New bounds on Mertens function

Moreno Borrallo, Juan

December 3, 2023

Abstract

In this brief paper we study and bound Mertens function, which is defined for all positive integers as $M(n)=\sum_{k=1}^{n} \mu(k)$, where $\mu(x)$ is the Möbius function. The main breakthrough is the obtention of a Möbius-invertible formulation of Mertens function, which with some transformations and the application of the generalization of Möbius inversion formula, allows us to reach that $$
M(n)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right)
$$

MSC2020: 11 M 26

1 Introduction

In 1859, in his paper "On the Number of Primes Less Than a Given Magnitude" [3], Bernhard Riemann published the assumption that all non-trivial zero-points of the zeta function extended to the range of complex numbers C have a real part of $\frac{1}{2}$. Ever since David Hilbert in 1900 added this problem to his list of the 23 most important problems of $20^{t h}$ century, mathematicians have been working on finding evidence for the Riemann hypothesis.

Other hand, for any positive integer n, we define the Möbius function $\mu(n)$ as having the following values depending on the factorization of n into prime factors:

- $\mu(n)=1$ if n is a square-free positive integer with an even number of prime factors.
- $\mu(n)=-1$ if n is a square-free positive integer with an odd number of prime factors.
- $\mu(n)=0$ if n has a squared prime factor.

Merten's function $M(n)$ is the summatory function of the Möbius function, so it is defined for all positive integers as

$$
\begin{equation*}
M(n)=\sum_{k=1}^{n} \mu(k) \tag{1}
\end{equation*}
$$

The value of Mertens function is closely connected to Riemann hypothesis through the identity

$$
\begin{equation*}
\frac{1}{\zeta(s)}=s \int_{1}^{\infty} M(x) x^{-s-1} d x \tag{2}
\end{equation*}
$$

This identity is valid for $\operatorname{Re}(s)>1$, and $\zeta(s)$ is the Riemann zeta function. If $M(x)=O\left(x^{\frac{1}{2}+\epsilon}\right)$, then the integral converges for $\operatorname{Re}(s)>\frac{1}{2}$, implying that $\frac{1}{\zeta(s)}$ has no poles in this region and that the Riemann hypothesis is true. Concretely, we have that

Theorem (Littlewood):[2] Riemmann's hypothesis is equivalent to the statement: for every $\epsilon>0$ the function $M(x) / x^{1 / 2+\epsilon}$ approaches zero as $x \rightarrow \infty$.

In this brief paper we study and bound Mertens function. Using some transformations and a generalization of Möbius inversion formula, we are able to reach that

$$
M(n)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right)
$$

2 A new reformulation of Mertens function

From the definition of Möbius function, we have that

$$
\begin{equation*}
\sum_{k=1} \frac{\mu(k)}{k}=1-\frac{1}{2}-\frac{1}{3}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{10}-\frac{1}{11}-\frac{1}{13}+\ldots \tag{3}
\end{equation*}
$$

Where k runs over the square-free integers.
It is straightforward from the definition of $\mu(n)$ to note that

$$
\begin{equation*}
\sum_{k \leq n} \frac{\mu(k)}{k}=1-\sum_{p_{i} \leq n}\left(\frac{1}{p_{i}}\right)+\sum_{p_{i}<p_{j} \leq \frac{n}{p_{i}}}\left(\frac{1}{p_{i} p_{j}}\right)-\sum_{p_{i}<p_{j}<p_{k} \leq \frac{n}{p_{i} p_{j}}}\left(\frac{1}{p_{i} p_{j} p_{k}}\right)+\ldots \tag{4}
\end{equation*}
$$

Other hand, as already stated in (1), we have that Merten's function $M(n)$ is defined for all positive integers as

$$
M(n)=\sum_{k=1}^{n} \mu(k)
$$

Starting from (4), it is pretty straightforward to obtain that

$$
\begin{gathered}
M(n)=1-\pi(n)+\sum_{p_{i} \leq \frac{n}{p_{i}}}\left(\pi\left(\frac{n}{p_{i}}\right)-i\right)-\sum_{p_{i}<p_{j} \leq \frac{n}{p_{i} p_{j}}}\left(\pi\left(\frac{n}{p_{i} p_{j}}\right)-j\right)+ \\
+\sum_{p_{i}<p_{j}<p_{k} \leq \frac{n}{p_{i} p_{j} p_{k}}}\left(\pi\left(\frac{n}{p_{i} p_{j} p_{k}}\right)-k\right)-\ldots
\end{gathered}
$$

Where $\pi(x)$ is the prime counting function.
It can be noted that the above expansion can be re-expressed more compactly as

$$
\begin{equation*}
M(n)=-\sum_{k=1}^{\frac{n}{p_{\pi(\sqrt{n})}}} \mu(k) \pi\left(\frac{n}{k}\right)+S(n) \tag{5}
\end{equation*}
$$

Where $p_{\pi(\sqrt{n})}$ is the greatest prime number less than \sqrt{n}, and where we have that

$$
S(n)=-\sum_{p_{i} \leq \frac{n}{p_{i}}} i+\sum_{p_{i}<p_{j} \leq \frac{n}{p_{i} p_{j}}} j-\sum_{p_{i}<p_{j}<p_{k} \leq \frac{n}{p_{i} p_{j} p_{k}}} k+\ldots
$$

It is worthy to have a look at the expansion of $S(n)$, which looks as follows:

$$
\begin{aligned}
S(n)=-(1+2+3+\cdots+ & \pi(\sqrt{n})+\left(\left(2+3+\ldots+\pi\left(\sqrt{\frac{n}{2}}\right)\right)+\left(3+4+\ldots+\pi\left(\sqrt{\frac{n}{3}}\right)\right)+\ldots\right. \\
& \left.+\left(k+(k+1)+\ldots+\pi\left(\sqrt{\frac{n}{k}}\right)\right)\right)-\ldots
\end{aligned}
$$

Working on this expansion leads us to a closed form for $S(n)$, which can be expressed as:

$$
\begin{equation*}
S(n)=-\sum_{k=1}^{\frac{n}{p_{\pi(\sqrt{n})}}} \mu(k)\left(\frac{\left(\pi\left(\sqrt{\frac{n}{k}}\right)+\lambda\right)\left(\left(\pi\left(\sqrt{\frac{n}{k}}\right)-\lambda+1\right)\right)}{2}\right) \tag{6}
\end{equation*}
$$

Where $\lambda=\omega(k)+\pi(g p f(k)), \omega(k)$ counts the number of distinct prime factors of k, and $\pi(g p f(k))$ counts the number of prime numbers equal or less than the greatest prime factor of k.

At the end, from (5) and (6), we get that

$$
\begin{equation*}
M(n)=-\sum_{k=1}^{\frac{n}{p_{\pi(\sqrt{n})}}} \mu(k)\left(\pi\left(\frac{n}{k}\right)+\left(\frac{\left(\pi\left(\sqrt{\frac{n}{k}}\right)+\lambda\right)\left(\left(\pi\left(\sqrt{\frac{n}{k}}\right)-\lambda+1\right)\right)}{2}\right)\right) \tag{7}
\end{equation*}
$$

3 Bounding Mertens function

3.1 Transformations and simplifications

Firstly, we need to bound the difference

$$
\begin{equation*}
d_{n, k}=\frac{\pi\left(\frac{n}{k}\right)}{\left(\frac{\left(\pi\left(\sqrt{\frac{n}{k}}\right)+\lambda\right)\left(\left(\pi\left(\sqrt{\frac{n}{k}}\right)-\lambda+1\right)\right)}{2}\right)} \tag{8}
\end{equation*}
$$

For the purpose of this paper, it suffices to note that the minimum difference is obtained when $\lambda=0$, and that this happens only when $k=1$. For $k=1$, we have that

$$
\left(\frac{\left(\pi\left(\sqrt{\frac{n}{k}}\right)\right)\left(\left(\pi\left(\sqrt{\frac{n}{k}}\right)+1\right)\right)}{2}\right)=\left(\frac{(\pi(\sqrt{n}))((\pi(\sqrt{n})+1))}{2}\right)
$$

Applying one of the best currently known explicit bounds for $\pi(x)[1]$, we have that for $x>6$

$$
\begin{equation*}
\frac{x}{\log (x)}<\pi(x) \leq \frac{x}{\log (x)}\left(1+\frac{1}{\log (x)}+\frac{2}{\log ^{2}(x)}+\frac{7.59}{\log ^{3}(x)}\right) \tag{9}
\end{equation*}
$$

And therefore, after substituting and operating, we have that

$$
\begin{gather*}
\left(\frac{(\pi(\sqrt{n}))((\pi(\sqrt{n})+1))}{2}\right) \leq \frac{n}{2 \log ^{2}(\sqrt{n})}\left(1+\frac{1}{\log ^{2}(\sqrt{n})}+\frac{4}{\log ^{4}(\sqrt{n})}+\frac{7.59^{2}}{\log ^{6}(\sqrt{n})}\right)+ \\
\frac{\sqrt{n}}{2 \log (\sqrt{n})}\left(1+\frac{1}{\log (\sqrt{n})}+\frac{4}{\log ^{2}(\sqrt{n})}+\frac{7.59^{2}}{\log ^{3}(\sqrt{n})}\right) \tag{11}
\end{gather*}
$$

For the purpose of this paper, it is sufficient to note that, applying the explicit bounds settled before, we have that, for $x>6$,

$$
\begin{equation*}
d_{n, k} \geq \frac{\log (\sqrt{n})}{2} \tag{10}
\end{equation*}
$$

As a result, we have that, for $n>6$, for all k,

$$
\begin{equation*}
\frac{2 \cdot \pi\left(\frac{n}{k}\right)}{\log (\sqrt{n})}>\left(\frac{\left(\pi\left(\sqrt{\frac{n}{k}}\right)+\lambda\right)\left(\left(\pi\left(\sqrt{\frac{n}{k}}\right)-\lambda+1\right)\right)}{2}\right) \tag{11}
\end{equation*}
$$

Therefore, considering (11) and (7), as $\frac{2}{\log (\sqrt{n}}$ tends to zero as x approaches infinity, we have that

$$
\begin{equation*}
M(n)=O\left(\sum_{k=1}^{\frac{n}{p_{\pi(\sqrt{n})}}} \mu(k) \pi\left(\frac{n}{k}\right)\right) \tag{12}
\end{equation*}
$$

3.2 Application of Möbius inversion formula

In this section we will apply a generalization of Möbius inversion formula [4] and some transformations. Concretely, if $F(x)$ and $G(x)$ are complex-valued functions such that, as x grows to infinity, $G(x)=O\left(\sum_{k=1}^{x} F\left(\frac{x}{k}\right)\right)$, we have that $\sum_{k=1}^{x} \mu(k) G\left(\frac{x}{k}\right)=O(F(x))$.

The Prime Number Theorem yields that, when n grows to infinity, $p_{\pi(\sqrt{n})}=O(\pi(\sqrt{n}) \cdot \log (\pi(\sqrt{n})))$ and $\pi(\sqrt{n})=O\left(\frac{\sqrt{n}}{\log (\sqrt{n})}\right)$. Thus, we have that

$$
p_{\pi(\sqrt{n})}=O\left(\frac{\sqrt{n}}{\log (\sqrt{n})} \cdot \log \left(\frac{\sqrt{n}}{\log (\sqrt{n})}\right)=\sqrt{n} \cdot\left(1-\frac{\log \log (\sqrt{n})}{\log (\sqrt{n})}\right)\right)=O(\sqrt{n})
$$

Therefore, we have that, as n grows to infinity, $p_{\pi(\sqrt{n})}=O(\sqrt{n})$, and therefore $\frac{n}{p_{\pi(\sqrt{n})}}=O(\sqrt{n})$.
By the Prime Number Theorem we have that $\pi(x)=O\left(\frac{x}{\log (x)}\right)$. Therefore, if we set $G(x)=\frac{x}{\log (x)}$, we have that

$$
\begin{equation*}
\sum_{k=1}^{\sqrt{n}} \mu(k) \pi\left(\frac{n}{k}\right)=O\left(\sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{n}{k}\right)\right) \tag{13}
\end{equation*}
$$

To apply the generalization of Möbius inversion formula to the right hand side of the above asymptotic, we need to find $F(x)$ such that we have that

$$
G(n)=O\left(\sum_{k=1}^{n} F\left(\frac{n}{k}\right)\right)
$$

Or, substituting,

$$
\begin{equation*}
\frac{n}{\log (n)}=O\left(\sum_{k=1}^{n} F\left(\frac{n}{k}\right)\right) \tag{14}
\end{equation*}
$$

Using Stirling's and Riemann sums approximations, when n grows to infinity, we have that

$$
\frac{n}{\log (n)}=O\left(\sum_{k=1}^{n} \frac{\log \left(\frac{n}{k}\right)}{\log \log \left(\frac{n}{k}\right)}\right)
$$

As a result, applying the generalization of Möbius inversion formula, we get that

$$
\begin{equation*}
\sum_{k=1}^{n} \mu(k) G\left(\frac{n}{k}\right)=O\left(\frac{\log (n)}{\log \log (n)}\right) \tag{15}
\end{equation*}
$$

From this result, we can just substitute n with \sqrt{n} to get that

$$
\sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{\sqrt{n}}{k}\right)=O\left(\frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right)
$$

Substituting, we have that

$$
G\left(\frac{\sqrt{n}}{k}\right)=\frac{n}{\sqrt{n} \cdot k \cdot \log \left(\frac{n}{k}\right)-\sqrt{n} \cdot k \cdot \log (\sqrt{n})}
$$

Operating, we have that

$$
\frac{1}{G\left(\frac{\sqrt{n}}{k}\right)}=\frac{\sqrt{n}}{G\left(\frac{n}{k}\right)}-\frac{k \cdot \log (\sqrt{n})}{\sqrt{n}}
$$

Operating a bit more, we get that

$$
G\left(\frac{\sqrt{n}}{k}\right)=G\left(\frac{n}{k}\right) \cdot \sqrt{n} \cdot\left(\frac{1}{n-k \cdot G\left(\frac{n}{k}\right)}\right)
$$

As we have that

$$
k \cdot G\left(\frac{n}{k}\right)=k \cdot \frac{n}{k \log \left(\frac{n}{k}\right)}=\frac{n}{\log \left(\frac{n}{k}\right)}
$$

We finally get that

$$
\begin{gather*}
G\left(\frac{\sqrt{n}}{k}\right)=G\left(\frac{n}{k}\right) \cdot \sqrt{n} \cdot\left(\frac{1}{n \cdot\left(1-\frac{1}{\log \left(\frac{n}{k}\right)}\right)}\right) \\
G\left(\frac{\sqrt{n}}{k}\right)=G\left(\frac{n}{k}\right) \cdot \frac{1}{\sqrt{n}} \cdot\left(\frac{1}{1-\frac{1}{\log \left(\frac{n}{k}\right)}}\right) \\
G\left(\frac{\sqrt{n}}{k}\right)=G\left(\frac{n}{k}\right) \cdot \frac{1}{\sqrt{n}} \cdot \frac{\log \left(\frac{n}{k}\right)}{\log \left(\frac{n}{k}\right)-1} \\
G\left(\frac{n}{k}\right)=O\left(G\left(\frac{\sqrt{n}}{k}\right) \cdot \sqrt{n}\right) \tag{16}
\end{gather*}
$$

Therefore, we have that

$$
\begin{gathered}
\sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{n}{k}\right)=O\left(\sqrt{n} \cdot \sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{\sqrt{n}}{k}\right)\right) \\
\sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{n}{k}\right)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right)
\end{gathered}
$$

And finally, we have that

$$
\begin{equation*}
\sum_{k=1}^{\sqrt{n}} \mu(k) G\left(\frac{n}{k}\right)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right) \tag{17}
\end{equation*}
$$

Considering this result together with (13) we have that, as n grows to infinity,

$$
\begin{equation*}
\sum_{k=1}^{\frac{n}{p_{\pi(\sqrt{n})}}} \mu(k) \pi\left(\frac{n}{k}\right)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right) \tag{18}
\end{equation*}
$$

And finally, considering this result together with (12) yields that

$$
\begin{equation*}
M(n)=O\left(\sqrt{n} \cdot \frac{\log (\sqrt{n})}{\log \log (\sqrt{n})}\right) \tag{19}
\end{equation*}
$$

4 Final Remarks

The growth rate of Mertens function obtained is sufficient to prove the Riemann Hypothesis, as from the result obtained we have that $M(x)=O\left(x^{\frac{1}{2}+\epsilon}\right)$. And we are sure that our results can be (and will be) improved to get better explicit bounds for Mertens function for sufficiently large x.

I want to specially thank my caring wife Elena for supporting me throughout this marvellous journey of free-time researching and learning during this last eight years. And "I praise you, Father, Lord of Heaven and Earth, because you have hidden these things from the wise and learned, and revealed them to little children" (Matthew 11, 25).

References

[1] P. Dusart. Explicit estimates of some functions over primes. Ramanujan Journal. 45 (1): 225-234, 2018.
[2] J. Littlewood. Quelques consequences de l'hypothese que la fonction $\zeta(s)$ n'a pas de zeros dans le demi-plan $r e(s)>1 / 2$. C.R. Acad. Sci. Paris, 154, 263-266., 1912.
[3] B. Riemann. Ueber die anzahl der primzahlen unter einer gegebenen grösse. Monatsberichte der Berliner Akademie. In Gesammelte Werke, 1859.
[4] G. Rota. On the foundations of combinatorial theory i. theory of möbius functions. Z. Wahrseheinlichkeitstheorie 2, 340-368, 1964.

