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Abstract

This article delves into the properties of the Riemann zeta function, providing a
demonstration of the existence of a sequence of zeros zk, where lim Re(zx) = 1.
The exploration of these mathematical phenomena contributes to our under-
standing of complex analysis and the behavior of the zeta function on the critical
line.
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1 Introduction

In this article, I present a demonstration revealing that the Riemann zeta function
possesses a sequence of zeros z; with the property lim Re(zx) = 1.
This is established by assuming the convergence of the series in the region Re(s) >
p: N
n
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This assumption is equivalent to the absence of zeros of the Riemann zeta function
(¢(s)) in the region where Re(s) > p, a fact proven in [1].
Under the condition, I prove that the following implication holds:
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leading to a contradiction.



The proof involves the observation that:
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To establish this result, I utilize the inverse Mellin transform to estimate an upper
bound for

> bn() (1.7)
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This yields:
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Consequently, by comparing upper bounds on both sides of the equality, we deduce
the contradiction in (1.6). The proof of the inconsistency in (1.2) is straightforward,
as it involves a comparison of upper bounds for the functions on either side of the
equation, revealing a mismatch.

2 Fundamental Theorems

In this section, I will list some theorems used throughout the article.

Theorem 2.1. If ¢(s) is analytic in the strip a < Re(s) < b, and if it tends to zero
uniformly as Im(s) — +oo for any real value ¢ between a and b, with its integral along
such a line converging absolutely, then if
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Conversely, suppose f(x) is piecewise continuous on the positive real numbers, tak-
ing a value halfway between the limit values at any jump discontinuities, and suppose
the integral
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is absolutely convergent when a < Re(s) < b. Then f is recoverable via the inverse
Mellin transform from its Mellin transform .

Proof. [2] O
Theorem 2.2. If Re > 1, we have:
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If the zeta function has no zeros in the region Re(s) > p, we can extend the equality
above to such a region.

Proof. [3] O
Theorem 2.3. If 0 < Re(s) < 1, we have:
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Proof. [4] O

Theorem 2.4. For any natural number n > 1, the sum of the values of the Mébius
function p(d) over all positive divisors of n is given by:

1 difn=1,
dzlg“(d) B {0 ifn > 1.
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3 Proof

In the case where 0 < Re(s) < 1:

¢(s) = —s ; y{Ser}l dy (3.1)
Hhs: () pln) [~ {ne} ()
s) p(n) nx} p(n
Bl i e de (3.2)
where n € Z.

Integrating by parts in equation (3.2), we obtain:
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Where:

x) = / {nu}Md (3.4)
O n
Doing one more integration by parts, we have:
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_ = d 3.5
s(s+1)(s+2)nt—s o ast3 v (35)
And .
z) = / G (1) (3.6)
0
Using the fact that, for every 0 < z < 1, we have:
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(The rearrangement of the summations is justified by the uniform convergence of the
series)
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we conclude (3.8).
Using the inverse Mellin transform on (3.5):
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where o = Re(s) and 0 < o < 1. With this:
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for 0 = Re s < p, where it is known that p < % —€,€e>0.
In this case, we have:
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with 0 <y < p.
Where, by hypothesis:
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By equation (3.5), we have
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Using (3.18), we conclude that this difference tends to zero when M — oo, if
Re < p — ¢, for every € > 0. Indeed, using (3.18), we conclude that:
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And the result follows from (3.19).
With this, taking the limit in (3.21), we conclude:

((s) [T 1 1  sin(27x)
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Where 0 < Res < p.
However, by analytic continuation, it is concluded that this equality holds for all
0 < Re(s) < 1. Performing integrations by parts, we obtain:

C(s) [ 1 sin(27x)
Defining:
i °° sin (27x)

F' is a holomorphic function in the region 0 < Re(s) < 1, and furthermore, F'(s) =
(0] (%), indeed, writing:

F(s) = Fi(s) + Fa(s) (3.28)
Where:
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Hence, we conclude that Fy(s) = O (2).
Now, observing that:
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And
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As the function
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is bounded for Re(s) > 0 and « > —1, we conclude that F5(s) = O ().
With this result, it can be inferred from equation (3.31) that:
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¢(s)
=sF(s)=0(1
sy = +F5) = 00)
By the Riemann functional equation:
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For every s in 0 < Re(s) < 1. Absurd, considering:
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Therefore, it is concluded that:

i pu(n)
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does not converge if Re(s) < 1, implying that the zeta function has a sequence of zeros

{2k} such that lim Re(z;) = 1.

4 Conclusion

In this article, I demonstrate that the Riemann zeta function possesses a sequence of

zeros, with their real parts converging to 1.
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