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Abstract 

Following our previous works on fractional biophysical issues such as fractional dynamics 
of protein folding process and fractional dynamics of cancer cells and their branching 
processes, in this work we further develop these issues and propose a new fractional 
biomechanics of cancer cells. In this study we present some promising models for future 
studies in biomedicine, including constant and variable order fractional Maxwell and Kelvin–
Voigt models to study the mechanics of cancer cells. We also emphasize that fractional 
calculus will play a vital and central role in the understanding of the complexities that occur 
when we deal with the phenomena and processes in the realm of bioscience and biomedicine 
and particularly in physics of cancer. 
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1. Introduction 

The study of complex systems and the investigation of their structural and dynamical 
properties have attracted considerable interest among scientists in general and physicists 
and biologists in particular. Complex systems can be found almost everywhere, including: 
financial markets, highway transportation networks, telecommunication networks, social 
networks, computational systems however the highest level of complexities are related to 
living and biological organisms and systems. Complex systems are often composed of large 
numbers of interconnected and interacting entities whose interactions lead to emergent 
collective behaviors and in particular exhibit the emergence of self-organization. 
As a physicist we always are able to model natural phenomena using systems of differential 

equations and nowadays it is well know that the advantage of fractional-order differential 
equation systems over ordinary differential equation systems is that they are more 
comprehensive and also incorporate memory effect in the model [1-28] and due to this fact 
they have found many applications in the realm of bioscience and biomedicine to understand 
the emergence of complexities in bio-structures and living systems. In the field of fractional 
calculus we use new concepts of fractional integral and fractional derivative. The kernel 
function of fractional derivative is called memory function [29] that is very useful to describe 
the complex dynamics of complex systems. Recently it is showed that the fractional model 
perfectly fits the test data of memory phenomena in different disciplines [30] they have 
found that a possible physical meaning of the fractional order is an index of memory. From 
this viewpoint fractional calculus has found many applications in new research on physics of 
biological structures and living organisms, from DNA dynamics [31-33] to protein folding 
[34] (in this work we have presented a coupled system of fractional differential equations for 
the folding process of protein as follows: 
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(for details refer to the mentioned paper) as we have mentioned in this work, this model is 
the most comprehensive model such that all previous models can be derived from it), cancer 
cells [35], tumor-immune system [36], modeling of some human autoimmune diseases such 
as psoriasis [37], bioimpedance [38], spiking neurons [39], and also the transport of drugs 
across biological materials and human skin [40] and electrical impedance applied to human 
skin [41] and even modeling of HIV dynamics [42]. 
In our previous work we have purposed new approach of fractional calculus to understand 

the physics behind the cancer cells dynamics [43]. In this work we have investigated cancer 
growth process in the framework of fractional dynamics and we have obtained new results. 
In the mentioned article we have proposed new model based and fractional calculus for 
branching processes which are a class of simple models that have been used extensively to 
model growth dynamics of stem cells and cancer cells. We have also presented a new model 
for the average colony size s  as follows: 

( 1) ( 1)

0

( )
  ( )   c

t

d s t
D s s

dt



  

 
            

with general solution in terms of the well-known one-parameter Mittag-Leffler function in 
the form of: 
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(for details refer to the mentioned paper). In the present work we want to propose a new 

fractional biomechanics of cancer and further develop the new field of fractional dynamics 

of cancer cells.  

For these purpose in the following: concepts of fractional dynamics are briefly reviewed in 
Sec. 2. Then in Sec. 3 we introduce fractional viscoelastic model. Based on the fractional 
viscoelastic model, fractional biomechanics of cancer cells is presented in this section. At last, 
in Sec. 4, we will present some conclusions. 

2. Fractional Dynamics 

Fractional dynamics is a field in theoretical and mathematical physics, studying the 
behavior of objects and systems that are described by using integrations and differentiation 
of fractional orders, i.e., by methods of fractional calculus. Derivatives and integrals of non-
integer orders are used to describe objects that can be characterized by: (1) a power-law 
non-locality (2) a power-law long-term memory (3) a fractal-type property [44]. As an 
example in the realm of classical physics we can consider the well-known diffusion 
phenomena. The most known diffusion processes is the normal diffusion. This process is 
characterized by a linear increase of the mean squared distance: 
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where r  is the distance a particle has traveled in time t  from its starting point. However there 
are many examples of phenomena in the natural sciences that violate this kind of behavior 
i.e. they are slower or faster than normal diffusion. In these cases (anomalous diffusions) the 
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mean squared displacement is no longer linear in time: 
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In recent years it is well known that generalization of the well-known diffusion equation and 
wave equation such that it includes derivatives of non-integer order with respect to time can 
describes phenomena that satisfy such a power law mean squared displacement. The 
fractional diffusion-wave equation [44] is the linear fractional differential equation obtained 
from the classical diffusion or wave equations by replacing the first- or second-order time 
derivatives by a fractional derivative (in the Caputo sense) [45-48] of order   with 0 2  , 
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This equation describes diffusion-wave phenomena [49, 50] which is also called the 
anomalous diffusion such that we have the super-diffusion for 1 2  , and sub-diffusion for 
0 1  . In above equations the fractional derivative of order  , 1n n   , n N is defined in 
the Caputo sense: 
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Where  denotes the Gamma function. For n  , n N  the Caputo fractional derivative is 
defined as the standard derivative of order n . It is also worth noting that we mention the 
order of fraction derivative can be constant or variable. To derive a solution for a process 
described by an equation containing Caputo fractional derivatives, we need the initial 
conditions that can be written as: 
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and because of this point that we are seeking the causal solution for natural phenomena we 
require that ( ) 0f t   for 0t  . 

3. Fractional Biomechanics of Cancer 

Fractional calculus has been considered as a powerful tool to model physical responses 
and is particularly suitable for building the time-dependent constitutive model. The use of 
the fractional calculus is motivated in large part by the fact that fewer parameters are 
required to achieve accurate approximation of experimental data [51]. It is well known that 
the ideal solid obeys the Hooke’s law, ( ) ( )t t  , and a Newtonian fluid satisfies the Newton’s 

law of viscosity, ( ) ( ) / dtt d t  , where   and   are the stress and strain. So it is not difficult 

to imagine that the intermediate material, which is intermediate between ideal solid and 
Newtonian fluid should follow [51]: 
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where E  is Young modulus and   is an arbitrary quantity with dimension of [second] to ensure 

that all quantities have correct dimensions and also 0 1  , where we have the pure elasticity 
for 0  , and the pure viscosity for 1   [see the Ref. 51 and references therein]. Fractional 
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viscoelastic models have found many application in bioscience and biomedicine during the last 
decade [52-55]. In the next section we will present fractional approach to study the 
biomechanics of cancer cells. 
Like any other material, cells respond to mechanical perturbations by deforming, but 

unlike passive elastic objects, however, they can apply active forces to the environment. 
Active matter is attracting a large amount of attention in the field of soft matter, with many 
results having direct relevance to cell mechanics [56].  
Cells are extremely soft materials, with a Young modulus which can be measured by 

different means such as, for example, atomic force microscopy. Cells, however, are not simple 
Hookean solids since their mechanical response is time-dependent and include a viscous 
component typical of fluids [56]. The simplest description of viscoelasticity is in terms of 
springs and dashpots that can be combined in series, leading to the Maxwell model, which in 
its scalar version can be written as: 
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where   is the viscosity, or in parallel, leading to the Kelvin–Voigt model: 
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The Maxwell and Kelvin–Voigt models predict exponential relaxations of strain and stress, 
respectively, with a characteristic time /E  . Relaxation in cells is not exponential, as 

predicted by these models, but decays as a power law. In particular, the time-dependent 
response to a constant applied stress , or creep, follows [56]: 

 0( ) /t t t


                   

Similarly, the stress relaxation in response to a fixed deformation decays as a power law at 
long timescales: 

( )t t                            

while at short timescales one observes deviations attributed to the poroelastic behavior of 
the cell. Viscoelastic behavior is common to many polymeric materials, but cells are different 
because their response to stress is not only passive but contains an active component due to 
acto-myosin-driven contraction of the cytoskeleton [56]. This behavior can be described in 
the best way using fractional versions of Maxwell and Kelvin–Voigt models. Here we propose 
two versions of these models: 
I- Fractional Maxwell and Kelvin–Voigt models in term of constant order fractional 

derivative: 
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II- Fractional Maxwell and Kelvin–Voigt models in term of variable order fractional 
derivative: 
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However it has been found that some mechanical behaviors of cells still cannot be fully 
understand by above equations. The possible reason can be that the constant fractional order 
in Eqs. (15, 16) implicates the invariability of mechanical property while in the real living 
organisms and systems it is changing during the mechanical process. A further generalization 
of the concept of fractional order calculus that is applicable to more complex mechanical 
property of material is that of a calculus of varying order [51]. 
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4. Conclusion 

Living organisms and systems exhibits the highest level of complexities. The aim of this 
work was only presentation of some promising models for the future studies in biomedicine 
based on the power tool of fractional calculus. Nowadays it is understood that the best tool 
for investigation of physics of such systems is fractional calculus. We believe that we will have 
exact information about biological phenomena and also more predictable behavior of 
biological structures using fractional calculus in future. Based on this motivation in this work 
we have proposed new versions of Maxwell and Kelvin–Voigt models that is constant and 
variable order fractional Maxwell and Kelvin–Voigt models, to study the complex behavior 
and mechanics of cancer cells. Finally we emphasize that fractional calculus will play a vital 
and central role in the understanding of the complexities that occur when we deal with the 
phenomena and processes in the realm of bioscience and biomedicine and particularly in 
physics of cancer and the models presented in this work will have a promising future. 
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