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ABSTRACT

Prigogine’s 1978 concept of dissipative structures, drawing parallels with living systems, forms the basis for exploring life’s
unique traits. However, these identified similarities prove insufficient in capturing the entirety of life. To address this gap, our
proposed modeling approach emphasizes the distinctive ability of living organisms to observe other systems—an attribute
intricately tied to quantum mechanics’ "measurement" processes, as highlighted by Howard Pattee. This article introduces a
comprehensive mathematical model centered on quantum dynamical dissipative systems, portraying living systems as entities
defined by their observational capacities within this framework. The exploration extends to the core dynamics of these systems
and the intricacies of biological cells, including the impact of membrane potentials on protein states. Within this theoretical
structure, the model is expanded to multicellular living systems, revealing how cells observe quantum dynamical systems
through protein state changes influenced by membrane potentials. The conclusion acknowledges the current theoretical
status of the model, underscoring the crucial need for experimental validation, particularly regarding the superposition state of
membrane proteins under the influence of an electric field.

1 Introduction

In 1978, Prigogine delineated dissipative structures1, which exhibit several traits shared with living systems, such as
self-assembly2–4. However, these parallels do not encompass all the characteristics of life. Many dissipative systems exist that
are not living organisms, such as cyclones and turbulent flows. Therefore, it is essential to explore additional tools for modeling
life, focusing on characteristics unique to living organisms rather than generic dissipative structures.

To distinguish living organisms from other dissipative systems, we must identify a defining property exclusive to life. I
propose that a key characteristic of living organisms (referred to as living systems) is their ability to observe other systems in
their surroundings. This observation process is intricately linked to the concept of "measurement" in quantum mechanics.

The acquisition of information about the physical universe heavily relies on the process of "measurement"5. Howard Pattee
has emphasized that "measurement" processes must inherently connect with living systems6.

2 Mathematical model
2.1 Quantum dynamical dissipative systems

Most mathematical concepts are founded on set theory. To mitigate the risk of paradoxes in the model, it is crucial to adhere
to the notion of a ’pure set,’ excluding entities like proper classes. Therefore, I assume M to be a Grothendieck universe,
defined as the universe comprising only ’pure sets’7. In this context, H represents the set of all linear maps from M to R,
and I ⊆ R is a finite set consisting of specific (finite) values h(x) for some x ∈ M and certain linear maps h ∈ H . This
assumption of a finite set is based on the hypothesis that living systems, including humanity, cannot yield infinite values when
measuring anything.

Let MH ⊆ M be a Hilbert space equipped with a norm ∥x∥=
√
⟨x,x⟩ and a distance function d(x,y) = ∥x− y∥ defined for

each x,y ∈ MH . Then MH is also a Banach space, and the set of all (Lipschitz) continuous linear maps from MH to R is the
dual space of MH (denoted by M ∗

H ). M ∗
H is also a Hilbert space8, 9.

Let IH ⊆ I be a set of finite eigenvalues of operators on MH , then IH is finite. Let X ⊆ MH be a closed subset of MH ,
St be an evolution operator, and B ⊆ X be an absorbing set. Then (X ,St ,B) is a dynamical dissipative system10. According
to Riesz-Fréchet Representation Theorem8, for each f ∈ X∗, there is a unique x ∈ X such that f (y) = ⟨x,y⟩ for all y ∈ X . We
denote f as ⟨x|, y as |y⟩, and ⟨x,y⟩ as ⟨x|y⟩. Additionally, we define a set UX of evolution operators represented by

Ut−t0 : X → X ,

|xt0⟩ 7→ |xt⟩,

where t, t0 ∈ TX ⊆ IX and t ≥ t0. The operators in UX satisfy the following properties: Ut−t |x⟩ = U0|x⟩ = |x⟩,Ut−t1 ◦



Ut1−t0 |x⟩ = Ut−t0 |x⟩, where ◦ is the composition of operators. These operators are known as the time-evolutions or the
propagators9. Each element Ut,t0 of UX can be represented by the pair (t, t0).

An absorbing set of X is a closed set BX ⊆ X which has the following property: for any bounded set D ⊆ X , there exists
tD ∈ TX such that Ut−t0(D)⊆ BX for all t, t0 ∈ IX with t ≥ tD ≥ t0, where Ut−t0(D) = {Ut−t0 |x⟩

∣∣x ∈ D}.
A system (X ,UX ) is called a quantum dynamical system, and (X ,UX ,BX ) is called a quantum dynamical dissipative system,

where X is a closed subset of a Hilbert space, Ut−t0 is the time evolution operator, and BX is an absorbing set of X .

2.2 Living systems
A living system has properties of a dissipative structure, therefore it is a quantum dynamical dissipative system. Let

(X ,UX ,BX ) be a quantum dynamical dissipative system, and let XY be a subset of X . Suppose that every element of XY can
be represented as xi j, where i, j ∈ Z+ and i ≤ j. Let ∗ is a binary operator defined on XY such that xi j ∗ x jk = xik whenever
xi j,x jk,xik are in XY . The set XY is not necessarily closed under ∗, as there may exist xab,xbc in XY such that xac does not belong
to XY .

The distinctive characteristic of living systems lies in their capacity for "observing" the motion in their surroundings, which
is characterized by evolution operators. Considering a living system denoted as (X ,UX ,BX ) observing a quantum dynamical
system (Y,UY ), I posit that X acquires all the information regarding the motion of Y , encompassing the properties of the
evolution operators UY . Consequently, there exists a subsystem XY within the system X such that (UY ,◦) is isomorphic to
(XY ,∗)—signifying a bijection F : UY → XY where, for all u,v ∈UY , if u◦ v ∈UY , then F(u)∗F(v) ∈ XY and F(u)∗F(v) =
F(u◦ v). In such cases, we assert that Y is observed by X , designating the system (X ,UX ,BX ) as a living system.

Living organisms cannot be immortal; they are destined to experience mortality and cease functioning at a specific time. In
this context, a living system X is deemed to be dead at a designated time td if it ceases to manifest the defining characteristics
of a living system for all times t ≥ td .

2.3 The core of a living system
Cells constitute the fundamental units of a living organism, and the information within a cell is stored in ribonucleic acids

such as DNAs or RNAs, which I term the "core" of the cell. Consequently, it becomes essential to establish a mathematical
definition for the "core" in the context of living systems. Consider a living system denoted as (X ,UX ,BX ), where CX and X0

function as subsets of X . Assuming (X0,UX ) is isomorphic to (CX ,UX ) and there exists a subset B0
X ⊆ X0 transformed to an

absorbing set BX ⊆ X by operators P1, · · · ,Pn, the subset CX is designated as the core of X . The time evolution operator Ut ′−t
acts on the core CX at time t and transforms it into the new core C′

X at time t ′. This temporal evolution of the core serves as the
fundamental mechanism underpinning the overall evolution of living systems.

The cell has the ability to multiply or generate copies through the information encoded in its ribonucleic acids. In the context
of a living system denoted as (X ,UX ,BX ), if there exists a subset CX ′ of X such that (CX ′ ,UX ) is isomorphic to (C′X ,UX ), and
CX ′ serves as the core of a living system (X ′,BX ′ ,UX ′), then we designate the living system X ′ as a copy of X . The operator
responsible for transforming CX in the space MH into the pair (C′

X ,CX ′) in the space MH ×MH is referred to as a copy operator,
symbolized by Ĉ.

3 Biological cells
We consider a biological cell denoted as BX . Let TX = {t0, t1, · · · , tn} be its lifespan, where t0 is the time of its inception

and tn is the time of its termination. Let X be the set of all entities (such as mass or energy quanta) absorbed by BX (or in BX ) at
time ti ∈ TX . The elements of X are represented by (xk, ti). The time evolution operators on X are represented by

UX
t j−ti(xk, ti) = (xk, t j),

where ti, t j ∈ TX , t j ≥ ti and (x, ti),(x, t j) ∈ X . Then (X ,UX ,BX ) is a quantum dynamical dissipative system, where UX is the set
of time operators on X and BX can be considered as an absorbing set of X . The nucleic acids (such as DNA and RNA) inside
the nucleus of the cell BX along with relevant entities in X (such as energy quanta, amino acids, phospholipids, ...), can be
considered as its core.

Defining a binary operator in mathematics is straightforward, but finding a real-world analogue poses challenges. To address
this, I leverage the concept of superposition states in quantum mechanics and exploit the properties of membrane proteins
within cells. The structure of proteins, such as p0 on the cell membrane, can be influenced by a low-strength electric field11, 12.
The presence of a membrane potential13 has the potential to induce alterations in the structure of proteins on the membrane of
BX . Considering a protein on the membrane, denoted as p0, I define the set P = p0, p1, · · · , pm encompassing all structures
of protein p0 that can be modified by membrane potential (remaining unchanged if the membrane potential is insufficient,
denoted as p0). This modification is contingent upon the cell being alive, ensuring m ≤ n. Assuming the protein exists in state
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pi at time t j, where i and j are selected from the set 0,1, · · · ,m with the condition that j ≥ i, I postulate that at time tk ≥ t j, the
protein’s state evolves into a superposition state, a composition of both p j and pi. Subsequently, at time tl > tk, the protein’s
state undergoes a transition to the state pk.

If we denote the state p j at time t j as (pi, t j), we can define a binary combination (denoted by ∗) between two such state as
follows

(pi, t j)∗ (p j, tk) = (pi, tk).

It is evident that the set Pt , consisting of all such state (pi, t j), is a subset of X . The set Pt with the binary combination ∗ is
isomorphic to the set UY of time operators defined on a quantum dynamical system Y . Therefore, (X ,UX ,BX ) is a living system.

Let’s represent the state pi by the vector |pi⟩, for i = 1, · · · ,m. Suppose all the neighboring states |pi⟩, |pi+1⟩ are orthogonal
(i.e., ⟨pi|pi+1⟩= 0), and the protein is in state pi at time instant τi. Then, the set P of such states of proteins can be considered
as a quantum clock14–16 with a time resolution given by

τi+1 − τi = δτi ≥
ℏ

2∆Ei
,

where ∆Ei is the corresponding energy uncertainty. This implies that quantum clocks can exist in every living cell containing
membrane proteins that can change states over time.

Numerous individual living systems (Xi,Uxi ,BXi) can combine to form a living system (X ,UX ,BX ), where X =
⋃

i Xi,UX =⋃
i UXi ,BX =

⋃
i BXi .

If the protein cannot return to the initial state p0, we say that it has undergone degeneration. If the proteins within the cell
membrane cannot enter a superposition state, the cell wouldn’t observe any quantum dynamical system and thus cannot be
considered as a living system. Without the membrane potential, the proteins would remain unaffected by the electric fields,
preventing necessary structural changes for entering a superposition state. The presence of an environment conducive to
membrane potential, facilitated by water, becomes essential. This elucidates why living systems need water.

4 Conclusions
In conclusion, while this mathematical model of life may not comprehensively encapsulate all the intricacies of living

organisms, it stands as a vital link that unites fundamental physics theories with biology. Significantly, it enables the distinction
between living and non-living systems. While certain facets are presently confined to theoretical descriptions, their validation
through experimentation is imperative, particularly concerning the superposition state of membrane proteins influenced by a
low-strength electric field. This model lays the groundwork for further exploration and empirical validation, fostering a deeper
understanding of the complex dynamics inherent in living systems.
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