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Abstract

In this paper, we prove that the sufficient conditions for the extreme value
problem with constraints requires that the projection of the gradient of the
point in the final constraint surface is zero and that the second-order partial
derivative matrix—Hessian matrix on the local linear subspace in the constraint
surface is positive definite or negative definite. The necessary conditions require
that the projection of the gradient of the point in the final constraint surface be
zero and that the second-order partial derivative matrix—Hessian matrix on the
local linear subspace in the constraint surface be semi-positive definite or semi-
negative definite. Finally, we discuss the reconstruction of the micro-base vector
on the local linear subspace in the constraint surface and the local coordinate
system.
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1. Introduction

Extreme value problems
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with constraints are usually solved by Lagrange method of multipliers [? ]. Now
let’s study the content and geometric meaning of Lagrange method of multipliers
in detail.

*Corresponding author: xcssgzs@126.com

Preprint submitted to Elsevier September 20, 2023



We already know that the vector perpendicular to the level surface is the
gradient vector, so the vector perpendicular to the constraint surface
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is
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Thus the final constraint surface S is the intersection of the m constraint surfaces
and each linear combination of the gradient of each constraint surface
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is perpendicular to the final constraint plane S. Therefore, the necessary con-

dition for the extreme value of the function f(x1,xs2, - ,x,) is weakened to
Vi=Y \Vy (5)
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Let’s write this expression in terms of its components combined with the con-
straints

of
8:81

i

of _ 909 _

812 Z:l )\7' 612 - 07
i=

,591 _
)\7‘ Bacl - ’

313

of 99i __ 6
axn*,X:IAiazgn* ) (6)
i=
g1(z1, 22, -+ ,2,) =0,
92(1‘1,$2, ,.’L’n) = 07
5,
gm(x17x27 e 7xn) = O

If we introduce the Lagrange function, the above equations can be reformulated
as
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2. The Sufficient Conditions and Necessary Conditions for Taking an
Extreme Value Without Constraints

Now let’s think about what’s sufficient or necessary to take the extremum
when the first derivative i.e. the gradient is zero. We expand the function to
the second order
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whose vector form is
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is an extreme value is that H is either semi-positive definite (minimum) or semi-
negative definite (maximum). And of course, this is a necessary condition, not
a sufficient condition, because even if it’s a semi-positive definite or a semi-
negative definite, once some eigenvalue is zero, that is, the determinant is zero,
we still have to look at higher derivatives of f(z1,z2, - ,2n)-

When

Vf=0 (13)
the sufficient condition that
x = (21,29, - ,xn)T (14)

is an extreme value is that H is either positive definite (minimum) or negative
definite (maximum). And of course, this is a sufficient condition, not a necessary
condition, because when

H| =0 (15)

it may also be an extreme value.



3. The Sufficient Conditions and Necessary Conditions for Taking an
Extreme Value With Constraints

For constrained problems, when the gradient is zero, the necessary condi-
tions and sufficient conditions for the function to take an extreme value are not
as strong as unconstrained problems for the second derivative matrix. Since the
argument can only be active in the final constraint surface, the necessary con-
dition is that H is semi-positive definite or semi-negative definite in the linear
subspace of the final constraint surface, and the sufficient condition is that H
is positive definite or negative definite.

If the m constraints are linearly independent at a specific point, then the
dimension of the constraint surface at this point is n — m. If it is linearly
dependent, the final dimension will be larger than n — m. There is no harm to
suppose that it is linearly independent because the process of argument is the
same if dependent. We select a set of base vectors within the constraint surface

e, ey, e (16)

m
The vector group can be extended to a group of base vectors in the whole space
é17é27"' )é’n (17)

Suppose that the transition matrix from the original base vectors to the new
base vectors is S, i.e
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so its matrix form is
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Therefore, we have
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Then the second derivative matrix under the new base vectors is
A B
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where A is a symmetric matrix of order (n—m) x (n—m), B is a matrix of order
(n—m) xm, and C is a matrix of order m x m. Then the necessary condition for
taking the extreme value only requires A to be semi-positive definite or semi-
negative definite rather than require H to be semi-positive definite or semi-
negative definite. And the sufficient condition for taking the extreme value only
requires A to be positive definite or negative definite rather than require H to
be positive definite or negative definite.



4. The Method of Constructing Micro Base Vectors in the Con-
strained Subspace

In order to find the above matrix A, we need to establish a group of micro
base vectors in the local linear subspace of the constraint surface. Taking the
partial derivative of the constraints, we can obtain
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Since the m constraints may be linearly dependent, the column rank [ of the
matrix may satisfy

l<m (24)

By solving this system of linear equations, we can find n — [ free variables,
supposing the n — [ independent free variables are

Liyp1sTiyggs " Liy (25)
where 41,72, , iy is a rearrangement of 1,2,---  n. We select
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as the new base vectors, then the transformation relation between the old coor-
dinate and the new coordinate is
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where
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is the permutation matrix (In each row, only one element is 1, and the rest are
0; the same is true for each column). So if we solve this equation we finally get
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It can be seen that Ax;,, Ax;,, - ,Az;, are not an independent variables and
are uniquely determined by Az, ,Az;_,, - ,Ax;,. Therefore we can select

the vectors
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So we have found the basis vectors that satisfies the above condition in last
section. We extend it further to a set of base vectors, namely
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i.e.

(& é
ki1 kiggo
ko411 ko242
kriv1 Kiiseo

1 0
0 1
0 0

Then the transformation relation of coordinates is
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It is obvious from the last section that the matrix TK is the matrix S we are
looking for, in other words, we do the coordinate transformation

/
Ty T
!
To 1 To
. =5 . (38)
/
xh, Tn,
then Hessian matrix of the function f(z},z5,---,z!) in the new coordinate

system is the H' we need in the last section.

Note that the satisfactory Az’ is not unique, because the first n—1[ rows of K
as linearly independent linear combinations can combine an equivalent linearly
independent group to replace the first n — [ rows as a new Az’. On the other
hand, the degree of freedom of the last [ rows of K is very high when the vector
group is extended. We don’t even need all of the entries in the n — [ columns
to be 0, as long as the final matrix is linearly independent.

5. Conclusions

In this paper, we obtain the sufficient conditions and necessary conditions
for the extreme value problem with constraints.

The sufficient conditions for taking an extreme value are that the projection
of the gradient of the point in the constraint surface is zero and the second-
order partial derivative matrix on the local linear subspace in the constraint
surface be positive or negative definite. The necessary conditions are that the
projection of the gradient of the point in the constraint surface is zero and that
the second-order partial derivative matrix on the local linear subspace in the
constraint surface be semi-positive or semi-negative definite.

Finally, we discuss the construction of the local coordinate system and the
micro base vector on the local linear subspace in the constraint surface to find
the second-order partial derivative matrix on the local linear subspace in the
constraint surface. This construction has a high degree of freedom.



