No Collatz Conjecture integer series have looping
 Tsuneaki Takahashi

Abstract

If the series of Collatz Conjecture integer has looping in it, it is sure the members of the loop cannot reach to value 1 . Here it is proven that the possibility of looping is zero except one.

1. Introduction

Procedure of Collatz Conjecture is recognized as following operations.
It starts with positive odd integer n_{1}.
It continues following calculation up to $n_{i}=1$.

- Compute $n=3 \times n_{i-1}+1$.
- n is divided by 2 , m_{i-1} times until it becomes positive odd integer.

$$
\begin{equation*}
n_{i}=\frac{n}{2^{m_{i-1}}} \tag{2}
\end{equation*}
$$

2. Looping

Collatz conjecture procedure is represented as follow.

$$
\begin{align*}
& \left(3\left(\left(3\left((3 \times n+1) / 2^{m_{1}}\right)+1\right) / 2^{m_{2}}\right)+1\right) / 2^{m_{3}} \cdots \\
& =\frac{3^{i} n}{2^{m_{1}+m_{2}+\cdots+m_{i}}}+\frac{3^{i-1}}{2^{m_{1}+m_{2}+\cdots+m_{i}}}+\frac{3^{i-2}}{2^{m_{2}+\cdots+m_{i}}}+\cdots+\frac{3^{1}}{2^{m_{i-1}+m_{i}}}+\frac{3^{0}}{2^{m_{i}}} \tag{3}
\end{align*}
$$

n : starting positive odd integer
If this procedure has looping, following equation is satisfied.

$$
\begin{align*}
& \frac{3^{i} n}{2^{m_{1}+m_{2}+\cdots+m_{i}}}+\frac{3^{i-1}}{2^{m_{1}+m_{2}+\cdots+m_{i}}}+\frac{3^{i-2}}{2^{m_{2}+\cdots+m_{i}}}+\cdots+\frac{3^{1}}{2^{m_{i-1}+m_{i}}}+\frac{3^{0}}{2^{m_{i}}}=n . \tag{4}\\
& \left(2^{m_{1}+m_{2}+\cdots+m_{i}}-3^{i}\right) n=3^{i-1}+2^{m_{1}} \cdot 3^{i-2}+\cdots+2^{m_{1}+m_{2}+\cdots+m_{i-2}} \cdot 3^{1}+2^{m_{1}+m_{2}+\cdots+m_{i-1}} \cdot 3^{0} . \tag{5}
\end{align*}
$$

Characteristics of right side (5) are followings.
It is expanded using power of 3 from 3^{0} to 3^{i-1} term.
Coefficient for each power of 3 is represented as one bit of binary
(ex. $2^{m_{1}+m_{2}+\cdots+m_{i-2}}$), also each power of 3 and its coefficient has following relation.

$$
\begin{equation*}
2^{m_{1}+m_{2}+\cdots+m_{i-j} \cdot 3^{j-1}} \quad j: \text { integer, } 1,2,3 \cdots \cdots, m_{0}=0 . \tag{b}
\end{equation*}
$$

Existence of positive odd integer n solution for (5) means that there is looping.
We investigate whether such n solution could exist or not.
Left side of (5) could be expanded and become same format as right side. (6) defines m for $i t$.

$$
\begin{equation*}
\mathrm{m}=\left(m_{1}+m_{2}+\cdots+m_{i}\right) / i \tag{6}
\end{equation*}
$$

Left side of (5) becomes (7).

$$
\begin{equation*}
\left(2^{m i}-3^{i}\right) n=\left(2^{m}-3\right)\left(3^{i-1}+2^{m} \cdot 3^{i-2}+\cdots+2^{m(i-2)} \cdot 3^{1}+2^{m(i-1)} \cdot 3^{0}\right) n \tag{7}
\end{equation*}
$$

Then (5) becomes (8).

$$
\begin{align*}
& \left(2^{m}-3\right)\left(3^{i-1}+2^{m} \cdot 3^{i-2}+\cdots+2^{m(i-2)} \cdot 3^{1}+2^{m(i-1)} \cdot 3^{0}\right) n \\
& \quad=3^{i-1}+2^{m_{1}} \cdot 3^{i-2}+\cdots+2^{m_{1}+m_{2}+\cdots+m_{i-2}} \cdot 3^{1}+2^{m_{1}+m_{2}+\cdots+m_{i-1}} \cdot 3^{0} \tag{8}
\end{align*}
$$

Both sides (8) have following form.

$$
\begin{aligned}
& \sum_{i=0}^{i-1} \alpha_{i} p^{i} \\
& \quad \alpha_{i} ; \text { These have } n \\
& \quad i ; 0,1,2, \ldots \ldots \\
& \quad p ; \text { integer }(=3)
\end{aligned}
$$

$$
\alpha_{i} ; \text { These have no element of } p \text { or } \frac{1}{p}
$$

No term $\alpha_{n} p^{n}$ of left side cannot be represented by linear combination of right-side terms which have power of p other than n, that is,

$$
\begin{equation*}
\alpha_{n} p^{n} \neq \sum_{i=0}^{i \neq n} \beta_{i} p^{i} \tag{11}
\end{equation*}
$$

Proof is;

In the case $i<n$, its form is,

$$
\begin{equation*}
\sum_{i=0}^{n-1} \beta_{i} p^{i}=\left(\beta_{0} \frac{1}{p^{n}}+\beta_{1} \frac{1}{p^{n-1}}+\cdots+\beta_{n-1} \frac{1}{p^{1}}\right) p^{n} \tag{12}
\end{equation*}
$$

In the case $i>n$, its form is,

$$
\begin{equation*}
\sum_{i=n+1}^{i} \beta_{i} p^{i}=\left(\beta_{n+1} p^{1}+\beta_{n+2} p^{2}+\cdots\right) p^{n} \tag{13}
\end{equation*}
$$

Here each term (12) has $\frac{1}{p}$ and each term (13) has p
Therefore, in the total case of $i \neq n$,

$$
\begin{equation*}
\sum_{i=0}^{i \neq n} \beta_{i} p^{i}=\left(\beta_{0} \frac{1}{p^{n}}+\beta_{1} \frac{1}{p^{n-1}}+\cdots+\beta_{n-1} \frac{1}{p^{1}}\right) p^{n}+\left(\beta_{n+1} p^{1}+\beta_{n+2} p^{2}+\cdots\right) p^{n} \tag{14}
\end{equation*}
$$

Then the unequal formula (11) is satisfied because right side p^{n} is not retained its n.

Therefore, in order (8) is satisfied, every both side coefficients for same power of 3 terms should be equal. Then this makes following equations.

$$
\begin{align*}
& \left(2^{m}-3\right) n=1 \tag{15}\\
& \left(2^{m}-3\right) n \cdot 2^{m}=2^{m_{1}} \\
& \quad \cdots \cdots \cdots \cdots \cdots \cdots \\
& \left(2^{m}-3\right) n \cdot 2^{m(i-1)}=2^{m_{1}+m_{2}+\cdots+m_{i-1}}
\end{align*}
$$

n is positive odd integer. m should be positive integer comparing both sides. Therefore, on (15),

$$
m=2, n=1
$$

Resolving all equations sequentially, we can get result (16).

$$
\begin{equation*}
m_{1}=m_{2}=\cdots=m_{i}=m=2 \tag{16}
\end{equation*}
$$

This means that this looping is only one member looping or self-looping when $\mathrm{n}=1$.
Therefore, $\mathrm{n}=1$ can be terminal point of Collatz Conjecture operation.

3. Consideration

No looping proof in this report could be used with *1 and *2 which investigate Collatz Conjecture Space. These show that the space expectation value of $2^{m_{i}}$ in (4) is $2^{2}=4$.
Also, no looping report could be used with *3 which investigates the series of Collatz Conjecture integer.

Therefore, these combinations show Collatz Conjecture is correct.
*1) viXra:2204.0151
*2) viXra:2304.0182
*3) viXra:2302.0015

