Zeta Function

Leonardo de Lima ${ }^{1}$
${ }^{1}$ Vitória, Espirito Santo, Brazil.

Contributing authors: leonardo12758@gmail.com;

Abstract

This article delves into the properties of the Riemann zeta function, providing a demonstration of the existence of a sequence of zeros $\boldsymbol{z}_{\boldsymbol{k}}$, where $\lim \operatorname{Re}\left(\boldsymbol{z}_{k}\right)=\mathbf{1}$. The exploration of these mathematical phenomena contributes to our understanding of complex analysis and the behavior of the zeta function on the critical line.

Keywords: Zeta function, Functional equation, Zeros of zeta function.
MSC Classification: 11-11, 11Mxx

1 Introduction

In this article, I present a demonstration revealing that the Riemann zeta function possesses a sequence of zeros z_{k} with the property $\lim \operatorname{Re}\left(z_{k}\right)=1$.

This is established by assuming the convergence of the series in the region $\operatorname{Re}(s)>$ ρ :

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}<+\infty \tag{1.1}
\end{equation*}
$$

This assumption is equivalent to the absence of zeros of the Riemann zeta function $(\zeta(s))$ in the region where $\operatorname{Re}(s)>\rho$, a fact proven in [1].

Under the condition, I prove that the following implication holds:

$$
\begin{equation*}
\frac{\zeta(s)}{\zeta(1-s)}=s \int_{0}^{\infty} \frac{1}{x^{s+1}} \frac{\sin (2 \pi x)}{\pi} d x \tag{1.2}
\end{equation*}
$$

leading to a contradiction.

The proof involves the observation that:

$$
\begin{equation*}
-\frac{\zeta(s)}{s(s+1)(s+2)} \frac{\mu(n)}{n^{1-s}}=\int_{0}^{\infty} \frac{\theta_{n}(x)}{x^{s+3}} d x \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
\phi_{n}(x) & =\int_{0}^{x} n u \frac{\mu(n)}{n} d u \tag{1.4}\\
\theta_{n}(x) & =\int_{0}^{x} \phi_{n}(u) d u \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}(x)=\frac{1}{2 \pi^{2}}\left(\frac{\sin (2 \pi x)}{2 \pi}-x\right) \tag{1.6}
\end{equation*}
$$

To establish this result, I utilize the inverse Mellin transform to estimate an upper bound for

$$
\begin{equation*}
\sum_{n=M}^{\infty} \theta_{n}(x) \tag{1.7}
\end{equation*}
$$

This yields:

$$
\begin{equation*}
\sum_{n=M}^{\infty} \theta_{n}(x) \leq x^{\rho+2} \max \left|\frac{1}{(\rho+2+i t)} \sum_{n=M}^{\infty} \frac{\mu(n)}{n^{1-\rho-i t}}\right|, t \in \mathbb{R} \int_{-\infty}^{\infty}\left|\frac{\zeta(\rho+t)}{(\rho+i t)(\rho+1+i t)}\right| d t \tag{1.8}
\end{equation*}
$$

Consequently, by comparing upper bounds on both sides of the equality, we deduce the contradiction in (1.6). The proof of the inconsistency in (1.2) is straightforward, as it involves a comparison of upper bounds for the functions on either side of the equation, revealing a mismatch.

2 Fundamental Theorems

In this section, I will list some theorems used throughout the article.
Theorem 2.1. If $\varphi(s)$ is analytic in the strip $a<\operatorname{Re}(s)<b$, and if it tends to zero uniformly as $\operatorname{Im}(s) \rightarrow \pm \infty$ for any real value c between a and b, with its integral along such a line converging absolutely, then if

$$
f(x)=\mathcal{M}^{-1} \varphi=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{-s} \varphi(s) d s
$$

we have that

$$
\varphi(s)=\mathcal{M} f=\int_{0}^{\infty} x^{s-1} f(x) d x
$$

Conversely, suppose $f(x)$ is piecewise continuous on the positive real numbers, taking a value halfway between the limit values at any jump discontinuities, and suppose the integral

$$
\varphi(s)=\int_{0}^{\infty} x^{s-1} f(x) d x
$$

is absolutely convergent when $a<\operatorname{Re}(s)<b$. Then f is recoverable via the inverse Mellin transform from its Mellin transform φ.

Proof. [2]
Theorem 2.2. If $\operatorname{Re}>1$, we have:

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

If the zeta function has no zeros in the region $R e(s)>\rho$, we can extend the equality above to such a region.

Proof. [3]
Theorem 2.3. If $0<\operatorname{Re}(s)<1$, we have:

$$
-\frac{\zeta(s)}{s}=\int_{0}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

Proof. [4]
Theorem 2.4. For any natural number $n>1$, the sum of the values of the Möbius function $\mu(d)$ over all positive divisors of n is given by:

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Proof. [1]

3 Proof

In the case where $0<\operatorname{Re}(s)<1$:

$$
\begin{equation*}
\zeta(s)=-s \int_{0}^{\infty} \frac{\{y\}}{y^{s+1}} d y \tag{3.1}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
-\frac{\zeta(s)}{s} \frac{\mu(n)}{n^{1-s}}=\int_{0}^{\infty} \frac{\{n x\}}{x^{s+1}} \frac{\mu(n)}{n} d x \tag{3.2}
\end{equation*}
$$

where $n \in \mathbb{Z}$.
Integrating by parts in equation (3.2), we obtain:

$$
\begin{equation*}
-\frac{\zeta(s)}{s(s+1)} \frac{\mu(n)}{n^{1-s}}=\int_{0}^{\infty} \frac{\phi_{n}(x)}{x^{s+2}} d x \tag{3.3}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\phi_{n}(x)=\int_{0}^{x}\{n u\} \frac{\mu(n)}{n} d u \tag{3.4}
\end{equation*}
$$

Doing one more integration by parts, we have:

$$
\begin{equation*}
-\frac{\zeta(s)}{s(s+1)(s+2)} \frac{\mu(n)}{n^{1-s}}=\int_{0}^{\infty} \frac{\theta_{n}(x)}{x^{s+3}} d x \tag{3.5}
\end{equation*}
$$

And

$$
\begin{equation*}
\theta_{n}(x)=\int_{0}^{x} \phi_{n}(u) d u \tag{3.6}
\end{equation*}
$$

Using the fact that, for every $0<x<1$, we have:

$$
\begin{equation*}
\{x\}=\frac{1}{2}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 \pi n x)}{n} \tag{3.7}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}(x)=\frac{1}{2 \pi^{2}}\left(\frac{\sin (2 \pi x)}{2 \pi}-x\right) \tag{3.8}
\end{equation*}
$$

Indeed, by (3.7) we have:

$$
\begin{equation*}
\phi_{n}(x)=\frac{x}{2}+\frac{1}{2 n \pi^{2}} \sum_{k=1}^{\infty} \frac{\cos (2 \pi n k x)-1}{k^{2}} \tag{3.9}
\end{equation*}
$$

And

$$
\begin{equation*}
\theta_{n}(x)=\frac{x^{2}}{4}+\frac{1}{4 n^{2} \pi^{3}} \sum_{k=1}^{\infty} \frac{\sin (2 \pi n k x)}{k^{3}}-\frac{x}{2 n \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \tag{3.10}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \theta_{n}(x)=\frac{x^{2}}{4} \sum_{n=1}^{\infty} \frac{\mu(n)}{n}-\frac{x}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{1}{4 \pi^{3}} \sum_{n, k=1}^{\infty} \frac{\sin (2 \pi n k x) \mu(n)}{n^{3} k^{3}} \tag{3.11}
\end{equation*}
$$

For:

$$
\begin{equation*}
\sum_{n, k=1}^{\infty} \frac{\sin (2 \pi n k x) \mu(n)}{n^{3} k^{3}}=\sum_{l=1}^{\infty} \frac{\sin (2 \pi l x)}{l^{3}} \sum_{n \mid l} \mu(n)=\sin (2 \pi x) \tag{3.12}
\end{equation*}
$$

(The rearrangement of the summations is justified by the uniform convergence of the series)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n}=0 \tag{3.13}
\end{equation*}
$$

And

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3}} \sum_{k=1}^{\infty} \frac{1}{k^{3}}=1 \tag{3.14}
\end{equation*}
$$

we conclude (3.8).
Using the inverse Mellin transform on (3.5):

$$
\begin{equation*}
\theta_{n}(x)=-\int_{\sigma-i \infty}^{\sigma+i \infty} x^{s+2} \frac{\zeta(s)}{s(s+1)(s+2)} \frac{\mu(n)}{n^{1-s}} d s \tag{3.15}
\end{equation*}
$$

where $\sigma=\operatorname{Re}(s)$ and $0<\sigma<1$. With this:

$$
\begin{equation*}
\sum_{n=M}^{M+P} \theta_{n}(x)=-\int_{\sigma-i \infty}^{\sigma+i \infty} x^{s+1} \frac{\zeta(s)}{s(s+1)(s+2)} \sum_{n=M}^{M+P} \frac{\mu(n)}{n^{1-s}} d s \tag{3.16}
\end{equation*}
$$

Assume that:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{1-s}}<+\infty \tag{3.17}
\end{equation*}
$$

for $\sigma=\operatorname{Re} s \leq \rho$, where it is known that $\rho<\frac{1}{2}-\epsilon, \epsilon>0$.
In this case, we have:
$\sum_{n=M}^{\infty} \theta_{n}(x) \leq x^{\gamma+2} \max \left\{\left\|\frac{1}{(\gamma+3+i t)} \sum_{n=M}^{\infty} \frac{\mu(n)}{n^{1-\gamma-i t}}\right\|, t \in \mathbb{R}\right\} \int_{-\infty}^{\infty}\left\|\frac{\zeta(\gamma+t)}{(\gamma+i t)(\gamma+1+i t)}\right\| d t$
with $0<\gamma<\rho$.
Where, by hypothesis:

$$
\begin{gather*}
\psi_{\gamma}(M)=\max \left\{\left\|\frac{1}{(\gamma+3+i t)} \sum_{n=M}^{\infty} \frac{\mu(n)}{n^{1-\gamma-i t}}\right\|, t \in \mathbb{R}\right\} \tag{3.19}\\
\lim _{M \rightarrow \infty} \psi_{\gamma}(M)=0 \tag{3.20}
\end{gather*}
$$

Since:

$$
\sum_{n=k}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{M(k)}{k^{s}}-s \int_{k}^{\infty} \frac{M(x)}{x^{s+1}} d x
$$

Where:

$$
M(x)=\sum_{n=1}^{x} \mu(n)
$$

By equation (3.5), we have:

$$
\begin{equation*}
-\frac{\zeta(s)}{s(s+1)(s+2)} \sum_{n=1}^{M} \frac{\mu(n)}{n^{1-s}}=\int_{0}^{\infty} \frac{1}{x^{s+3}} \sum_{n=1}^{M} \theta_{n}(x) d x \tag{3.21}
\end{equation*}
$$

Note that:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{x^{s+3}} \sum_{n=1}^{M} \theta_{n}(x) d x=\sum_{k=1}^{\infty} \int_{0}^{1} \frac{1}{(x+k)^{s+3}} \sum_{n=1}^{M} \theta_{n}(x+k) d x+\int_{0}^{1} \frac{1}{x^{s+3}} \sum_{n=1}^{M} \theta_{n}(x) d x \tag{3.22}
\end{equation*}
$$

Using (3.18), we conclude that this difference tends to zero when $M \rightarrow \infty$, if $\operatorname{Re}<\rho-\epsilon$, for every $\epsilon>0$. Indeed, using (3.18), we conclude that:

$$
\begin{equation*}
\int_{0}^{1} G(x) \sum_{n=M}^{\infty} \theta_{n}(x) d x+\int_{0}^{1} \frac{1}{x^{s+3}} \sum_{n=M}^{\infty} \theta_{n}(x) d x<C_{\gamma} \psi_{\gamma}(M) \int_{0}^{1} \sum_{k=1}^{\infty} \frac{(x+k)^{\gamma+2}}{(x+k)^{\sigma+3}} d x+C_{\rho} \frac{\psi_{\rho}(M)}{\rho-\sigma} \tag{3.23}
\end{equation*}
$$

Where

$$
\begin{equation*}
C_{\sigma}=\int_{-\infty}^{\infty}\left\|\frac{\zeta(\sigma+t)}{(\sigma+i t)(\sigma+1+i t)}\right\| d t \tag{3.24}
\end{equation*}
$$

$$
\gamma<\sigma
$$

And the result follows from (3.19).
With this, taking the limit in (3.21), we conclude:

$$
\begin{equation*}
-\frac{\zeta(s)}{s(s+1)(s+2) \zeta(1-s)}=\int_{0}^{\infty} \frac{1}{x^{s+3}} \frac{1}{2 \pi^{2}}\left\{\frac{\sin (2 \pi x)}{2 \pi}-x\right\} d x \tag{3.25}
\end{equation*}
$$

Where $0<\operatorname{Re} s<\rho$.
However, by analytic continuation, it is concluded that this equality holds for all $0<\operatorname{Re}(s)<1$. Performing integrations by parts, we obtain:

$$
\begin{equation*}
\frac{\zeta(s)}{\zeta(1-s)}=s \int_{0}^{\infty} \frac{1}{x^{s+1}} \frac{\sin (2 \pi x)}{\pi} d x \tag{3.26}
\end{equation*}
$$

Defining:

$$
\begin{equation*}
F(s)=\pi \int_{0}^{\infty} \frac{\sin (2 \pi x)}{x^{s+1}} d x \tag{3.27}
\end{equation*}
$$

F is a holomorphic function in the region $0<\operatorname{Re}(s)<1$, and furthermore, $F(s)=$ $O\left(\frac{1}{s}\right)$, indeed, writing:

$$
\begin{equation*}
F(s)=F_{1}(s)+F_{2}(s) \tag{3.28}
\end{equation*}
$$

Where:

$$
\begin{gather*}
F_{1}(s)=\pi \int_{0}^{2} \frac{\sin (2 \pi x)}{x^{s+1}} d x \tag{3.29}\\
F_{2}(s)=\pi \int_{2}^{\infty} \frac{\sin (2 \pi x)}{x^{s+1}} d x \tag{3.30}
\end{gather*}
$$

Note that:

$$
\begin{equation*}
\int_{0}^{2} \cos 2 \pi x x^{-s} d x=\frac{s}{2 \pi} \int_{0}^{2} \frac{\sin (2 \pi x)}{x^{s+1}} d x \tag{3.31}
\end{equation*}
$$

Hence, we conclude that $F_{1}(s)=O\left(\frac{1}{s}\right)$.
Now, observing that:

$$
\begin{gather*}
F_{2}(s)=2^{s} \pi \int_{1}^{\infty} \frac{\sin (\pi x)}{x^{s+1}} d x \tag{3.32}\\
\int_{1}^{\infty} \frac{\sin (\pi x)}{x^{s+1}} d x=\frac{\pi}{s} \int_{1}^{\infty} \frac{\cos (\pi x)}{x^{s}} d x \tag{3.33}
\end{gather*}
$$

And

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\cos (\pi x)}{x^{s}} d x=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{\cos (\pi x)}{x^{s}} d x=\int_{0}^{1} \cos (\pi x) \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(x+n)^{s}} d x \tag{3.34}
\end{equation*}
$$

As the function

$$
\begin{equation*}
\psi(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(x+n)^{s}} \tag{3.35}
\end{equation*}
$$

is bounded for $\operatorname{Re}(s)>0$ and $x>-1$, we conclude that $F_{2}(s)=O\left(\frac{1}{s}\right)$.
With this result, it can be inferred from equation (3.31) that:

$$
\begin{equation*}
\frac{\zeta(s)}{\zeta(1-s)}=s F(s)=O(1) \tag{3.36}
\end{equation*}
$$

By the Riemann functional equation:

$$
\begin{equation*}
\frac{\zeta(s)}{\zeta(1-s)}=\pi^{s-\frac{1}{2}} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}=s F(s)=O(1) \tag{3.37}
\end{equation*}
$$

For every s in $0<\operatorname{Re}(s)<1$. Absurd, considering:

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}=O\left(\|s\|^{\frac{1}{2}-\operatorname{Re}(s)}\right) \tag{3.38}
\end{equation*}
$$

Therefore, it is concluded that:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \tag{3.39}
\end{equation*}
$$

does not converge if $\operatorname{Re}(s)<1$, implying that the zeta function has a sequence of zeros $\left\{z_{k}\right\}$ such that $\lim \operatorname{Re}\left(z_{k}\right)=1$.

4 Conclusion

In this article, I demonstrate that the Riemann zeta function possesses a sequence of zeros, with their real parts converging to 1 .

References

[1] Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York, NY, USA (1976)
[2] Lang, S.: Complex Analysis. Springer, New York, NY (1985)
[3] Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford, UK (1986)
[4] Karatsuba, A.A., Voronin, S.M., Koblitz, N.: The Riemann Zeta-Function. De Gruyter, Berlin, Germany (2011)

