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Abstract. This paper discusses the distribution of the non-trivial zeros of the Riemann zeta 

function ζ. It looks into the question of whether any non-trivial zeros would ever possibly be 

found off the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, 

e.g., at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., and why all the non-trivial zeros are always found at 

the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 and not 

anywhere else on this critical strip, with the first 1013 non-trivial zeros having been found 

only at the critical line Re(s) = 1/2. It should be noted that a conjecture, or, hypothesis could 

possibly be proved by comparing it with a theorem that has been proven, which is one of the 

several deductions utilized in this paper. Through these several deductions presented, the  

paper shows how the Riemann hypothesis may be approached to arrive at a solution. In the 

paper, instead of merely using estimates of integrals and sums (which are imprecise and may 

therefore be of little or no reliability) in the support of arguments, where feasible actual 

computations and precise numerical facts are used to support arguments, for precision, for 

more sharpness in the arguments, and for “checkability” or ascertaining of the conclusions. 

This paper is the revised and expanded version of a paper [5] published in 2022. 
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Introduction 

 

The Riemann hypothesis is an important mathematical problem as its validity would affirm 

the manner of distribution of the prime numbers. The hypothesis asserts that all the non-

trivial zeros of the zeta function ζ lie on the critical strip between Re(s) = 0 and Re(s) = 1 at 

the critical line Re(s) = 1/2 only. The moot point is whether there would be zeros appearing at 

other locations on this critical strip, e.g., at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., which would 

disprove the hypothesis. All this would be looked into in this paper.  

 

Shown below is the Riemann zeta function ζ with its terms:- 

 

                                   ∞  

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                  (1.1) 
                                                      n = 1 

 

where s is the complex number 1/2 + bi 

 

For the term 1/21/2 + bi above, e.g., whether it would be positive or negative in value would 

depend on which part of the complex plane this term 1/21/2 + bi would be found in, which 

depends on 2 (n) and b (it does not depend on 1/2 - 1/2 and 2 (n) only determine how far the 

term is from zero in the complex plane). This term could be in the positive half of the  
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complex plane whereby the term would have a positive value or the negative half of the 

complex plane whereby the term would have a negative value. Therefore some of the terms in 

the Riemann zeta function ζ would have positive values while the rest would have negative 

values (which depend on the values of n and b). The sum of the series in the Riemann zeta 

function ζ is found with a formula, e.g., the Riemann-Siegel formula, or, the Euler-Maclaurin 

summation formula. The Riemann zeta function ζ would turn out a non-trivial zero at the 

critical line Re(s) = 1/2, as more and more terms are added, when it reaches a point at the 

critical line Re(s) = 1/2 where the positive terms (in the positive half of the complex plane, as 

explained above) cancel out the negative terms (in the negative half of the complex plane), 

i.e., a non-trivial zero indicates the point in the Riemann zeta function ζ whereby the total 

value of the positive terms equals the total value of the negative terms. There would be an 

infinitude of such non-trivial zeros at the critical line Re(s) = 1/2, which had been proved by 

G. H. Hardy. Whether there would be zeros off this critical line Re(s) = 1/2 on the critical 

strip bounded by Re(s) = 0 and Re(s) = 1 as more and more terms are added to the Riemann 

zeta function ζ is still an open question, which Riemann himself had thought highly unlikely 

though he had not been able to provide a proof.  

       

Riemann evidently anticipated that there would be an equal, or, almost equal number of 

primes among the terms in the positive half and the negative half of the complex plane when 

there is a zero, whereby the distribution of the primes would be statistically fair - the more 

terms are added to the Riemann zeta function ζ, the fairer or “more equal” would be the 

distribution of the primes in the positive half and the negative half of the complex plane when 

there is a zero. This is like the tossing of a coin whereby the more tosses there are the “more 

equal” would be the number of heads and the number of tails. In other words, in the longer 

term, with more and more terms added to the Riemann zeta function ζ, more or less 50% of 

the primes should be found in the positive half of the complex plane and the balance 50% 

should be found in the negative half of the complex plane, the more terms there are the fairer 

or “more equal” would be this distribution, when there is a zero, when the positive terms 

cancel out the negative terms in the Riemann zeta function ζ.   

       

It is evident that through the non-trivial zeros the order or pattern of the distribution of the 

primes could be discerned. [1-6]    

 

Proof of Riemann Hypothesis  

 

We bring up some notable points about the non-trivial zeros of the Riemann zeta function ζ(s) 

defined by a power series shown below:- 

 
                                                  ∞ 

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                       

                                                n = 1 

 

At the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 all the 

non-trivial zeros would be found on an oscillatory sine-like wave which oscillates in spirals, 

there being an infinitude of these spirals, which represent the complex plane. All the 

properties of the prime counting function π(n) are in some way encoded in the properties of 

the Riemann zeta function ζ, evidently resulting in the primes and the non-trivial zeros being 

some sort of mirror images of one another - the regularity in the way the primes progressively 
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thin out and the progressively better approximation of the quantity of primes towards infinity 

by the prime counting function π(n), as is described by the following equation:-  

 

lim  π(n)/(n/log n) = 1                  (2.1)            

                                           n→∞ 

 

(The prime number theorem states that the limit of the quotient of the 2 functions π(n) and 

n/log n as n approaches infinity is 1, the larger the number n is, the better is the 

approximation of the quantity of primes by the prime counting function π(n), as is implied by 

Equation (2.1) above; all this is in spite of the fact that the primes are scarcer and scarcer as n 

is larger and larger.), 

 

mirror or reflect the regularity in the way the non-trivial zeros of the Riemann zeta function ζ 

line up at the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, the 

non-trivial zeros becoming progressively closer together there, with no zeros appearing 

anywhere else on the critical strip, and, all this has been found to be true for the first 1013 

non-trivial zeros.  

 

Riemann had posited that the margin of error in the estimate of the quantity of primes less than 

a given number with the prime counting function π(n) could be eliminated by utilizing the 

following J function which is a step function involving the non-trivial zeros expressed in terms 

of the zeta function ζ, which has been shown to be effective (2 steps are involved here - first, 

the prime counting function π(n) is expressed in terms of the J(n) function, then the J(n) 

function is expressed in terms of the zeta function ζ, with the J(n) function forming the link 

between the counting of the prime counting function π(n) and the measuring (involving 

analysis and calculus) of the zeta function ζ, which would result in the properties of the prime 

counting function π(n) somehow encoded in the properties of the zeta function ζ):- 
 
                                                                                                       ∞ 

J(n) = Li(n) - ∑ Li(np) - log 2 + ∫ dt/(t(t2 - 1) log t)                (2.2)                  
                                                                          p                                         n 

 

where the first term Li(n) is generally referred to as the “principal term” and the second term 

∑ Li(np) had been called the “periodic terms” by Riemann, Li being the logarithmic integral 
 p 

 

The above formula might look fearsome but is actually not. The third term log 2 is a number  
                                                                                      ∞ 
which is 0.69314718055994… while the fourth term ∫ dt/(t(t2 - 1) log t) which is an integral  

                                                                                      n 

representing the area under the curve of a certain function from the argument all the way out to 

infinity can only have a maximum value of 0.1400101011432869…. Since these 2 terms taken 

together (and minding the signs) are limited to the range from -0.6931… to -0.5531…, and 

since the prime counting function π(n) deals with really large quantities up to millions and 

trillions they are much inconsequential and could be safely ignored. The first term or principal 

term Li(n), where n is a real number, should also be not much of a problem as its value could be 

obtained from a book of mathematical tables or computed by some math software package such 

as Mathematica or Maple. However, special attention should be given to the second term  

∑ Li(np)  which concerns the sum of the non-trivial zeros of the zeta function ζ (p in this second     

 p 
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term is a “rho”, which is the seventeenth letter of the Greek alphabet, and it means “root” - a 

root is a non-trivial zero of the Riemann zeta function ζ (a root is technically speaking a 

solution or value of an unknown of an equation that could be factorized)). Riemann had 

evidently called the second term “periodic terms” as the components there vary irregularly. 

                                                                                                                     n  

The prime number theorem asserts that π(n) ~ Li(n) (technically Li(n) = ∫  dx/log (x)) which also                                                

                                                                                                                     2  

implies the weaker result that π(n) ~ n/log n. However, with Li(n) the prime count estimate 

would have a margin of error. The Riemann hypothesis asserts that the difference between the 

true number of primes p(n) and the estimated number of primes q(n) would be not much larger 

than √n. With the above J(n) function we could eliminate this margin of error and obtain an 

exact estimate of the quantity of primes less than a given number as follows:- 

 

J(n) = exact quantity of primes less than a given number 

 

Since the third and fourth terms of the J(n) function are inconsequential and could be safely 

ignored, as is described above, deducting the second term from the first term should be 

sufficient, as is shown below:- 

 

J(n) = Li(n) - ∑ Li(np) = exact quantity of primes less than a given number 
                                                              p                   

 

The above in brief shows the close connection between the primes and the non-trivial zeros of 

the Riemann zeta function ζ, the primes and the non-trivial zeros being some sort of mirror 

images of one another as is described above, with the distribution of the non-trivial zeros being 

regarded as the music of the primes by mathematicians.                                                 

 

An important point to note is that though the non-trivial zeros at the critical line Re(s) = 1/2 

become more and more closely packed together the farther along we move up this critical line 

while the primes occur farther and farther along the number line, the density of the one is 

approximately the reciprocal of the density of the other whereby the complementariness, 

regularity, symmetry is evident, this regularity of the distribution of the non-trivial zeros 

mirroring the regularity of the distribution of the primes.  

 

Thus the regularity in the way the primes progressively thin out and the progressively better 

approximation of the quantity of primes towards infinity by the prime counting function π(n) 

as is described by Equation (2.1) above and stipulated by the prime number theorem, which 

all implies the regularity of the distribution of the primes, also somehow implies the 

regularity of the distribution of the non-trivial zeros of the Riemann zeta function ζ (the non-

trivial zeros are found only at the critical line Re(s) = 1/2, lined up there in an orderly manner, 

as is described above) which is in accordance with the Riemann hypothesis, since the 

properties of the prime counting function π(n) are in some way encoded in the properties of 

the Riemann zeta function ζ, with the distribution of the primes (which shows regularity) and 

the distribution of the non-trivial zeros (which also shows regularity) mirroring one another, 

as is explained above. Refer to Appendix 1 below to see further this close connection 

between the primes and the Riemann zeta function ζ whereby it is shown in the appendix that 

the Riemann zeta function ζ has the property of prime sieving encoded within it (compare: 

sieve of Eratosthenes), which further supports the reasoning here. The input of a function 

determines its output. The input of the Riemann zeta function ζ are the terms in its series 

while its output are the non-trivial zeros, and, these terms would determine the status of the 
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non-trivial zeros, e.g., whether the non-trivial zeros would be found or would not be found 

after the terms are added together and whether the non-trivial zeros would be orderly or 

disorderly if found. In the case here, the regularity of the distribution of the primes at the 

terms which also have the property of prime sieving encoded within as is explained above 

and in Appendix 1 below, on the input side of the zeta function ζ evidently leads to the 

regularity of the distribution of the non-trivial zeros at the critical line Re(s) = 1/2 only on its 

output side (i.e., the non-trivial zeros are found grouped in an orderly manner on the output 

side only when the terms on the input side of the zeta function ζ have the power a + bi (which 

is a complex number) with a (the real axis) = 1/2), as is described above. 

 

We proceed to consider whether the Riemann hypothesis could be false. Let us here assume 

that the Riemann hypothesis is false. If the Riemann hypothesis is false, there would be non-

trivial zeros appearing at other locations on the critical strip bounded by Re(s) = 0 and Re(s) 

= 1, e.g., at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., i.e., the distribution of the non-trivial zeros would 

be irregular, which would contradict the reasoning above, and also would imply that the 

distribution of the primes would also be irregular (since the primes and the non-trivial zeros 

are mirror images of each other, having similar “distribution” characteristics, as is explained 

above), which means that the prime number theorem described above, whose effectiveness is 

evidently due to the regularity and orderliness of the distribution of the primes, as is 

described above (wherein it is stated that there is regularity in the way the primes 

progressively thin out), would hence be false. But this would be an absurdity as the prime 

number theorem had been proved through non-elementary methods by Hadamard and de la 

Vallee Poussin who had in 1896 independently proved that none of the non-trivial zeros lie 

on the very edge of the critical strip on the lines Re(s) = 0 or Re(s) = 1, which was enough for 

deducing the prime number theorem; the prime number theorem had also been proved later 

by Erdos and Selberg using elementary methods. Therefore, since the assumption of the 

falsity of the Riemann hypothesis would lead to the absurdity that the prime number theorem 

is false, the Riemann hypothesis cannot be false, and, since it cannot be false it has to be true. 

The reasoning here is reasoning by contradiction or reductio ad absurdum which is 

commonly used in mathematics. 

 

Furthermore, Riemann’s J(n) function with its error term as is described above has been 

found to be able to estimate the quantity of primes less than a given number with accuracy; 

this somehow implies that the non-trivial zeros, many thousands of which are used to 

compute the error term ∑ Li(np) (with thousands of zeros with positive values (in the positive 

                                                    p                                                                                                       

half of the complex plane) cancelling out thousands of zeros with negative values (in the 

negative half of the complex plane) when added together, the difference between these 

positive values and these negative values after adding together being the quantity in the error 

term, which is deducted from Li(n) the principal term to give the exact quantity of primes less 

than a given number), are orderly and well-behaved as per the Riemann hypothesis, for if the 

non-trivial zeros were disorderly and poorly behaved the J(n) function would in all 

probability not be able to estimate the quantity of primes less than a given number with 

accuracy - this could be regarded as further though perhaps subtle proof that the Riemann 

hypothesis is true. [6] 

 

All of this somehow implies the truth of the Riemann hypothesis with the first 1013 non-

trivial zeros all nicely, neatly and orderly lined up at the critical line Re(s) = 1/2 exactly mid-

way on the critical strip between Re(s) = 0 and Re(s) = 1.  
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So far the role of the non-trivial zeros of the Riemann zeta function ζ and the close 

connection between the primes and the Riemann zeta function ζ and how this is in some way 

responsible for the regularity of the distribution of the non-trivial zeros on the critical strip 

bounded by Re(s) = 0 and Re(s) = 1 have been explained, with some other deductions about 

the distribution of the non-trivial zeros having been presented as well. Next would be the 

explanation of the actual reason why all the non-trivial zeros of the Riemann zeta function ζ 

would lie on the critical strip between Re(s) = 0 and Re(s) = 1 at the critical line Re(s) = 1/2 

only. 

 

The locations of these non-trivial zeros on the critical strip are described by a complex 

number s = 1/2 + bi where the real part is 1/2 and i stands for the square root of -1. It should 

be noted that the mathematical operations and logic of the complex numbers a + bi, where a 

and b are real numbers and i is the imaginary number square root of -1, are practically the 

same as for the real numbers and are even more versatile. For the Riemann zeta function ζ to 

be zero, its series would have to have both the positive terms and negative terms cancelling 

each other out, though the positive or “+” signs in the series may indicate positive values only 

which is misleading. We would here consider the possibility of any non-trivial zeros being 

off the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., at 

Re(s) = 1/4, 1/3, 3/4, 4/5, etc. 

 

It had been proven that there would not be zeros at Re(s) = 0 and Re(s) = 1. As is stated 

above, the first 1013 non-trivial zeros are found only at the critical line Re(s) = 1/2. Nature 

appears to demand that these zeros must appear only at Re(s) = 1/2, exactly mid-way on the 

critical strip bounded by Re(s) = 0 and Re(s) = 1 whereby the symmetry is perfect. “1/2” in 

the complex number 1/2 + bi, which is “square root”, also appears to be compatible with and 

work fine with “i”, which is “square root of -1” - both of them are square roots. 1/2 + bi has 

what is called a complex conjugate 1/2 - bi so that when 1/2 + bi and 1/2 - bi are added 

together the terms bi in both 1/2 + bi and 1/2 - bi would cancel out one another leaving 

behind their respective real parts only - in this way the troublesome i which does not actually 

make mathematical sense would be exterminated. 1/2 is also the reciprocal of the smallest 

prime and the smallest even number 2, which is significant.  

 

The following list of the first 10 terms of the series of the Riemann zeta function ζ with 

consecutive fractional powers s ≤ 1/2 shows that the sums with smaller powers increase 

progressively, i.e., the smaller the power s is the larger the percentage of increase in the 

quantity is:- 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + 1/61/2 + 1/71/2 + 1/81/2 + 1/91/2 + 1/101/2 + … =  

      5.03 

      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 

        

[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + 1/61/3 + 1/71/3 + 1/81/3 + 1/91/3 + 1/101/3 + … =  

      6.20  

      (The sum 6.20 here represents an increase of 23.26% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/3 is 33.33%.)   

              

[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + 1/61/4 + 1/71/4 + 1/81/4 + 1/91/4 + 1/101/4 + … =  

      6.97 

      (The sum 6.97 here represents an increase of 38.57% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/4 is 50%.)   
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[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + 1/61/5 + 1/71/5 + 1/81/5 + 1/91/5 + 1/101/5 + … =  

      7.46 

      (The sum 7.46 here represents an increase of 48.31% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/5 is 60%.)  

. 

. 

. 

 

Note: Though the respective percentages of increase in quantity above, namely, 23.26%,  

          38.57% & 48.31%, are disproportionate with and lower than the respective percentages  

          of decrease in power, namely, 33.33%, 50% & 60%, at a later stage when there are  

          more and more terms in the series, there being an infinitude of terms, when the sums  

          get larger and larger, the percentages of increase in quantity would all be infinitely  

          higher than the percentages of decrease in power, as is evident from Table 1 below.  

          The same would apply for the quantities when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6,  

          etc., as could be extrapolated from the above list (and is evident from Appendix 3  

          below). 

 

(The series of the Riemann zeta function ζ with powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., 

would have sums which are all smaller than the sums shown in the above list for powers s ≤ 

1/2  as could be extrapolated from the above list. For the largest power on the critical strip s = 

1, which has no zeros, the sum of the first 10 terms is a mere 2.93. Refer to Appendix 2 

below for an analogous example.) 

 

It is evident from all the above that when the sum of the series in the Riemann zeta function ζ 

increases too quickly as is the case when the powers s < 1/2, when disproportionateness 

between the increases and decreases in the respective quantities and powers sets in as is 

described above, or, too slowly as is the case when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, 

etc., as could be extrapolated from the above list, the equilibrium, balance or regularity would 

be lost and there would not be zeros. (Refer to Appendix 2 below for an analogous example.) 

All the non-trivial zeros of the Riemann zeta function ζ would be at the optimum or 

equilibrium power s = 1/2 only. (The analogue of this optimum or equilibrium power could 

be that of a shirt or pants which exactly fits a person, e.g., size A could be too small for the 

person, size C too large, while size B fits just fine.) At least 1013 zeros have been found at s = 

1/2 while none has been found for s < 1/2 and s > 1/2. Also, there is the easier solubility of 

equations with fractional powers s = 1/2 as compared to equations with fractional powers s < 

1/2, e.g., s = 1/3, 1/4, 1/5, etc., and s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., which is explained 

below:- 

 

s = 1/2 is the largest root among the roots with 1 as the numerator. As such s = 1/2 as a 

fractional power with 1 as the numerator gives the largest result as compared to the fractional 

powers with 1 as the numerator s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc. (but this largest result 

brings the smallest increase in quantity as compared to the results of the fractional powers 

with 1 as the numerator s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., when divided by 1, e.g., 1/21/2 < 

1/21/3 < 1/21/4 < 1/21/5, etc. - this is an important similarity to the case for n = 2 for Fermat’s 

last theorem described in Appendix 4 below) - equations with fractional powers s = 1/2 would 

evidently be easier to solve than equations with fractional powers s < 1/2 (e.g., in a 

computation s = 1/2 needs only 1 rooting step while s = 1/5 needs 4 rooting steps) and s > 1/2, 
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e.g., s = 2/3, 3/4, 4/5, etc. (e.g., in a computation s = 1/2 needs only 1 rooting step, while s = 

4/5 needs 7 steps - 3 squaring steps for s = 4 & 4 rooting steps for s = 1/5). 

 

All of this is similar to the case for Fermat’s last theorem, which had been proved by Andrew 

Wiles. (Refer to Appendix 4 below for explanation on Fermat’s last theorem to see this  

important similarity with Fermat’s last theorem - it could be seen that the Riemann 

hypothesis is analogous to Fermat’s last theorem which means what is true for Fermat’s last 

theorem would also be true for the Riemann hypothesis.) 

       

We bring up an important point here. If more and more terms are added to the series in the 

list of the sums of the Riemann zeta function ζ above where the consecutive fractional powers 

s ≤ 1/2, which presently have 10 terms each, the differences in the sums between that for 

power s = 1/2 and that for powers s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., and, that for power s = 

1/2 and that for powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., would be greater and greater, i.e., 

the differences between these sums would be more pronounced the more terms are added to 

the series. We could see this point by comparing, e.g., the sums of the first 5 terms of the 

Riemann zeta function ζ for consecutive fractional powers s ≤ 1/2 and the sums of the first 10 

terms of the Riemann zeta function ζ for consecutive fractional powers s ≤ 1/2, which is as 

follows, and extrapolating from there:- 

 

For the comparison, we here compute the sums for the first 5 terms of the series of the 

Riemann zeta function ζ with consecutive fractional powers s ≤ 1/2 as follows, after which 

the results of this computation are incorporated in Table 1 (shown in bold) below: 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 

      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 

              

[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + … = 3.69  

      (The sum 3.69 here represents an increase of 13.89% (the increase here is 23.26% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.)                                                 

       

[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + … = 3.98 

      (The sum 3.98 here represents an increase of 22.84% (the increase here is 38.57% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 

       

[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + … = 4.15  

      (The sum 4.15 here represents an increase of 28.09% (the increase here is 48.31% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 

. 

. 

. 

 

Table 1 below of the above-mentioned percentage increases for the sums for the first 2 

terms to the first 10 terms for ζ(1/3), ζ(1/4) & ζ(1/5) would give a clearer picture:- 

 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    1st. 7 Terms    1st. 8 Terms    1st. 9 Terms    1st. 10 Terms    1st. 11 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                 -                 -                -                  -                  -    
 

[2] ζ(1/3)               4.68%        8.30%       11.47%      13.89%     16.16%      18.11%      20.09%     21.87%      23.26%      To Be Extrapolated  

 

[3] ζ(1/4)               7.60%       13.54%      18.28%      22.84%     26.30%      29.78%      32.88%     35.88%      38.57%      To Be Extrapolated 

 

[4] ζ(1/5)               9.36%       16.59%      22.94%      28.09%     32.88%      37.22%      41.32%      45.01%     48.31%      To Be Extrapolated  
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. 

. 

. 

 

It is evident that the percentage increases shown above would go up in value continuously to 

infinity with the infinitude of the terms of the Riemann zeta function ζ. All this indicates 

more and more bad news for the solubility of the Riemann zeta function ζ for powers s < 1/2, 

and, s > 1/2 (as could be extrapolated from the above; refer to Appendix 2 and Appendix 3 

(which provides an example) below) when there are more and more terms in the Riemann 

zeta function ζ, i.e., for powers s < 1/2 and s > 1/2, the more terms there are in the Riemann 

zeta function ζ the less soluble it would be. This is a serious irregularity and is the reason why 

there are no zeros for the Riemann zeta function ζ for powers s < 1/2 and s > 1/2. 

       

For the Riemann zeta function ζ, s = 1/2 is evidently the optimum or equilibrium power 

whereby there would be zeros. No zeros would be found on the critical strip bounded by Re(s) 

= 0 and Re(s) = 1 for s < 1/2 and s > 1/2 because if s < 1/2 the sum of the series in the zeta 

function ζ increases too fast when more and more terms are added to the series and if s > 1/2 

the sum of the series in the zeta function ζ increases too slowly when more and more terms 

are added to the series; s = 1/2 is evidently optimum, just fits - evidently the only power 

which is conducive for the production of zeros, i.e., solutions for the Riemann zeta function ζ 

- all of this is similar to the case for Fermat’s last theorem which is explained in Appendix 4 

below, as is stated earlier. We clarify here what solubility of an equation such as the Riemann 

zeta function ζ means - a non-trivial zero of the Riemann zeta function ζ is a root - a root here 

is a solution or value of an unknown of an equation which could be factorized.           

       

We here elaborate more on the apparently subtle points in the above paragraph which might 

be difficult to comprehend. To comprehend the point that if s < 1/2 the sum of the series in 

the Riemann zeta function ζ increases too fast when more and more terms are added to the 

series we need to make a close study of and understand Table 1 above referring also to the 

computations above this table, and, to comprehend the point that if s > 1/2 the sum of the 

series in the Riemann zeta function ζ increases too slowly when more and more terms are 

added to the series we need to study closely and understand Table 2 in Appendix 3 below 

referring also to the computations above this table. A careful study of Table 1 above would 

reveal that for s < 1/2 all the sums for these series, e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would 

diverge more and more from the sum for s = 1/2 when more and more terms are added to all 

these series including s = 1/2. As evidently only the series for s = 1/2 are conducive for the 

production of zeros, what this implies is that as more and more terms are added to the series 

for s < 1/2 such as s = 1/3, 1/4, 1/5 and 1/6, it would be less and less likely for these series to 

be able to produce zeros (i.e., these series would be less and less soluble) due to the rate of 

increase of their sums (relative to the sum for s = 1/2) becoming greater and greater (in fact 

too greatly) with more and more terms added to these series including s = 1/2. Likewise, a 

careful study of Table 2 in Appendix 3 below would also reveal that for s > 1/2 all the sums 

for these series, e.g., for s = 2/3, 3/4, 4/5, 5/6, etc., would diverge more and more from the 

sum for s = 1/2 when more and more terms are added to all these series including s = 1/2. 

Since evidently only the series for s = 1/2 are conducive for the production of zeros, what this 

also implies is that as more and more terms are added to the series for s > 1/2 such as s = 2/3, 

3/4, 4/5 and 5/6, it would be less and less likely for these series to be able to produce zeros 

(i.e., these series would be less and less soluble) due to the rate of decrease of their sums 

(relative to the sum for s = 1/2) becoming greater and greater (in fact too greatly) with more 

and more terms added to these series including s = 1/2. In other words, for the Riemann zeta 

function ζ for powers s < 1/2 and s > 1/2, the more terms there are in the Riemann zeta 
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function ζ the less soluble it would be, which is a serious irregularity. Extrapolating from 

Table 1 and Table 2 it is evident that the non-trivial zeros would not be found on the critical 

strip bounded by Re(s) = 0 and Re(s) = 1 for s < 1/2 and s > 1/2. 

       

There is the feeling that for s < 1/2 and s > 1/2 the Riemann zeta function ζ might yield some 

non-trivial zero or zeros after innumerable terms, e.g., after many billions, trillions or more 

terms, have been added to the series, as past experience has shown this could happen. 

However, extrapolations with Table 1 above and Table 2 in Appendix 3 below would show 

that this is not possible. It may happen only when the following occur: (a) For s < 1/2 all the 

sums for these series, e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would diverge less and less (instead 

of more and more), even gradually so, from the sum for s = 1/2 when more and more terms 

are added to all these series including s = 1/2. (b) For s > 1/2 all the sums for these series, e.g., 

for s = 2/3, 3/4, 4/5, 5/6, etc., would diverge less and less (instead of more and more), even 

gradually so, from the sum for s = 1/2 when more and more terms are added to all these series 

including s = 1/2. As the Riemann hypothesis is shown to be analogous to Fermat’s last 

theorem in Appendix 4 below (which means what is true for Fermat’s last theorem is also 

true for the Riemann hypothesis) and Fermat’s last theorem posits that there are solutions 

only for n = 2 and none for n > 2 and n < 2, by the same principle there should not be 

solutions for s < 1/2 and s > 1/2 and the feeling that for s < 1/2 and s > 1/2 the Riemann zeta 

function ζ might yield some non-trivial zero or zeros after innumerable terms have been 

added to the series appears misplaced.   

 

As per the explanations in the paper, we conclude that all the non-trivial zeros of the 

Riemann zeta function ζ could be expected to be found at the critical line Re(s) = 1/2 only 

and not anywhere else on the critical strip bounded by Re(s) = 0 and Re(s) = 1. □ 

 

Appendix 1 

 

The Riemann zeta function ζ(s), shown below, is the sum over all natural numbers n:- 

 
                                                  ∞    

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                     
                                                                          n = 1 

 

The function could also be written in the following way (using Euler’s product formula) 

showing its connection with the primes:-  

 

ζ(s) =    ∏       ps/ps - 1 = 2s/2s - 1 x 3s/3s - 1 x 5s/5s - 1 x 7s/7s - 1 x …        (3.1) 

                     p prime 

 

where the product is over the consecutive primes p, providing the first hint that the Riemann 

zeta function ζ(s) is closely connected to the primes; it could be seen above that the Riemann 

zeta function ζ(s) has the property of prime sieving encoded within it (compare: sieve of 

Eratosthenes). 

 

Appendix 2 

 

Below are the values of the reciprocals of, say, 100, with consecutive fractional powers s ≤ 

4/5, these reciprocals being representative of the terms of the Riemann zeta function ζ:- 
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[1] 1/1004/5    = 1/39.8107171 = 0.025 (This quantity represents a decrease of 75% compared  

                                                             to [4] below while the increase in power from s = 1/2 to  

                                                             s = 4/5 is only 60%.) 

 

[2] 1/1003/4   = 1/31.62278     = 0.032 (This quantity represents a decrease of 68% compared  

                                                             to [4] below while the increase in power from s = 1/2 to  

                                                             s = 3/4 is only 50%.) 

 

[3] 1/1002/3   = 1/21.5444       = 0.046 (This quantity represents a decrease of 54% compared   

                                                             to [4] below while the increase in power from s = 1/2  

                                                             to s = 2/3 is only 33.33%.) 

 

[4] 1/1001/2    = 1/10                = 0.100 (The terms of the series of the Riemann zeta function ζ                                                    

                                                             as per the Riemann hypothesis fall under this category.  

                                                             1013 zeros have been found under this category only.) 

      

[5] 1/1001/3   = 1/4.6416         = 0.215 (This quantity represents an increase of 115%   

                                                             compared to [4] above while the decrease in power   

                                                             from s = 1/2 to s = 1/3 is only 33.33%.)                          

                                                           

[6] 1/1001/4   = 1/3.1623         = 0.316 (This quantity represents an increase of 216%  

                                                             compared to [4] above while the decrease in power  

                                                             from s = 1/2 to s = 1/4 is only 50%.) 

 

[7] 1/1001/5    = 1/2.5119         = 0.398 (This quantity represents an increase of 298%  

                                                             compared to [4] above while the decrease in power  

                                                             from s = 1/2 to s = 1/5 is only 60%.) 

. 

. 

. 

 

Note the disproportionateness between the respective percentages of decrease in quantity and 

the respective percentages of increase in power for the reciprocals with powers s > 1/2, and, 

between the respective percentages of increase in quantity and the respective percentages of 

decrease in power for the reciprocals with powers s < 1/2.  

 

Appendix 3 

 

The following list of the first 5 terms of the series of the Riemann zeta function ζ with 

consecutive fractional powers s ≥ 1/2 shows that the sums with larger powers decrease 

progressively, i.e., the larger the power s is the larger the percentage of decrease in the 

quantity is:- 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 

      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 

        

[2] ζ(2/3) = 1 + 1/22/3 + 1/32/3 + 1/42/3 + 1/52/3 + … = 2.85 

      (The sum 2.85 here represents a decrease of 12.04% compared to the sum 3.24 in [1]  

      above.)  
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[3] ζ(3/4) = 1 + 1/23/4 + 1/33/4 + 1/43/4 + 1/53/4 + … = 2.68 

      (The sum 2.68 here represents a decrease of 17.28% compared to the sum 3.24 in [1]  

      above.)  

                   

[4] ζ(4/5) = 1 + 1/24/5 + 1/34/5 + 1/44/5 + 1/54/5 + … = 2.59 

      (The sum 2.59 here represents a decrease of 20.06% compared to the sum 3.24 in [1]   

      above.) 

. 

. 

. 

 

Table 2 below is a tabulation of the above-mentioned percentage decreases for the sums for 

the first 2 terms to the first 5 terms for ζ(2/3), ζ(3/4) & ζ(4/5):- 

 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                     
 

[2] ζ(2/3)               4.52%        7.63%        9.98%       12.04%    To Be Extrapolated  

 

[3] ζ(3/4)               6.65%       11.08%      14.37%      17.28%    To Be Extrapolated 

 

[4] ζ(4/5)               7.86%       12.98%      16.78%      20.06%    To Be Extrapolated  

                                                                       . 

                                                                       . 

                                                                       . 

 

Appendix 4 

 

For the case for xn + yn = zn for Fermat’s last theorem which asserts that there are no solutions 

for n > 2, we here explain why there are no solutions for n > 2. We begin by selecting a 

Diophantine equation which has the smallest odd prime number 3 and the smallest composite 

number 4 (which is the square of the smallest prime number 2), i.e., the smallest Diophantine 

equation which has 2 as the power, for illustration which is presented below:- 

 

32 + 42 = 52                          (3.2)          

 

If the power of 2 in the series on the left above were increased to 3, which is the next, 

consecutive whole number, e.g., the sum on the right would not be a whole number anymore, 

which is in accordance with Fermat’s last theorem, as is shown below:- 

  

33 + 43 = 4.497953 

 

The regularity of the power of 2 is now lost, which is for the smallest Diophantine equation 

which initially had 2 as the power. For the larger Diophantine equations with initial powers of 

2 the irregularity after increasing their powers to 3, which is the next, consecutive whole 

number, or, higher powers, could be expected to be worse. 

       

In the next step we bring up the values of, say, 100, of consecutive whole number powers n, 

say, 2 to 5, this quantity 100 being representative of the terms of the equation xn + yn = zn as 

per Fermat’s last theorem, to explain the reason for this irregularity, which is as follows:- 

 

[1] 1002 = 10,000                  (The terms of the series of Fermat’s last theorem fall under this                            

                                              category. All zeros would be found under this category only.) 
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[2] 1003 = 1,000,000             (This quantity represents an increase of 9,900% compared to [1] 

                                              above while the increase in power from n = 2 to n = 3 is only  

                                              50%.) 

 

[3] 1004 = 100,000,000         (This quantity represents an increase of 999,900% compared to  

                                              [1] above while the increase in power from n = 2 to n = 4 is only  

                                              100%.) 

          

[4] 1005 = 10,000,000,000    (This quantity represents an increase of 99,999,900% compared  

                                              to [1] above while the increase in power from n = 2 to n = 5 is  

                                              only 150%.) 

. 

. 

. 

 

The quantities from the consecutive whole number powers n > 2 above increase progressively 

compared to [1], the larger the power n is the larger the percentage of increase in the quantity 

is. The increases in the respective quantities and powers are also disproportionate when 

compared to one another, with the increases in the respective quantities being evidently much 

too quick. All this shows that the equilibrium, balance or regularity of xn + yn = zn when n = 2 

as per Fermat’s last theorem cannot be maintained when n > 2, when disproportionateness 

between the increases in the respective quantities and powers sets in as is described above, as 

the increase in quantity is too quick, and, when n < 2, e.g., n = 5/4, 3/2, 7/4, etc., as the 

increase in quantity is too slow as could be extrapolated from the above example. (Refer to 

Appendix 2 above for an analogous example.) For Fermat’s last theorem, n = 2 could be 

regarded as the optimum or equilibrium power, the only power whereby xn + yn = zn is 

possible. There is also the easier solubility of equations with whole number powers n = 2 as 

compared to equations with powers n > 2, e.g., n = 3, 4, 5, etc., and n < 2, e.g., n = 5/4, 3/2, 

7/4, etc., which is explained below:- 

 

n = 2 is the smallest whole number power which brings an increase in quantity. As such n = 2 

is the whole number power which brings the smallest increase in quantity as compared to the 

whole number powers n > 2, e.g., n = 3, 4, 5, etc., for instance 22 < 23 < 24 < 25, etc. - 

equations with whole number powers n = 2 would evidently be easier to solve than equations 

with powers n > 2 (with general equations with powers n = 5 having been proven unsolvable 

- n = 2 needs only 1 squaring step while n = 5 needs 4 squaring steps) and n < 2, e.g., n = 5/4, 

3/2, 7/4, etc. (e.g., in a computation n = 2 needs only 1 squaring step, while n = 7/4 needs 9 

steps - 6 squaring steps for n = 7 & 3 rooting steps for n = 1/4). 

 

Like the Riemann zeta function ζ (which comprises of a series) that is able to turn out zeros, 

the series in Fermat’s last theorem all have their own zeros, e.g., for the series 32 + 42 = 52, 

132 + 842 = 852 and  652 + 722 = 972, their zeros are respectively as follows:-                                               

                                           

(1) 32 + 42 - 52 = 0 

(2) 132 + 842 - 852 = 0       

(3) 652 + 722 - 972 = 0 

Etc. 

 

Like the case of the Riemann zeta function ζ wherein its longer series of positive and 

negative terms would cancel out each other when added up together to produce a zero, the 
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various shorter series of Fermat’s last theorem could also be added up together with their 

positive terms and negative terms cancelling out each other to produce a zero. For instance, 

the above series (1), (2) and (3) with their zeros for Fermat’s last theorem could be added 

together as a longer series to produce a zero as follows:- 

 

32 + 42 - 52 + 132 + 842 - 852 + 652 + 722 - 972 = 0 

 

or, as follows with the terms in ascending order of magnitude:- 

 

32 + 42 - 52 + 132 + 652 + 722 + 842 - 852 - 972 = 0 

 

Hence, the uncanny similarity or resemblance between Fermat’s last theorem and the 

Riemann hypothesis, as is evident above. 

 

The optimum or equilibrium power whereby zeros are possible n = 2 (square) for Fermat’s 

last theorem is the reciprocal and opposite of the optimum or equilibrium power s = 1/2 

(square root) for the Riemann hypothesis. Also, both these powers have the number “2” 

which is the smallest prime number and the smallest even number. There also appears to be 

complementariness and symmetry between these 2 powers. n = 2 and its reciprocal s = 1/2 are 

evidently important quantities which may be comparable to π (3.14159265) or e (2.71828).  

All this is significant. 

 

There are evidently great similarities between Fermat’s last theorem and the Riemann 

hypothesis, both being analogues of one another, which implies that if Fermat’s last theorem 

is true, as it indeed is true as Andrew Wiles had proved it in 1994, then the Riemann 

hypothesis is also true. 
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