜇  

With the hope that the transformation of  

     𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝑙𝑛𝜆                              

will give the same dynamic results.  But as we know that the success of Aharonov 

and D. Bohm experiment (Ref. 8) indicates that 𝐴𝜇 is a dynamic variable in stead 

of a mathematical object.  The scale factor defined in this present paper and the 

gauge factor can be the same as in the quantum mechanics for the wave function.  

But in this paper, other variables are also assigned different weight of scale factor.   

Also, 𝜆 can have other choices besides the gauge theory.  

For Dirac Equation,  

( 𝑖𝛾𝜇𝜕𝜇 − 𝑚 ) 𝜓  = 0   (16) 

If Dirac wave function has the scale weight of +1, the condition for Dirac equation 

to be scale invariant is: 

     ( 𝛾𝜇(𝜕𝜇𝑙𝑛𝜆 )𝜓  = 0   (16.1) 

Put in the Dirac 𝛾-Matrix, the solution for Dirac equation to be invariant, is that 

the scale factor must meet the following conditions: 

(𝜕𝑡𝜆)2 = (𝜕�⃗�𝜆)2 

That means that the scale factor 𝜆 satisfies the zero mass Klein-Gordon equations.  

The boundary conditions in the quantum mechanics equations determine the 

value of  𝑘𝜇.  If 𝜆 is only a function of the momentum, Eq.(16.1) is also 

automatically satisfied.  We see again that the scale factor is a dynamic variable 

describe the behavior of particles in the momentum space.   

 

5. The scale factor for equation of motions 

In the classic equation of motion time is used as a parameter, the classic equation 

of motion will all be invariant under this scale factor transformation because the 

scale factor is the weight of ds, the four-dimension distance.   

The equation of motion for Lorentz force, 



 

𝑚
ⅆ2𝑥𝜇

ⅆ𝜏2
+ 𝐹𝜈

𝜇 ⅆ𝑥𝑣

ⅆ𝜏
= 0     (17) 

After the scale factor for the momentum is introduced, there will be an additional 

term: 

m 
ⅆ2𝑥𝜇

ⅆ𝜏2
+ 𝐹𝜈

𝜇 ⅆ𝑥𝑣

ⅆ𝜏
+ 𝑚

ⅆ ln 𝜆

ⅆ𝜏

ⅆ𝑥𝜇

ⅆ𝜏
= 0  (18) 

By changing ⅆ𝜏 to ⅆ𝜏′, the last term can be re-adsorbed to ⅆ𝜏′ and eq. (18) 

become eq. (17).   The trouble is that If there are different forces, the scale factor 

transformation invariant cannot all meet at the same time.  It is interesting to 

combine the electromagnetic force and gravitational force to study 𝜆 

transformation behavior of the equations of motion.  

 

The equation of motion for general relativity, 

ⅆ2𝑥𝜇

ⅆ𝜏2
+ Γ𝜈𝜌

𝜇 ⅆ𝑥𝑣

ⅆ𝜏

ⅆ𝑥𝜌

ⅆ𝜏
= 0     (19) 

After the scale factor for the momentum is introduced, there will be an additional 

term: 

 
ⅆ2𝑥𝜇

ⅆ𝜏2
+ Γ𝜈𝜌

𝜇 ⅆ𝑥𝑣

ⅆ𝜏

ⅆ𝑥𝜌

ⅆ𝜏
+

ⅆ ln 𝜆

ⅆ𝜏

ⅆ𝑥𝜇

ⅆ𝜏
= 0  (20) 

By changing ⅆ𝜏 to ⅆ𝜏′, the last term can be re-adsorbed to ⅆ𝜏′ and Eq. (20) 

become Eq.(19).  For general relativity, Equation (20) can be written like Equation 

(19) if  

Γ𝜇𝜈
𝛼 ={ 𝛼

𝜇𝜈
} +

1

2
(𝛿𝜇

𝛼Λ𝑣+𝛿𝜈
𝛼Λ𝜇)   (21) 

Where Λ𝑣 =
𝜕 ln 𝜆

𝜕𝑥𝜈
. 

Even though the equation of motion can be invariant under the scale factor 

transformation, the scale factor defined in this paper will have impact on value of 

the physics quantity observed as the scale factor transformed.   We will come 

back to do the analysis of Eq (21) in the Self-Interacting Field theory (SI field 

theory) to be published later by the author.    



 

6. Scale factor for continuity equation 

The continuity equation: 

𝜕𝜇𝐽𝜇 = 0   (22)  

The extra term introduced is  

𝜕𝜇𝐽𝜇 − 3𝐽𝜇Λ𝜇 = 0    (22.1) 

From Eq.(22.1) we see that as long as the gradient of the scale factor is 

perpendicular to the current, the continuity equation is invariant.   If the current 

is proportional to the 4-energy momentum, and the gradient of the scale factor is 

also proportion to the 4-energy momentum, the continuity equation is invariant 

for the 4 energy momentum magnitude is zero, like the zero mass Klein-Gordon 

equations.  

7. The scale factor for angular momentum  

The classic angular momentum  

𝐿𝑖𝑗  = 𝑥𝑖𝑝𝑗 − 𝑥𝑗𝑝𝑖    (23) 

is linear in scale factor if weight +1.  But there is an extra term for quantum 

angular momentum, 

𝐿′
𝑖𝑗  = 𝜆2𝑖ℏ(𝑥𝑖

𝜕𝜙

𝜕𝑥𝑗
− 𝑥𝑗

𝜕𝜙

𝜕𝑥𝑖
 ) + 𝜆𝑖ℏ(𝑥𝑖

𝜕𝜆

𝜕𝑥𝑗
− 𝑥𝑗

𝜕𝜆

𝜕𝑥𝑖
 )𝜙  (23.1)  

After some algebra, in order for the amplitude of the quantum angular 

momentum to be invariant under the scale factor transformation,  

𝜕𝛿(𝑔𝜇𝜈Λ𝜇𝜙) =  0    (23.2)   

and      𝑦𝜇Λ𝜇  = 0    (23.3) 

Eq.(23.2) is similar to Eq. (15).  For quantum angular momentum to be scale factor 

invariant, Eq.(23.3) is needed and Eq.(23.3) indicates that Λ𝜇 is perpendicular to y.  

In Summary, from section 3 to section 7, we see that all physics equations are 

partial derivative of space and time.  If an energy momentum dependent scale 



factor is introduced, all physics equations are invariant under this scale factor 

transformation of which only depends on energy momentum, not on coordinates.  

The current way of introducing the energy momentum dependent scale factor to 

all physics observables is a more natural way to remove infinites and to describe 

the  emitting patterns of virtual particles.   The new quantum physics by 

introducing this scale factor with Planck type of terms may reveal many insights of 

elemental particle properties.    

8. The scale factor of Planck type term to replace the renormalization. 

Following the notation of Francis Halzen and Alan D. Martin in Quarks & Leptons: 

An Introduction Course in Modern Particle Physics (Ref. 9):   

Fig. 1 Electron self-energy 

8.1 The mass correction term  

𝛿𝑚 = (−𝑖ⅇ2) ∫
ⅆ4𝑘

(2𝜋)4
{(𝛾𝜈)

( i𝛾 ∙ (𝑝 − 𝑘) + 𝑚)

−2 𝑝 ∙ 𝑘 + 𝑘2

1

𝑘2
𝛾𝜈}|

𝑖𝛾∙𝑝= −𝑚

 (24) 

 

The 𝑘2 has scale weight of -2 and ⅆ4𝑘 has scale weight of -4, thus the 𝛿𝑚 has the 

scale weight of -2.  But mass has the scale weight of zero.  𝜆2 must be included in 

the integration into the mass correction 𝛿𝑚.  

Note that √𝑔 in the momentum space has zero scale factor weight. The green’s 

function of Dirac equation:  

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝐺𝐹 =  𝛿4(𝑥 − 𝑥′) 

Which indicates that 𝐺𝐹 has the scale factor weight of -4.  Fourier transformation 

of green’s function to momentum space:   

𝐺𝐹(𝑥 − 𝑥′) =
1

(2𝜋)4
∫ 𝑆𝐹(𝑝)ⅇ−𝑖𝑝∙(𝑥−𝑥′) ⅆ4𝑝 



Where  

   𝑆𝐹 =  
1

(𝛾𝜇𝑝𝜇−𝑚)
 

Thus, the momentum space integration has scale factor weight of -4.  

Eq.(24) is divergent in large 𝑘2. Recall that in the blackbody radiation discovery in 

the early 20th century, radiation energy distribution as a function of frequency is 

divergent in ultraviolet frequency.  Planck introduced the quantum behavior of 

radiation frequency in a cavity to bring the Planck term to the frequency 

distribution.  The introduction of the scale factor of Planck type for the 𝛿𝑚 will 

converge the 𝛿𝑚. 

Assume the virtual particle 4-momentum square 𝑘2 has the role of the frequency 

of radiation, the parent particle has the role of cavity while the 4-momentum 

square of the electron 𝑝2 = 𝑚2 as the role of temperature, a Planck term of the 

following pattern can be introduced to the propagator, and then integration over 

the virtual particle four-momentum space ⅆ4𝑘 is no longer divergent for 𝛿𝑚 

propagator  

    𝜆2 =
𝑘4

𝑚4

(𝑒
𝑘2

𝑚2−1)

2      (25) 

Both the electron and virtual photon can be the radiation role of the “Blackbody 

radiation”.   It is clearly that in large k, this Planck type term will convergent the 

𝛿𝑚.  

8.2 The Vacuum Polarization 

In the vacuum, the photon has 4-momentum q can fluctuate into electron-

positron pair which is called the vacuum polarization.  The polarization 

propagator is:  

𝑖I𝜇𝜈(𝑞) = −(−𝑖ⅇ)2 ∫
ⅆ4𝑝

(2𝜋)4

𝑖

(𝑝+𝑞)2+𝑚2+𝑖𝜀

𝑖

𝑝2+𝑚2+𝑖𝜀
 Tr (𝛾𝜇(𝑝  +  q  +  m)𝛾𝜈(𝑝 +  m))                     (26) 



 Fig 2. Vacuum Polarization 

It is clear that this polarization propagator is divergent to the order of p square.  A 

Planck type term is needed in to make the Vacuum polarization convergent.   

I𝜇𝜈(𝑞) is supposed to have zero scale factor weight (see Ref. 9, Page 156), but the 

Eq. (26) has scale factor of -2. 𝜆2 is needed to make I𝜇𝜈(𝑞)  having the correct scale 

weight.  Assume 𝑞2 is like the blackbody temperature parameter T in the cavity, 

the electron-positron pair is like the “blackbody radiation”.  Only one of the 

electron-position pair is the “Blackbody radiation”, the other is the continuation 

of the virtual photon, a Planck type of scale factor of the following type can be 

introduced to the propagator: 

𝜆2 =

(𝑝2+𝑚2)
2

𝑞4

(𝑒

𝑝2+𝑚2

𝑞2
−1)

2                              (27) 

Due to the integration, choose one of the electron-positron 4-momentum as the 

numeration will not change the integration results.  This scale factor 𝜆2 goes to 

zero when 𝑞2 goes to zero comparing with electron mass even 𝑝2 is zero or large.  

Even when 𝑞2 is large, the integration over 𝑝2 is still finite because Eq.(27) will 

converge due to the denominator will become zero at infinite of 𝑝2.  Detailed 

calculations of the Vacuum polarization can be very interesting.  There are also 

other choices of 𝜆2 which will reflect the internal property of virtual photons.  If 

photon is on the zero-mass shield (𝑞2= 0), 𝜆2 is zero, the propagator integration is 

zero.  This analysis indicates that the real photon, will not cause the vacuum 

polarization.  

8.3 The vertex correction term: 



                                           Fig 3. Vertex correction  

Λ𝜇(𝑝, 𝑝′) = (−ⅇ)2 ∫
ⅆ4𝑘

(2𝜋)4
{(𝛾𝜈)

( −i𝛾∙(𝑝−𝑘)+𝑚)

−2 𝑝∙𝑘+𝑘2

𝛾𝜇

𝑘2

( −i𝛾∙(𝑝′−𝑘)+𝑚)

−2 𝑝′∙𝑘+𝑘2
𝛾𝜈}|

𝑝2=𝑝′2
=−𝑚2

 (28) 

 

The vertex correction term has scale factor of -1.  But the vertex correction is 

 𝛾𝜇 ⟶ 𝛾𝜇 + Λ𝜇 

That means Λ𝜇 needs to be scale factor weight +1.  Thus, 𝜆2 must be included in 

the integration to make Λ𝜇 to have equal scale factor weight of 𝛾𝜇.  

Eq.(28) is divergent at both large and small value of 𝑘2.  In this vertex correction, 

the electron can emit the virtual photon with momentum k, like the Eq.(24), and 

the virtual photon can adsorb the electron and become another electron, like the 

Eq.(27) of the vacuum polarization.  The choice of the scale factor can be as 

following (the combination of the vacuum polarization and electron-self energy): 

              𝜆2 =
𝑘2

𝑚2

𝑒
𝑘2

𝑚2−1

𝑝′2

𝑘2

𝑒
𝑝′2

𝑘2 −1

 =
1

(2−𝑒
𝑘2

𝑚2−𝑒
𝑚2

𝑘2 )

   (29) 

The beauty of the Planck type term Eq.(29) is that when k is small, the ⅇ
𝑚2

𝑘2  in the 

denominator will become infinite while ⅇ
𝑘2

𝑚2  is close to 1, when k is large, the ⅇ
𝑘2

𝑚2 

in the denominator will become infinite, while  ⅇ
𝑚2

𝑘2  becomes 1.  The is scale factor  

𝜆2 will make the vertex correction term converge for either small k or large k.  

Since Eq.(25), Eq(27) and Eq(29) are all independent of x, the coordinate, all the 

above mentioned scale factor transformation invariant condition is satisfied.  This 



is the reason the author think that the scale factor is a dynamic variable instead of 

coordinate variable.  It only limits the behavior of the dynamics.  

The Planck type term Eq.(25), Eq(27) and Eq(29) will allow the study of all the 

Feynman diagram corrections to the mass and electric charge possible.   By 

studying the behavior of virtual particles, it will be able to reveal the inside 

structure of the elemental particles.  

 

9. Discussion on quantum mechanics with Laplace Transformation 

The scale factor invariant has three kinds of solutions:   

The first group of solutions:  𝜆 is a constant and can be normalized to 1.  This is 

what the current physics assumes.  

The second group of solutions: First order derivative of  𝜆 with respect to 𝑥𝜇 is 

zero, or 𝜆 = 𝜆(𝑝).  This solution is interesting because it may reveal the re-gauge 

of momentum for the dynamic system.  This solution of 𝜆 can be used to remove 

the infinites in QED, QCD and quantum gravitation and to study the sub-structure 

of elemental particles including virtual photon.   

The third group of solutions: Different combination of derivations of 𝜆 with metric 

tensor 𝑔𝜇𝜈 or 𝛾𝜇 or other physics variables.  Since metric tensor is unique in 

general relativity, we will come back to this topic in a later paper. These different 

solutions can be applied to different field of physics to see the implications of the 

scale invariant transformation.   

Recall that the Lorentz transformation and its invariance of physics laws lead to 

the special relativity and covariance of physics laws.  It puts time and space into a 

coherent and equal footing.  The Lorentz transformation put physics law into 

more elegant format.  Another transformation is the gauge transformation of the 

wave function in quantum mechanics.  It links the quantum mechanics to the 

electromagnetism by requiring the wave function to be phase invariant under the 

gauge transformation.  

When Weyl introduces the gauge transformation of metric tensor, his purpose is 

to bring the electromagnetic field to the Einstein’s field equations. Weyl’s metric 

tensor transformation was before the gauge transformation of wave function.    



The scale factor transformation defined in this paper is the extension and re-

definition of Weyl transformation to all physics equations.  Lorentz 

transformation and Gauge transformation are space time invariant.  This second 

group solutions of scale factor invariant put the limit on the “radiation” 

distribution (virtual particles) which may reflect the sub-structure of the dynamics 

of the “Cavity” (elemental particles).  

The quantum mechanics operator is from the definition: 

   𝑝𝜇𝜙 = −𝑖ℏ
𝜕𝜙

𝜕𝑥𝜇
 

If the scale transformation is introduced, and it is only a function of momentum,  

   𝑝𝜇𝜙 = −𝑖ℏ0𝜆(𝑝)
𝜕𝜙

𝜕𝑥𝜇
    (30) 

Where ℏ0 is the Planck Constant.  The wave function can be found through a re-

gauged momentum space Fourier Transformation or Laplace transformation. 

If  

1

𝜆(𝑝)
= 1 − 𝑖ℏ0𝑓(𝑝),     (31) 

wave function of Eq.(30) can be write as: 

𝜙 = ⅇ
𝑖

ℏ0
(𝑝𝜇𝑥𝜇+𝑓(𝑝)𝑝𝜇𝑥𝜇)

= ⅇ
𝑖

ℏ0
(𝑝𝜇𝑥𝜇)+𝜎𝜇𝑥𝜇

 

which is Laplace transformation with 𝑠𝜇 =  
𝑖

ℏ0
𝑝𝜇 + 𝑓(𝑝)𝑝𝜇 =

𝑖

ℏ0
𝑝𝜇 + 𝜎𝜇 .  

From last a few sections’ analysis, the physics variables can be re-gauged by a 

scale factor in momentum space during the Fourier transformation so that 
𝜕 ln 𝜆

𝜕𝑥𝜈
  = 

0.  The scale factor invariant in physics leads to the conclusion that all variables is 

limited in momentum space.  Quantum mechanics shall be studied under Laplace 

transformation.  The value or magnitude of 𝑠𝜇 describes the momentum 

distribution of the emitting virtual particles.   

The final form of scale factor needs to be determined by experiments.  For the 

electron self-energy and vacuum polarization, the scale factor can also take the 

format like the Eq.(29) for the emission and adsorption with the different 𝜆(𝑝) 

and 𝜆′(𝑝).  In the Vertex Correction, the adsorption of the virtual photon can be 



by different electrons.  Due to the space time scale may be different for virtual 

particles from the inverse Laplace Transformation, there may be many different 

energy-momentum virtual particles are being transferred in our space-time scale: 

Given the Laplace transform X(s) , the original space-time can be obtained by the 

inverse Laplace transform, which can be derived from the corresponding Fourier 

transformation with a new scale of space-time. We first express the Laplace 

transform as a Fourier transform: 

𝐿[𝑓(𝑥𝜇)] = 𝑋(𝑠) = 𝑋(
𝑖

ℏ0
𝑝

𝜇
+ 𝜎𝜇) 

= ∫ 𝑓(𝑥𝜇)
∞

−∞
ⅇ

𝑖

ℏ0
(𝑝𝜇𝑥𝜇)+𝜎𝜇𝑥𝜇

ⅆ4𝑥𝜇 = 𝐹(𝑓(𝑥𝜇)ⅇ𝜎𝜇𝑥𝜇
)         (31) 

 

If 𝑓(𝑥𝜇) =  𝑥𝜇, the space time is regauged by a factor of ⅇ𝜎𝜇𝑥𝜇
.  If ⅇ𝜎𝜇𝑥𝜇

 is small, like 
10-5, the time will be much smaller than our time.  The virtual particles can be 
travelling in a re-Gauged space time like in the Figure 4 which two or many more 
equal virtual photons are exchanged but travelling in a much smaller time scale.  Is 
this the quantum entanglement state?  We will discuss this in another paper: The 
Origin of Quantum Mechanics and the sub-structure of elemental particles.   
 

  
Instead of inventing many schemes to avoid infinites in the perturbation theory of 

QED and QCD, physicist shall focus on finding the experimental data to compare 

with the Laplace transformation in order to determine the 𝑠𝜇.  By studying the 

scale factor in the momentum space (or 𝑠𝜇 of the Laplace transformation), the 

virtual particle emitting behaviors will be revealed which shall in turn indicates 

the internal structure of the elemental particles.  In the future paper regarding 



the origin of quantum mechanics, the virtual particle behavior will be studies to 

derive the quantum assumptions.  

The scale factor invariant of physics can also be defined as different constants (or 

the global scale) of the physics law.  Dirac’s large number principle connects the 

distance scale of the universe to the scale of the nuclei, the time scale of the 

universe to the time scale of strong interaction.  In the continuation of the CCSI 

field theory and the origin of quantum mechanics theory, the scale factor will be 

re-visited through the different physics constants.  
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