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Abstract: 
This paper introduces a watertight technique to deal with the boundary representation of 
surface-surface intersection in CAD.  
 
Surfaces play an important role in today’s geometric design. The mathematical model of 
non-uniform rational B-spline surfaces (NURBS) is the mainstream and ISO standard. In the 
situation of surface-surface intersection, things are a little complicated, for some parts of 
surfaces may be cut-off, so called trimmed surfaces occur, which is the central topic in the past 
decades in CAD community of both academia and industry. The main problem is that the 
parametric domain of the trimmed surface generally is not the standard square or rectangle, and 
rather, typically, bounded by curves, based on point inverse of the intersection points and 
interpolated. The existence of gaps or overlaps at the intersection boundary makes hard the 
preprocessing of CAE and other downstream applications. The NURBS are in this case hard to 
keep a closed form. In common, a special data structure of intersection curves must be affiliated 
to support downstream applications, while the data structure of the whole CAD system is not 
unified, and the calculation is not efficient.  
 
In terms of Bezier surface, a special case of NURBS, this paper designs a reparameterization or 
normalization to transform the trimmed surface into a group of Bezier surface patches in 
standard parametric domain [0,1]X[0,1]. And then the boundary curve of normalized Bezier 
surface patch can be replaced by the intersection curve to realize watertight along the boundary. 
In this way, the trimmed surface is wiped out, the “gap” between CAD and CAE is closed. 
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1. Introduction  

Geometric models are widely used in CAD and other related fields to represent the shape of 
products and/or objects. These geometric models provide precise descriptions of 
three-dimensional shapes in a way that computers can understand. Most geometric models are 
designed using parametric surfaces and stored in specific data structures, which greatly improves 
the efficiency of product model design, generation, simulation, modification and optimization. 
Most of the current mainstream geometric models use spline surface models, which represent 
the three-dimensional shape of products or objects with a series of regular surfaces and/or 
irregular surfaces. The non-uniform rational B-splines (NURBS) method in the form of tensor 
product is the mainstream technology for surface representation in CAD and is already universal 
and ISO standard, which plays an important and indispensable role in the design, analysis and 
manufacturing of industrial products. Bezier surface is a special expression form of NURBS. All 
NURBS surfaces can be represented by Bezier surface patches. Bezier surface patches are defined 
in the standard parametric domain [0,1]X[0,1], which is convenient for calculation, storage and 
transformation. The de Casteljau algorithm provides a tool for extracting partial surface patches 
along rectangular subregions surrounded by arbitrary isoparametric lines for Bezier surface 
patches. Each of these subregions can be transformed back into standard domains through linear 
parametric transformation [Böhm et al.,1984]. For the convenience of writing, the following 
explanation assumes that all spline surfaces and spline curves are converted into Bezier form. 
 
In actual product design, complex surface shapes are often involved, they cannot be directly 
represented by a single spline surface. Instead, the trimmed surface is obtained by manipulating 
the intersection curves between the surfaces and then trimming and combining them. The 
processing of intersection curves between surfaces will affect the quality and accuracy of product 
design. If the intersection curves are not handled well, there will be gaps or overlaps in the 
surface boundaries of the product, causing the definition of geometric entities to not be closed 
on the boundaries, affecting downstream applications, like analysis and processing 
manufacturing. Therefore, how to deal with the intersection curves between surfaces has always 
been one of the core issues in CAD. [Farin,2002] 
 
According to algebraic theory, the algebraic degree of a Bezier surface with parametric degree 
MXN is 2MN. For the common 3X3 parametric Bezier surface, its algebraic degree is 18. When 
two such surfaces intersect, the algebraic degree of the intersection curve is as high as 324, 
which results in no analytical solution in algebra and cannot be expressed accurately. Therefore, 
the intersection curve between two tensor product parametric surfaces can generally only be 
approximately represented within a certain accuracy by a low-order spline curve. The error or 
bias causes the intersection curve between two intersection surfaces to generally not strictly fit 
on either of the two intersection surfaces, except for the intersection point. That is to say, 
generally there is a gap or overlap between the intersection curve of the low-order 
approximation and the two intersection surfaces, so the definition of the product geometric 
model is incomplete and not closed. This problem is called "watertight" problem. This is one of 
the main sources of so-called “dirty geometry” data that results in imperfect, impure geometric 
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designs. [Kasik et al., 2005], [Piegl,2005], [Sederberg et al., 2008], [Cottrell et al.,2009] 
 
Therefore, various treatment methods have been derived. At present, the common method to 
deal with the "watertight" problem in CAD is to perform meshing at the boundaries and manually 
stitch the boundary meshes to achieve watertightness. However, there is no unified standard for 
manual stitching of seams. The stitching results vary from person to person and are approximate. 
For product designs with high precision requirements, premature meshing will also introduce 
unnecessary errors into subsequent simulation analysis. In addition, manually stitching the 
boundary mesh is tedious, brings additional design burden to the design engineer, requires a lot 
of time and attention, and affects the design efficiency of the product. Isogeometric analysis (IGA) 
aims at solving the connection of CAD and CAE with high order continuity functions and is now a 
hot research topic. [Hughes et al.,2005], [Cottrell et al.,2009], [Marussig and Hughes,2018] 
 
A new idea is to use the T-spline method. While it introduces new mathematical model and its 
theory is not mature enough for convenient engineering use and is not an ISO standard. The 
difficulty and complexity of software development and maintenance are greatly increased, 
making it inconvenient to apply. It is not currently adopted by mainstream CAD systems yet. 
[Sederberg et al., 2003, 2004] 
 
Another method is to seek some kind of transformation on the boundary, such as [Urick et al., 
2019], which uses a linear transformation of separating multiple isoparametric lines to simply 
transform the trimmed boundary curve on an interval into a straight line of isoparametric lines. 
However, due to the lack of constraints defined by the surface, its impact on the shape of the 
original surface cannot be controlled accurately, and this problem has not been effectively 
addressed. [Urick, 2016], [Urick et al. 2019, 2020] 
 
In terms of Bezier surface, this paper designs a reparameterization or normalization to transform 
the trimmed surface into a group of Bezier surface patches in standard parametric domain 
[0,1]X[0,1]. And then the boundary curve of normalized Bezier surface patch is replaced by the 
intersection curve to realize watertight. In this way, the trimmed surface is wiped out, the “gap” 
between CAD and CAE is closed. 
 

2.Foundamentals, trimmed surfaces and its parametric 

domain
 

A general MXN Bezier surface is: 
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degree Bernstein basis function of variable x ∈ [0,1]. 

 
Assume that two Bezier surfaces S1(u,v), S2(s,t) intersect on a space curve, as shown in Figure 1. 
Since the precise mathematical representation of the intersection curve cannot be obtained, 
generally only a series of intersection points in the three-dimensional space could be given, say Pi, 
i=1,2,...,K. Through these intersection points, an interpolated spline representation of the 
intersection curve C(w)={x(w),y(w),z(w)} can be generated. Since the intersection points are on 
the two surfaces, the corresponding surface parameters can be found in reverse, (uj,vj) and (sj, tj), 
j=1,2,...,K. At the same time, the parametric splines on the two-dimensional parametric spaces of 
two surfaces can be generated respectively, C1(α) ={u(α),v(α)} and C2(β)={s(β),t(β)}, they are 
called domain curves.  
 

 
Figure 1 Two intersection surfaces and their intersection curve with defining points Pj. 
 

By bringing the domain curves C1 and C2 into surfaces S1 and S2 respectively, we can obtain the 
curves SC1 and SC2 mapped to the two surfaces in the three-dimensional space, which are 
completely fitted on their respective surfaces, they are curves on the surfaces. 
 
Note that there exist three curves on the boundary, C, SC1, and SC2, they are independent with 
each other and do not coincide exactly with each other. The gaps or overlaps there are the 
reason of “watertight problem”.  
 

3. Domain transformation and normalization 

For the trimmed surface, the domain curve goes through the parametric domain and divides it 
into two parts, one is left, another will be cut-off, see Figure 2, where suppose the upright part be 
cut-off, point B, D, and G be corresponding points or projective points of intersection points in 
the domain.  
 
On the left area of domain, the trimmed Bezier surface can be further segmented into a series of 
small surface patches according to the intersection points parameters at the boundary. These 



 

 
 5

small patches can be classified into two categories, one is non-boundary patch, their parametric 
domains are defined by isoparametric lines; the other is boundary patch, their parametric 
domain contains some part of C1(α) or C2( β), which is composed of a trapezoid with curved 
sides. As shown in Figure 2, ABCD and DEFG are curved trapezoids with curved boundaries. 
 

 

Figure 2 Parametric domain segmentation of trimmed surface. 
 

Note that the domain curves C1(α) and C2(β) may be multi-valued functions. For example, if 
the intersection curve on the surface S1(u,v) is approximately a circle, then for C1 in the 
parametric domain, for each value of u (or v), there are two corresponding v (or u). The 
parametric domain may need to be appropriately decomposed further so that it contains only 
single-valued functions in the sub-region. This is always possible . 
 

The Bezier surface shown in formula (1) is defined in the standard parametric domain [0,1]X[0,1], 
which is a canonical form. For the sub-domains of non-boundary patches, de Casteljau algorithm 
can be used to transform them into standard domain.  
 
For the boundary patches, a parametric transformation is designed to restore their curved 
trapezoid domains into the standard one, and make the irregular domain to regular domain, this 
is called reparameterization or normalization. 
 
The analysis shows that after segmentation above, there are eight types for the curved trapezoid 
domain as shown in Figure 3(a)-Figure 3(h), where there has one and only one point of domain 
curve passing through one vertex of the rectangular area, they are equivalent under a rotational 
symmetry transformation. The curved trapezoid ABCD and DEFG in Figure 2 corresponds to 
Figure 3(a) and Figure 3(c) respectively.  
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Figure 3. Eight cases of curved trapezoid domains of the boundary patch. 
 

And the curved trapezoid domain limited by the boundary curve and the three isoparametric 
lines can be mapped into a standard parametric domain, we take Figure 3(a) as example, see 
Figure 4. 

 

Figure 4. The mapping from curved trapezoid domain to the standard. 
 

The reparameterization or normalization begins with a mapping, by which the irregular curved 
trapezoid domain shown in Figure 4(a) is mapped into the standard parametric domain shown in 
Figure 4(b), thus the surface on it can have a standard Bezier surface form with parametric 
domain [0,1]X[0,1] and therefore has a unified data structure.  
 
Let the curve equation u= f(v) in Figure 4(a), the domain is u∈[0,f(v)], v∈[0,1], the following 
transformation maps [u,v]∈[0,f(v)]X[0,1] to [s,t]∈[0,1]X[0,1]， 
                                                                                                                             

Γ：u = s ∗ f(t), v = t 

                                                                           (2)   
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is a polynomial of degree p.  
 
Replace Eq. (2) into (1), we have 
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where, 3
,i jR %

 new control points.   

In terms of parameter (s,t), the degree of the Bezier surface is from mXn up to mX(mXp+n). 
Depending on the accuracy requirements of different applications, the degree of polynomial f(v) 
may be degree 1, 2, or higher. 
 

sf1

sf2

cu1

 
 
Figure 5. The reparameterized Bezier surface from 3X3 up to 3X9 with a quadric transformation, 
where the asterisk points are control points. 

  

 

In Figure 5, shows a reparameterized or normalized surface, where sf1 is the part to be retained, 
sf2 is that to be cut-off, curve cu1 is the intersection or trimmed boundary, and the asterisk 
points are regenerated control points of new Bezier surface, which is defined on the standard 
parametric domain. Note that the shape of retained surface part and the boundary remain 
unchanged. 
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4. Replacement of boundary curves of trimmed surfaces by 

intersection curve   

At this point, the two surfaces S1 and S2 have been transformed on the boundary and are 
expressed as a group of small Bezier surface patches, their shapes remain unchanged. Since the 
intersection curve C is not completely on the two trimmed surfaces. In general, the intersection 
curve C and the two on-surface curves SC1 and SC2 do not coincide with each other. There is 
either a gap or an overlap between two intersection surfaces, which is known as the "watertight" 
problem in academia and industry. [Sederberg et al., 2008], [Urick et al., 2019] 
 

To solve this problem, we suggest to modify the boundary curves of reparameterized Bezier 
surface patches along the intersection border. The algorithm is simple, for the border control 
points of Bezier surface are the control points of border curves of the surface.   
 
After the control points of the surface boundary curves at the intersections are replaced with 
control points of the intersection curve C, the two intersection surfaces have the curve C as the 
common boundary, and there are no gaps or overlaps anymore. As can be seen from Figure 6, the 
two intersection surfaces achieve a seamless connection, solving the watertight problem, thus 
making the product design closed and complete. 
 

 
Figure 6. A watertighted example of two intersection Bezier surfaces, where the multi-parallel 
curves show the segmentation according to the intersection points. 
 
It should be noted that the degree of the reparameterized surface will increase, the degree of the 
surface boundary curve on the intersection surface may be higher than the degree of the 
intersection curve C. The degree of the intersection curve C may be upgraded to the same degree 
as the reparameterized surface.  
 
In practical applications, in order to improve the efficiency of design and calculation and to keep 
the same data structure, the degree of reparameterized surface patch may be appropriately 
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reduced within the allowable range of error and accuracy. 
 

5. Results, discussions, and conclusions 

To sum up, there are two stages to realize the watertight:  
1. reparameterizing, to transform the trapezoid domain to the standard one; 
2. substituting, to replace the boundary curves of reparameterized surfaces by intersection 
curve. 
 
In stage 1, the shape of trimmed surfaces keeps unchanged. In stage 2, the replacement will 
result in errors or bias at the boundary. To limit them in a range, higher order interpolation of 
intersection curve will need, so that more intersection points will be utilized to reach higher 
accuracy. 
 
The technique is more suitable for the definition, representation and application of geometric 
models in fields such as CAD, CAE, CAM etc. Since the boundaries of surface of a product or 
object are standardized with a unified mathematical model and the same data structure, which 
facilitates parallel processing and quick visualization. The geometric models will be more easily 
converted and interpreted in different systems, supporting data sharing among suppliers, 
customers or collaborators, and reducing the risk of misunderstandings and errors. Furthermore, 
the method automatically processes intersection surface boundaries, generates a complete and 
closed model without gaps, reduces errors at the model surface boundaries, improves the 
accuracy at the model surface boundaries, and makes the product design generated based on the 
model more accurate. It is exquisite and speeds up the progress of design engineers in 
completing tasks. It not only facilitates subsequent analysis and processing and manufacturing 
processes, reduces risks in the product development process, but also shortens the development 
cycle and improves productivity. 
 
Therefore, the solution can improve the quality and reliability of the product geometric model 
and is conducive to the smooth progress and efficient output of design, analysis and 
manufacturing processes, and has broad application prospects in CAD. 
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