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Abstract

This article delves into the properties of the Riemann zeta function, providing a
demonstration of the existence of a sequence of zeros zk, where limRe(zk) = 1.
The exploration of these mathematical phenomena contributes to our under-
standing of complex analysis and the behavior of the zeta function on the critical
line.
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1 Introduction

In this article, I present a demonstration revealing that the Riemann zeta function
possesses a sequence of zeros zk with the property limRe(zk) = 1.

This is established by assuming the convergence of the series in the region Re(s) >
ρ:

∞∑
n=1

µ(n)

ns
< +∞ (1.1)

This assumption is equivalent to the absence of zeros of the Riemann zeta function
(ζ(s)) in the region where Re(s) > ρ, a fact proven in [1].

Under the condition, I prove that the following implication holds:

ζ(s)

ζ(1− s)
= s

∫ ∞

0

1

xs+1

sin(2πx)

π
dx (1.2)

leading to a contradiction.
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The proof involves the observation that:

− ζ(s)

s(s+ 1)(s+ 2)

µ(n)

n1−s
=

∫ ∞

0

θn(x)

xs+3
dx (1.3)

where

ϕn(x) =

∫ x

0

nu
µ(n)

n
du (1.4)

θn(x) =

∫ x

0

ϕn(u)du (1.5)

and
∞∑

n=1

θn(x) =
1

2π2
(
sin(2πx)

2π
− x) (1.6)

To establish this result, I utilize the inverse Mellin transform to estimate an upper
bound for

∞∑
n=M

θn(x) (1.7)

This yields:

∞∑
n=M

θn(x) ≤ xρ+2 max | 1

(ρ+ 2 + it)

∞∑
n=M

µ(n)

n1−ρ−it
|, t ∈ R

∫ ∞

−∞
| ζ(ρ+ t)

(ρ+ it)(ρ+ 1 + it)
|dt

(1.8)
Consequently, by comparing upper bounds on both sides of the equality, we deduce
the contradiction in (1.6). The proof of the inconsistency in (1.2) is straightforward,
as it involves a comparison of upper bounds for the functions on either side of the
equation, revealing a mismatch.

2 Fundamental Theorems

In this section, I will list some theorems used throughout the article.
Theorem 2.1. If φ(s) is analytic in the strip a < Re(s) < b, and if it tends to zero
uniformly as Im(s) → ±∞ for any real value c between a and b, with its integral along
such a line converging absolutely, then if

f(x) = M−1φ =
1

2πi

∫ c+i∞

c−i∞
x−sφ(s) ds,

we have that

φ(s) = Mf =

∫ ∞

0

xs−1f(x) dx.

Conversely, suppose f(x) is piecewise continuous on the positive real numbers, tak-
ing a value halfway between the limit values at any jump discontinuities, and suppose
the integral

φ(s) =

∫ ∞

0

xs−1f(x) dx
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is absolutely convergent when a < Re(s) < b. Then f is recoverable via the inverse
Mellin transform from its Mellin transform φ.

Proof. [2]

Theorem 2.2. If Re > 1, we have:

1

ζ(s)
=

∞∑
n=1

µ(n)

ns

If the zeta function has no zeros in the region Re(s) > ρ, we can extend the equality
above to such a region.

Proof. [3]

Theorem 2.3. If 0 < Re(s) < 1, we have:

−ζ(s)
s

=

∫ ∞

0

{x}
xs+1

dx

Proof. [4]

Theorem 2.4. For any natural number n > 1, the sum of the values of the Möbius
function µ(d) over all positive divisors of n is given by:

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

Proof. [1]

3 Proof

In the case where 0 < Re(s) < 1:

ζ(s) = −s
∫ ∞

0

{y}
ys+1

dy (3.1)

Thus:

−ζ(s)
s

µ(n)

n1−s
=

∫ ∞

0

{nx}
xs+1

µ(n)

n
dx (3.2)

where n ∈ Z.
Integrating by parts in equation (3.2), we obtain:

− ζ(s)

s(s+ 1)

µ(n)

n1−s
=

∫ ∞

0

ϕn(x)

xs+2
dx (3.3)
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Where:

ϕn(x) =

∫ x

0

{nu}µ(n)
n

du (3.4)

Doing one more integration by parts, we have:

− ζ(s)

s(s+ 1)(s+ 2)

µ(n)

n1−s
=

∫ ∞

0

θn(x)

xs+3
dx (3.5)

And

θn(x) =

∫ x

0

ϕn(u)du (3.6)

Using the fact that, for every 0 < x < 1, we have:

{x} =
1

2
− 1

π

∞∑
n=1

sin (2πnx)

n
(3.7)

It follows that:
∞∑

n=1

θn(x) =
1

2π2
(
sin(2πx)

2π
− x) (3.8)

Indeed, by (3.7) we have:

ϕn(x) =
x

2
+

1

2nπ2

∞∑
k=1

cos(2πnkx)− 1

k2
(3.9)

And

θn(x) =
x2

4
+

1

4n2π3

∞∑
k=1

sin(2πnkx)

k3
− x

2nπ2

∞∑
k=1

1

k2
(3.10)

Thus:

∞∑
n=1

µ(n)

n
θn(x) =

x2

4

∞∑
n=1

µ(n)

n
− x

2π2

∞∑
n=1

µ(n)

n2

∞∑
k=1

1

k2
+

1

4π3

∞∑
n,k=1

sin(2πnkx)µ(n)

n3k3

(3.11)
For:

∞∑
n,k=1

sin(2πnkx)µ(n)

n3k3
=

∞∑
l=1

sin(2πlx)

l3

∑
n|l

µ(n) = sin(2πx) (3.12)

(The rearrangement of the summations is justified by the uniform convergence of the
series)

∞∑
n=1

µ(n)

n
= 0 (3.13)

And
∞∑

n=1

µ(n)

n3

∞∑
k=1

1

k3
= 1 (3.14)
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we conclude (3.8).
Using the inverse Mellin transform on (3.5):

θn(x) = −
∫ σ+i∞

σ−i∞
xs+2 ζ(s)

s(s+ 1)(s+ 2)

µ(n)

n1−s
ds (3.15)

where σ = Re(s) and 0 < σ < 1. With this:

M+P∑
n=M

θn(x) = −
∫ σ+i∞

σ−i∞
xs+1 ζ(s)

s(s+ 1)(s+ 2)

M+P∑
n=M

µ(n)

n1−s
ds (3.16)

Assume that:

∞∑
n=1

µ(n)

n1−s
< +∞ (3.17)

for σ = Re s ≤ ρ, where it is known that ρ < 1
2 − ϵ, ϵ > 0.

In this case, we have:

∞∑
n=M

θn(x) ≤ xγ+2 max{∥ 1

(γ + 3 + it)

∞∑
n=M

µ(n)

n1−γ−it
∥, t ∈ R}

∫ ∞

−∞
∥ ζ(γ + t)

(γ + it)(γ + 1 + it)
∥dt

(3.18)
with 0 < γ < ρ.

Where, by hypothesis:

ψγ(M) = max{∥ 1

(γ + 3 + it)

∞∑
n=M

µ(n)

n1−γ−it
∥, t ∈ R} (3.19)

lim
M→∞

ψγ(M) = 0 (3.20)

Since:
∞∑

n=k

µ(n)

ns
=
M(k)

ks
− s

∫ ∞

k

M(x)

xs+1
dx

Where:

M(x) =

x∑
n=1

µ(n)

By equation (3.5), we have:

− ζ(s)

s(s+ 1)(s+ 2)

M∑
n=1

µ(n)

n1−s
=

∫ ∞

0

1

xs+3

M∑
n=1

θn(x)dx (3.21)

Note that:∫ ∞

0

1

xs+3

M∑
n=1

θn(x)dx =

∞∑
k=1

∫ 1

0

1

(x+ k)s+3

M∑
n=1

θn(x+ k)dx+

∫ 1

0

1

xs+3

M∑
n=1

θn(x)dx

(3.22)
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Using (3.18), we conclude that this difference tends to zero when M → ∞, if
Re < ρ− ϵ, for every ϵ > 0. Indeed, using (3.18), we conclude that:∫ 1

0

G(x)

∞∑
n=M

θn(x)dx+

∫ 1

0

1

xs+3

∞∑
n=M

θn(x)dx < Cγψγ(M)

∫ 1

0

∞∑
k=1

(x+ k)γ+2

(x+ k)σ+3
dx+Cρ

ψρ(M)

ρ− σ

(3.23)
Where

Cσ =

∫ ∞

−∞
∥ ζ(σ + t)

(σ + it)(σ + 1 + it)
∥dt (3.24)

γ < σ

And the result follows from (3.19).
With this, taking the limit in (3.21), we conclude:

− ζ(s)

s(s+ 1)(s+ 2)ζ(1− s)
=

∫ ∞

0

1

xs+3

1

2π2
{ sin(2πx)

2π
− x}dx (3.25)

Where 0 < Re s < ρ.
However, by analytic continuation, it is concluded that this equality holds for all

0 < Re(s) < 1. Performing integrations by parts, we obtain:

ζ(s)

ζ(1− s)
= s

∫ ∞

0

1

xs+1

sin(2πx)

π
dx (3.26)

Defining:

F (s) = π

∫ ∞

0

sin (2πx)

xs+1
dx (3.27)

F is a holomorphic function in the region 0 < Re(s) < 1, and furthermore, F (s) =
O
(
1
s

)
, indeed, writing:

F (s) = F1(s) + F2(s) (3.28)

Where:

F1(s) = π

∫ 2

0

sin (2πx)

xs+1
dx (3.29)

F2(s) = π

∫ ∞

2

sin (2πx)

xs+1
dx (3.30)

Note that: ∫ 2

0

cos 2πxx−sdx =
s

2π

∫ 2

0

sin (2πx)

xs+1
dx (3.31)

Hence, we conclude that F1(s) = O
(
1
s

)
.

Now, observing that:

F2(s) = 2sπ

∫ ∞

1

sin (πx)

xs+1
dx (3.32)

∫ ∞

1

sin (πx)

xs+1
dx =

π

s

∫ ∞

1

cos (πx)

xs
dx (3.33)
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And ∫ ∞

1

cos (πx)

xs
dx =

∞∑
n=1

∫ n+1

n

cos (πx)

xs
dx =

∫ 1

0

cos (πx)

∞∑
n=1

(−1)n

(x+ n)s
dx (3.34)

As the function

ψ(x) =

∞∑
n=1

(−1)n

(x+ n)s
(3.35)

is bounded for Re(s) > 0 and x > −1, we conclude that F2(s) = O
(
1
s

)
.

With this result, it can be inferred from equation (3.31) that:

ζ(s)

ζ(1− s)
= sF (s) = O(1) (3.36)

By the Riemann functional equation:

ζ(s)

ζ(1− s)
= πs− 1

2
Γ( 1−s

2 )

Γ( s2 )
= sF (s) = O(1) (3.37)

For every s in 0 < Re(s) < 1. Absurd, considering:

Γ( 1−s
2 )

Γ( s2 )
= O(∥s∥ 1

2−Re(s)) (3.38)

Therefore, it is concluded that:

∞∑
n=1

µ(n)

ns
(3.39)

does not converge if Re(s) < 1, implying that the zeta function has a sequence of zeros
{zk} such that limRe(zk) = 1.

4 Conclusion

In this article, I demonstrate that the Riemann zeta function possesses a sequence of
zeros, with their real parts converging to 1.
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