Geometric Probability Model for α_{em} and α_{s}

Kevin Loch*

(Dated: 2023/12/4)

Abstract
A simple geometric probability model for the EM and Strong force coupling constants.

Basic Building Blocks

In this model, the integral

$$
\begin{equation*}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{1}}{2 \pi} d \theta=\frac{1}{\pi} \tag{1}
\end{equation*}
$$

represents an average probability of interaction for two dimensions, based on the cosine of a random distribution for angle θ over a full circle, but with potential interactions limited to $\pm \frac{\pi}{2}$ radians. The angle could vary over time or represent many simultaneous sub-components of a particle. This can be extended to an arbitrary higher dimension d with

$$
\begin{equation*}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{n} \theta}{2 \pi} d \theta=\frac{n-1}{n} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{n-2} \theta}{2 \pi} d \theta(n>0) \tag{2}
\end{equation*}
$$

where $n=d-1$. In this model the higher dimension integrals include the 1 -sphere factor of $1 / 2 \pi$ instead of an n-sphere factor as θ is always between two arbitrary dimensions (not a solid or higher degree angle). The n-degree cosine is required as the distribution across "unused" dimensions does affect probabilities on the two arbitrary dimensions.

Initial Attempt

An initial attempt at constructing this model used a simple combination of four 1 -spheres which is within 0.523% of α_{em} when divided by $\sqrt{2}$:

$$
\begin{equation*}
\alpha_{\mathrm{em}} \simeq \frac{1}{\sqrt{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{1}}{2 \pi} d \theta_{1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{2}}{2 \pi} d \theta_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{3}}{2 \pi} d \theta_{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{4}}{2 \pi} d \theta_{4}=\frac{1}{\sqrt{2} \pi^{4}} \simeq 7.259146 \times 10^{-3} \tag{3}
\end{equation*}
$$

I had actually found this $1 /\left(\sqrt{2} \alpha^{4}\right)$ result in an empirical search years ago (just the result, not derived from anything) but disregarded it as numerological/coincidence.

Interesting Result

A search of hybrid-dimensional combinations found this equation which matches α_{em} to within 0.0398%. It's a better match, but more interesting is the geometry which is analogous to the symmetries of the Standard Model. I've moved the empirical factor of 3 to the second term where it seems to make the most sense:

$$
\begin{align*}
& \alpha_{\mathrm{em}} \simeq \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{5} \theta_{1}}{2 \pi} d \theta_{1} 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{3} \theta_{2}}{2 \pi} d \theta_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{3} \theta_{3}}{2 \pi} d \theta_{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta_{4}}{2 \pi} d \theta_{4}=\frac{32}{45 \pi^{4}} \simeq 7.300254 \times 10^{-3} . \tag{4}\\
& \underbrace{S^{5}}_{\mathrm{SU}(3)}| | S_{\mathrm{SU}(2)}^{S^{3}}\left|S_{\mathrm{U}(1)}^{S^{3}}\right|
\end{align*}
$$

Of additional interest, the $\mathrm{SU}(3)$ terms are close to $\alpha_{s}\left(M_{Z}\right)$ and possibly even closer at M_{H} or $v / \sqrt{2}$ energy scale:

$$
\alpha_{\mathrm{s}}\left(M_{Z}^{2}\right) \simeq \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{5} \theta_{1}}{2 \pi} d \theta_{1} 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{3} \theta_{2}}{2 \pi} d \theta_{2}=\frac{16}{15 \pi^{2}} \simeq 0.108
$$

[^0]
[^0]: * kevin@loch.me

