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Abstract: The Theory of Observational Relativity, the theory of OR for short, is a 

new discovery and a new theory, which has revealed the root and essence of 

relativity: All relativistic effects or relativistic phenomena are observational effects 

and apparent phenomena rather than the objective and true physical reality. In 

particular, the whole theoretical system of OR has generalized and unified Newton’s 

mechanics and Einstein’s theory of relativity, integrating such two great theories in 

physics into the identical theoretical system under the identical axiom system. The 

theory of OR is divided into two parts: the theory of inertially observational 

relativity (IOR); the theory of gravitationally observational relativity (GOR). The 

theory of GOR takes the three principles of GOR as its axiom system: (1) the 

principle of GOR equivalence; (2) The Principle of GOR covariance; (3) the 

principle of the invariance of information-wave speeds. Based on the three 

principles of GOR, by following or by analogizing the logic of Einstein’s general 

relativity, the author has established the whole theoretical system of GOR, including 

the field equation of GOR and the motion equation of GOR. GOR’s field equation 

has generalized and unified Einstein’s field equation and Newton’s field equation 

(i.e., the Poisson equation form of Newton’s law of universal gravitation). GOR’s 

motion equation has generalized and unified Einstein’s motion equation and 

Newton’s motion equation (i.e., the second law form of Newton’s law of universal 

gravitation). The theory of GOR has proved an important theorem: the theorem of 

Cartesian spacetime which suggests that the objectively real spacetime could never 

be curved. So, spacetime is not really curved. Finally, the theoretical system of GOR 

has generalized and unified Newton’s theory of universal gravitation and Einstein’s 

theory of general relativity. It suggests that the theory of GOR is logically consistent 

not only with Einstein’s theory of general relativity but also with Newton’s theory of 

universal gravitation. Such logical consistency and strict correspondence show that 

the theory of GOR is logically self-consistent, and confirm the logical rationality and 

theoretical validity of the theory of GOR. 
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Introduction to GOR 

The theory of Observational Relativity (OR), the theory of OR for short, 

consists two parts: the 1st volume of OR: Inertially Observational Relativity (IOR) 

generalizes Einstein’s theory of special relativity and Newton’s theory of inertial 

mechanics; the 2nd volume of OR: Gravitationally Observational Relativity 

(GOR) generalizes Einstein’s theory of general relativity and Newton’s theory of 

universal gravitation. 

Before the birth of Einstein’s theory of special relativity, people believed in 

Galileo’s doctrine [110] and Newton’s laws [81]: space and time are independent of 

each other, inertial spacetime follows the Galilean transformation and inertial 

motion follows Newton’s mechanics. After the birth of Einstein’s theory of special 

relativity [7], people turned to believe in Einstein’s theory: space and time are 

interdependent of each other, inertial spacetime follows the Lorentz transformation 

and inertial motion follows Einstein’s relativity. 

The theory of special relativity was established by Einstein in 1905 based on the 

hypothesis of the invariance of light speed, However, people do not understand the 

essence of the invariance of light speed and the relativistic phenomena of spacetime 

and matter motion in Einstein’s theory of special relativity. 

The 1st volume of OR: Inertially Observational Relativity (IOR) has 

established the theory of IOR, generalizing and unifying Galileo and Newton’s 

inertial mechanics and Einstein’s special relativity, revealing the root and essence of 

relativistic phenomena in inertial spacetime and inertial motion. 

The theory of IOR provides us with an entirely new understanding of Einstein’s 

theory of special relativity and inertial spacetime. 

The theory of IOR tells us that the speed of light is not really invariant. 

Now, the 2nd volume of OR: Gravitationally Observational Relativity (GOR) 

will work to establish the theory of GOR, generalizing and unifying Newton’s 

theory of universal gravitation and Einstein’s theory of general relativity, revealing 

the root and essence of the relativistic phenomena of gravitational spacetime and 

gravitational interaction. 

The theory of GOR will provide us with an entirely new understanding of 

Einstein’s theory of general relativity and gravitational spacetime. 

The theory of GOR will tell us that spacetime is not really curved. 

Einstein’s General Relativity and Spacetime Curvature [8] 

Before the birth of Einstein’s theory of general relativity, people believed in 

Newton’s law of universal gravitation [81]:  

All matter bodies in the universe gravitate towards each other due to the effect 

universal gravitation. It is the universal gravitation that controls the motion of the 

sun, the moon, and stars in the universe. 

In 1915, after ten years of his theory of special relativity, Einstein established 

the theory of general relativity, extending his relativity theory from inertial 
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spacetime to gravitational spacetime. Einstein’s theory of general relativity achieved 

great success. Based on his theory of general relativity, Einstein made the three 

famous predictions: (1) gravitational redshift, (2) gravitational deflection, and (3) 

Mercury’s anomalous precession, which were all verified and supported by 

observations and experiments. 

Thus, people turn to believe in Einstein’s theory of general relativity. 

Both Einstein’s theory of general relativity and Newton’s theory of universal 

gravitation are the theories about gravitational interaction, which are the two greatest 

theoretical systems in the history of human physics. 

However, Einstein’s understanding of gravity is different from Newton’s. 

Newton believed that all matter bodies in the universe gravitated towards each 

other due to the effect universal gravitation, and the motion of all matter bodies in 

the universe followed the law of universal gravitation [81]. In this way, Newton could 

explain why the moon revolves around the earth and why the earth revolves around 

the sun. Einstein believed that matter and energy made spacetime curved, and the 

curved spacetime made matter bodies move. In this way, Einstein could seemingly 

also explain why the moon revolves around the earth and why the earth revolves 

around the sun. 

In his theory of general relativity, Einstein geometrized gravitational spacetime 

and made it become a curved spacetime. 

It is based on the idea of spacetime curvature that Einstein had established the 

whole theoretical system of his general relativity by means of curved Riemannian 

geometry [111] as the mathematical tool. 

However, just as we cannot understand Einstein’s invariance of light speed, nor 

can we understand Einstein’s spacetime curvature. Actually, the so-called spacetime 

curvature is also a relativistic effect, which is the logical consequence of the 

invariance of light speed. People cannot understand the invariance of light speed as 

the logical premise, and naturally, cannot understand the spacetime curvature as the 

logical consequence. 

You can feel the effect of the gravitational pull of the earth, but you cannot feel 

the curvature of spacetime, no matter the curvature of space or the curvature of time. 

Anyway, you could not imagine how spacetime to be curved. 

Time is just time, without geometric property, which does not matter whether   

flat or curved. The curved time is beyond human reason. Space is just space, and 

likewise, it does not matter whether flat or curved. In 3d space, you can construct 

any manifold, no matter flat or curved. 

Nevertheless, the mainstream school of physics still believe in the theory of 

spacetime curvature, and take it to the extreme: 

The accumulation of matter and energy caused spacetime curvature, and 

spacetime curvature caused the contraction of the universe. The contraction of the 

universe made matter and energy further accumulated, spacetime further curved, and 

the universe further contract. Such an evolving process eventually led the universe 

to contract into a point where spacetime was infinitely curved and the curvature of 
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spacetime was infinite. Thus, with a tremendous crash (no one had heard), a new 

universe had been born in the Big Bang. So, there had been numerous galaxies, the 

milk way, the solar system, the earth, the moon, and then, our human beings. 

According to Hubble, the universe is still expanding today [112]. 

This is regarded as the evidence of the Big Bang. 

From the Principle of general correspondence to GOR [29,30] 

The 2nd volume of OR: Gravitationally Observational Relativity (GOR) 

attempts to establish the theory of General Observational Relativity (GOR) or 

Gravitationally Observational Relativity (GOR), the theory of GOR for short, 

extending the theory of OR from the inertial spacetime SI of IOR theory to the 

gravitational spacetime SG of GOR theory, and at the same time, extending 

Einstein’s theory of general relativity from the optical observation agent OA(c) to 

the general observation agent OA(). 

Einstein’s theory of special relativity is the foundation of Einstein’s theory of 

general relativity, and naturally, the logical premises and consequences of Einstein’s 

special relativity, including the invariance of light speed, would be the logical 

premises of Einstein’s general relativity. 

Likewise, the theory of IOR is the foundation of the theory of GOR. Therefore, 

the logical premises and consequences of IOR theory, including the invariance of 

information-wave speeds, would be the logical premises of GOR theory. 

The theory of OR, no matter from the theory of IOR to GOR or from Einstein’s 

theory of general relativity to GOR, has a logical shortcut to follow: to analogize or 

follow the logic of Einstein’s general relativity. In order to pave such a logical 

shortcut for the theory of GOR, the theory of OR builds a principle based on the 

Bohr correspondence principle and the principle of relativity: the Principle of 

General Correspondence (GC), the principle of GC for short. 

In the history of physics, Bohr’s Correspondence Principle has special status [70]. 

Bohr’s correspondence principle elucidates the corresponding relationship between 

quantum physics and classical physics: if the Planck constant h→0, then quantum 

system isomorphically and uniformly converges to classical system. This suggests 

that quantum mechanics and classical mechanics are isomorphically consistent and 

therefore logically connected. More importantly, Bohr’s correspondence principle 

has become the important ideological foundation and guiding principle for 

developing new theoretical systems or models in physics. It is based on his 

correspondence principle that Bohr developed his atomic structure model [75-77]. 

Moreover, it is Bohr’s correspondence principle that led to the establishment of 

matrix mechanics [113-115] and promoted the development of quantum theory [116,117]. 

The theory of OR discovers that (see the theory of IOR and the theory of OR 

matter waves in the 1st volume of OR) [26,27]: The Planck constant h is actually a 

parameter of the optical observation system, that is, the energy-frequency ratio of 

the informons (photons) of the optical agent OA(c), representing the observational 

resolving-power of OA(c) or the observational uncertainty of OA(c). 

Actually, different observation systems or different observation agents (OA() 
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((0,+))) have different information-wave speeds ((0,+)) and different 

informon energy-frequency ratios (h(0,+))), and therefore, have different 

observational resolving-power: x()p()ħ (see the principle of measuremental 

uncertainty in BP-08.3 of Chapter 9 in the 1st volume of OR). 

In the theory OR matter waves, the energy-frequency ratio h of the informons 

of OA() is the general Planck constant h in the general Planck equation E=h2. 

With regard to the general Planck constant h, the theory of OR matter waves has an 

extremely important identity, so-called the identity of general Planck constant 

(GPC): hC (C=hc), the GPC identity for short. The GPC identity h=hc 

suggest that the Planck constant h is only a special case of the general Planck 

constant h: h=h if and only if OA() is the optical agent OA(c) (→c). 

It should be pointed out that the GPC identity h=hc is exactly the 

mathematical formalization of Bohr’s correspondence principle: → as h→0, 

and then the system of quantum mechanics is isomorphically and uniformly 

transformed into the system of classical mechanics. 

The principle of general correspondence reflects the internal connection between 

different theoretical systems in physics, and at the same time, reflects the internal 

connection between different observation systems in physics, endowing the Bohr 

correspondence principle with more universal significance. 

According to the theory of OR and the principle of general correspondence, 

theoretically or logically, all theoretical systems of physics have the intrinsic 

corresponding relationship, have the common logical premises, and are based on the 

identical axiom system. Actually, Bohr’s correspondence principle, the principle of 

special relativity or the Galilean invariance, even the principle of general covariance 

and the principle of equivalence, are all the principles about the corresponding 

relationships between different theoretical systems of physics. 

The principle of general correspondence has generalized Bohr’s correspondence 

principle and the principle of relativity (including the Galilean invariance and the 

principle of general covariance). 

The establishment of the principle of general correspondence contributes to the 

development of new theories of physics and the unification of old theories of 

physics, as well as to the test of the logical consistency and self-consistency of the 

theoretical systems in physics. In particular, the principle of general correspondence 

has built the logical basis and paved the logical shortcut for the theory of GOR. 

Therefore, based on the principle of general correspondence, by analogizing or 

following Einstein’s logic of deducing general relativity from special relativity, the 

theory of OR could deduce the theory of GOR from the theory of IOR. In this way, 

the theory of OR could extend the theory of IOR from inertial spacetime to 

gravitational spacetime, at the same time, could extend Einstein’s theory of general 

relativity from the optical agent OA(c) to the general observation agent OA(). 

Taking advantage of the principle of general correspondence, the whole 

theoretical system of GOR will be established. 

The Theory of GOR [29,30]: 
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the Unification of Newton’s Theory of Universal Gravitation 

and Einstein’s Theory of General Relativity 

The development history of physics is the history of continuous integration and 

unification of new and old theories. The integration and unification of new and old 

theories in physics is the reflection of the development and progress of physics. 

The Final Theory of physics [118], or the Grand Unified Theory [119], or the 

Theory of Everything [120,121], is the eternal pursuit of physics. 

However, our physics seems increasingly fragmented according to Hawking [31]. 

Newton’s theory of universal gravitation [81] and Einstein’s theory of general 

relativity [8] are the two greatest theoretical systems of human physics, the 

unification of which is undoubtedly of great significance. 

In the view of the mainstream school of physics, Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity are two independent or 

separate theoretical systems about gravitation or gravity, and even somewhat 

contradictory. Moreover, the mainstream school of physics insist that Einstein’s 

theory of general relativity is a better theory of gravity, while Newton’s theory of 

universal gravitation is only a transitional theory of gravity, and at most an 

approximation of Einstein’s general relativity. The mainstream school of physics do 

not seem to believe that Newton’s theory of universal gravitation and Einstein’s 

theory of general relativity need or could be unified. 

Actually, both Einstein’s theory of general relativity and Newton’s theory of 

universal gravitation are, in Hawking’s words, the partial theories of GOR theory, 

belonging to different observation agents. 

In the 2nd volume of OR: Gravitationally Observational Relativity (GOR), 

with the help of the principle of general correspondence, the theory of GOR will be 

constructed on the basis of the invariance of information-wave speeds. 

It should be pointed out that the theory of GOR is the gravitational theory of the 

general observation agent OA(). 

Newton’s theory of universal gravitation and Einstein’s theory of general 

relativity are two special cases of GOR theory: Newton’s theory of universal 

gravitation is the gravitational theory of the idealized observation agent OA 

(→); Einstein’s theory of general relativity is the gravitational theory of the 

optical observation agent OA(c) (→c). 

So, the theory of GOR generalizes and unifies Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity. 

In the sense of the principle of general correspondence, the theory of GOR has 

the strict corresponding relationships with both Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity. Under the optical agent OA(c): 

→c and the GOR gravitational-field equation is strictly reduced to Einstein’s 

gravitational-field equation, and the GOR motion equation (i.e., the GOR geodesic 

equation) is strictly reduced to Einstein’s motion equation (i.e., Einstein’s geodesic 

equation); under the idealized agent OA: → and the GOR gravitational-field 

equation is strictly reduced to Newton’s gravitational-field equation (i.e., the 



7 

Poisson equation form of Newton’s universal-gravitation law), and the GOR motion 

equation is strictly reduced to Newton’s motion equation (i.e., the Newton 

second-law form of Newton’s universal-gravitation law). 

Such strict corresponding relationships indicate that the theory of GOR is 

logically consistent not only with Einstein’s theory of general relativity but also with 

Newton’s theory of universal gravitation; and moreover, such strict corresponding 

relationships, from one aspect, confirm the logical self-consistency and theoretical 

validity of the theory of GOR. 

The Theory of GOR [29,30]: 

New Theory leads to New Ideas and New Insights 

The theory of GOR discovers that, like all the inertial relativistic effects or 

phenomena in Einstein’s theory of special relativity and even that in the theory of 

IOR, all the gravitational relativistic effects or phenomena in Einstein’s theory of 

general relativity and even that in the theory of GOR are not the objectively physical 

reality, but are, in essence, the observational effects or apparent phenomena, rooted 

from the observational locality (<) of the realistic observation agents OA(). 

Before the theory of IOR, with regard to Einstein’s theory of special relativity [7], 

we could not understand why the speed of light looks invariant. The theory of IOR 

has told us that the speed of light is not really invariant. Likewise, before the theory 

of GOR, with regard to Einstein’s theory of general relativity [8], we could not 

understand why gravitational spacetime looks curved. The theory of GOR will tell 

us that spacetime is not really curved: the objective and real spacetime, no matter the 

inertial or the gravitational, never gets curved. 

Actually, no matter in the theory of special or general relativity, no matter in the 

theory of inertial or gravitational relativity, all the relativistic effects or phenomena 

are observational effects and apparent phenomena rooted from the observational 

locality (<) of the realistic observation agent OA() ((0,+)). 

Analogous to the theory of IOR, the theory of GOR will clarify that: 

(i) Einstein’s theory of general relativity is the theory of the optical observation 

agent OA(c) (=c), in which the gravitational spacetime is the optical 

image of the objectively physical world presented to us by the optical agent 

OA(c), not completely objective or real; 

(ii) Newton’s theory of universal gravitation is the theory of the idealized 

observation agent OA, in which the gravitational spacetime is the true 

portrayal of the objectively physical world under the idealized agent OA. 

In particular, it is not because Einstein’s theory of general relativity is better 

than Newton’s theory of universal gravitation but simply because our observations 

and experiments mostly rely on the optical observation agent OA(c) that Einstein’s 

theory of general relativity are supported by most observations and experiments., 

So, the theory of GOR discovers that: Newton’s theory of universal gravitation 

is the right theory about gravitational interaction, while Einstein’s theory of general 

relativity is only an approximate theory. 

The theory of GOR will provide us with new insight into the gravitational world. 
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The theory of IOR has already clarified that all matter particles, including 

photons, have the intrinsic or rest mass of their own. Based on the theory of GOR 

gravitational redshift, the theory of GOR will make the theoretical prediction of the 

rest mass, give the theoretical value of the intrinsic mass of photons. Naturally, 

photons of with different frequencies or energies have different rest masses. 

The theory of GOR will reexamine Einstein’s three famous scientific predictions, 

including the gravitational redshift of light and the gravitational deflection of light, 

as well as the anomalous precession of planetary orbits. The theory of GOR 

discovers that: the objective and real gravitational world supports Newton rather 

than Einstein. Actually, Einstein’s theoretical predictions based on his theory of 

general relativity are only observational effects and apparent phenomena presented 

to us by light and optical observation. 

The theory of GOR will reexamine Einstein’s predictions of the so-called 

Gravitational Waves. The theory of GOR discovers that Einstein’s gravitational 

wave is actually the information wave of the optical observation agent OA(c). 

The theory of GOR will reexamine the theory of Black Hole that is based on 

Einstein’s theory of general relativity, and reexamine the theory of Big Bang of the 

universe that is rooted from Hubble’s doctrine of Cosmic Expansion and based on 

Einstein’s theory of general relativity. 

Did the universe really experience the big bang 13.8 billion years ago? 

Human beings need to reacquaint the objective world from the perspective of the 

theory of OR, and reshape human being’s view of nature. 
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10 Preliminary for GOR 

The theory of GOR, so-called Gravitationally Observational Relativity 

(GOR), attempts to extend the theory of IOR, so-called Inertially Observational 

Relativity (IOR), from inertial spacetime to gravitational spacetime, and meanwhile, 

to extend Einstein’s theory of general relativity from the optical observation agent 

OA(c) to the general observation agent OA(). So, the theory of GOR could be 

interpreted as the theory of General Observational Relativity (GOR). 

The basic concepts and definitions of IOR theory, as well as the basic logical 

premises and consequences of IOR theory, will become the logical foundation of 

GOR theory. The fundamental problem of Einstein’s general relativity will become 

the fundamental problem of GOR theory. 

The theory of OR, so-called Observational Relativity (OR), in the 1st volume 

of OR: Inertially Observational Relativity, has already clarified: “Human 

cognition or understanding of the objective world not only depends on observation, 

but also is restricted by observation.” All theoretical systems or spacetime models of 

physics, including Newton’s theory of universal gravitation and Einstein’s general 

relativity, have without exception been branded with the marks of observation. 

The spacetimes in all the theoretical systems or spacetime models of physics are 

the observational spacetimes, rather than the objective spacetime. 

The observational spacetime of IOR theory is inertial spacetime, and can be 

called the IOR inertial spacetime. The 1st volume of OR: Inertially 

Observational Relativity has defined the concept of Observation Agent (OA) for 

the theory of IOR, endowing observation with the definite role and status in 

observational inertial-spacetime. 

The observational spacetime of GOR theory is gravitational spacetime, and can 

be called the GOR gravitational spacetime. The 2nd volume of OR: 

Gravitationally Observational Relativity will extend the concept of Observation 

Agent (OA) from the IOR inertial spacetime to the GOR gravitational spacetime, 

endowing observation with the definite role and status in observational 

gravitational-spacetime, revealing the linkage of Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity to their specific observation 

systems. Finally, the theory of GOR will be established to clarify the root and 

essence of gravitational relativistic effects or phenomena. 

The theory of GOR, as the gravitational theory of the general observation agent 

OA() ((0,+))), will generalize and unify Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity. 

10.1 The Concepts and Principles from IOR to GOR 

Naturally, the theory of IOR is the foundation of the theory of GOR. 

In the 2nd volume of OR: Gravitationally Observational Relativity, the 

theory of GOR follows the basic ideas, principles, and concepts of IOR theory in the 
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1st volume of OR: Inertially Observational Relativity. Actually, these basic ideas, 

principles, and concepts are also the basic ideas, principles, and concepts of OR 

theory including IOR and GOR). 

In particular, the logical consequences of IOR theory might become the logical 

starting point of GOR theory. 

The following terms in the theory of IOR, including the concepts, definitions, 

principles, theorems, and their corollaries, remain valid in the theory of GOR and 

might become the logical foundation of GOR theory. 

10.1.1 Terms 

The terms (see Sec. 1.1.3 Related Terminology) in the 1st volume of OR: 

Inertially Observational Relativity is the basic concept of OR or IOR theory, 

related to Observation. Those terms or concepts will continue to be employed in 

the 2nd volume of OR: Gravitationally Observational Relativity. 

S/N Terms Simple Interpretations 

01 Observation Agent: OA() observation system 

02 Information Wave matter waves for transmitting information 

03 Informon matter particles composing information waves 

04 Information-Wave Speed:  the speed of OA() transmitting information 

05 Idealized Agent: OA the observation agent OA() as → 

06 Optical Agent: OA(c) the observation agent OA() as →c 

07 Spacetime Information space and time information of observed objects 

08 Free Spacetime: SF with no matter interactions in it 

09 Intrinsic Spacetime: X4d
 objective and real spacetime 

10 Observed Spacetime: X4d() observational spacetime observed by OA() 

11 Intrinsic Quantity: Uo=U objective and real physical quantity 

12 Observed Quantity: U() observational quantity observed by OA() 

13 Observational Locality: < OA() needs time to transmit information. 

10.1.2 Definitions 

The theory of GOR will follow or extend the following definitions in the 1st 

volume of OR: Inertially Observational Relativity. 

S/N Definitions Simple Interpretations 

Def. 1.1 Observation Agent: OA() extended from the IOR inertial spacetime 

to the GOR gravitational spacetime 

Def. 1.1 Observed Spacetime: X4d() 1d time: x0= t; and 3d sapce: (x1,x2,x3) 

Def. 1.2 Physical Quantity distinguishing between Uo and U() 

Def. 1.2 Intrinsic Quantity: Uo=U Uo defined in the free spacetime SF or 

U defined in the idealized spacetime X4d
 
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Def. 1.2 Observed Quantity: U() defined in the observational spacetime X4d() 

Def. 2.1 The Cosmic Speed:  the speed as matter-wave frequency f→ 

Def. 2.2 Time distinguishing between  and t() 

Def. 2.2 Intrinsic Time: =t objective and real time, defined in the free 

spacetime SF or idealized spacetime X4d
 

Def. 2.2 Observed Time: t() defined in the observational spacetime X4d() 

Def. 2.3 Standard Clock: To at rest in the free spacetime SF or at rest in the 

idealized spacetime X4d
 

10.1.3 Principles and Theorems 

The theory of GOR will follow the following principles and theorems as well as 

their corollaries in the 1st volume of OR: Inertially Observational Relativity. 

Principles and Theorems Simple Interpretations 

Physical Observability All physical quantities are observable: 

the observed values are definite and finite. 

Corol. 2.1 of the Cosmic Speed  The  is the ultimate speed of the universe 

and could not be exceeded in observation. 

Corol. 2.2 of the Cosmic Speed  The  is invariant 

or the same relative all inertial observers. 

The Invariance of TFR The ratio of the observed time dt to the 

observed frequency f is an invariant: dt/f=d/fo. 

The Invariance of IWS The speed  of OA() is invariant 

or the same relative to all inertial observers. 

Corol. 3.1 of the Invariance of IWS The cosmic speed  is actually 

the information-wave speed  of OA(). 

Corol. 3.2 of the Invariance of IWS the information-wave speed  of OA() could 

not be exceeded in inertial observation. 

Corol. 3.3 of the Invariance of IWS The invariance of light speed holds true only if 

OA() is the optical agent OA(c). 

where, TFR is the abbreviation for Time-Frequency Ratio, and IWS is the 

abbreviation for Information-Wave Speeds. 

The invariance of time-frequency ratio will play a special role in exploring the 

problem of gravitational redshift. In particular, in deducing the theory of GOR, the 

theorem of the invariance of information-wave speeds will be accorded the title of 

principle, that is, the principle of the invariance of information-wave speeds, and 

being employed as the logical starting point of the theory of GOR. 

10.2 The Scene of GOR Gravitational Spacetime 

In order to relate and analyze the theory of GOR, to deduce the GOR model of 

gravitational spacetime, the theory of OR needs to first define the gravitational 
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spacetime in GOR theory and set the scene of GOR gravitational spacetime. 

Naturally, the most familiar scene is the gravitational scene set by Newton’s in 

the law of universal gravitation [81]: the two-body system (M,m) in celestial 

two-body problem, where M and m are two matter particles (mass points), 

representing two celestial bodies, for example, the sun and the earth or the earth and 

the moon. In Newton’s law of universal gravitation F=GMm/r2, M and m are equal: 

M gravitates to m, and the gravitational force is F=FMm; m gravitates to M, and the 

gravitational force is F=FmM. According to Newton’s third law of motion, FMm and 

FmM are action and reaction, equal in size and opposite in direction. 

In Einstein’s theory of general relativity, the gravitational scenes set by both 

Einstein [8] and Schwarzschild [80] are similar to the gravitational scene in Newton’s 

law of universal gravitation, still the celestial two-body system (M,m). However, the 

difference is that, in Einstein’s theory of general relativity, as depicted in Fig. 10.1, 

the large celestial body M makes its surrounding spacetime curved, and the curved 

spacetime makes small celestial body m circle the large M. 

In Einstein’s theory of general relativity, the effect of universal gravitation has 

been geometrized by the doctrine of spacetime curvature. 

Actually, gravitational spacetime is not real curved. 

But anyway, as a mathematical model, Einstein’s doctrine of spacetime 

curvature could yet be mathematically regarded as a formalized method for the 

effect of universal gravitation. 

The basic logic of GOR theory lies in the principle of general correspondence: 

by analogizing or following the logic of Einstein’s deducing the theory of general 

relativity, the theory of OR could deduce the theory of GOR, and the scene of GOR 

gravitational spacetime could be set as depicted in Fig. 10.1. 

The GOR Gravitational Scene: Let (M,m) be the two-body system in celestial 

two-body problem, M the large celestial body whose mass is distributed in spherical 

symmetry and forms the spherically symmetric gravitational-spacetime with the 

center at M, m the small celestial body which is idealized as a mass point and circles 

the large celestial body M in the gravitational spacetime of M. 

The scene of GOR gravitational spacetime depicted in Fig. 10.1 will be applied 

to the deduction of the theory of GOR, including the determination of the space and 

time of GOR gravitational spacetime, the derivation and calibration of the GOR 

gravitational-field equation and the GOR motion equation, and the interpretation of 

Einstein’s famous scientific predictions. 

As depicted in Fig. 10.1, we agree that if no special instructions: 

(i) P stands for the observed object, in the celestial two-body system (M,m), the 

small celestial body m is the observed object P. 

(ii) O(T,X,Y,Z) is the coordinate system of GOR gravitational spacetime, and 

O is the mass center of the large celestial body M. 

(iii) Oo(To,Xo,Yo,Zo) is the intrinsic coordinate system of P, belonging to the free 

spacetime SF, in which P is at rest, Oo not only is the coordinate origin but 

also represents the intrinsic observer of P, and according to Def. 1.2, the 
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observational (observed) time to is exactly the standard time or the intrinsic 

time (proper time) . 

(iv) OP is the observer of P at its coordinate point in the GOR gravitational 

spacetime O(T,X,Y,Z), whose observational (observed) time is tP= t(r), 

depending on the coordinate position of P (or the small celestial body m) in 

the GOR gravitational spacetime O(T,X,Y,Z). 

(v) In the GOR gravitational spacetime O(T,X,Y,Z), different observers OA and 

OB may have different spacetime metrics at the coordinate points A and B: 

g(rA)g(rB) (rArB); 

(vi) Unless otherwise specified, the theory of GOR adopts Einstein’s summation 

convention: English letters (i, j,k,…) for the indices of 3d space (x1,x2,x3) 

with the summation range of {1,2,3}; Greek letters (,,,…) for the 

indices of 4d spacetime (x0,x1,x2,x3) with the summation range of {0,1,2,3}. 

 

Figure 10.1 The Scene of GOR Gravitational Spacetime: the Celestial Two-Body 

System (M,m). (a) The Spacetime Transformation between the Observers OA and OB: the 

points A and B of the gravitational spacetime SG have different spacetime metrics g (rA) and 

g (rB), and therefore, the observational spacetimes of OA and OB are different, which need to 

be transformed. (b) The Spacetime Transformation between the gravitational spacetimes SG 

and the Free Spacetime SF: according to Def. 1.2, the physical quantities of the observed 

object P at rest in free spacetime SF are the objective and real physical quantities of P, but the 

observed physical quantities of P observed by observers in the gravitational spacetime SG are 

different from the objective and real physical quantities of P, which need to be transformed. 

The gravitational spacetime in the theory of GOR, like that in Einstein’s theory 

of general relativity, is also curved. Therefore, as depicted in Fig. 10.1 ((a) and (b)), 

there are two types of spacetime transformations in the GOR gravitational spacetime 

O(T,X,Y,Z). 

(a) The Spacetime Transformation between OA and OB 

As depicted in Fig. 10.1(a), like in the gravitational spacetime of Einstein’s 

theory of general relativity, the points A and B in the gravitational spacetime 
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O(T,X,Y,Z) of the theory of GOR may have different spacetime metrics g(rA) and 

g(rB). Therefore, the observers OA at A and OB at B may have different 

observational spacetimes, including different observed times tA and tB, which may 

need to be transformed between OA and OB. 

(b) The Spacetime Transformation between SG and SF 

As depicted in Fig. 10.1(b), the observed object P or the small celestial body m 

originally has its intrinsic spacetime Oo, belonging to the free spacetime SF. Suppose 

that P and its intrinsic observer Oo are relatively stationary in the free spacetime SF. 

According to Def. 1.2, the observed time to of Oo is the proper time . However, 

when P or m is in the GOR gravitational spacetime SG, the intrinsic observer Oo is 

turned into the gravitational observer OP, and the observed time tP of OP is just the 

observational time that may not necessarily be the objective and real time . In order 

to get the proper time , it is necessary to transform the observational time tP of OP 

into the intrinsic time  of Oo (that was called the standard time by Einstein). 

As a matter of fact, as long as let OA be OP and rB→, then Fig. 10.1(a) and Fig. 

10.1(b) would be equivalent or the same. 

10.3 Observation Agents for GOR 

Definition 1.1 of Chapter 1 in the 1st volume of OR: Inertially Observational 

Relativity defines a new concept: Observation Agent, which can be regarded as the 

core concept of OR theory, and is the connotation of the concept of Observation in 

the theory of observational relativity (OR). 

The general observation agent OA() in Def. 1.1 is the coordinate framework of 

4d spacetime (see Eq. (1.2)), which is actually the generalization of Minkowski 4d 

spacetime (see Eq. (1.1)). 

The theory of IOR extends the coordinate framework of Minkowski 4d 

spacetime (Eq. (1.1)) from the optical agent OA(c) to the general observation agent 

OA() (Eq. (1.2)). Now, the theory of GOR attempts to extend the observation agent 

of IOR theory from inertial spacetime to gravitational spacetime. 

10.3.1 The Coordinate Framework of 4d Spacetime 

in Einstein’s Theory of General Relativity 

Minkowski spacetime [50,51], or the coordinate framework of Minkowski 4d 

spacetime, is a formalized tool developed by Minkowski specifically for Einstein’s 

theory of special relativity. Minkowski spacetime is a 4d differentiable manifold 

with the spacetime metric g (,=0,1,2,3) and the spacetime line-element ds, and 

therefore is a metric spacetime. Naturally, as the formalized tool of Einstein’s theory 

of special relativity, Minkowski spacetime X4d(c) in Eq. (1.1) is inertial spacetime 

with the metric g==diag(+1,−1,−1,−1), known as Minkowski metric, which is 

a constant metric. So, Minkowski spacetime is not curved but flat. 

At first, Einstein did not believe that the coordinate framework of Minkowski 4d 
spacetime was necessary or significant for his theory of relativity. However, after 

embarking on the construction of general relativity, Einstein gradually realized that 
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his theory of general relativity seemed to have to be built on the coordinate 

framework of 4d spacetime created by Minkowski. Thus, he extended Minkowski 

spacetime from the inertial spacetime of special relativity to the gravitational 

spacetime of general relativity, and highly praised Minkowski spacetime. 

Thus, the coordinate framework of Minkowski 4d spacetime in Eq. (1.1) of 

Chapter 1 needs redefining for gravitational spacetime and writing as follows: 
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where OA(c) still represents the optical observation agent that employs light or 

electromagnetic interaction as the observation medium, X4d(c) still represents the 

observational spacetime of OA(c) (x0 the 1d time and (x1,x2,x3) the 3d space that can 

be represented by the Cartesian coordinates (x,y,z)), g is the spacetime metric of 

X4d(c), and ds is the spacetime line-element of X4d(c). 

Unlike the OA(c) in Eq. (1.1) of Chapter 1, the observational spacetime X4d(c) 

of OA(c) in Eq. (10.1) is not inertial spacetime but gravitational spacetime. Actually, 

Eq. (10.1) generalizes Eq. (1.1): in Einstein’s theory of special relativity, the metric 

g of the observational spacetime X4d(c) of OA(c) is the Minkowski metric 

=diag(+1,−1,−1,−1), independent of the spacetime coordinates of X4d(c), and is a 

special case of Eq. (10.1); in Einstein’s theory of general relativity, the metric 

g=g(x,c) of observational spacetime X4d(c) of OA(c) depends on the spacetime 

coordinates x (=0,1,2,3) of X4d(c). 

So, the observational spacetime X4d(c) of OA(c) in Einstein’s theory of general 

relativity looks or appears to be somewhat curved. 

In Einstein’s theory of general relativity, the metric of the observational 

spacetime X4d(c) of OA(c) not only depends on the spacetime coordinate x 

(=0,1,2,3) of X4d(c), but also is related to the speed c of light: g=g(x,c). 

Actually, the coordinate framework of 4d spacetime in Einstein’s theory of general 

relativity (Eq. (10.1)) is still the optical observation system. 

10.3.2 The Gravitational Observation Agent in GOR 

In his theory of general relativity, Einstein extended the coordinate framework 

of Minkowski 4d spacetime from inertial spacetime X4d(c) (Eq. (1.1): g=) to 

gravitational spacetime X4d(c) (Eq. (10.1): g=g(x,c)). 

Now, the theory of GOR needs to extend the general observation agent OA() 

from the inertial spacetime X4d() of OA() (Eq. (1.2): g=) in the theory of 

IOR to the gravitational spacetime X4d() of OA() (Eq. (10.2): g=g(x,)) in 

the theory of GOR, and meanwhile, extend the optical observation agent OA(c) (Eq. 

(10.1)) in Einstein’s theory of general relativity to the general observation agent 

OA() (Eq. (10.2)) in the theory of GOR. 

As stated repeatedly by the theory of OR, in theory, all the forms of matter 



16 

motion could be employed as observation media to transmit observed information 

for observers [26-30]. Different observation media mean different observation systems 

or different observation agents: the eye is a type of observation agent, employing 

light as the observation medium; the ear is another type of observation agent, 

employing sound as the observation medium. Human perception or observation of 

the objective world including gravitational spacetime needs to take advantage of 

different types of observation media or different types of observation agents. 

Analogous to the coordinate framework OA(c) (Eq. (10.1)) of Minkowski 4d 

spacetime in Einstein’s theory of general relativity, by substituting the 

information-wave speed  for the speed light c in Eq. (10.1), the general observation 

agent OA() in the theory of GOR can be defined as follows. 

Definition 10.1 (Observation Agent): An observation system employing a 

specific observation medium to transmit observed information for observers is 

referred to as an observation agent and denoted as OA(), which in the gravitational 

spacetime of GOR is defined a metric spacetime as 
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where the observation medium of OA() can be any form of matter motion or any 

matter wave,  is the information-wave speed of OA(), i.e., the speed of the 

observation medium transmitting observed information; X4d() represents the 4d 

gravitational spacetime observed by OA(), x0 is the 1d time, and (x1,x2,x3) is the 3d 

space that can adopt the Cartesian coordinate (x,y,z); ds is the spacetime 

line-element of X4d(), g=g(x,) is the spacetime metric of X4d(), depending 

on the spacetime coordinate x (=0,1,2,3) of X4d(). 

Unlike the OA() in Eq. (1.2) of Chapter 1, the observational spacetime X4d() 

of OA() in Eq. (10.2) is gravitational spacetime not inertial spacetime. Actually, 

the general observation agent OA() defined in Eq. (10.2) has the more general 

meaning, which generalizes the inertial observation agent defined in Eq. (1.2): in the 

theory of IOR, the spacetime metric g of the observational spacetime X4d() is the 

Minkowski metric =diag(+1,−1,−1,−1), does not depend on the spacetime 

coordinate of X4d() and can be regarded as a special case of Eq. (10.2); in the 

theory of GOR, the spacetime metric g=g(x,) of the observational spacetime 

X4d() depends on the spacetime coordinate x (=0,1,2,3) of X4d(). Therefore, 

similar to the optical observational spacetime X4d(c) of OA(c) in Einstein’s theory of 

general relativity, the general observational spacetime X4d() of OA() in the theory 

of GOR also looks or appears to be somewhat curved. 

However, according to Eq. (10.2) in Def. 10.1 of GOR theory, the so-called 

spacetime curvature is not the objectively physical reality. 

As a matter of fact, in the theory of GOR, the metric g=g(x,) of the 

observational spacetime X4d() of the observation agent OA() depends not only on 
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the spacetime coordinate x (=0,1,2,3) of X4d(), but also on the information-wave 

speed  of OA(): the observational spacetimes of different observation agents 

would be curved to different degrees and have different curvatures. This suggests 

that the so-called spacetime curvature relies on the observation agent OA() or on 

the information-wave speed  of OA(), in other words, depends on observation. 

 So, no matter in the theory of GOR or in Einstein’s theory of general relativity, 

the so-called spacetime curvature is only a sort of observational effect or apparent 

phenomenon, rather than the objective physical reality. 

The theorem of Cartesian spacetime in the theory of GOR will prove that: 

g()→  as →. So, the objectively real spacetime would never be curved. 

Obviously, the general observation agent OA() defined in Def. 10.1 

generalizes  the coordinate framework OA(c) of Minkowski 4d spacetime extended 

for Einstein’s theory of general relativity: if →c, then the general agent OA() in 

Eq. (10.2) is exactly the optical agent OA(c) in Eq. (10.1). 

Just as Einstein’s theory of general relativity could be built on the 4d spacetime 

coordinate-framework of the optical observation agent OA(c) defined in Eq. (10.1), 

the theory of GOR, or the theory of Gravitationally Observational Relativity 

(GOR), could be built on the 4d spacetime coordinate-framework of the general 

observation agent OA() defined in Eq. (10.2) 

According to the principles of physical observability, regardless of the inertial 

spacetime X4d() (g=) or the gravitational spacetime X4d() (g=g(x,)), 

any realistic observation agent OA() has the observational locality (<). 

In essence, all relativistic effects, including gravitational relativistic effects, are 

rooted from the observational locality of observation agents. 
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11 GOR Logic and 

the Principle of General Correspondence 

In the 1st volume of OR: Inertially Observational Relativity, based on the 

more basic axiom system than that of Einstein’s special relativity, starting from the 

most basic logical premise (the definition of time in Def. 2.2) [26,27], the theory of OR 

has derived the general Lorentz transformation, not only generalized and unified the 

Galilean transformation and the Lorentz transformation, but also revealed the 

corresponding relationship of isomorphic consistency between different theoretical 

systems in physics, linking the principle of correspondence with the principle of 

relativity, endowing Bohr’s correspondence principle with more general and 

universal significance. 

Based on the general Lorentz transformation, the theory of IOR, i.e., the theory 

of Inertially Observational Relativity (IOR), has been established. 

In the theory of IOR, even Newton’s inertial mechanics and Einstein’s special 

relativity are also isomorphically consistent. So, Newton’s theory of inertial 

mechanics and Einstein’s theory of special relativity have been generalized and 

unified by the theory of IOR into the same theoretical system under the same axiom 

system. The theory of IOR reflects the intrinsic corresponding relationship between 

the theoretical systems of different observation agents. 

It is based on the corresponding relationship of isomorphic consistency between 

different theoretical systems in physics that this chapter will establish a principle: 

the Principle of General Correspondence, which would provide a logical bridge 

or a logical shortcut for the theory of GOR. 

The principle of general correspondence will play an important role in the 

logical deduction of GOR theory. 

11.1 Bohr’s Correspondence Principle 

In 1920, Bohr officially established the principle of correspondence [71], which 

later became known as the Bohr correspondence principle. 

However, the basic thought of Bohr’s correspondence principle could be traced 

back to the establishment of Bohr’s atomic theory and Bohr’s atomic model in 1913 
[75-77]. It was Based on the basic thought of the principle of correspondence, Bohr 

established his theory and model of hydrogen atom. 

Actually, the basic thought of the principle of correspondence could also be 

traced back to the establishment of Planck’s blackbody radiation law or blackbody 

radiation formula in 1900 [14]. 

The Basic Thought of Bohr’s Correspondence Principle: There must be some 

intrinsic linkage or corresponding relationship between quantum mechanics and 

classical mechanics. Under certain conditions, the two theories could be transformed 

into each other. 

There are various interpretations for Bohr’s correspondence principle, in which 
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the most common are two limit expressions: 

(i) the limit correspondence of Bohr’s quantum number (energy level): n→; 

(ii) the limit correspondence of Planck’s constant: h→0. 

11.1.1 The Limit Correspondence of 

Bohr’s Quantum Number: n→ 

The Principle of Bohr’s Correspondence (in the form of Bohr’ quantum 

number): Let n be the atomic energy level (the principal quantum number). As 

n→, quantum models converge to classical models, and quantum physical 

quantities converge to classical physical quantities, that is, 

    lim Quantum Quantity Classical Quantity
n→

=  (11.1) 

The quantization of energy is the watershed between quantum physics and 

classical physics: (i) the continuity of energy represents classical physics; (ii) the 

discretization of energy represents quantum physics. Bohr believed that, in the case 

of large quantum numbers, the energies of electrons and atoms tend to be continuous. 

So, quantum physical models must converge to classical physical models as n→. 

On the one hand, based on classical physics, suppose that electrons move in a 

circle around the atomic nucleus, then according to Newton’s laws and Coulomb’s 

law, one could derive the relational formula between the speed v and orbital radius r 

of an electron: 
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where is K=1/40 is Coulomb’s constant, 0 the vacuum permittivity, Z the atomic 

number, and me the electron mass. 

Taking TC=2r/v as the period of electron orbit, the frequency fC of 

electromagnetic (EM) radiation in the classical case can be calculated as follows: 
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where fC is the classical frequency of EM radiation. 

Equation (11.3) suggests that, according to the calculation of classical physics, 

the EM radiation frequency of atoms could take continuous values. 

On the other hand, experiments show that the EM radiation frequency of atoms 

can only take some discrete values. In 1889, Rydberg established the following 

empirical formula for the spectral lines of hydrogen atom based on experiments: 
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where Q was the wavelength of the spectral lines, and R was the Rydberg constant 

that needed to be determined by experiment. 
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In 1911, Rutherford proposed a planetary model of atomic structure, in which 

electrons revolve around the atomic nucleus, just like the planets revolving around 

the sun. Rutherford’s model has serious defect: according to the classical theory of 

electromagnetic radiation, the electrons in Rutherford’s model would ceaselessly 

lose energy due to the energy radiation of electromagnetic waves, and eventually 

collapse to the nucleus. Rutherford could not explain the problem. 

In 1913, Bohr established the Bohr model of atomic structure on the basis of the 

Rutherford model, in which Bohr set up three important postulates [75-77]. 

(i) The Condition of Stationary State 

An atom could only exist stably in discrete energy states (or energy levels), that 

is, the so-called stationary state; while an electron in the atom could only move in a 

circle around the nucleus at a specific energy level n with the discrete energy En: 
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Equation (11.5) implies that an electron in the atom can orbit stably at a specific 

energy level with specific energy. 

(ii) The Condition of Quantum Transition. 

An electron in the atom can transfer between different energy levels by radiating 

energy or absorbing energy. As the electron transfer from the high-energy level n to 

the low-energy level n, it would release a photon with certain energy E and 

frequency fQ; on the contrary, as the electron absorbs a photon with certain energy 

E and frequency fQ, it would transfer from the low-energy level n to the 

high-energy level n. The energy E and the frequency fQ of the released photon or 

the absorbed photon satisfy 
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Let n=n−1 and n>>1 (i.e., n is a large quantum number). Then, according to the 

condition of stationary state (Eq. (11.5)) and the condition of quantum transition (Eq. 

(11.6)), we have that 
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where fQ is the quantum frequency of EM radiation. 

Equation (11.7) suggests that, as n→, E→0: the energy of an electron in the 

atom would tend to be continuous between adjacent energy levels. 

In such a case, according to the basic thought of Bohr’s correspondence 

principle, the quantum physical quantities would converge to the corresponding 

classical physical quantities: fQ= fC, rn=r, and vn=v. In the case of a hydrogen atom 

(Z=1), from Eqs. (11.2-3) and Eq. (11.7), we have the orbital radius rn and the speed 
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vn of the electron in the energy level n: 
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(iii) The Quantization of Angular Momentum. 

In order to finally derive the theoretical model of atomic structure, Bohr made 

the quantization of the angular momentum L of electrons: 
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From the orbital speed vn=(Ke2/mern) of the electron in the energy level n (Eq. 

(11.8)) and the quantization of angular momentum (Eq. (11.9)), Bohr could deduce 

another expression of the orbital radius rn: 
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By the contrast of Eq. (11.10) and Eq. (11.8), Bohr obtained the theoretical 

value of the Rydberg constant R: 
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Now, the Rydberg formula is no longer an empirical formula, but a theoretical 

model on the basis of the Bohr theory of atomic structure; the Rydberg constant R is 

no longer an empirical value, but a theoretical one from the Bohr model of atomic 

structure. It is thus clear that Bohr’s correspondence principle played the important 

role in the establishment of the Bohr theory and model of atomic structure. 

However, it is worth noting that Eq. (11.7) is only a case of the large quantum 

numbers; fQ= fC is not the limit correspondence of n→. Actually, there is no the 

corresponding relationship of isomorphic consistency between the classical 

frequency fC in Eq. (11.3) and the quantum frequency fQ  in Eq. (11.7): fQ  cannot 

isomorphically and uniformly be transformed into fC through n→. 

As Shomar pointed out [31], the case of large quantum numbers or n→ do not 

always represent the classical physical systems. This seemingly implies that large 

quantum numbers n>>1or even the limit correspondence of quantum number n→ 

lacks of generality and universal significance. 

11.1.2 The Limit Correspondence of 

Planck’s Constant: h→0 

The Principle of Bohr’s Correspondence (in the form of Planck’ constant): 

As Planck’s constant h→0, quantum models converge to classical models, and 

quantum physical quantities converge to classical physical quantities, that is, 
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The quantization of energy originates from Planck equation: E=hf; h0 implies 

the discretization of energy and represents quantum physics. Naturally, if h=0 then 

the energy E tends to be continuous. However, it is worth noting that h=0 and n→ 

may not have the same or equivalent effect. In the view of Shomar [122], the Planck 

constant h→0 must represent classical physics, but the Bohr quantum number n→ 

may not represent classical physics. 

In 1900, Planck theoretically derived the Planck law of blackbody radiation 

from his quantum hypothesis E=hf [14]. Planck’s formula of blackbody radiation 

 ( )
3

3

8 1
,

1hf kT

hf
u f T

c e


=

−
 (11.13) 

is extremely consistent with the experiment of blackbody radiation, and can be 

regarded as the integration of Rayleigh-Jeans law [12,13] and Wien approximation [11]. 

More importantly, the quantum hypothesis E=hf as the prerequisite of Planck’s law 

of blackbody radiation marks the birth of quantum physics [15,16]. 

Planck realized that there existed the corresponding relationship between his law 

of blackbody radiation and Rayleigh-Jeans law: as h→0, the Planck formula of 

quantum blackbody radiation (Eq. (11.13)) converges to (or is isomorphically and 

uniformly transformed into) the Rayleigh-Jeans formula of classical blackbody 

radiation: 

 ( )
3 2

3 30 0

8 1 8
lim , lim

1hf kTh h

hf kTf
u f T

c e c

 

→ →
= =

−
 (11.14) 

where k is the Boltzmann constant, T the temperature, and c the speed of light. 

Equation (11.14) suggests that the Planck formula of blackbody radiation and 

the Rayleigh-Jeans formula of blackbody radiation have the same form and structure, 

in other words, have the corresponding relationship of isomorphic consistency, and 

are isomorphically consistent. 

Planck formalized such a corresponding relationship of isomorphic consistency 

as follows (see Shomar’s literature [122]): 

    
0

lim Quantum Physics Classical Physics
h→

=  (11.15) 

Equation (11.15) suggests that, unlike the limit correspondence of Bohr’s 

quantum number n→, the limit correspondence of Planck’ constant h→0 is not 

only reflected in the level of physical quantities, but also in the level of physical 

concepts and the laws of physics. The corresponding relationship between different 

theoretical systems in physics lies not only in the convergence of physical quantities 

and the consistency of results, but also in the convergence of form or structure, and 

the consistency of concepts or logic. 

11.2 The Principle of Relativity 

and the Principle of Correspondence 

As we all know, in addition to the hypothesis of the invariance of light speed, 

Einstein’s theory of special relativity also has an important logical prerequisite: the 
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principle of relativity. 

The principle of relativity is one involving the symmetry property of spacetime 
[123]: relativity is a specific form of symmetry. 

The Basic thought of Relativity Principle: Spacetime is symmetrical, so all 

observers are equal or have equal rights, that is, no one is more superior than another, 

a law of physics must be the same or have the same form in all reference frames. 

The principle of relativity was first explicitly stated by Galileo, i.e., the so-called 

Galilean invariance [110,124]: all the inertial observers of classical mechanics are 

equal or have equal rights, a law of classical mechanics must be the same or have 

the same form in all inertial reference frames. 

In Einstein’s theory of special relativity [7], the Galilean invariance was extended 

by Einstein from classical mechanics to general physics, that is, so-called the 

special principle of relativity. Later, in Einstein’s theory of general relativity [8], 

the special principle of relativity was extended by Einstein from inertial reference 

frames to general reference frames, that is, so-called the general principle of 

relativity or the principle of general covariance. 

Thus, the principle of relativity has gained more general significance. 

Actually, the principle of relativity is also a form of correspondence principle, 

which clarifies the intrinsic linkage or corresponding relationship of the physical 

laws in different reference frames, and requires the physical models to have the 

same form or structure in different reference frames. In other words, the principle of 

relativity requires that the physical models in different reference frames are 

isomorphic, and have the isomorphic consistency, or have the corresponding 

relationship of isomorphic consistency. Therefore, based on the principle of 

relativity, the physical models of different reference frames could isomorphically 

and uniformly be transformed into each other. 

Based on the principle of relativity, by exchanging the corresponding physical 

quantities of different observers or different reference frames, one could fulfil the 

corresponding transformation between the physical models in the way of 

isomorphically-consistent correspondence. Such transformation is only that between 

the corresponding physical quantities, while the forms and structures of physical 

laws or physical models remain unchanged. 

The Galilean transformation is a physical model of spacetime transformation 

between different inertial observers, which clarifies the principle of relativity, or in 

other words, clarifies the isomorphic consistency of physical laws or physical 

models between different inertial observers or different inertial reference frames: 

 

: :

1

O O O O

x x v t x x vt v v
y y y y

z z z z

t t t t

 

 → →

   = − = − = − 
 = =  

  = =

 = =

 (11.16) 

where t, x, y, z, v are the observed physical quantities of the inertial observer O, and 

t , x, y, z, vare the observed physical quantities of the inertial observer O; v is the 
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speed at which O moves along the x-axis of O relative to O, and v is the speed at 

which O moves along the x-axis of O relative to O. 

Equation (11.16) shows that the spacetime transformations O→O and O→O 

have exactly the same form and structure, and are symmetrical and isomorphic. 

According to the principle of relativity, one could directly obtain the O→O by 

exchanging the corresponding physical quantities between O and O in the O→O 

(t t , x x, y y, z z, v v), and vice versa. This is not only the 

embodiment or reflection of the principle of relativity, but also that of the principle 

of correspondence. 

As stated in Sec. 4.2 of Chapter 4 in the 1st volume of OR: Inertially 

Observational Relativity, in Einstein’s three-step deduction of special relativity, 

the second step is based on the principle of relativity to make the corresponding 

transformation between the observational (or observed) spacetimes of the inertial 

observers O and O in the way of isomorphically-consistent correspondence, in 

which the principle of relativity actually plays the role of the principle of 

correspondence. In this way, not only the spacetime models O→O and O→O are 

isomorphically consistent, but also the Lorentz transformation and the Galilean 

transformation are isomorphically consistent. 

It is thus clear that the principle of relativity implies that the physical laws or 

physical models of different reference systems and different observers should be or 

must be isomorphically consistent. 

The core thought of the principle of relativity is: All observers are equal. 

And the theory of OR will further clarify: All observation agents are equal. 

11.3 OR and the Principle of Correspondence 

One physical world, one logical system. 

As the formalized models of the identical physical world, all the theoretical 

systems of physics must follow the identical axiom system or the common logical 

premises. Therefore, there must exist the intrinsic linkage or corresponding 

relationship between each other: all the theoretical systems in physics must be 

logically consistent. Such intrinsic linkage and corresponding relationship are the 

embodiment of the logical consistency of different theoretical systems in physics. 

The theory of OR has revealed the intrinsic linkage or corresponding 

relationship between different theoretical systems (including between Einstein’s 

relativity theory and classical mechanics, between Einstein’s relativity theory and 

quantum mechanics, as well as, between quantum mechanics and classical 

mechanics), and in particular, has revealed the intrinsic linkage or corresponding 

relationship between different observation systems (including between the general 

observation agent OA() and the optical agent OA(c), as well as, between the 

general observation agent OA() and the idealized agent OA), endowing Bohr’s 

correspondence principle with more general and universal significance. 
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11.3.1 The Theory of OR Matter Waves 

and The General Planck Constant h 

In the limit sense of Planck’s constant h→0, Bohr’s correspondence principle is 

one on the corresponding relationship between the quantum physics of the optical 

agent OA(c) and the classical physics of the idealized agent OA: h0 represents 

quantum physics, h=0 represents classical physics, and h→0 implies that quantum 

physics converges to classical physics. The actual value of Planck constant is 

determined by the experiment of blackbody radiation: h=6.62610−34 Js.  

So, what does 6.62610−34 Js = h > 0 mean? 

According to the theory of OR [26,27], according to the theory of OR matter 

waves in Chapter 6 of the 1st volume of OR: Inertially Observational Relativity, 

Planck constant h is just one of the parameters of the optical observation system, 

representing the observational resolving-power of the optical agent OA(c) or the 

observational uncertainty of the optical agent OA(c). 

Planck constant h came from Planck equation E=hf that represented the energy 

of a single photon and was originally the quantum hypothesis introduced by Planck 

in 1900 for his law of blackbody radiation [14]. Later, de Broglie extended Planck 

equation E=hf from photons to all matter particles, derived the de Broglie relation 

=h/p, and established de Broglie’s theory of matter waves [17-19]. However, it worth 

noting that de Broglie’s theory of matter waves is just one theory of the optical 

observation agent OA(c), in which Planck equation E=hf is only a hypothetical 

premise of Planck’s law, and de Broglie’s generalization of E=hf is only speculation, 

rather than theoretical and logical consequence.  

The theory of IOR, including the theory of OR matter waves, is the product of 

logic and theory, based on the definition of time and the invariance of 

time-frequency ratio, which has generalized both Einstein’s theory of special 

relativity and de Broglie’s theory of matter waves. The theory of OR matter waves is 

one theory of the general observation agent OA(), has generalized the de Broglie 

matter-wave theory of the optical agent OA(c), possessing the corresponding 

relationship of isomorphic consistency with de Broglie’s theory of matter waves, in 

which there are two important quantum relations, one is the general Planck equation 

(Eq. (6.16)) and the other is the general de Broglie relation (Eq. (6.19)): 

The General Planck Equation: ( ) ( ) ( )( )E h f h h   = =  

The General de Broglie Relation: ( )
( )

( ) ( )( )
h

p f


    
 

= =  

where h=h() is the Planck constant of OA(), or the general Planck constant; 

f(), (), E() and p() are the physical quantities of the observed object P 

measured by OA(): respectively, the observed frequency, wavelength, energy and 

momentum of P as a matter wave. 

The theory of OR matter waves has generalized de Broglie’ theory of matter 
waves, which extends de Broglie’s theory of matter-wave from the optical agent 

OA(c) to the general observation agent OA(). According to the theory of OR 
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matter waves, a specific observation agent OA() has its specific Planck constant h, 

and therefore, has its specific observational resolving-power and observational 

uncertainty. However, the quantum laws or quantum models of different observation 

agents have the exactly same form and structure, and hence are isomorphically 

consistent. So, according to the logic of the principle of relativity: All observation 

agents are equal or have equal rights. 

Thus, quantum models of different observation agents could isomorphically and 

uniformly be transformed into each other. 

Let OA(1) and OA(2) be two observation agents, then it follows that: 
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 (11.17) 

According to the general Planck equation E=h f of OR theory, the value of the 

general Planck constant h  depends on the observation agent OA(): different 

observation agents have different Planck constants. 

This is an important discovery! 

Naturally, if →c, then OA()→OA(c), the general Planck constant h is 

exactly the Planck constant h, the general Planck equation E()=h f() is exactly the 

Planck equation E=hf, and the general de Broglie relation ()=h /p() is exactly 

the de Broglie relation =h/p. It is thus clear that Planck equation E=hf and de 

Broglie relation =h/p are the quantum models of the optical observation agent 

OA(c), and only valid under the optical agent OA(c). 

In particular, if →, then OA()→OA, the quantum models of the general 

observation agent OA() converge to the classical models of the idealized 

observation agent OA, the quantum energy E() tends to be continuous, and 

therefore, the general Planck constant h→0; conversely, h→ as →0. 

According to the general Planck equation E()=h f() and the statement or 

analysis of the limit correspondence of Planck constant h→0 in Sec. 11.1.2, Bohr’s 

correspondence principle is actually one principle on the corresponding relationship 

between the optical observation agent OA(c) and the idealized observation agent 

OA, involving two types of physical systems or two types of observation agents: 

(i) The quantum system of the optical agent OA(c): →c, OA()=OA(c), 

h=h, the information-wave speed =c; 

(ii) The classical system of the idealized agent OA: →, OA()=OA,  

h=0, the information-wave speed =. 

In summary, it can be concluded that: h→0 iff →; h→h iff →c. 

Under the principle of simplicity, the most concise formula for h→0 iff → 

is the inverse proportion formula: xy=k, in which k is the constant of proportionality. 

So, the theory of OR develops an important identity, so-called the identity of 

general Planck constant (the GPC identity for short, see Sec. 6.7 in Chapter 6): 
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The GPC Identity (Eq. (6.31)): ( )
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where Chc determined by h→h iff →c; the general Planck constant h→0 

implies that the quantum model converges to the classical model. 

The GPC identity h =hc in Eq. (6.31) of the theory of OR matter waves 

suggests that quantum models of different observation agents are isomorphic, have 

the corresponding relationship of isomorphic consistency, or in other words, have 

the same form and structure. Bohr’s correspondence principle in the limit sense of 

Planck constant (Eq. (11.15)) implies that the optical observation agent OA(c) and 

the idealized observation agent OA are equal. Then the GPC identity h =hc 

implies that: All observation agents are equal or have equal rights. 

It should be pointed out that the GPC identity h =hc is exactly the formalized 

expression of the principle of general correspondence that generalizes Bohr’s 

correspondence principle. 

11.3.2 The Corresponding Relationship 

between OR Spacetime Transformations 

Bohr’ correspondence principle reflects the intrinsic linkage or corresponding 

relationship between quantum physics and classical physics. Likewise, in terms of 

the requirement of logical consistency, there must also be the intrinsic linkage or 

corresponding relationship between the Galilean transformation and the Lorentz 

transformation, as well as that between Einstein’s theory of relativity and Newton’s 

theory of mechanics. 

The mainstream school of physics believe that there is the approximate 

corresponding relationship between the Lorentz transformation and the Galilean 

transformation: at a lower speed (v<<c), the Lorentz factor  =(c)=1/(1−v2/c2) 

(1) is approximate to the Galilean factor  (1), the Lorentz transformation is 

approximate to the Galilean transformation. On these grounds, the mainstream 

school of physics believe that there is the logical consistency between the Lorentz 

transformation and the Galilean transformation, as well as between Einstein’s theory 

of relativity and Newton’s theory of mechanics. The mainstream school of physics 

further conclude that the Lorentz transformation is better, and the Galilean 

transformation is only an approximation; Einstein’s theory of relativity is better, and 

Newton’s theory of mechanics is only an approximation.  

Actually, there is no the directly corresponding relationship between the Lorentz 

transformation and the Galilean transformation. 

In Sec. 4.3 The General Lorentz Transformation (GLT) of Chapter 4, the 

theory of OR, from the logical premises and the logical route different from that of 

Einstein’s theory of special relativity, has theoretically deduced the transformation 

of IOR spacetime in differential form (Eq. (4.16)), which has the more general and 

universal significance than that in algebraic form [26,27]. Then, by setting the initial 

conditions: x=x=0, y=y=0, and z=z=0 at t=t=0, one can integrate the 

transformation of IOR spacetime in differential form (Eq. (4.16)) and obtain the 
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transformation of IOR spacetime in algebraic form as follows: 

The GLT (eq. (4.18)): 

( ) ( )
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This is so-called the general Lorentz transformation. 

Obviously, the transformation of IOR spacetime in Eq. (4.18) has the exactly 

same form and structure as the Lorentz transformation, generalizing the Lorentz 

transformation. Therefore, it is referred to as the general Lorentz transformation 

in the theory of OR. Actually, as stated in the theory of IOR, both the Galilean 

transformation and the Lorentz transformation are only special cases of the general 

Lorentz transformation: the Lorentz transformation is the special case of the optical 

observation agent OA(c); the Galilean transformation is the special case of the 

idealized observation agent OA. 

The transformation of IOR spacetime, or the general Lorentz transformation, 

extends the Lorentz transformation from the optical observation agent OA(c) to the 

general observation agent OA() in which the observation medium can be any form 

of matter motion, and the information-wave speed  can be any speed value. 

According to the theory of OR [26-28], different observation agents OA() have 

different spacetime-transformation factors  (), and hence present different degrees 

of relativistic effects or relativistic phenomena. However, the spacetime 

transformations of different observation agents, and even the inertial relativity 

theories of different observation agents, have the exactly same form and structure, or 

in other words, have the corresponding relationship of isomorphic consistency. 

So, according to the logic of relativity principle: All observation agents are 

equal or have equal rights. 

Therefore, the spacetime models of different observation agents could be 

transformed into each other in the way of isomorphically-consistent correspondence; 

more generally, the inertial relativity theories of different observation agents could 

also be transformed into each other in the way of isomorphically-consistent 

correspondence.  

Let OA(1) and OA(2) are two different observation agents, then: 
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which means that, by substituting the information-wave speed 2 for 1 , the 

spacetime transformation of OA(1) as well as the inertial relativity theory of OA(1) 

could be transformed into that of OA(2) in the way of isomorphically-consistent 

correspondence, and vice versa. 

As stated in Sec. 4.3 The General Lorentz Transformation of Chapter 4, the 

general Lorentz transformation has generalized and unified the Lorentz 

transformation and the Galilean transformation: if →c, then the general Lorentz 

transformation in Eq. (4.18) strictly converges to the Lorentz transformation in Eq. 

(4.12); if →, then the general Lorentz transformation in Eq. (4.18) strictly 

converges to the Galilean transformation in Eq. (4.4). 

So, in the sense of isomorphic consistency, the general Lorentz transformation is 

strictly corresponding not only to the Lorentz transformation but also to the Galilean 

transformation. 

From the perspective of Bohr’s correspondence principle and quantum theory, 

the GPC identity h =hc (Eq. (6.31)) of OR matter-waves theory has clarified that: 

All observation agents are equal. Then, from the perspective of Galileo’s relativity 

principle and the theory of IOR, the general Lorentz transformation (Eq. (6.18)) has 

further clarified that: All observation agents are equal. 

It should be pointed out that the general Lorentz transformation in Eq. (6.18) 

provides another annotation or interpretation for the principle of correspondence, 

generalizing Galileo’s relativity principle. 

11.4 The Unity of the Principle of Correspondence 

and the Principle of Relativity 

According to the statement in Sec. 11.1, Bohr’s correspondence principle is one 

principle on the corresponding relationship between quantum physics and classical 

physics, or one principle on the corresponding relationship between the optical 

observation agent and the idealized observation agent, which implies the profound 

thought of All Observers of Different Observation Agents are Equal. According 

to the statement in Sec. 11.2, Galileo’s relativity principle is one principle on the 

corresponding relationship between the spacetime transformations of different 

inertial reference frames, or one principle on the corresponding relationship between 

the spacetime transformations of different inertial observers, which implies the 

profound thought of All Observers of Different Reference Frames are Equal. 
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According to the statement in Sec. 11.3, the theory of IOR and the general Lorentz 

transformation further clarify that all observers, regardless of their reference frames 

and regardless of their observation agents, are equal or have equal rights, and their 

physical laws or physical models have the corresponding relationship of isomorphic 

consistency, and could be transformed into each other in the way of isomorphically 

consistent correspondence. 

It is thus clear that the principle of correspondence and the principle of relativity 

could be unified under the idea and concept of All Observers are Equal. 

Summing up the conclusions in Secs. 11.1-3, according to the established theory 

of IOR and the established theory of OR matter waves, we have reason to link or 

unify Bohr’s correspondence principle and Galileo’s relativity principle, and to 

integrate the two principles into the principle of general correspondence with more 

universal significance. 

The Principle of General Correspondence (GC): The universe or spacetime is 

symmetrical, so all observers in the universe or spacetime are equal or have equal 

rights; regardless of observers’ observation systems (including reference frames and 

observation agents), physical laws or physical models must have the same form and 

structure in all reference frames and under all observation agents. In other words, the 

physical laws or physical models of all reference frames or all observation agents 

must be isomorphically consistent or have the corresponding relationship of 

isomorphic consistency. 

It is worth noting that, in the principle of GC, the observers might be not only 

ones of different reference frames but also ones of different observation agents: the 

observers of different reference frames are equal; the observers of different 

observation agents are equal. The principle of GC is one principle on the 

corresponding relationship between the physical laws or physical models of different 

observation systems (including reference frames and observation agents). The 

principle of GC has generalized and unified Bohr’s correspondence principle and 

Galileo’s relativity principle, and has transcended Bohr’s correspondence principle 

and Galileo’s relativity principle. 

By means of the principle of GC, one could make the corresponding 

transformation of isomorphic consistency between the physical laws or physical 

models of different reference frames or different observers O and O who employ 

the same observation agent OA(): 
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 (11.19) 

which only needs to make the corresponding transformation between the 

corresponding physical quantities U and U  of O and O, just like the corresponding 

relationship of the O→O and the O→O in the Galilean transformation or the 

Lorentz transformation. 

By means of the principle of GC, one could make the corresponding 
transformation of isomorphic consistency between the physical laws or physical 

models of different observation agents OA(1) and OA(2) employed by the 
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identical observer O: 
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which only needs to make the corresponding transformation between the 

corresponding physical quantities U(1) and U(2) of OA(1) and OA(2), just like 

the corresponding relationship between the general Lorentz transformation of the 

general observation OA() and the Lorentz transformation of the optical observation 

agent OA(c), or the corresponding relationship between the general Lorentz 

transformation of the general observation agent OA() and the Galilean 

transformation of the idealized observation agent OA. 

In particular, according to the principle of GC, in the idealized observation agent 

OA (→ or h→0), all the theoretical systems of physics converge to classical 

physics: h→0 implies that quantum physics converges to classical physics, just like 

the limit correspondence of Planck’s constant: h→0 for Bohr’s correspondence 

principle; and at the same time, → implies that the theory of observational 

relativity (OR) converges to classical physics, that is, the case of the idealized 

observation agent OA. 

In order to make the corresponding transformation of isomorphic consistency 

between the spacetime models or theoretical systems of different observation agents 

OA(1) and OA(2) under the principle of GC, one could follow the following two 

different logic routes. 

PGC Logic Route 1 

Under the principle of GC, directly replace the information-wave speed 1 of 

OA(1) with the 2 of OA(2), then the observed quantities U(1) of OA(1) would 

correspondingly be transformed into the observed quantities U(2) of OA(2), and 

the physical models of OA(1) would in the way of isomorphically-consistent 

correspondence be transformed into the physical models of OA(2). 

PGC Logic Route 2  

That has two steps: 

(i) Under the principle of GC, correspondingly transform the logical premises 

of the theoretical system of OA(1) into that of the theoretical system of 

OA(2); 

(ii) from the logical premises of the theoretical system of OA(2) and by 

analogizing or following the logic of the theoretical system of OA(1), 

deduce the theoretical system of OA(2), which must be isomorphically 

consistent with the theoretical system of OA(1). 

Under the principle of GC, by following both PGC logic route 1 and PGC logic 
route 2, the theory of OR attempt to extend the theory of IOR from inertial 

spacetime to gravitational spacetime, to extend Einstein’s theory of general relativity 
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from the optical observation agent OA(c) to the general observation agent OA(), 

and finally, to establish the theory of gravitationally (or general) observational 

relativity (GOR), or the theory of GOR for short. 

The theory of GOR will clarify the root and essence of the relativistic 

phenomena in Einstein’s theory of general relativity or the relativistic phenomena in 

gravitational spacetime, and finally, generalized and unify Newton’s theory of 

universal gravitation and Einstein’s theory of general relativity. 

Perhaps, the principle of general correspondence (GC) might become a sharp 

weapon of physics to provide the important ideological basis or guiding principle for 

the development of new theories and the unification of old theories, and moreover, 

for the test of logical consistency and logical self-consistency of the theoretical 

systems in physics. 

11.5 IOR Three Principles: 

from Einstein’s Special Relativity to IOR 

The theory of IOR is originally the theoretical system that has been deduced 

from the definition of time and the invariance of time-frequency ratio [26,27]. 

However, the theory of IOR also obeys the principle of general correspondence 

(GC): by substituting the information-wave speed  of the general observation agent 

OA() for the speed c of light, i.e., the information-wave speed c of the optical 

observation agent OA(c), Einstein’s theory of special relativity could be generalized 

from OA(c) to OA(), and then could isomorphically and uniformly be transformed 

into the theory of IOR. 

Here, it would contribute to our understanding of the principle of GC, or to our 

understanding of the role and effect of the principle of GC to deduce the theory of 

IOR under the principle of GC. 

As stated in Sec. 11.4, under the principle of GC, no matter through PGC logic 

route 1 or through PGC logic route 2, one could isomorphically and uniformly 

transform Einstein’s theory of special relativity into the theory of IOR. 

11.5.1 The Deduction of IOR Theory 

through PGC Logic Route 1 

The Fundamental Formulae in Einstein’s Special Relativity 

(are simply be summarized as follows): 

(i) Minkowski 4d inertial spacetime X4d(c) (the optical agent OA(c)): 
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(ii) The Lorentz factor in inertial spacetime: ( )
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(iii) The Lorentz transformation O→O: 
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(iv) The mass-speed relation: 
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(v) The law of Einstein’s speed-addition: 
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(vi) Einstein mass-energy relation: E=mc2. 

The Fundamental Formulae in the Theory of IOR 

Under the principle of GC, through PGC logic route 1 and by directly 

substituting the information-wave speed  of the general observation agent OA() 

for the information-wave speed c of the optical observation agent OA(c), the 

fundamental formulae of Einstein’s special relativity could isomorphically and 

uniformly be transformed into that of IOR theory as follows: 

(i) The IOR inertial spacetime X4d() (the general agent OA()): 
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(ii) The IOR factor of in inertial spacetime: ( )
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(iii) The general Lorentz transformation O→O: 
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(iv) The IOR mass-speed relation: 
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(v) The law of IOR speed-addition: 
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(vi) The IOR mass-energy relation: E=m2. 

The fundamental formulae of IOR theory transformed correspondingly under the 

principle of GC is exactly the same as that of IOR theory derived from the definition 

of time and the invariance of time-frequency ratio [26,27]. It is thus clear that, under 

the principle of GC, the whole theoretical system of IOR could directly be obtained 
from Einstein’s theory of special relativity by the corresponding transformation of 

isomorphic consistency: OA(c)→OA(), and vice versa. 
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In this way, under the principle of GC and through PGC logic route 1, the whole 

theoretical system of IOR could be established. 

11.5.2 The Deduction of IOR Theory 

through PGC Logic Route 2 

The principle of the invariance of light speed is the most important logical 

premise of Einstein’s theory of special relativity. 

However, the invariance of light speed has no the feature of self-evidence that a 

principle should have. People could understand why energy is conserved, so the 

principle of conservation of energy has the rationality as a principle. However, 

people could not understand why the speed of light is invariant. 

Through PGC logic route 1 and by the simply corresponding transformation of 

c→, one could directly obtain the theory of IOR that is isomorphically consistent 

with Einstein’s theory of special relativity. However, PGC logic Route 1 could not 

clarify the root and essence of the invariance of light speed and even that of all other 

relativistic phenomena, and also could not clarify the causality between of the 

general observation agent OA() and the optical observation agent OA(c). 

Originally, the theory of IOR employs the definition of time and the invariance 

of time-frequency ratio as the most basic logical premises. In the theoretical 

system of IOR, there is an important logical consequence: the invariance of 

information-wave speeds. 

The invariance of information-wave speeds has revealed the essence of the 

invariance of light speed: the speed of light is not really invariant; the so-called 

invariance of light speed is actually a sort of observational effect, that is, an apparent 

phenomenon while light is acting as the observation medium to transmit the 

information of observed objects for observers, rather than the objectively physical 

reality. The hypothesis of the invariance of light speed is the indispensable logical 

premise of Einstein’s special relativity. Therefore, Einstein’s special relativity could 

not explain by itself why the speed of light is invariant. 

Perhaps, only when physical theories originated from the most basic logical 

prerequisites, could we really know both what the relativistic phenomena were and 

why the relativistic phenomena did. However, in any case, PGC logic route 2 

contributes more to our understanding of the root and essence of relativistic 

phenomena including the invariance of light speed than PGC logic route 1 do. 

As stated in Chapter 4 of the 1st volume of OR: Inertially Observational 

Relativity, the axiom system of Einstein’s theory of special relativity consists of 

three principles, so-called Einstein’s three principles of special relativity: 

(i) The principle of simplicity; 

(ii) The principle of relativity; 

(iii) The principle of the invariance of light speed 

Under the principle of GC, by the corresponding transformation between the 

optical observation agent OA(c) and the general observation agent OA(): 

OA(c)→OA(), Einstein’s three principles of special relativity could isomorphically 
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and uniformly be transformed into the following three principles of OR theory and 

become the axiom system of the theory of IOR, so-called the IOR three principles: 

(i) The principle of simplicity; 

(ii) The principle of relativity; 

(iii) The principle of the invariance of information-wave speeds. 

In the logical premises of IOR theory, the principle of simplicity and the 

principle of relativity remain valid; however, under the principle of GC, Einstein’s 

principle of the invariance of light speed is correspondingly transformed into the 

principle of the invariance of information-wave speeds, in which the 

information-wave speed  of OA() replaces the light speed c of OA(c). 

Thus, through PGC logic route 2, on the basis of the IOR three principles, and 

by analogizing or following the logic of Einstein’s special relativity, one could 

deduce the theory of IOR. In this way, one could establish the whole theoretical 

system of IOR that must be isomorphically consistent with Einstein’s theory of 

special relativity [28] (or see Secs. 4.2-3 of Chapter 4 in the 1st volume of OR: 

Inertially Observational Relativity). 

Compared with PGC logic route 1, PGC logic route 2 is more helpful in 

clarifying the logical ideas and the causality of IOR theory, and at the same time, is 

more helpful in our understanding of the root and essence of the invariance of light 

speed and even all other inertial relativistic phenomena. 

However, both PGC logical route 1 and PGC logical route 2 are logical shortcuts. 

Taking shortcuts comes at a cost. Whether through PGC logic route 1 or through 

PGC logic route 2, we would miss the invariance of time-frequency ratio and the 

transformation of IOR spacetime in differential form, and in particular, we would 

fail to establish the theory of OR matter waves. 

11.6 GOR Three Principles: 

from Einstein’s General Relativity to GOR 

As stated in Sec. 11.5, the principle of general correspondence (GC) could 

isomorphically and uniformly transform Einstein’s special relativity of the optical 

observation agent OA(c) into the IOR theory of the general observation agent OA(). 

Likewise, the principle of GC could also isomorphically and uniformly transform 

Einstein’s general relativity of the optical observation agent OA(c) into the GOR 

theory of the general observation agent OA(). 

The 2nd volume of OR: Gravitationally Observational Relativity (GOR), 

under the principle of GC, attempts to extend Einstein’s general relativity from the 

optical agent OA(c) to the general observation agent OA(), and ultimately, to 

establish the whole theoretical system of GOR. 

As stated in Sec. 11.4, According to the principle of GC, we have two logical 

routes to follow for deducing the theory of GOR. 

11.6.1 The Deduction of GOR Theory 

through PGC Logic Route 1 
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The Fundamental Formulae in Einstein’s General Relativity 

(are simply be summarized as follows): 

(i) Minkowski 4d gravitational spacetime X4d(c) (the optical agent OA(c)): 

( )
( )

( )( )

0

4d

1 2 3

2

;
:

, ,OA

d d d ,

x ct
X c

x x x y x zc

s g x x g g c x  

  

  = 
   

= = =   
 

= =  

 

(ii) The Lorentz factor in gravitational spacetime: 
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(iii) The geodesic equation: for matter motion 
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(iv) Einstein’s field equation: for spacetime curvature 
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The Fundamental Formulae in the Theory of GOR 

Under the principle of GC, through PGC logic route 1 and by directly 

substituting the information-wave speed  of the general observation agent OA() 

for the information-wave speed c of the optical observation agent OA(c), the 

fundamental formulae of Einstein’s general relativity could isomorphically and 

uniformly be transformed into that of GOR theory as follows: 

(i) The GOR gravitational spacetime X4d() (the general agent OA()): 
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(ii) The GOR factor in gravitational spacetime: 
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(iii) The GOR geodesic equation: for matter motion  
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(iv) The GOR field equation: for spacetime curvature 
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PGC logic route 1 is the most convenient logical channel for the theory of GOR. 

It could be predicted that, under the principle of GC, even through such a simple 

and direct logical channel, one could establish the whole theoretical system of 

Gravitationally Observational Relativity (GOR). 

11.6.2 The Deduction of GOR Theory 

through PGC Logic Route 2 

The axiom system of Einstein’s theory of general relativity also consists of three 

principles, so-called Einstein’s three principles of general relativity: 

(i) The principle of equivalence; 

(ii) The principle of general covariance; 

(iii) The principle of the invariance of light speed 

It is just because the principle of the invariance of light speed is employed as the 

logical premise of Einstein’s special relativity that the speed of light c appears in 

Einstein’s theory of special relativity, for instance, appears in the transformation 

factor (v)  of inertial spacetime:  (v)= 1/(1−v2/c2). Likewise, it is also because the 

principle of the invariance of light speed is employed as the logical premise of 

Einstein’s general relativity that the speed of light c appears in Einstein’s theory of 

general relativity, for instance, appears in the transformation factor ()  of 

gravitational spacetime:  ()=1/(1+2/c2). As stated repeatedly by the theory of 

OR, the principle of the invariance of light speed is the logical premise of both 

Einstein’s special relativity and Einstein’s general relativity. With the help of the 

principle of equivalence, the invariance of light speed could play its role as a 

principle or a logical premise in Einstein’s theory of general relativity. In other 

words, it was in order to play the role of the invariance of light speed as the principle 

or logical premise in Einstein’s theory of general relativity that Einstein constructed 

the principle of equivalence [52,53]. 
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The optical observation agent OA(c) in Eq. (10.1) and the general observation 

agent OA() in Eq. (10.2) have the corresponding relationship of isomorphically 

consistency. Under the principle of GC, OA(c) can isomorphically and uniformly be 

transformed into OA(). Therefore, under the principle of GC, by the corresponding 

transformation of isomorphic consistency: OA(c)→OA(), Einstein’s three 

principles as the axiom system of general relativity could isomorphically and 

uniformly be transformed into the GOR three principles as the axiom system of 

the theory of gravitationally observational relativity (GOR): 

(i) The principle of equivalence; 

(ii) The principle of general covariance; 

(iii) The principle of the invariance of information-wave speeds. 

In the logical premises of GOR theory, the principle of equivalence and the 

principle of general covariance proposed by Einstein remain valid, and moreover, 

under the principle of GC, have gained more universal significance: the observers in 

which could not only serve different reference frames but also have different 

observation agents. As in the case of IOR theory in Sec. 11.5.2, under the principle 

of GC, Einstein’s principle of the invariance of light speed is correspondingly 

transformed into the principle of the invariance of information-wave speeds, in 

which the information-wave speed  of the general observation agent OA() 

replaces the light speed c of OA(c). 

In this way, on the basis of the axiom system or logical premises of GOR theory, 

i.e., the GOR three principles, and by analogizing or following the logic of 

Einstein’s general relativity, one could deduce the theory of GOR. So, we could 

establish the whole theoretical system of GOR that must be isomorphically 

consistent with Einstein’s theory of general relativity. 

Compared with PGC logic route 1, PGC logic route 2 is more helpful in our 

understanding of Einstein’s general relativity, more helpful in our understanding of 

the phenomena of spacetime curvature and even all other relativistic effects in 

gravitational spacetime, and at the same time, more helpful in clarifying the logical 

idea and the causality of GOR theory. 
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12 The Spacetime Theory of GOR 

The GOR spacetime, like the IOR spacetime, is the observational spacetime of 

the general observation agent OA(). However, the IOR spacetime is inertial 

Spacetime, while the GOR spacetime is gravitational spacetime. 

The spacetime that human beings could perceive depends on observation, which 

is the spacetime X4d() that the physical world presents to observer through certain 

observation agents OA() ((0,+)), rather than the objectively real spacetime. 

The realistic observational agents, including the human sensors and the optical agent 

OA(c), all have the observational locality (<), which makes the gravitational 

spacetime we perceive or observe exhibit a certain degree of gravitational relativistic 

effects, appearing to be somewhat curved. 

It is the primary problem of the theory of gravitationally observational relativity 

(GOR) how to define and describe the gravitational spacetime in observation. 

Alternatively, how should physicist observe and measure the space and time of 

gravitational spacetime in observation? 

Are the gravitational relativistic effects, including the phenomenon of spacetime 

curvature, the essential characteristics of the physical world, or the observational 

effects caused by the observational locality? 

12.1 The Problem of the Locality of 

Gravitational Spacetime 

With regard to gravity or gravitational interaction, there are two theoretical 

systems in physics: one is Newton’s theory of universal gravitation [81]; the other is 

Einstein’s theory of general relativity [8]. 

Both Newton’s and Einstein’s involve two classes of locality problems: 

(i) The gravitational locality; 

(ii) The observational locality. 

12.1.1 The Gravitational Locality: 

the Gravitation-Wave Speed is Finite 

As formalized models of the physical world, all theories in physics must have 

certain idealized characteristics. 

Actually, both Newton’s theory of universal gravitation and Einstein’s theory of 

general relativity imply an important idealized hypothesis: gravity is an action at a 

distance, or the speed of gravitational radiation is infinite. 

Newton’s law of universal gravitation does not take into account the locality of 

gravitational interaction: when the distribution of matter in a physical system 

changes, the gravitational field described by Poisson’s equation also change 
instantaneously [125], or in other words, it takes no time for gravity to cross space. 

Newton’s law of universal gravitation is the gravitational law of the idealized 
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agent OA, while Einstein’s field equation is the gravitational law of optical agent 

OA(c). According to Einstein’s theory of general relativity, under the condition of 

weak-field approximation, Einstein’s field equation reduces to Newton’s law of 

universal gravitation in the form of Poisson’s equation. 

You could not imagine that the speed of gravitational radiation would be higher 

in a weaker gravitational field. 

So, this suggests that, just like Newton’s gravity or gravitational interaction, 

Einstein’s gravity or gravitational interaction in his general relativity is also 

idealized as an action at a distance: the speed of gravitational radiation is infinite. 

According to the principle of physical observability (see Chapter 2), there is no 

action at a distance in the physical world [26-28]: all physical quantities, including the 

speed of gravitational radiation, must be finite or limited. 

In 1859, French astronomer Verrier found that the elliptical orbit of Mercury 

was precessing at a rate different from that predicted by Newton’s law [126], which 

aroused people’s attention to the speed of gravity. In 1805, Laplace reached a 

conclusion through calculation [43]: the speed of gravitational radiation was greater 

than 7106c. American physicist Flandern believed that [127]: the speed of 

gravitational radiation is much greater than the speed c of light, otherwise, the 

galaxies in the universe would lose their existing stable structures; in 1998, he 

calculated that the speed of gravitational radiation was 21010c. 

Based on his theory of general relativity [8], Einstein derived a so-called 

gravitational wave equation, in which the speed of gravitational waves is exactly the 

speed of light. However, logically or as far as the logic goes, both Newton’s theory 

of universal gravitation and Einstein’s theory of general relativity have no prior 

information about gravitational waves or the speed of gravitational radiation, and 

therefore, it is simply impossible for Einstein to calculate the speed of gravitational 

waves or derive the equation for predicting gravitational waves. 

So, what does Einstein’s equation on gravitational waves mean? Why is the 

speed of gravitational waves predicted by Einstein exactly the speed of light? 

The theory of GOR will reveal the mystery for us. 

It should be pointed out that, like Newton’s theory of universal gravitation and 

Einstein’s theory of general relativity, the theory of GOR also have no prior 

information about gravitational waves or the speed of gravitational radiation. The 

theory of GOR also contains such an important idealized hypothesis: gravity is an 

action at a distance, or the speed of gravitational radiation is infinite. 

12.1.2 The Observational Locality: 

the Information-Wave Speeds are finite 

Newton’s theory of universal gravitation is the product of the idealized 

observation agent OA, in which the speed of information wave is infinite: there is 

no observational locality (→) in Newton’s gravitational spacetime, and it takes 

no time for observed information to cross space. However, Einstein’s theory of 

general relativity is the product of the optical observation agent OA(c), in which the 

speed of information wave is the speed of light c and is finite or limited: there is the 
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observational locality (c<) in Einstein’s gravitational spacetime, and so it takes 

time for observed information to cross space. 

Like Einstein’s special relativistic phenomena (including the invariance of light 

speed) in inertial spacetime, the root and essence of Einstein’s general relativistic 

phenomena (including spacetime curvature) in gravitational spacetime also lie in the 

observational locality (c<) of the optical observation agent OA(c). By examining 

Schwarzschild metric [80], the theory of OR suggest that [26,27], actually, the so-called 

spacetime curvature is only a sort of observational effect. The optical agent OA(c) 

with observational locality (c<) is just like a wide-angle lens, making the 

gravitational spacetime look or observe somewhat curved or deformed. 

The theory of GOR will further clarify that, if we could employ the idealized 

agent OA (η→) to observe the physical world, then the gravitational spacetime 

would present its objectively real face: flat and not curved. 

In Newton’s theory of universal gravitation [83], gravity, like electromagnetic 

force, weak force and strong force, is a kind of force, i.e., one of the four 

fundamental interactions between matter and matter, rather than the geometric effect 

of spacetime curvature. However, in Einstein’s theory of general relativity [8], the 

gravity or gravitational force is removed from the universe, and only left the 

geometrized effects of gravity: curved spacetime. Einstein’s theory of general 

relativity geometrizes gravity and equates the gravitational effect with spacetime 

curvature: matter makes spacetime curved; curved spacetime makes matter moved. 

Thus, the earth’s motion around the sun is no longer the effect of gravity or 

gravitational force, but that of curved spacetime. 

The geometrization of gravitational effects can be regarded as a formalized 

method for matter interactions. Actually, under the principle of general 

correspondence (GC), such method will penetrate into the theory of GOR and the 

process of GOR logical deduction. However, such a method for geometrizing 

gravitational effects is only a formalized means after all, which does not represent 

the real physical characters of gravity or gravitational force as a fundamental 

interaction, and moreover, does not mean there is no gravitational force in the 

universe. Otherwise, we should also have geometrized the other three fundamental 

interactions, including electromagnetic force, weak force and strong force. 

The theory of GOR will tell us that the so-called spacetime curvature is not due 

to the distribution or accumulation of matter or energy, but just a sort of 

observational effect or apparent phenomenon. 

12.2 The Spacetime Theory 

of Einstein’s General Relativity 

Before relating and analyzing the spacetime theory of GOR under the principle 

of general correspondence (GC), we need to first recognize the spacetime theory of 

Einstein’s general relativity, and to understand the observational spacetime X4d(c) of 

gravitational field under the optical agent OA(c). 

Einstein’s theory of general relativity is the product of the optical observation 

agent OA(c), in which, the basic task of OA(c) is to employ light or electromagnetic 
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interaction as the observation medium to quantify and measure the gravitational 

spacetime X4d(c) of OA(c), including the determinations of space and time. 

It should be pointed out that the determination of the gravitational spacetime 

X4d(c) of OA(c) in Einstein’s general relativity needs to make use of the principle of 

equivalence and the principle of the invariance of light speed. In his theory of 

general relativity, Einstein introduced the local inertial spacetime based on the 

principle of equivalence, the aim or effect of which is to make gravitational 

spacetime locally equivalent to inertial spacetime or to the free spacetime SF where 

the principle of the invariance of light speed holds true, so that one or OA(c) could: 

(i) determine the time of X4d(c): to transform the observational or observed 

time dt into the standard time d; 

(ii) determine the space of X4d(c): to employ the standard time d and the 

invariant light speed c for calculating the physical space dl. 

12.2.1 Einstein’s Concept of Time 

Actually, the coordinate framework of Minkowski 4d spacetime is the 

observational spacetime X4d(c) of the optical agent OA(c), implying Einstein’s 

theory of spacetime, in which X4d(c) is the observational 4d spacetime of OA(c) 

with the 1d time and the 3d space: 

(i) the coordinate of the 1d time: x0=ct ; 

(ii) the coordinate of the 3d space: x1=x, x2=y, x3=z. 

where t=x0/c implies the invariance of light speed. 

Suppose that a moving object, i.e., the observed object P, moves in X4d(c), then 

its spacetime trajectory (including the time-element dt and line-element ds) can be 

described based on the definition of the coordinate framework X4d(c) of Minkowski 

4d spacetime in Eq. (10.1) of Chapter 1: 
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where dt is the observational time observed by the observer with the optical 

observation agent OA(c), x ( =1,2,3,4) are the coordinates of the observational 

spacetime X4d(c) of OA(c), g(c) is the spacetime metric of X4d(c) of OA(c), ds is 

the line-element of P’s spacetime trajectory, and x i(t) (i=1,2,3) are the space 

coordinates at the specific time t. 

The theory of OR (both IOR and GOR) refers to the time t of the observational 

spacetime X4d(c) of OA(c) as the observational or observed time of the optical 

observation agent OA(c). However, in his theory of relativity, Einstein did not make 

clear about the status and effect of observation. In the observational spacetime X4d(c) 

of OA(c) in Eq. (10.1) or (12.1), we are not quite clear about where the clock for 

indicating the time t and where the observer for observing the time t. 

So, what does the time dt in the observational spacetime X4d(c) mean? 

Suppose that the observed object P itself is a clock, or TP is the intrinsic clock 

of P. According to Def. 1.2 in Chapter 1, if the observer O and the observed object P 
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are relatively stationary in inertial spacetime SI or the free spacetime SF, then the 

time obtained by O observing P or TP is exactly the objective and real time (proper 

time): d=ds/c; otherwise, the time obtained by O observing P or TP can only be the 

observational or observed time of O of OA(c): dt=dx0/c. 

The Time of Inertial Spacetime in Einstein’s Special Relativity 

The observational spacetime X4d(c) in Einstein’s theory of special relativity is 

inertial spacetime: g==diag(+1,−1,−1,−1) is Minkowski metric. 

Therefore, from Eq. (12.1), it follows that: 
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where Einstein called  the standard time and t the coordinate time; v is the 

relative speed between the observer O and the observed object P or TP in the inertial 

spacetime X4d(c) of the optical observation OA(c). 

According to the relation (Eq. (12.2)) of Einstein’s theory of special relativity: 

(i) If v=0 then dt=d, which suggests that Einstein’s concept of the standard 

time (d) is consistent with the concept of the intrinsic time defined in Def. 

1.2 of the theory of OR; 

(ii) If v0 then dt >d, which is known as the time dilation in inertial spacetime, 

and according to Eq. (12.2), different inertial speeds v of P would lead to 

different degrees of time dilation. 

In inertial spacetime, motion is relative and so is rest. 

With regard to the time-element dt in the relation (Eq. (12.2)) of Einstein’s 

special relativity, you could imagine that the observer O is at rest, while the 

observed object P moves relative to O at the inertial speed v. In this case, dt should 

be the time the moving clock TP indicates to the static observer O. You could also 

imagine that P is at rest, while O moves relative to P at the inertial speed v. In this 

case, dt should be the time the static clock TP indicates to the moving observer O. 

In Einstein’s special relativity, the clock static in inertial spacetime SI is 

regarded as the standard clock, and the time it indicates to the observer static in 

inertial spacetime SI is the standard time, i.e., proper time: d. 

It is generally thought that the proper time d represents the time rate of the 

clock static in inertial spacetime, and the observed time dt represents the time rate of 

the clock moving in inertial spacetime. However, if dt is interpreted as the time rate 

of moving clock, then dt >d means that moving clock runs faster, which is contrary 

to the cognition of Einstein’s special relativity that moving clock runs slower. So, dt 
is actually the time the static standard clock indicates to the moving observer. 

The theory of IOR has clarified that [26-28], in the inertial spacetime X4d(c) of the 

optical agent OA(c), the intrinsic clock TP of the observed object P should be 

regarded the standard clock static in the free spacetime SF, and dt is the time the 

static standard clock TP indicates to the moving observer O by OA(c). 

The Time of Gravitational Spacetime in Einstein’s General Relativity 
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The observational spacetime X4d(c) in Einstein’s theory of general relativity is 

gravitational spacetime, its spacetime metric g=g(c,x) depends on the spacetime 

coordinates x (=0,1,2,3) of X4d(c) and is related to the speed c of light: different 

coordinates might have different time rates observationally. 

In terms of time, like in his theory of special relativity, there are also two 

concepts in Einstein’s theory of general relativity: 

(i) The standard time: d=ds/c; 

(ii) The coordinate time: dt=ds/(c(g00)) 

It is generally thought that: the standard time is namely the time of the standard 

clock; the coordinate time is namely the time of the coordinate clock. Thus, 

according to Eq. (12.1), the coordinate clock should be static in the space 

coordinate xi (dxi=0) of the observational spacetime X4d(c), and the standard clock 

should be static in inertial spacetime SI or the free spacetime SF (g= , dxi=0). 

According to the coordinate framework of Minkowski 4d spacetime or the 

definition of the optical observation agent OA(c) in Eq. (10.1), the time rate dt in Eq. 

(12.1) of the observational spacetime X4d(c) should be dt=dx0/c. Actually, the time 

dt=dx0/c in Einstein’s general relativity is one of the observed quantities defined in 

Def. 1.2, and can be called the observed time; the standard time d=ds/c in 

Einstein’s general relativity is one of the intrinsic physical quantities defined in Def. 

1.2, and can be called the intrinsic time (proper time): the objectively real time. 

It is thus clear that, in general, the observational time dt=dx0/c of OA(c) is not 

quite the same as the coordinate time dt=ds/(c(g00)) of the observational spacetime 

X4d(c), unless P is stationary in the observational spacetime X4d(c). 

It is worth noting that, because of this, Einstein made the neighborhood of the 

point P in the gravitational spacetime X4d(c) locally become an equivalent inertial 

spacetime under the principle of equivalence, in which P is instantaneously static. 

If P is static in X4d(c), then dxi=0 (i=1,2,3); according to Eq. (12.1), it follows 
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where  (=−GM/r 0) is the gravitational potential at the specific space coordinate xi 

(i=1,2,3) in X4d(c). 

According to Eq. (12.3) in Einstein’s general relativity: 

(i) If =0 then dt=d, which suggests that the concept of the standard time in 

Einstein’s general relativity is equivalent to the concept of the intrinsic 

time in the theory of OR (both IOR and GOR); 

(ii) If 0 then dt>d, which is known as the time dilation of gravitational 

spacetime, and according to Eq. (12.3), different gravitational potential  of 

P would lead to different degrees of time dilation. 

In gravitational spacetime, there might be a certain difference of gravitational 

potential between the observer O and the observed object P. With regard to the 

time-element dt in the relation (Eq. (12.3)) of Einstein’s general relativity, you could 
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imagine that O is static in the free spacetime SF (=0), while P is located at   (0) 

in the gravitational spacetime X4d(c). In this case, dt should be the time the clock TP 

at   in the potential field indicates to the observer O at =0. You could also imagine 

that P is static in the free spacetime SF (=0), while O is located at  (0) in the 

gravitational spacetime X4d(c). In this case, dt should be the time the standard clock 

TP at =0 indicates to the observer O at  (0) in the potential field. 

In Einstein’s general relativity, the clock static at the null potential (=0) is 

regarded as the standard clock, and the time it indicates to the observer static at the 

null potential (=0) is the standard time, i.e., proper time: d. 

It is generally thought that the proper time d represents the time rate of the 

clock static at the null potential (=0), and the observed time dt represents the time 

rate of the clock in the potential field. However, if dt is interpreted as the rate of 

potential clock, then dt >d means that potential clock runs faster, which is contrary 

to the cognition of Einstein’s general relativity that potential clock runs slower. So, 

dt is actually the time the null-potential standard clock indicates to the observer in 

the potential field. 

The theory of GOR will clarify that, in the gravitational spacetime X4d(c) of the 

optical agent OA(c), the intrinsic clock TP of the observed object P should be 

regarded the standard clock static in the free spacetime SF (at the null potential =0), 

and dt is the time the null-potential standard clock TP indicates to the observer O in 

the potential field through OA(c). 

The concepts of the standard time and the coordinate time are important 

concepts of Einstein’s general relativity, which are employed to measure or 

determine both the time and the space in the gravitational spacetime X4d(c) of the 

optical observation agent OA(c). 

12.2.2 The Determination of the Standard Time 

in Einstein’s General Relativity [8,128,129] 

As stated in Sec. 12.2.1, observers moving at different inertial speeds (v) have 

different rates of observed time dt in inertial spacetime; observers located at 

different gravitational potentials () also have different rates of observed time dt in 

gravitational spacetime. 

The spacetime in Einstein’s special relativity is inertial spacetime, belonging to 

the observational spacetime X4d(c) of the optical agent OA(c). As shown in Eq. 

(12.2), d is the time when v=0, and Einstein interpreted d as the time rate of the 

clock static in inertial spacetime; dt is the time when v0, and Einstein interpreted dt 

as the time rate of the clock moving in inertial spacetime. The observed dt depends 

on the inertial speed v of the observed object P in X4d(c), but does not depend on the 

space coordinates of P in X4d(c). Therefore, in his theory of special relativity, 

Einstein seemed to prefer to use dt rather than d to describe the movement of P. 

And moreover, based on the observed time-element dt that is not the objectively real 

time, Einstein interpreted his views of the relativity of simultaneity, time dilation, 

and length contraction, and exaggerated his thought that relativistic phenomena are 

the essential characteristics of spacetime and matter motion. 
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The spacetime in Einstein’s general relativity is gravitational spacetime, also 

belonging to the observational spacetime X4d(c) of the optical agent OA(c). As 

shown in Eq. (12.3), d is the time when 0, and Einstein interpreted d as the 

time rate of the clock located at the null potential; dt is the time when 0, and 

Einstein interpreted dt as the time rate of the clock located at  in gravitational 

spacetime. With regard to gravitational spacetime, different space coordinates have 

different gravitational potential , and therefore, have different time rates dt. In this 

case, Einstein’s theory of general relativity could not directly employ the time rate dt 

of the coordinate framework of Minkowski 4d spacetime to describe the movement 

of the observed object P. 

Perhaps, for this reason, Einstein realized that the time rate dt in the coordinate 

framework of Minkowski 4d spacetime did not represent the objectively real time. 

Einstein’s theory of general relativity needed a uniform time. 

So, the concept of the standard time (d) appeared in Einstein’s theory of 

general relativity to distinguish from the concept of the coordinate time (dt). 

Naturally, the standard time should be independent of spacetime and matter 

motion, and not depend on v and . 

Perhaps, this reminded Einstein of the clock static in inertial spacetime and the 

proper time d in Eq. (12.2). The standard clock in Einstein’s general relativity is 

located at the null potential (=0), equivalent to the standard clock static in inertial 

spacetime (v=0) of Einstein’s special relativity. This implies that, with regarded to 

the standard clock TP as the observed object P, g= and dxi=0 (i=1,2,3). Thus, 

one could calculate the standard time d independent of v and  from Eq. (12.1): 
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Obviously, the standard time d in Eq. (12.4) is the intrinsic physical quantity 

defined in Def. 1.2 of Chapter 1, i.e., the intrinsic time (proper time): the objectively 

real time. 

Einstein’s special relativity needs to transform the observed time dt that depends 

on the inertial speed v into the standard time d ; likewise, Einstein’s general 

relativity needs to transform the observed time dt that depends on the gravitational 

potential  into the standard time d. 

If the intrinsic clock TP of the observed object P is static in the free spacetime SF, 

then TP is namely the standard clock, and its time is namely the standard time. 

However, in Einstein’s view, P is in the gravitational potential field (0), TP is not 

the standard clock, and its time is not the standard time; if P is located at the specific 

space coordinate xi (i=1,2,3)  of X4d(c), then TP is the coordinate clock at xi, and the 

time dt is the coordinate time at xi. So, Einstein needed to standardize the time in his 

general relativity: to transform the gravitational spacetime X4d(c) into inertial 

spacetime, to transform the clock TP into the standard clock, and to transform the 

coordinate time dt into the standard time d. 
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Let D0 (x
i(t) (i=1,2,3)) be the space coordinate of the observed object P at the 

specific time t=x0/c. The observer O located at D0 originally belongs to the 

gravitational spacetime SG=X4d(c); SG is the observational spacetime SO of O with 

OA(c). As depicted in Fig. 12.1(a1), under the principle of equivalence, one could 

introduce a locally inertial spacetime S I at D0, in which P and O are instantaneously 

static at D0, so that the principle of the invariance of light speed holds true in the 

neighborhood of D0. 

In this way, the principle of equivalence embodies its special value and 

significance: through the principle of equivalence, the gravitational spacetime SG is 

instantaneously and locally transformed into the equivalent inertial spacetime SI. 

According to Eq. (12.4), the standard time d is proportional to the line-element 

ds of the observed object P in the observational spacetime X4d(c) of the optical agent 

OA(c). As depicted in Fig. 12.1(a1), let LG be the world line of P in the gravitational 

spacetime SG of OA(c), and LI be the world line of P in the equivalent inertial 

spacetime SI. Reasonably, the standard time in SG can be defined as dG=dsG /c; the 

standard time in SI can be defined as d I=dsI /c. 

Obviously, according to the definition of the standard time d in Eq. (12.4), the 

dI in inertial spacetime SI is the objectively real time, i.e., the intrinsic time (proper 

time) d: d I=d. 

According to differential geometry, the line-element dsG of the curve LG is equal 

to the line-element dsI of the tangent LI to LG: dsG=dsI. So, it follows that 
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Equation (12.5) is of the important and profound implication: different 

observational spacetimes X4d(c) of the optical agent OA(c), including SG and SI, has 

the identical standard time, which is exactly the objective and real time, i.e., the 

intrinsic time (proper time) d. 

Under the principle of equivalence, the gravitational spacetime SG=X(c) 

becomes the inertial spacetime SI locally equivalent SG, in which the observed object 

P and the observer O located at D0 (x
i) is instantaneously static in SI: dxi=0 (i=1,2,3). 

Therefore, according to Eq. (12.1) and Eqs. (12.4-5), the standard time d in 

Einstein’s theory of general relativity can be determined with the coordinate time dt: 
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where  is the gravitational potential at the space coordinate xi (i=1,2,3) in X4d(c). 

Equation (12.6) suggests that: in Einstein’s theory of general relativity, the 

standard time could be determined; more importantly, the objective real time, i.e., 
the proper time, could be determined by observing and measuring. 

In particular, it should be pointed out that, as one of the logical premises in 
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Einstein’s theory of general relativity, the hypothesis of the invariance of light 

speed plays an important role in the determination of time. 

As stated in Sec. 1.4 of Chapter 1, Minkowski spacetime, or the coordinate 

framework of 4d spacetime X4d(c) of the optical agent OA(c), is a sort of formalized 

expression of the principle of the invariance of light speed, in which the time axis 

x0=ct (see Eq. (10.1) or Eq. (12.1)) represents the invariance of light speed. It was 

based on the time-element dt=dx0/c in Eq. (12.1) and the line-element ds=gdxdx  
in Eq. (12.1) of the observed object P that Einstein derived Eq. (12.6), i.e., the 

formula of the standard time d. 

12.2.3 The Determination of the Physical Space 

in Einstein’s General Relativity [8,128,129] 

In Einstein’s theory of general relativity, the determination of physical space 

depends not only on the standard time d but also on the hypothesis of the 

invariance of light speed. So, Einstein had to make use of the principle of 

equivalence to transform the gravitational spacetime SG=X4d(c) into the equivalent 

inertial spacetime SI at D0 instantaneously and locally. 

As depicted in Fig. 12.1(a2), let D be a space point close enough to D0 in the 

gravitational spacetime SG=X4d(c); send an optical signal from D0 to D and then be 

reflected from D back to D0. The time it takes obeys: 
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where the gravitational spacetime SG is not necessarily isotropic, and therefore, the 

time the dx0
out takes is not necessarily equals to the time the dx0

back takes. 

If the spatial displacement from D0 to D is dxi (i=1,2,3), then the spatial 

displacement from D to D0 is −dxi (i=1,2,3). Under the optical observation agent 

OA(c), the spacetime line-element ds2=0 of light, and therefore, we have: 
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Particularly, according to the principle of equivalence and the principle of 

general covariance, the locally inertial spacetime SI at D0 must be isotropic, in which 

the invariance of light speed holds true. Therefore, the physical space distance dl 

between D0 and D can be defined as dl=cd/2 based on the standard time d and the 

speed c of light in the vacuum. 

According to Eq. (12.6), the standard time (proper time) d=(g00)dx0/c. 

Then, the physical space distance dl can be measured or determined as follows: 
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where ik (i,k=1,2,3) is the physical space metric. 

12.2.4 The Factor of GOR Spacetime Transformation 

in Einstein’s General Relativity [8,129,130] 

In Einstein’s theory of relativity, the factor  =dt/d of spacetime transformation 

is the ratio of the observed time-element dt to the intrinsic time-element d, which is 

an important physical quantity: the larger the factor  , the more significant the 

relativistic phenomena of the observed object. 

Therefore,  may also be referred to as the relativistic factor for characterizing 

the relativistic effects of spacetime and matter motion 

The Factor of Inertial Spacetime Transformation:  = (v) 

In Einstein’s theory of special relativity, the factor  =dt/d of spacetime 

transformation is the relativistic factor of inertial spacetime transformation, i.e., the 

Lorentz factor: 
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where  = (v) depends on the inertial speed v of the observed object P: the larger the 

|v|, the more significant the relativistic effects of inertial motion. 

The Factor of Gravitational Spacetime Transformation:  = () 

In Einstein’s theory of general relativity, the factor  =dt/d of spacetime 

transformation is the relativistic factor of gravitational spacetime transformation. In 

the case of simple gravity (v=0): 
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where  = () depends on the gravitational potential  of the observed object P: the 

larger the ||, the more significant the relativistic effects of gravitational interaction. 

The Factor of Gravitational Spacetime Transformation:  = (v,) 

Suppose that the observed object P moves in the gravitational field, then in 

Einstein’s general relativity, the factor of spacetime transformation should be: 
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where  = (v,) depends on both the gravitational potential  of the observed object 
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P and the speed v of the observed object P relative the observer O. 

The Factor of Gravitational Spacetime Transformation:  = (v, , i) 

It is worth noting that, in Eq. (12.12), the  is a scalar, representing the scalar 

potential of gravity. Einstein imagined that, like the electromagnetic field, 

gravitational field might have both scalar potential and vector potential: Following 

the definition of the strength of electromagnetic field, the field strength g at a space 

point in gravitational field could be defined as follows: 
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where m is the mass. According to the principle of equivalence, there is no 

distinction between gravitational mass and inertial mass; the strength g of 

gravitational field is equivalent to the gravitational acceleration a (a1,a2,a3) at the 

space point xi (i=1,2,3). 

According to Einstein’s theory of general relativity: 

 
( )

( ) 0

2

00

2
1

i i

i ii

c g
a c c

x c t g

 

 

= − − +  − 
    

 (12.14) 

where  i  (i=1,2,3) is the vector potential and  the scalar potential of gravity. 

If the vector potential of gravity really exists in gravitational field, then i(1,2, 

3) g0i0; according to Eq. (12.9), in the observational spacetime X4d(c) of the optical 

agent OA(c), the space metric ik (i,k=1,2,3) is related to the time axis x0 of X4d(c). 

This would mean that the space axis xi i(1,2,3) of X4d(c) might not be orthogonal 

to the time axis x0 of X4d(c): space and time are interdependent. 

Conversely, if the vector potential of gravity does not exist in gravitational field, 

then g0i=0 (i=1,2,3); according to Eq. (12.9), in the observational spacetime X4d(c) 

of the optical agent OA(c), the space metric  ik=−gik (i,k=1,2,3) is not related to the 

time axis x0 of X4d(c). This would mean that the space axis xi i(1,2,3) of X4d(c) is 

orthogonal to the time axis x0 of X4d(c): space and time are orthogonal and 

independent of each other; the corresponding coordinate system of X4d(c) could be 

referred to as the orthogonal spacetime. 

So, is there really the vector potential of gravity in gravitational field? 

This involves the problem about whether the time axis and the space axes are 

orthogonal in 4d spacetime. More importantly, this has led to the problem about 

whether space and time are interdependent. 

Under the optical agent OA(c) in Eq. (10.1), the observed time dt=dx0/c and the 

intrinsic time d=ds/c. Considering both the scalar potential  and the vector 

potential  i (i=1,2,3) in gravitational field, then 
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where  = (v, , i) depends on the speed v of the observed object P relative the 

observer O, and meanwhile, depends on the scalar potential  and the vector 

potential  i (i=1,2,3) of P. 

Equation (12.15) is the most general factor  of spacetime transformation in 

Einstein’s theory of general relativity. By contrasting Eq. (12.15) with Eqs. (12.6), 

(12.9) and (12.14), the factor  in Eq. (12.15) could be rewritten as: 
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where v=dl/dt and v i=dxi/dt (i=1,2,3). 

The factor of spacetime transformation in Einstein’s general relativity (Eq. 

(12.16)) has generalized the relativistic effects of both inertial spacetime and 

gravitational spacetime: without gravitational field (=0,  i=0), Eq. (12.16) reduces 

to the factor  =1/(1−v2/c2) (Eq. (12.10)) of inertial spacetime transformation; 

without inertial motion (v=0), Eq. (12.16) reduces to the factor  =1/(1+2/c2) (Eq. 

(12.11)) of gravitational spacetime transformation. 

12.2.5 The Problem of the Root and Essence 

of Relativistic phenomena 

Perhaps, the earlies observation of relativistic phenomena should be traced back 

to the Michelson-Morley experiment [2], which led to the birth of the 

Fitzgerald-Lorentz transformation [3-6]. Based on the Michelson-Morley experiment, 

Einstein set up the principle of the invariance of light speed, theoretically derived 

the Lorentz transformation, established the theory of special relativity in 1905 [7], 

and then, established the theory of general relativity in 1915 [8]. However, neither 

Fitzgerald, Lorentz, nor Einstein understand what role light played in the Fitzgerald 

transformation [3] and the Lorentz transformation [4-6]. 

Up to today, the mainstream school of physics still does not fully understand 

what role light plays in Einstein’s theory of relativity, including the special relativity 

and the general relativity. 

Why does the speed of light c appear in Einstein’s theory of relativity? In 

particular, why does the speed of light c occupy the specific position in the factor 

 =dt/d of spacetime transformation? 

Naturally, it is due to the hypothesis of the invariance of light speed that the 

speed c of light appears in Einstein’s theory of relativity, including in the special and 
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in the general, and particularly, appears in the factor  =1/(1+2/c2−v2/c2) of 

spacetime transformation. However, as the logical premise of Einstein’s theory of 

relativity, the hypothesis of the invariance of light speed itself cannot explain what 

role light plays in Einstein’s theory of relativity. 

Einstein believed and nowadays the mainstream school of physics also believe 

that: the speed of light was the ultimate speed of the universe and could not be 

exceeded, and therefore, the speed c of light was invariant or the same relative to all 

inertial observers. So, the factor  = (v, , i) of spacetime transformation in Eq. 

(12.16) depends on the speed v of matter motion as well as the scalar potential  and 

vector potential (i=1,2,3) of gravitational field: if v=0 as well as =0 and  i=0 

(i=1,2,3), then  =1, and there is no relativistic phenomenon; if v0 or 0 or 

i  i0, then  >1, and spacetime and matter motion would present relativistic 

effects or relativistic phenomena. 

Accordingly, Einstein believed and nowadays the mainstream school of physics 

also believes that: relativistic phenomena, including the invariance of light speed 

and the effect of spacetime curvature, were the essential characteristics of 

spacetime and matter motion, and rooted from matter motion (v) and matter 

interactions (  and  i). 

However, the theory of IOR has already clarified that, in Einstein’s theory of 

special relativity, the root of inertial relativistic effects does not lie in matter motion, 

and the essence lies in the observational locality (c<) of the optical agent OA(c). 

The theory of GOR will further clarify that, in Einstein’s theory of general relativity, 

the root of gravitational relativistic effects does not lie in matter interactions, and the 

essence also lies in the observational locality (c<) of the optical agent OA(c). 

12.3 The Measurement of GOR Spacetime 

In his theory of general relativity, based on the principle of equivalence, Einstein 

transformed gravitational spacetime into inertial spacetime, so that the hypothesis of 

the invariance of light speed could holds true in the observational spacetime X4d(c) 

of optical agent OA(c). Thus, the coordinate time could be transformed into the 

standard time, and the time of gravitational spacetime could be measured or 

determined; the gravitational space could be transformed into the inertial space, and 

so, the space of gravitational spacetime could be measured or determined. 

Now, based on the principle of general correspondence (GC), we intend to 

extend the concepts of the standard time and the coordinate time in Einstein’s theory 

of general relativity, as well as Einstein’s logical way of determining the time and 

space of gravitational spacetime, from the optical observation agent OA(c) to the 

general observation agent OA() in the theory of GOR. 

Einstein employed the optical observation agent OA(c) to measure spacetime, 

including the inertial and the gravitational; while the theory of OR, including IOR 

and GOR, employ the general observation agent OA() to measure spacetime, 

including the inertial and the gravitational. 

12.3.1 GOR Logic Route: OA(c)→OA() 
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In theory, the observation medium of an observation agent OA() could be any 

form of matter motion, not necessarily light; the transmitting speed  of observed 

information could be any value, not necessarily the speed c of light. 

In the objective world, the speed of matter motion must be finite or limited. 

Therefore, like the optical agent OA(c), all realistic observation agents (OA(): 

(0,+)) have the observational locality of their own. Restricted by the 

observation locality (<), the observational spacetime X4d() of OA(), like the 

observational spacetime X4d(c) of OA(c), also appears to be somewhat curved in 

observation. However, as depicted in Fig. 12.1(b1), different observation agents 

have different information-wave speeds and different degrees of observational 

locality, and therefore, their observational spacetimes would present different 

degrees of curvature. 

Based on the principle of GC, you could make the corresponding transformation 

of isomorphic consistency between different observation agents, including between 

the optical agent OA(c) and the general observation agents OA(). Actually, it is 

based on the principle of GC that the optical observation agent OA(c) in Eq. (10.1) 

is isomorphically and uniformly transformed into the general observation agent 

OA() (Eq. (10.2)) in Def. 10.1 of Chapter 10. 

As stated in Sec. 11.4 of Chapter 11, based on the principle of GC, there are two 

logic routes for you to deduce the formulae of measuring the space and time in 

gravitational spacetime of GOR theory. 

Following PGC Logical Route 1 

Based on the principle of GC, transforming the optical agent OA(c) into the 

general observation agent OA() in the way of isomorphically-consistent 

correspondence, the observational spacetime X4d(c) of OA(c) in Einstein’s general 

relativity would be transformed into the GOR observational spacetime X4d() of 

OA(). In this way, the formulae for measuring the space and time of gravitational 

spacetime in Einstein’s general relativity could isomorphically and uniformly be 

transformed into that in the theory of GOR. 

Firstly, substituting  for the light speed c, Eq. (12.6) for measuring the standard 

time in Einstein’s general relativity could directly be transformed into the formula 

for measuring the standard time in the theory of GOR: 
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where g00=g00() is the 00-element of the metric tensor g() in the observational 

spacetime X4d() of OA(), distinguished from the g00(c) in the optical observation 

spacetime X4d(c) of OA(c) 

Thus, the standard time in the observational spacetime X4d() of the general 

observation agent OA() (not just OA(c)) can be measured or determined. 

Secondly, substituting  for the light speed c, Eq. (12.9) for measuring the 

physical space in Einstein’s general relativity could directly be transformed into the 
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formula for measuring the physical space in the theory of GOR: 
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where ik=ik() is the space metric in the observational spacetime X4d() of OA(), 

distinguished from the ik(c) in the optical observation spacetime X4d(c) of OA(c). 

Thus, the physical space of the observational spacetime X4d() of the general 

observation agents OA() (not just OA(c)) can be measured or determined. 

Following PGC Logical Route 2 

Perhaps, based on the principle of GC, following PGC logic Route 2, it is more 

helpful for us to understand the spacetime theory of Einstein’s general relativity, and 

then to deduce the spacetime theory of GOR more logically. 

Actually, what followed by Def. 10.1 is PGC logic route 2: in the optical agent 

OA(c), x0=ct implies the invariance of light speed; while in the general observation 

agent OA(), x0= t implies the invariance of information-wave speeds. Therefore, 

the corresponding transformation of isomorphic consistency between OA() and 

OA(c) is actually that between the invariance of information-wave speeds and the 

invariance of light speed, rather than simply that between the information-wave 

speed  and the light speed c. 

As stated in Sec. 12.2, in Einstein’s theory of general relativity, the 

measurement of gravitational spacetime, including the determination of time and the 

determination of space, depends on Einstein’s three principles of general 

relativity: (i) the principle of equivalence; (ii) the principle of general covariance; 

(iii) the principle of the invariance of light speed. 

As stated in Sec. 11.6 of Chapter 11, based on the principle of GC, following 

PGC logic route 2, by replacing the invariance of light speed with the invariance of 

information-wave speeds, the theory of GOR have had the GOR three principles: 

(i) the principle of equivalence; (ii) the principle of general covariance; (iii) the 

principle of the invariance of information-wave speeds. Naturally, taking such three 

principles as the logical premised or axiom system, by analogizing and following the 

logic of Einstein’s general relativity, the theory of GOR could derive the metric 

relations of gravitational spacetime, including Eqs. (12.17-18), which must be 

isomorphically consistent with that of Einstein’s general relativity. 

Under the principle of equivalence, the curved gravitational spacetime 

SG=X4d() of the general observation agent OA() is instantaneously and locally 

transformed into the equivalent flat inertial spacetime SI, i.e., the free spacetime SF, 

in which the principle of general covariance and the principle of the invariance of 

information-wave speeds hold true. Thus, firstly, as what will be stated in Sec.12.3.3, 

the standard time of GOR gravitational spacetime X4d() could be determined: 

following Einstein’s logic, Eq. (12.17) could be derived; secondly, as what will be 

stated in Sec. 12.3.4, the physical space of GOR gravitational spacetime X4d() 
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could be determined: following Einstein’s logic, Eq. (12.18) could be derived. 

12.3.2 The Time Concept of GOR 

As stated in Sec. 10.1 of Chapter 10, the definition of time (Def. 2.2 in Chapter 

2) and its inference: the invariance of time-frequency ratio (Eq. (2.3)), remain 

valid in the theory of GOR. 

According to Def. 10.1, the observational spacetime X4d() of the general 

observation agent OA() is isomorphically consistent with the Minkowski spacetime 

X4d(c) of the optical agent OA(c), and has the same spacetime structure of 1d time 

and 3d space: 

(i) The 1d time coordinate: x0= t; 

(ii) The 3d space coordinates: x1=x, x2=y, x3=z, 

where the time coordinate t=x0/ implies the invariance of information-wave speeds. 

Let P the observed object and O the observer: P exists in the intrinsic spacetime 

Oo (the free spacetime SF); O employs the observation agent OA() to observe P. In 

the view of O, P moves in the observational spacetime X4d() of OA(). According 

to Def 10.1, the spacetime trajectory of P could be described by the time-element dt 

and the line-element ds in the observational spacetime X4d() of OA(): 

 
( )

0

2 2 2

00 0

d d

d d d d 2 d d d di i k

i ik

t x

s g x x g t g x t g x x 





  

 =


= = + +
 (12.19) 

where dt is the observational time observed by O with OA(), x ( =1,2,3,4) the 

spacetime coordinates of X4d(), x i(t) (i=1,2,3) the space coordinates of P at a 

specific time t=x0/, ds the line-element of spacetime trajectory of P, and g() the 

spacetime metric of X4d() of OA(). 

The time-element dt in the definition of time in Def. 2.2 of Chapter 2 or in Eq. 

(12.19) can be referred to as the GOR time. 

Then, what relationships are there among the GOR time and the IOR time in 

Def. 1.1 of Chapter 1 as well as Einstein’s coordinate time and standard time? 

The GOR time is the time of general observation agent OA() in Def 10.1, 

which is consistent with the time concept in Def. 2.2 of Chapter 2. According to Sec. 

12.2.1 and Sec. 12.3.1, the GOR time dt=dx0/ is not only the observed time of the 

general observation agent OA(), but also the observed time in Def. 2.2. However, 

generally, dt=dx0/ is neither the standard time nor the coordinate time. 

The concept of time in Def. 2.2 generalizes Einstein’s concepts of both the 

coordinate time and the standard time: no matter the coordinate time or the standard 

time is only a special case of the observed time in Def. 2.2. In particular, the 

intrinsic time of Def. 2.2 is consistent with or equivalent to Einstein’s standard time, 

which is the time of the standard clock static in the free spacetime SF. 

However, Einstein did not specify the status and role of observers in the 
observation or measurement of time. 

Based on the definition of time in Def. 2.2, the concept of time in the theory of 
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OR (including IOR and GOR) needs to be linked to observation and observers: in 

the observation spacetime X4d() of an observation agent OA(), the time dt is the 

observed time of the observer O in Def. 2.2; particularly, according to Def. 1.2 of 

Chapter 1, the intrinsic time in Def. 2.2 is the objectively real time, which could be 

measured or determined only if the standard clock is static in the free spacetime SF, 

or O could employ the idealized observation agent OA. 

It is conceivable that the time dt in Def. 10.1 (see Eq. (10.2) or Eq. (12.19)) is 

the observed time indicated by the standard clock to the observer O of OA(). 

Then, in terms of the spacetime trajectory of the observed object P (Eq. (12.19)), 

the problems are that: 

Firstly, what and where the standard clock is; 

And secondly, who and where the observer O is. 

According to the definition of clock in Def. 2.3, the standard clock is static in 

the free spacetime SF, or vice versa, all periodic signal sources static in the free 

spacetime SF, including P as a matter wave or its intrinsic clock TP, could be 

employed as the standard clock. 

The basic task of the observer O is to measure or determine the spacetime 

coordinates x (=1,2,3,4) of the observed object P, that is, 

(i) to determine the specific time t=x0/ of P; 

(ii) to determine the space coordinates x i(t) (i=1,2,3) of P at the specific time t. 

As the observational or observed time of the observer O, the measurement of the 

GOR time dt=dx0/ needs to specify the relative relationship between the observer 

O of OA() and the observed object P. 

Observation implies the spacetime transformation: by means of a certain 

observation agent OA(), the observer O transforms the observed object P from the 

intrinsic spacetime Oo of its own to the observational spacetime X4d() of OA(). 

Originally, the observed object P belongs to the intrinsic spacetime Oo static in the 

free spacetime SF; P itself or its intrinsic clock TP is namely the standard clock. 

Therefore, the time dt in the definition of the general observation agent OA() (Def. 

10.1: Eq. (10.2) or Eq.(12.19)) is the observational or observed time of the observer 

O of OA() and indicated by TP as the standard clock. 

In particular, in gravitational field, observers located at different space 

coordinates might have different observed times dt. 

So, where is the observer O of the time dt in Def 10.1 (Eq. (10.2) or Eq. (12.19))? 

As an observer, O observes the spacetime trajectory of P as shown in Eq. (12.19): at 

the specific time t=x0/, P arrives at or is located at the specific space coordinates 

x i(t) (i=1,2,3); the corresponding dt must be the observed time rate of P or TP at the 

space coordinates x i(t) (i=1,2,3). Therefore, the observer O should be located at the 

space coordinates x i(t) (i=1,2,3): at the specific time t=x0/, the corresponding time 

rate dt of spacetime trajectory of P in Eq. (12.19) is the observed time rate dt of the 

observer O who is instantaneously located at the same space coordinate x i(t) 
(i=1,2,3) as that of the observed object P or TP. 
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In terms of spatial location, the standard clock TP is always static relative to P. 

Naturally, if O and P are relatively static in the free spacetime SF at one moment 

t=x0/, then the observed time dt=dx0/ (g= , dxi=0; i=1,2,3) of O is exactly the 

standard time; if O and P are relatively static at the specific space coordinates x i(t) 

(i=1,2,3) of X4d() at one moment t=x0/, then the observed time dt=dx0/ (dxi=0; 

i=1,2,3) of O is exactly the coordinate time 

To sum up, the GOR times, including the standard time and the observed time 

are subject to the definition of time in Def. 2.2 of Chapter 2: the standard time of 

GOR is consistent with Einstein’s standard time; the coordinate time of GOR is 

consistent with Einstein’s coordinate time. Both can be derived from the definition 

of the general observation agent OA() in Def. 10.1 or from Eq. (12.19), i.e., the 

spacetime trajectory of the observed object P. 

The Standard Time of GOR: if O and P are relatively static in the free 

spacetime SF, then g=  and dxi=0 (i=1,2,3), we have: 
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where the observed time dt of O is exactly the intrinsic time or the standard time d, 
consistent with the concept of the standard time in Einstein’ general relativity. 

The Coordinate Time of GOR: if O and P are static at the specific coordinates 

dxi (i=1,2,3) of the observational spacetime X4d(), then dxi=0 (i=1,2,3), we have: 
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where the observed time dt of O is the GOR coordinate time dt() of the general 

observation agent OA(), consistent with the concept of the coordinate time in 

Einstein’ general relativity: dt(c)=d/(1+2 /c2). 

The Observed Time of GOR: Even if O and P are instantaneously located at 

the identical coordinates dxi (i=1,2,3) of X4d(), it does not necessarily imply that 

they are relatively static; it is the most general situation of the observed time dt of O 

that dt=dx0/, obeying Def. 2.2 of Chapter 2. If only considering the case of 

orthogonal spacetime, we have: 
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which involves the case of O in moving relative to P (v is the instantaneous speed of 

O relative to P). 
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It is worth noting that Eq. (12.22) of the general observation agent OA() in the 

theory of GOR is isomorphically consistent with Eq. (12.11) of the optical agent 

OA(c) in Einstein’s theory of general relativity: dt(c)=d /(1+2 /c2−v2/c2). 

As shown in Eqs. (12.20-22), the GOR time, i.e., the observed time of GOR in 

Eq. (12.22), generalizes the standard time of GOR and the coordinate time of GOR: 

if v=0, then Eq. (12.22) reduces to Eq. (12.21), the observed time dt=dx0/ of GOR 

is namely the coordinate time of GOR; if v=0 and =0, then Eq. (12.22) reduces to 

Eq. (12.20), the observed time dt=dx0/ of GOR is namely the standard time 

d=ds/ of GOR. 

The concept of observed time is the important concept of time in the theory of 

OR (including IOR and GOR). The concept of observed time of GOR in Def. 2.2 is 

the time of the general observation agent OA(), suitable for all observation agents, 

including the optical observation agent OA(c) and the idealized observation agent 

OA. The observed time dt of GOR in Eq. (12.22) is the time observed by the 

observer O in the observational spacetime X4d() of OA(). Like in Einstein’s 

theory of relativity, the observed time dt in the theory of OR (including IOR and 

GOR) also tends to dilate: if v0 or 0, then dt>d; in the view of observers, the 

standard clock goes faster. 

In particular, Eq. (12.22) shows that: 

(i) In inertial spacetime (=0): dt=d /(1−v2/2)d. 

This means that, if an observer in moving (v0) observes the standard clock 

static in the free spacetime SF, then the observed time dt is greater than the standard 

time d. In other words, in the view of inertial observers, the clock static in inertial 

spacetime goes faster. This is consistent with the cognition or judgment of Einstein’s 

theory of special relativity: the clock in moving goes slower. 

(ii) In gravitational spacetime (v=0): dt=d/(1+2 /2)d. 

This means that, if an observer in potential field (0) observes the standard 

clock static in the free spacetime SF, then the observed time dt is greater than the 

standard time d. In other words, in the view of observers in potential field or 

gravitational field, the clock static at the null potential goes faster. This is consistent 

with the cognition or judgment of Einstein’s theory of general relativity: the clock in 

potential field or gravitational field goes slower. 

However, it is worth noting that, Eqs. (12.20-22) shows that such phenomena of 

time dilation depend on observation: the observed times of different observation 

agents dilate in different degrees; in particular, as →, the observational 

spacetime X4d() of OA() would revert to the Galilean spacetime X4d
, in which 

the observed time of GOR is exactly the intrinsic time or the standard time, that is, 

the objective real time: dt=d . 

There is the corresponding relationship of isomorphic consistency between the 

GOR time and Einstein’s time of general relativity. Therefore, Einstein’s standard 

time and coordinate time of general relativity could correspondingly be transformed 

from the optical observation agent OA(c) to the general observation agent OA(). In 

particular, Einstein’s logic way of general relativity for measuring or determining 
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the observational spacetime X4d(c) the optical agent OA(c) could be extended to the 

theory of GOR for measuring or determining the observational spacetime X4d() of 

the general observational agent OA(). 

12.3.3 The Determination of the Standard Time in GOR 

Actually, as stated in Sec. 12.3.2: the GOR time, i.e., dt=dx0/ in Eq. (12.19), 

should be the observed time of GOR, d=ds/ in Eq. (12.20) the standard time of 

GOR, and dt=dx0/((g00))  in Eq. (12.21) the coordinate time of GOR. 

Like the observational spacetime X4d(c) of Einstein’s general relativity, the GOR 

observational spacetime X4d() is also gravitational spacetime: different space 

coordinates have different gravitational potentials; hence, different space coordinates 

have different time rates. Thus, the theory of GOR could not directly employ the 

coordinate time dt or the observed time dt of OA() to describe or determine the 

motion of the observed object P. 

So, like Einstein’s theory of general relativity, the theory of GOR also needs the 

uniform standard time. 

Under the principle of GC, through PGC logic route 1, by directly substituting  

for c, Einstein’s standard time d=ds/c could be transformed into the standard time 

of GOR: d=ds/. Alternatively, under the principle of GC, through PGC logic route 

2, analogizing or following the logic of Einstein’s general relativity: the standard 

clock is static in SF, g= and dxi=0 (i=1,2,3), one could derive the objectively 

real time d, i.e., the standard time of GOR, from Eq. (12.19): 
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According to Def. 2.3 in Chapter 2, the clock at rest in the free spacetime SF is 

namely the standard clock. 

Suppose that the intrinsic clock TP of the observed object P is originally static in 

SF, then TP is the standard clock, and the observed time of the observer O in SF (at 

the null potential (=0)) static relative to TP is the standard time. However, in the 

theory of GOR, the observational spacetime X4d() of OA() is gravitational 

spacetime, and the observer O at any specific space coordinate is located in the 

gravitational field (0); therefore, the observed time dt of O is not the standard 

time d. If P is static at the specific space coordinate xi (i=1,2,3) and O is the 

observer static at xi (i=1,2,3), then the observed time dt of O is namely the 

coordinate time of O. So, in the theory of GOR, the observed time dt=dx0/ of the 

observation agent OA() has to be standardized. 

Under the principle of GC, through PGC logic route 2, by analogizing or 

following the logic of Einstein’s general relativity, based on the principle of 

equivalence and the invariance of information-wave speeds, the theory of GOR 

could transform the observed time dt=dx0/ (Eq. (12.19)) of observers in the 

observational spacetime X4d() of OA() into the standard time d. 
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Let D0 (x
i(t) (i=1,2,3)) be the space coordinate of the observed object P at the 

specific time t=x0/. The observer O at D0 is located at potential  of the 

gravitational spacetime SG=X4d(), and measures or determines the time in the GOR 

gravitational spacetime by means of the observation agent OA(); as stated above, 

the observed time dt of O is not the standard time d. As depicted in Fig. 12.1(b1), 

under the principle of equivalence, one could introduce a locally inertial spacetime 

S I at D0, in which P and O are instantaneously static at D0, so that the invariance of 

information-wave speeds holds true. 

Like in Einstein’s theory of general relativity, the principle of equivalence 

embodies its special value and significance: under the principle of equivalence, the 

GOR gravitational spacetime SG is instantaneously and locally transformed into the 

equivalent inertial spacetime SI. 

According to Eq. (12.23), the standard time d is proportional to the 

line-element ds of the observed object P in the observational spacetime X4d() of the 

observation agent OA(). As depicted in Fig. 12.1(b1), let LG be the world line of P 

in the gravitational spacetime SG of OA(), and LI be the world line of P in the 

equivalent inertial spacetime SI. Reasonably, the standard time in SG could be 

defined as dG=dsG /; the standard time in SI can be defined as d I=dsI /. 

Obviously, according to the definition of the standard time d in Eq. (12.23), the 

dI in inertial spacetime SI is exactly the intrinsic time (proper time), i.e. the 

objectively real time, d : d I=d. 

According to differential geometry, the line-element dsG of the curve LG is equal 

to the line-element dsI of the tangent LI to LG: dsG=dsI. So, it follows that 
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Equation (12.24) is of the important and profound implication: different 

observational spacetimes X4d() of the general observation agent OA(), including 

SG and SI, has the identical standard time, which is exactly the objectively real time, 

i.e., the intrinsic time (proper time) d. 

Under the principle of equivalence, the gravitational spacetime SG=X() 

becomes the inertial spacetime SI locally equivalent SG, in which the observed object 

P and the observer O located at D0 (x
i) is instantaneously static in SI: dxi=0 (i=1,2,3). 

Therefore, according to Eq. (12.19) and Eqs. (12.23-24), the standard time d of 

GOR could be determined with the coordinate time dt of GOR: 
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where  is the gravitational potential at the space coordinate D0(x
i) of X4d(). 

Obviously, the standard time of GOR in Eq. (12.25) is isomorphically consistent 

with Einstein’s standard time in Eq. (12.6) of general relativity. 
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Equation (12.25) suggests that the standard time is the objectively real time, 

could be measured or determined not only by the optical observation agent OA(c), 

but also, in theory, by any observation agent OA(). 

It should be pointed out that, in the theory of GOR, the invariance of 

information-wave speeds plays an important role in the determination of time. 

As stated in Sec. 12.3.2, the coordinate framework of 4d spacetime X4d() of the 

general observation agent OA() is a sort of formalized expression of the invariance 

of information-wave speeds, in which the time axis x0=t implies the invariance of 

information-wave speeds. The standard time d of GOR in Eq. (12.25) is derived 

based on the time-element dt=dx0/ (Eq. (12.19)) and the line-element ds=gdxdx  

(Eq. (12.19)) of the observed object P in the observational spacetime X4d() of the 

general observation agent OA(). 

 

Figure. 12.1 The Measurement of Observational Spacetimes. (a) The observational spacetime 

of Einstein’s general relativity: it employs the optical observation agent OA(c) to measure time 

and space; the speed c of light is limited (c<), and therefore, OA(c) has the observational 

locality and the gravitational spacetime looks a litter curved. (b) The observational spacetime of 

GOR: it employs the general observation agent OA() to measure time and space, the slower the 

information-wave speed , the more significant the observational locality of OA(), the more 

curved the gravitational spacetime appears to be; under the idealized observation agent OA, as 

→, without observational locality, the gravitational spacetime would revert to flat. 

12.3.4 The Determination of the Physical Space in GOR 

Under the principle of GC, through PGC logic route 2, by analogizing or 

following Einstein’s logic of general relativity, and by means of the principle of 
equivalence, the theory of GOR could transform the gravitational spacetime 

SG=X4d() of OA() into the equivalent inertial spacetime SI at D0 instantaneously 
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and locally. Thus, based on the invariance of information-wave speeds, one could 

define and determine the physical space distance dl of the gravitational spacetime 

SG=X() of OA() with the information-wave speed  and the standard time d in 

Eq. (12.25) of GOR theory. 

Following the logic of the determination of physical space in Einstein’s general 

relativity, as stated in Sec. 12.2.3 and as depicted in Fig. 12.1(b2), let D be a space 

point close enough to D0 in the observational spacetime SG=X4d(); send an 

information wave from D0 to D and then be reflected from D back to D0. The time 

the information wave takes obeys: 

 ( ) ( ) ( ) ( )0 0 0 0

out backd d d d dx x x x t   = + =  (12.26) 

where the gravitational spacetime SG is not necessarily isotropic, and therefore, the 

time the dx0
out takes is not necessarily equals to the time the dx0

back takes. 

If the spatial displacement from D0 to D is dxi (i=1,2,3), then the spatial 

displacement from D to D0 is −dxi (i=1,2,3). Under the general observation agent 

OA(), the spacetime line-element ds2=0 of informons, and therefore, we have: 
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Particularly, according to the principle of equivalence and the principle of 

general covariance, the locally inertial spacetime SI at D0 must be isotropic, in which 

the invariance of information-wave speeds holds true. Therefore, the physical space 

distance dl between D0 and D can be defined as dl=d /2 based on the proper time 

d and the information-wave speed . 

According to Eq. (12.25), the standard time (proper time) d=(g00)dx0/. Then, 

the GOR physical space distance dl could be measured or determined as follows: 
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where  ik= ik() (i,k=1,2,3) is the physical space metric in the observational 

spacetime X4d() of the general observation agent OA(). 

Obviously, the physical space distance of GOR in Eq. (12.28) is isomorphically 

consistent with Einstein’s physical space distance in Eq. (19.9) of general relativity. 

It should be pointed out that: the spacetime metric g=g(c) and the space 

metricik=ik(c) in Eq. (12.9) are that of the observational spacetime X4d(c) of the 

optical observation agent OA(c), depending on the light speed c; while the 
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spacetime metric g=g() and the space metricik=ik() in Eq. (12.28) are that of 

the observational spacetime X4d() of the general observation agent OA(), 

depending on OA() and its information-wave speed . 

12.4 The GOR Factor of Spacetime Transformation 

Observation means spacetime transformation: from the objective spacetime to 

the subjective spacetime or the observational spacetime. 

All matter objects originally belong to the objective spacetime X4d
, more purely, 

belong to the intrinsic spacetime Oo or the free spacetime SF. An observer O 

perceives or observes a specific matter object P by means of a specific observation 

agent OA(), which actually means that the observer O is transforming the observed 

object P from the objective spacetime X4d
 to the subjective or observational 

spacetime X4d() of OA(), or more purely, from the intrinsic spacetime Oo or the 

free spacetime SF to observational spacetime X4d() of OA(). 

The factors of spacetime transformation in the theory of OR include the IOR 

factor and the GOR factor. 

As clarified in the 1st volume of OR: Inertially Observational Relativity 

(IOR), the IOR factor is that of inertial spacetime transformation, an extremely 

important physical quantity in the theory of IOR, characterizing the relativistic 

effects of inertial spacetime and inertial motion. Now, in the 2nd volume of OR: 

Gravitationally Observational Relativity (GOR), the GOR factor is that of 

gravitational spacetime transformation, an extremely important physical quantity in 

the theory of GOR, characterizing the relativistic effects of gravitational spacetime 

and gravitational interaction. 

The factors of spacetime transformation in the theory of OR is defined as the 

ratio of the observed time dt in the observational spacetime X4d() to the standard 

time d in the intrinsic spacetime Oo of the objective spactime X4d
:  ()=dt/d, i.e., 

the ratio of the observed time dt of the observer O to the objectively real time d. 

In the theory of GOR, the GOR spacetime is the observational spacetime X4d() 

of the general observation agent OA(), belongs to gravitational spacetime, and 

could be set as different gravitational scenes. Suppose P is the observed objects: (i) 

P is at rest in gravitational field; (ii) P moves in gravitational scalar-field; or (iii) P 

moves in gravitational vector-field. Thus, like Einstein's general relativity, the 

theory of GOR also has different forms of spacetime-transformation factor. 

Actually, the GOR factor may be referred to as the OR factor of spacetime 

transformation, which not only generalizes the factor of spacetime transformation of 

Einstein’s general relativity, but also generalizes the IOR factor (including the 

Lorentz factor and the Galilean factor), i.e., the OR factor of inertial spacetime 

transformation. 

12.4.1 The IOR Factor: Inertial Spacetime 

As stated in the 1st volume of OR: Inertially Observational Relativity [26-28], 

the IOR factor  (,v) is that of inertial-spacetime transformation of the general 
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observation agent OA(), generalizing the Lorentz factor  =1/(1−v2/c2) of the 

optical agent OA(c) and the Galilean factor   1 of the idealized agent OA. 

Suppose that the observer O observes the object P by means of a specific 

observation agent OA(): the intrinsic clock TP of P is the standard clock; O moves 

at the inertial speed v relative to P. This implies that the observer O transforms the 

observed object P by means of OA() from the free spacetime SF where P is at rest 

to the inertial spacetime SI=X4d() where O moves. 

In Einstein’s theory of special relativity, the factor of spacetime transformation 

is namely the Lorentz factor:  =dt/d=1/(1−v2/c2), i.e., the factor  = (c,v) of 

inertial spacetime transformation of the optical agent OA(c), characterizing the 

inertial relativistic effects of P in the inertial spacetime X 4d(c) of OA(c). 

Actually, the Lorentz factor  = (c,v) is only a special case of the IOR factor. 

According to the 1st volume of OR: Inertially Observational Relativity [26-28], 

the IOR factor of spacetime transformation is 
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characterizing the inertial relativistic effects of P presenting to the observer O in the 

inertial spacetime X4d() of the general observation agent OA(). 

Originally, the factor  () of spacetime transformation of OA() in Eq. (12.29) 

is a logical consequence derived from the most basic logical premise of OR theory 
[26-28], but it also follows the principle of GC. 

Equations (12.29) and (12.10) show that the IOR factor  (,v) in theory of IOR 

is isomorphically consistent with the Lorentz factor  = (c,v) in Einstein’s theory of 

special relativity. This not only reflects the logical validity of the principle of GC, 

but also reflects the logical consistency between the theory of IOR and Einstein’s 

theory of special relativity. 

Actually, under the principle of GC, through PGC logic route 1, by substituting 

the information-wave speed  for the light speed c, one could directly transform the 

Lorentz factor  =1/(1−v2/c2), from the optical agent OA(c) to the general 

observation agent OA(), from Einstein’s theory of special relativity to the theory of 

IOR:  ()=1/(1−v2/2) in Eq. (12.29); vice versa. 

Obviously, under the principle of GC, through PGC logic route 2, by 

transforming the invariance of light speed into the invariance of information-wave 

speeds and following the logic of Einstein’s special relativity, one could also derive 

the IOR factor of inertial spacetime transformation in Eq. (12.29). In particular, 

following the PGC logic Route 2 is more helpful for us to understand the factor of 

inertial spacetime transformation of the general observation agent OA() in the 

theory of IOR. 

12.4.2 The GOR Factor: Static Field 

Suppose that the observer O observes the object P by means of a specific 

observation agent OA(): the intrinsic clock TP of P is the standard clock; O is 
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located at the potential  in the gravitational spacetime SG=X4d(), and static 

relative to P; SG is a static field. This implies that the observer O transforms the 

observed object P by means of OA() from the free spacetime SF where P is at rest 

to the gravitational spacetime SG=X4d() where O is located at the potential . 

In Einstein’s theory of general relativity, the factor  =dt/d=1/(1+2 /c2) of 

spacetime transformation is the factor of gravitational spacetime transformation of 

the optical agent OA(c), characterizing the gravitational relativistic effects of P 

presenting to O in the static gravitational spacetime X4d(c) of the optical agent OA(c) 

when P and O are relatively static. 

Under the principle of GC, through PGC logic route 1, by substituting the 

information-wave speed  for the light speed c in  = (c), one could directly obtain 

the GOR factor  ()=dt/d=1/(1+2 /2) of gravitational spacetime transformation 

from Eq. (12.11) in Einstein’s theory of general relativity, characterizing the 

gravitational relativistic effects of P presenting to O in the gravitational static 

spacetime X4d() of the general observation agent OA() when P and O are 

relatively static or stationary. 

Under the principle of GC, through PGC logic route 2, by transforming the 

invariance of light speed into the invariance of information-wave speeds and 

following the logic of Einstein’s general relativity, one could also derive the GOR 

factor of gravitational spacetime transformation. In particular, following PGC logic 

Route 2 is more helpful for us to understand the factor of gravitational spacetime 

transformation of the general observation agent OA() in the theory of GOR. 

Naturally, by following PGC logic route 2, one could also transform the optical 

agent OA(c) into the general observation agent OA() in Def. 10.1; then, based on 

Eq. (12.19), one could derive the GOR factor of gravitational spacetime 

transformation when O and P are relatively static (dxi=0 (i=1,2,3)): 
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Obviously, Eq. (12.30) in the theory of GOR is isomorphically consistent with 

Eq. (12.11) in Einstein’s general relativity. So, the result from PGC logic route 2 is 

exactly the same as that from PGC logic route 1. 

12.4.3 The GOR Factor: Scalar Field 

Suppose that the observer O observes the object P by means of a specific 

observation agent OA(): the intrinsic clock TP of P is the standard clock; O is 

located at the potential  in the gravitational spacetime SG=X4d(), and moves at the 

speed v relative to P; SG is a scalar field. This implies that the observer O transforms 

the observed object P by means of OA() from the free spacetime SF where P is 

static to the gravitational spacetime SG=X4d() where O is located at the potential . 

In Einstein’s theory of general relativity, if P and O relatively moves in the 
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gravitational scalar spacetime SG=X4d(c) of the optical agent OA(c), then the factor 

of spacetime transformation is  =1/(1+2 /c2−v2/c2), characterizing the 

gravitational relativistic effects of P presenting to O in the gravitational scalar 

spacetime SG=X4d(c) of OA(c) when P and O relatively move. 

Under the principle of GC, through PGC logic route 1, by substituting the 

information-wave speed  for the light speed c in  = (c), one could directly obtain 

the GOR factor  ()=1/(1+2 /2−v2/2) of gravitational spacetime transformation 

from Eq. (12.12) in Einstein’s theory of general relativity, characterizing the 

gravitational relativistic effects of P presenting to O in the gravitational scalar 

spacetime SG=X4d() of the general observation agent OA() when P and O 

relatively move. 

Under the principle of GC, through PGC logic route 2, by transforming the 

invariance of light speed into the invariance of information-wave speeds and 

following the logic of Einstein’s general relativity, one could also derive the GOR 

factor of gravitational spacetime transformation when P and O relatively move in 

the scalar field SG= X4d() of the general observation agent OA(). 

If the observational spacetime SG=X4d() of OA() is a scalar gravitational field, 

then the gravitational vector potential  i=0 (g0i=gi0=0 (i=1,2,3)). According to Eq. 

(12.19) of definition 1.1, we have: 
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By contrasting Eq. (12.31) and Eqs. (12.27-28), we have: 
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where v=dl/dt is the speed of O relative to P, dl the physical space distance that P 

moves in the observation spacetime X4d() within the time dt. 

Obviously, Eq. (12.32) in the theory of GOR is isomorphically consistent with 

Eq. (12.12) in Einstein’s general relativity. So, the result from PGC logic route 2 is 

exactly the same as that from PGC logic route 1. 

12.4.4 The GOR Factor: Vector Field 

Perhaps, as Einstein imagined, gravitational field is similar to electromagnetic 

field, not only has the scalar potential but also has the vector potential. 

Suppose that the observer O observes the object P by means of a specific 

observation agent OA(): the intrinsic clock TP of P is the standard clock; O is 
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located at the potential  in the gravitational spacetime SG=X4d(), and moves at the 

speed v relative to P; SG is a vector field. This implies that the observer O transforms 

the observed object P by means of OA() from the free spacetime SF where P is 

static to the gravitational spacetime SG=X4d() where O is located at the potential . 

In Einstein’s theory of general relativity, if P and O relatively moves in the 

gravitational vector spacetime SG=X4d(c) of the optical agent OA(c), then the factor 

of spacetime transformation is  =1/(((1+2 /c2)1/2−iv
i/c)2 −v2/c2), characterizing 

the gravitational relativistic effects of P presenting to O in the gravitational vector 

spacetime SG=X4d(c) of OA(c) when P and O relatively move. 

Under the principle of GC, through GC logic route 1, by substituting the 

information-wave speed  for the light speed c in  = (c), one could directly obtain 

the GOR factor  ()=1/(((1+2 /2)1/2−iv
i/)2−v2/2) of gravitational spacetime 

transformation from Eq. (12.16) in Einstein’s theory of general relativity, 

characterizing the gravitational relativistic effects of P presenting to the observer O 

in the gravitational vector spacetime SG=X4d() of the general observation agent 

OA() when P and O relatively move. 

Under the principle of GC, through PGC logic route 2, by transforming the 

invariance of light speed into the invariance of information-wave speeds and 

following the logic of Einstein’s general relativity, one could also derive the GOR 

factor of gravitational-spacetime transformation when P and O relatively move in 

the vector field SG=X4d() of the general observation agent OA(). 

Following the definition of the strength of electrostatic field, the field strength g 

of any spatial coordinates x i (i=1,2,3) in gravitational field can be defined as: 
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where m is mass, there is no distinction between gravitational mass and inertial 

mass according to the principle of equivalence; the gravitational field strength g is 

equivalent to the gravitational acceleration a of the point. 

Under the principle of GC, Eq. (12.14) in Einstein’s general relativity can 

isomorphically and uniformly be transformed into: 
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where  i= i() (i=1,2,3) is the vector potential of gravitational field under the 

general observation agent OA(), which depends on the information-wave speed  

of OA(). 

According to Def. 10.1 for the general observation agent OA(): the observed 

time is d t=dx0/, the intrinsic time is d=ds/ ; the observed object P moves in the 

observational spacetime X4d() of OA(), and its spacetime trajectory, including the 

time-element dt of P and the line-element ds of P, is described by Eq. (12.19). 
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Considering the scalar potential  and the vector potential  i (i=1,2,3) of the 

gravitational field in Eq. (12.34), according to Eq. (12.19), we have: 
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By contrasting Eq. (12.25), Eq. (12.28), and Eqs. (12.34-35), we have the 

general factor of spacetime transformation in the theory  () of OR (generalizing 

the IOR factor and the GOR factor): 
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where  is the information-wave speed of OA(); dt=dx0/ is the observed time of 

the observer O with OA(), i.e., the time the intrinsic clock TP of the observed 

object P as the standard clock presents to O; d=ds/ is the intrinsic time (proper 

time), i.e., the objectively real time; v=dl/dt is the speed of P relative to O, v i=dxi/dt 

(i=1,2,3);  is the Newtonian gravitational potential, i.e., the scalar potential 

gravitational field; and  i= i()=−g0i /(g00) (i=1,2,3) is the vector potential of 

gravitational field, depending on the observation agent OA(). 

Obviously, Eq. (12.36) in the theory of GOR is isomorphically consistent with 

Eq. (12.16) in Einstein’s general relativity. So, the result from PGC logic route 2 is 

exactly the same as that from PGC logic route 1. It should be pointed out that the 

GOR factor () of spacetime transformation in Eq. (12.36) is that of the general 

observation agent OA(), that is, the most general form of the factor of spacetime 

transformation. 

Firstly, the OR (both IOR and GOR) factor (Eq. (12.36)) generalizes the factors 

of spacetime transformation under different observation agents OA(), including the 

optical agent OA(c) and the idealized agent OA: as →c, Eq. (12.36) strictly 

reduces to Einstein’s factor of spacetime transformation in Eq. (12.16); as →, Eq. 

(12.36) strictly reduces to the Galilean factor   (1). 

Secondly, the OR (both IOR and GOR) factor (Eq. (12.36)) generalizes the 

factors of inertial and gravitational spacetime transformations: without gravitational 

interaction (=0 and  i=0), Eq. (12.36) strictly reduces to the IOR factor 

 ()=1/(1−v2/2) (Eq. (12.29)) of inertial spacetime transformation; without 

relative movement, Eq. (12.36) strictly reduces to the GOR factor 

 ()=1/(1+2 /2) (Eq. (12.30)) of gravitational spacetime transformation. 

In addition, the OR (both IOR and GOR) factor (Eq. (12.36)) generalizes the 

factors of gravitational scalar spacetime () vector spacetime ( i (i=1,2,3)). If  i=0 
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(i=1,2,3), then Eq. (12.36) strictly reduces to the GOR factor of scalar spacetime 

transformation in Eq. (12.32):  ()=1/(1+2 /2−v2/2). 

12.5 All Relativistic Effects are 

Observational Effects and Apparent Phenomena 

The GOR factor of spacetime transformation has important implications, giving 

us new insights different from Einstein’s theory of general relativity. 

In Einstein’s theory of relativity, the speed c of light in vacuum is a cosmic 

constant and the ultimate speed of the universe, which is invariant and could not be 

exceeded. Therefore, according to Eq. (12.12):  =1/(1+ 2 /c2−v2/c2), in Einstein’s 

theory of general relativistic, the factor  = (v,) of spacetime transformation does 

not seem to depend on the light speed c, but depends on the speed v of matter motion 

and the Newtonian gravitational potential  :  >1 only if v0 or 0; at this 

moment, the observed object P presents relativistic phenomena. On these grounds, 

Einstein believed that, the mainstream school of physics also believes that, 

relativistic effects are the essential characteristics of spacetime and matter motion, 

and the root lies in matter motion (|v |>0) and the interactions between matter and 

matter (| |>0). 

According to the IOR factor, i.e., the OR factor of inertial spacetime 

transformation, the 1st volume of OR: Inertially Observational Relativity has 

clarified that all inertial relativistic effects, including the invariance of light speed, 

are observational effects or apparent phenomena [26-28]. The GOR factor, i.e., the OR 

factor of gravitational spacetime transformation will further clarify that all 

relativistic phenomena, including the inertial and the gravitational, are observational 

effects and apparent phenomena. 

12.5.1 The Root and Essence of Relativistic Phenomena 

Relativistic effects or phenomena, no matter inertial or gravitational, are not the 

essential characteristics of the physical world. 

According to the spacetime theory of GOR, relativistic effects are not as claimed 

by Einstein and the mainstream school of physics: the root lies in matter motion 

(|v |>0) or matter interactions ( |>0). 

Actually, the spacetime-transformation factor  = (c) in Einstein’s theory of 

general relativity only characterizes the relativistic effects of the optical agent OA(c). 

It is the spacetime-transformation factor of the optical observation agent OA(c), and 

only a special case of the spacetime-transformation factor  = () of the general 

observation agent OA(), i.e., the special case of the OR factor of spacetime 

transformation, does not suggests that the relativistic effects or phenomena depend 

on matter motion (|v |>0) or matter interactions (| |>0). 

The theory of OR has clarified that the root and essence of inertial relativistic 

phenomena lie in the observational locality of observation agents [26-28]. Now, the 

theory of GOR will further clarify that the root and essence of gravitational 

relativistic phenomena also lie in the observational locality of observation agents. 
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Different Observation Agents 

Present Different Degrees of Relativistic Effects. 

The theory of GOR suggests that different observation agents present different 

degrees of relativistic effects. 

According to Eq. (12.32):  =1/(1+2 /2−v2/2), the GOR factor  = () of 

spacetime transformation depends on the observation agent OA(). A specific 

observation agent OA() has the specific observation medium and the specific 

information-wave speed ; correspondingly, the GOR factor  = () has the 

specific value, representing specific degree of relativistic effects. 

Suppose there are observation agents OA(1) and OA(2) (2>1). Given v and 

, the spacetime-transformation factors of OA(1) and OA(2) have different values: 

 (1)> (2) 1. So, in the observational spacetimes X4d() of different 

observation agents OA(), the identical matter motion (v) or the identical matter 

interaction () presents different degrees of relativistic effects: the lower the 

information-wave speed , the more significant the relativistic effects. 

This suggests that relativistic effects depend on observation, depends on 

observations agents, depends on observation media, and depends on the speed at 

which the observed information is transmitted by observation media. Therefore, the 

so-called relativistic phenomena are only the observationally relativistic effect 

presented by observation agents, i.e., observational effects. 

There is no Relativistic Phenomena in the Objectively Real Spacetime. 

In particularly, as →, X4d()→X4d
: the observational spacetime X4d() of 

observation agent OA() would revert to the Galilean spacetime, i.e., the objective 

real spacetime;  ()=1: the GOR factor  ()  of spacetime transformation 

would revert to the Galilean factor  . 

So, there is no relativistic phenomena in the objectively real spacetime. 

The GOR factor of spacetime transformation in Eq. (12.32) shows that 

(i) v2/2→0 as →: in the objectively real spacetime X4d
, matter motions (v) 

do not present relativistic phenomena; 

(ii)  /2→0 as →: in the objectively real spacetime X4d
, matter interactions 

() also do not present relativistic phenomena; 

So, as far as the objective and real physical world is concerned, spacetime and 

matter motion have no relativistic effects or relativistic phenomena. 

This suggests that the so-called relativistic effects or relativistic phenomena are 

not objectively physical reality, but observational effects and apparent phenomena, 

the root and essence of which lie in the observational locality: the information-wave 

speed  (<) of a realistic observation agent must be finite or limited. 

We should realize that although light is extremely fast, the speed of light is still 

finite: c<, and so the optical agent OA(c) still has the observation locality of its 

own. It is the observational locality (c<) of the optical agent OA(c) to be the 

making of Einstein’s theory of relativity, including the special and the general. 
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Observed Information is Both Objective and Apparent. 

As stated in Sec. 7.2.3 of Chapter 7, in a sense, the observational or observed 

physical quantities are both objective and apparent. 

Our observations, characterized by the OR factor  () of spacetime 

transformation, not only contain the objectively real information about spacetime 

and matter motion, which is characterized by the Galileo factor , but also include 

the observational effects or apparent phenomena rooted from the observational 

locality of observation agent OA(), which are characterized by the 

observational-effect ()= ()− . 

So, our observations are not completely objective or real. 

In the theory of OR, according to Eq. (7.2), the IOR factor  ()=1/(1−v2/2) 

of spacetime transformation can be decomposed into the Galilean factor  1 and 

the observational-effect factor  () by Taylor series expansion:  ()= + (). 

This suggests that the observation of inertial spacetime by a realistic observation 

agent OA() not only contains objectively real information ( ) about inertial 

motion, but also contains the observational effects or apparent phenomena ( ()) 

rooted from the observational locality (<) of the observation agent OA(). 

Likewise, in the theory of GOR, the GOR factor  ()=1/(1+2 /2) of 

spacetime transformation can be decomposed into the Galilean factor  and the 

observational-effect factor  () by Taylor series expansion: 
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where,  =−20 and ()0. 

Like the IOR observational-effect factor () in Eq. (7.2), the GOR 

observational-effect factor () in Eq. (12.37) represents relativistic effects, purely 

belonging to observational effects or apparent phenomena, rather than the 

objectively physical reality; only the Galilean factor  1, as stated in the theory of 

IOR, represents the objectively physical reality. 

Like the IOR factor  ()= + () of spacetime transformation in Eq. (7.2), 

the GOR factor  ()= + () of spacetime transformation in Eq. (12.37) 

suggests that the observation of gravitational spacetime by a realistic observation 

agent OA() not only contains objectively real information ( ) about gravitational 

interaction, but also contains the observational effects or apparent phenomena 

( ()) rooted from the observational locality (<) of the observation agent 

OA(). 

12.5.2 Could Spacetime Really be Curved? 

Spacetime could never be curved. 
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In fact, spacetime curvature is a relativistic phenomenon, a gravitational 

relativistic effect. Like all relativistic effects, spacetime curvature is also an 

observation effect or an apparent phenomenon, and the root and essence also lie in 

the observational locality (<) of observation agent OA(). 

As stated in Sec. 12.1.2, gravity, like electromagnetic force, weak force and 

strong force, is one of the most basic interactions between matter and matter, and is 

a kind of force, rather than the geometric effect of spacetime curvature. It could be 

regarded as a formalization method for describing gravitational interaction to 

geometrize gravitational effects or to make gravitational spacetime equivalent to 

curved spacetime. 

However, spacetime is not really curved. 

We are not sure whether Einstein really thought that gravitational spacetime was 

curved, or Einstein’s theory of general relativity needed curved spacetime. 

According to Einstein’s theory of general relativity [8], the accumulation of matter 

and energy makes spacetime curved, so that the earth moves around the sun in the 

curved spacetime of the sun. However, we wonder how the sun moves in the curved 

spacetime of the earth? Perhaps, we could imagine how space is curved; however, in 

any case, we could not imagine how time is curved. 

Now, the theory of GOR tell us that the so-called spacetime curvature in 

Einstein’s general relativity is not due to the accumulation of matter and energy, but 

a kind of observational effects, rooted from the observational locality (c<) of the 

optical agent OA(c), just as what we observe or photograph through wide-angle 

lenses, that is, the effect of wide-angle lenses. 

The IOR factor  ()=1/(1−v2/2) of spacetime transformation represents the 

inertial observational spacetime X4d() of the general observation agent OA(), in 

which the spacetime metric g is Minkowski metric: =diag(+1,−1,−1,−1). 

Obviously,  does not depend on the coordinates x (=1,2,3,4) of inertial space-

time and the information-wave speeds , and therefore, the inertial spacetime X4d() 

of IOR is flat, not curved. 

The GOR factor  =1/(1+2 /2−v2/2) of spacetime transformation represents 

the gravitational observational spacetime X4d() of the general observation agent 

OA(), in which the spacetime metric g depend on the coordinates x (=1,2,3,4) 

of gravitational spacetime and the information-wave speeds , and therefore, the 

gravitational spacetime X4d() of GOR appears to be a little curved. It is worth 

noting that whether spacetime is curved and to what extent spacetime is curved do 

not really depend on the gravitational potential , but depends on the observation 

agent OA(), depends on the information-wave speeds . 

According to the GOR factor  ()=1/(1+2 /2−v2/2) of spacetime 

transformation, the observational spacetimes of different observation agents presents 

different degrees of curvature: the slower the information-wave speed  of OA(), 

the more curved the observational spacetime X4d() of OA() appears to be; 

conversely, the more flat. In particularly, if →, then | |/2→0,  ()→0, 

 ()→1, and X4d()→X4d
: the observational spacetime X4d() of the 
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observation agent OA() would revert to the Galilean spacetime X4d
 which is 

objectively real, and flat, rather than curved. 

It is thus clear that the objectively real spacetime could never be curved. 

The so-called spacetime curvature is essentially an observation effect. Like all 

relativistic effects, the root of spacetime curvature lies in the observational locality 

(<) of observation agent OA(). Under the idealized observation agent OA, the 

observational spacetime would present the really natural face of its own. 

12.5.3 Is There Really the Vector Potential 

in Gravitational Field? 

The gravitational field is not a vector field, and there is no gravitational vector 

potential in gravitational spacetime. 

As stated in Sec. 12.4.4, by following Einstein’s logic of general relativity, the 

theory of GOR could also deduce the factor of spacetime transformation containing 

the vector potential  i=−g0i /(g00) (i=1,2,3), which is the spacetime-transformation 

factor of the general observation agent:  ()=1/(((1+2 /2)1/2− iv
i/)2 −v2/2). 

If there is really the vector potential  i=−g0i /(g00) (i=1,2,3) in gravitational 

field, then it must be that i(1,2,3) g0i0. According to Eq. (12.28), the space 

metric  i k= g0ig0k /g00−gik (i,k=1,2,3) must depend on the time axis x0 of X4d(). This 

implies that the time axis x0 and the space axes xi (i(1,2,3)) of the observational 

spacetime X4d() of the general observation agent OA() might be non-orthogonal: 

time and space might be interdependent. 

Conversely, if there is no vector potential in gravitational field, then it must be 

that g0i=0 (i=(1,2,3)). According to Eq. (12.28), the space metric  i k=−gik (i,k=1,2,3) 

must be independent of the time axis x0 of X4d(). This implies that the time axis x0 

and the space axes xi (i(1,2,3)) of the observational spacetime X4d() of the 

general observation agent OA() are orthogonal: time and space must be 

independent of each other. 

Therefore, in the spacetime theory of GOR, there also exists the problem of 

whether spacetime is orthogonal or whether space and time is orthogonal. 

Originally, whether space and time are orthogonal is a philosophical problem. 

As stated in Sec. 1.5 of Chapter 1 in the 1st volume of OR: Inertially 

Observational Relativity, Galileo and Newton held the absolutist view of 

spacetime [54-57]: space and time are independent of each other; time flows silently, 

space exists immutably. This implies that spacetime is originally orthogonal, or 

space and time are originally orthogonal. 

However, if as Einstein imagined, there is not only the scalar potential  but 

also the vector potential  i= −g0i /(g00) (i=1,2,3) in gravitational spacetime, then 

the space and time of gravitational spacetime may be non-orthogonal. This would be 

consistent with Mach and Einstein’s relativist view of spacetime [58-60]: space is time, 

time is space; space and time are interdependent, and under certain conditions could 

be transformed into each other. 

It is said that the vector potential of gravitational field has indeed been observed 
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experimentally. However, according to the theory of GOR, the so-called 

gravitational vector potential does not exist objectively. If the vector potential is 

present in observation, it could only be an observational effect or an apparent 

phenomenon under a specific observation agent. 

The scalar potential  of gravitational field in the GOR factor of spacetime 

transformation (Eq. (12.36)( is the Newtonian gravitational potential, which is 

objectively real and the intrinsic physical quantity. There is no doubt that Newton’s 

gravitational potential is objective existence: no matter whether we observe or not, 

all matter on the earth’s surface must be affected by it. 

However, the gravitational vector potential  i=i() in the GOR factor of 

spacetime transformation (Eq. (12.36)) depends on the observation agent OA(): 

different observation agents has different gravitational vector potentials. According 

to Eq. (12.36): if →, then  ()→1 and X4d()→X4d
, that is, the 

observational spacetime X4d() of OA() would revert to the Galilean spacetime 

X4d
. From this, we could presume that, and the next chapter will prove that, 

g()→ as →. In other words, the metric tensor g of the Galilean 

spacetime is exactly the metric tensor   of Minkowski spacetime. This suggests 

that if →, then g0i=gi 0=0 and  i=0 (i=1,2,3), in which there are two important 

implications: 

(i) The objectively gravitational field has no gravitational vector potential; 

(ii) Space and time are originally orthogonal and independent of each other. 

So, according to the spacetime theory of GOR, the objective and real 

gravitational field is the gravitational scalar field that Newton described for us; the 

gravitational vector field that Einstein imagined is not the objectively real existence. 

Space and time are absolute, orthogonal, and independent of each other, which 

conforms to the absolutist spacetime view of Galileo and Newton, rather than to the 

relativist spacetime view of Mach and Einstein. 

12.5.4 The Idealized Observation Agent 

and Superluminal Observational Agents 

The theory of GOR suggests that Newton’s theory of gravitation and Einstein’s 

theory of gravitation belong to different observation systems: Einstein’s theory of 

general relativity is the product of the optical observation system, serving the optical 

observation agent OA(), what it presents to us is only the optical image of 

gravitational spacetime, rather than the objective and real gravitational world; 

Newton’s theory of universal gravitation is the product of the idealized observation 

system, serving the idealized observation agent OA, what it presents to us is the 

objective and real gravitational world. 

According to the GOR factor  () of spacetime transformation, if we had the 

idealized observation agent OA to observe spacetime and matter motion, then all 

relativistic phenomena or relativistic effects of spacetime and matter motion would 

disappear: →, ()→0, ()→1, and X4d()→X4d
.  Then, the spacetime 

in our observations, no matter inertial or gravitational, would be the objective and 

real face of the physical world. 
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However, there is no the idealized observation agent OA in the natural world. 

According to the theory of OR, according to the principle of physical 

observability, all realistic observation agents OA() have the observational locality  

( <) of its own, and the natural landscapes the OA() present to us is always only 

an image of the objective world, and could never be equal to the objective and real 

physical world. 

Limited by the current level of science and technology, most of our observations 

and experiments rely on the optical observation agent OA(c). This is the reason why 

Einstein’s theory of relativity, including the special and the general, is supported by 

most observations and experiments. In fact, those observations or experiments are 

not so much support for Einstein’s theory of relativity as support for the theory of 

observational relativity (OR). Naturally, those observations and experiments have 

tested and verified the theory of OR (including IOR and GOR) under the case of the 

optical observation agent OA(c). 

Of course, the optical observation agent OA(c) or the observational locality 

(c<) of OA() is not necessarily be the observational barrier that human could not 

surpass [52,53]. According to the theory of OR [26-28], the invariance of light speed is 

only an observational effect when light acts as the observation medium; the speed of 

light is not really invariant or really cannot be exceeded. With the progress of 

science and technology, human beings will discover and even invent superluminal 

matter motion. Actually, more and more experiments on quantum entanglement 

have shown superluminal phenomena [131-136]. Such spooky action at a distance 

seems to be more and more strongly challenging Einstein’s concept of locality that 

takes the speed of light as the limit of matter motion. 

It can be imagined that mankind will master the superluminal observation agents 

in the future [53], so that we can observe a more real natural world. Then, we will 

observe the natural landscapes different from that presented to us by the optical 

observation agent, and observe the gravitational deflection, the gravitational 

redshift, and the Mercury precession different from that predicted by Einstein’s 

theory of general relativity. At that time, Superluminal astronomy, such as 

gravitational wave astronomy [42], will replace traditional optical astronomy, 

including radio astronomy. 
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13 Cartesian Spacetime 

and Idealized Convergence 

Logically, as the theoretical systems of physics describing gravitational 

interaction in the identical physical world, Einstein’s theory of general relativity and 

Newton’s theory of universal gravitation should have the intrinsic corresponding 

relationship and the logical consistency. 

According to the factor of spacetime transformation in his general relativity, 

Einstein conceived that: jus as the Lorentz transformation of special relativity is 

approximately corresponding to the Galilean transformation at slower speed, the 

field equation of general relativity should be approximately corresponding to 

Newton’s law of universal gravitation in the form of Poisson’s equation in weaker 

field. In Einstein’s theory of general relativity, the weak-field approximation is not 

only an important concept but also a kind of logical skill, and plays an important 

role in the establishment of Einstein’s theory of general relativity. 

Originally, under the principle of general correspondence (GC), by analogizing 

or following Einstein’s the logic of weak-field approximation, no matter through 

PGC logic Route 1 or PGC logic Route 2, the theory of GOR could extend 

Einstein’s theory of general relativity from the optical agent OA(c) to the general 

observation agent OA(), and could derive the GOR field equation, that is, the 

gravitational-field equation of GOR theory, which must be isomorphically consistent 

with the Einstein field equation. 

However, under the principle of GC, both PGC logic route 1 and PGC logic 

route 2 are logical shortcuts; there must be a price to be paid for taking shortcuts. If 

the deduction of GOR theory completely relies on the principle of GC, then we 

might fail to understand the root and essence of gravitational relativistic phenomena. 

Newton’s law of universal gravitation belongs to the idealized agent OA; while 

Einstein’s field equation belongs to the optical agent OA(c). There is no the direct 

corresponding relationship between the Einstein’s and the Newton’s. So, Einstein 

could only correspond his field equation approximately to Newton’s law of 

universal gravitation by the weak-field approximation. The theory of GOR belongs 

to the general observation agent OA(). So, we could correspond the GOR field 

equation strictly to Newton’s law of universal gravitation by the idealized 

convergence, that is, by the idealized agent OA: →. Therefore, the derivation 

and calibration of the gravitational-field equation of GOR theory need the idealized 

convergence under the idealized agent, rather than the weak-field approximation. 

This chapter attempts to clarify the logical thought of the idealized convergence 

of GOR theory. At the same time, an important theorem will be proved in this 

chapter: so-called the theorem of Galilean spacetime. 

13.1 Einstein’s Logic of Weak-Field Approximation 

Before discussing the logical way of idealized convergence in the theory of 
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GOR, we first need to discuss and analyze the logical thought of Einstein’s 

weak-field approximation. 

By analogizing Einstein’s weak-field approximation, we will clarify the logical 

thought of the idealized convergence of GOR theory. 

13.1.1 The Logical Thought of Weak-Field Approximation 

In Einstein’s theory of general relativity, the so-called weak-field approximation 

means that, if the strength g of gravitational field (Eq. (12.13)) is weak enough, then 

Einstein’s field equation approximates Newton’s law of universal gravitation. 

Newton’s gravitational spacetime is flat; while the gravitational spacetime of 

Einstein’s general relativity is curved. Einstein conceived that: if gravitational field 

is weak enough, that is, has a much weaker potential, then the curved gravitational 

spacetime must be approximately flat. In this way, Einstein’s theory of general 

relativity could be linked or corresponded to Newton’s law of universal gravitation. 

The basic idea of Einstein’s weak-field approximation originated from 

Einstein’s understanding on the root and essence of relativistic effects. In Einstein’s 

view, relativistic phenomena, no matter the inertial effects or the gravitational 

effects, are the essential characteristics of matter motion and matter interactions. 

Einstein’s weak-field approximation in general relativity could be analogized with 

Einstein’s slow-speed approximation in special relativity. Or, more precisely, the 

logic of Einstein’s weak-field approximation is stemmed from the idea of Einstein’s 

slow-speed approximation. 

The speed c of light is a cosmic constant, and naturally, is invariant. 

Therefore, in Einstein’s theory of special relativity, the factor  =1/(1−v2/c2)  of 

inertial spacetime transformation only depends on the movement speed v of matter: 

the greater the |v |, the greater the inertial factor  = (v), and the more significant the 

inertial relativistic effects. Accordingly, Einstein believed that, and the mainstream 

school of physic also believe that, the root and essence of inertial relativistic effects 

lie in the motions of matter. In the case of slower speed (|v |<<c), the Lorentz factor  

approximates the Galilean factor :  =1/(1−v2/c2)1; the Lorentz 

transformation approximates the Galilean transformation. Thus, Einstein believed 

that, the mainstream school of physic also believe that, the Lorentz transformation 

and the Galilean transformation, as well as, Einstein’s special relativity and 

Newton’s classical mechanics, have the corresponding relationship of slow-speed 

approximation. Moreover, the mainstream school of physics believe that the Lorentz 

transformation is better, while the Galilean transformation is only an approximation, 

that is, approximately true only in the case of slower speeds. 

Similarly, in Einstein’s theory of general relativity, due to the speed c of light is 

invariant; the factor  =1/(1+2 /c2) of gravitational spacetime transformation 

depends on the gravitational potential : the greater the | |, the greater the 

gravitational factor  = (), and the more significant the gravitational relativistic 

effects. Accordingly, Einstein believed that, the mainstream school of physic also 
believe that, the root and essence of gravitational relativistic effects lie in the 

interactions of matter. In the case of weaker field (| |<<c2), the gravitational factor  
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also approximates the Galilean factor :  =1/(1+2 /c2)1; gravitational 

spacetime is approximately flat. Thus, Einstein believed that, Einstein’s field 

equation and Newton’s law of universal gravitation are approximate in the form of 

Poisson’s equation; Einstein’s theory of general relativity and Newton’s theory of 

universal gravitation have the logical consistency in weaker gravitational fields, that 

is, have the corresponding relationship of weak-field approximation. Moreover, the 

mainstream school of physics believe that Einstein’s theory of general relativity is a 

better theory of gravity; while Newton’s theory of universal gravitation is only an 

approximation, that is, approximately true only in the case of weaker fields. 

It is worth noting that, no matter the slow-speed approximation or the weak-field 

approximation, the factor  of spacetime transformation is required to approximate 

the Galilean factor . The Galilean factor  1 represents the Cartesian spacetime 

that is flat, in which the observed time dt is namely the intrinsic time d: dt=d; and 

the spacetime metric g is the Minkowski metric: =diag(+1,−1,−1,−1). (we will 

specially discuss the problem of Cartesian spacetime in Sec. 13.2.) 

Under the conditions of the weak-field approximation:  . This implies that a 

weak gravitational field is approximately flat, in which Newton’s theory of universal 

gravitation is approximately true. Thus, by making use of the weak-field 

approximation, Einstein’s theory of general relativity could approximately be 

reduced to Newton’s theory of universal gravitation, and Einstein’s field equation 

could approximately be reduced to Newton’s law of universal gravitational equation. 

In this way, the coefficient of Einstein field equation could be calibrated. 

13.1.2 The Spacetime Metric of Weak Gravitational Fields 

Generally, as stated in Sec. 12.4 of chapter 12, the factor  of spacetime 

transformation in Einstein’s general relativity is related the movement speed v of 

matter as well as the scalar potential  and vector potential  i (i=1,2,3) of 

gravitational spacetime:  = (v, , i). 

According to Eq. (12.16) of Einstein’s theory of general relativity, 

the factor of spacetime transformation is
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To make the curved gravitational spacetime approximate the flat Cartesian 

spacetime:  1, in addition to the assumption: (i) the weak field (| |<<c2), it 

also needs: (ii) the slow speed (|v |<<c), and moreover, it often needs: (iii) the 

spacetime orthogonality (g0i=0 (i=1,2,3)). Actually, the spacetime orthogonality 

g0i=0 means the gravitational vector potential  i=0 (i=1,2,3). 

As a matter of fact, the weak-field approximation is a linearization method 

designed by Einstein specifically for his theory of general relativity. 

The gravitational spacetime in Einstein’s theory of general relativity is curved 

or nonlinear:  >; In the case of the slow-speed and weak-field,  , the 

gravitational spacetime tends to be flat or linear, and the gravitational spacetime 
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metric g approximates the Minkowski metric: g (x,c)=diag(+1,−1,−1,−1). 

According to the factor  of spacetime transformation in Einstein’s theory of 

general relativity, in order to achieve g (x,c), it is necessary to create the 

scenarios of slow-speed and weak-field. If | |<<c2 and | iv
i |<<c, then the 

gravitational spacetime metric g (x,c) could be linearized as: 
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 (13.1) 

where h and its derivative of each order are infinitesimal;  can be called the flat 

gauge, while h can be called the curved gauge. 

Equation (13.1) is the weak-field metric of Einstein’s general relativity, that is, 

the metric of a weak gravitational field, and is the core relationship of Einstein’s 

logical way or weak-field approximation. The weak-field metric in Eq. (13.1) is a 

linearized equation of the gravitational spacetime metric g in Einstein’s general 

relativity, which is the result of the linearization of the weak-field approximation or 

the formalized expression of the weak-field approximation. 

It is worth noting that, according to Einstein’s logic of weak-field approximation: 

|h |<< | | in a weak gravitational field; g= and h=0 if without gravitational 

field. So, Einstein believed that the curved gauge h in Eq. (13.1) represented the 

weak gravitational potential, was the gravitational radiation or the gravitational 

wave, which had laid the groundwork for Einstein to deduce the gravitational wave 

equation, and later to make the prediction of gravitational wave. 

The theory of gravitationally observational relativity (GOR), or the theory of 

GOR, will clarify that the curved gauge h in Eq. (13.1) does not represent 

gravitational radiation, let alone the so-called gravitational wave. 

13.1.3 The Conditions of Weak-Field Approximation 

Einstein tried to make use of the logical way of weak-field approximation to 

approximately correspond Einstein’s gravitational-field equation in general relativity 

to Newton’s law of universal gravitation in the form of Poisson equation, so that he 

could calibrated the coefficient of Einstein field equation. 

Actually, the conditions involved in the weak-field approximation are not only 

the weak field, the slow speed, and the spacetime orthogonality. The calibration of 

the Einstein field-equation coefficient involves several linearized assumptions 

related to the logic of the weak-field approximation. 

Einstein’s approach of weak-field approximation has five assumptions. 

(i) The weak field 

The spacetime is flat: g= if Newtonian potential =0. Thus, the spacetime 

of a weak gravitational field (| |<<c2) is approximately flat, and it follows that:  

( )g h h     = +  

(ii) The slow speed 
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The speed v of the observed object P relative to the observer O is much slower 

than the speed c of light: |v |<<c, or 
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(iii) The static field 

The metric g or the curved metric h does not change over time, that is, 
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In Einstein’s theory of general relativity, the condition of static field is 

approximate, only requiring that the metric g or h does not change significantly 

with time t. Moreover, it is worth noting that the condition of static field does not 

mean h /t=0, but h ,0=h /x00. 

(iv) The spacetime orthogonality 

The time axis x0 is orthogonal to the space axes xi (i=1,2,3), that is, 

( )0 0 0 1,2,3i ig g i= = =  

It is noteworthy that the condition of spacetime orthogonality seems redundant. 

On the one hand, as stated in Sec. 12.5.3 of Chapter 12, the objectively real 

spacetime is the Cartesian spacetime X4d
, and its time axis x0 and space axes xi 

(i=1,2,3) are originally orthogonal. Later, the theorem of Cartesian spacetime will 

prove that. On the other hand, under the condition of weak field,  i  is naturally a 

weak potential:  i0, and the spacetime tends to be orthogonal: g0i0. Combining 

the condition of slow speed, the gravitational vector potential in the factor  of 

spacetime transformation is naturally subject to | iv
i |<<c. 

(v) The harmonic coordinates 
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where g=det(g) is the determinant of the spacetime metric g; in particular, the 

extreme case of harmonic coordinates is (−g)=1 or g=. 

The theory of OR will clarify that, no matter the theory of GOR or Einstein’s 

theory of general relativity, the logic deduction of gravitational-field equation, 

including linearization, does not need the weak-field approximation or the logical 

way of weak-field approximation. 

Actually, the corresponding relationship between the theory of GOR and 

Newton’s theory of universal gravitation is not that of the weak-field approximation, 

but the corresponding relationship between the general observation agent OA() and 

the idealized observation agent OA. 

Therefore, the theory of GOR does not need to be approximately corresponded 



81 

to Newton’s theory of universal gravitation through the weak-field approximation. 

Instead, the theory of GOR will be strictly corresponded to Newton’s theory of 

universal gravitation through the idealized convergence (→), that is, the GOR 

logical wave of the idealized observation agent OA. 

The theory of GOR will clarify that the conditions of the weak-field 

approximation in Einstein’s theory of general relativity, including the weak field, 

slow speed, static field, spacetime orthogonality, and harmonic coordinates, could be 

satisfied by the idealized convergence or the logical way of the idealized agent OA: 

as the information-wave speed → of the general observation agent OA(), all the 

conditions of Einstein’s weak-field approximation would hold true. 

13.1.4 Newton’s Gravitational Scene 

Einstein’s weak-field approximation is the approximation between Einstein’s 

field equation and Newton’s law of universal gravitation in the form of Poisson 

equation [125] under the conditions of weak-field approximation. 

Naturally, in order for Einstein’s field equation to be correspond to Newton’s 

law of universal gravitation in the form of Poisson equation, the gravitational-field 

equation should set up the same scene of gravitational interaction as Newton’s law 

of universal gravitation. 

Here, the so-called Newton’s gravitational scene is that set up by Newton in his 

law of universal gravitation: in the flat gravitational spacetime, there are quietly two 

particles M and m at a distance of r, M is the gravitational source and center of 

gravity (forming a spherically symmetric gravitational-field), and m (with the matter 

density ) is the object affected by gravity. Let m be located at gravitational 

potential , according to Newton’s law of universal gravitation: =−GM/r. Without 

loss of generality, let M be located at the origin of the space coordinate of 

gravitational spacetime, then the gravitational potential is the same or equal 

everywhere on the surface of the sphere with the same radius r. 

It should be pointed out that Newton’s gravitational scene does not mean that 

Newton’s gravitational field must be a weak field: the masses of both M and m 

could be arbitrarily large, and could even be conceived as black holes with huge 

mass or gravity. In this regard, Einstein’s theory of general relativity and Newton’s 

theory of universal gravitation do not necessarily have the corresponding 

relationship of so-called weak-field approximation. 

Actually, whether Newton’s gravitational scene is a weak gravitational field or 

not, the Cartesian spacetime is flat. In order to correspond his theory of general 

relativity to Newton’s theory of universal gravitation, Einstein must flatten the 

gravitational spacetime in his theory of general relativity. However, as far as 

Einstein’s gravitational spacetime is corresponded to Newton’s gravitational 

spacetime, restricted by the optical observation, the logical way Einstein could make 

use of was only the weak-field approximation: as 0 or r, the metric g(x,c)  

of the observational spacetime X4d(c) in Einstein’s theory of general relativity could 

approximate the Minkowski metric  : g(x,c) . In this way, X4d(c) could be 

approximately flat. 
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However, the theory of GOR does not need the logical way of weak-field 

approximation. The logical way of GOR theory is the idealized convergence, i.e., 

the logic of the idealized agent OA: as →, the metric g(x,c)  of the GOR 

observational spacetime X4d() in the theory of GOR strictly converges to the 

Minkowski metric  : g(x,c)→ . 

In this way, X4d() would naturally be flat. 

According to the conditions of weak-field approximation in Sec. 13.1.3, the five 

assumptions, including the weak field, slow speed, static field, spacetime 

orthogonality, and harmonic coordinates, naturally hold true in Newton’s 

gravitational scene: 

(i) The weak field: spacetime is flat in Newton’s gravitational scene, naturally, 

g=+h (| |>>|h|=0); 

(ii) The slow speed: M and m are relatively stationary in Newton’s gravitational 

scene; 

(iii) The static field: the gravitational potential  does not change over time in 

Newton’s gravitational scene; 

(iv) The spacetime orthogonality: g=, naturally, g0i=gi0=0; 

(v) The harmonic coordinates: g=, naturally, □x =0. 

Perhaps, it was by reference to Newton’s gravitational scene that Einstein set up 

the conditions of weak-field approximation for his theory of general theory. On the 

contrary, when we set the gravitational scene for Einstein field equation by reference 

to Newton’s gravitational scene, the Einstein’s conditions of weak-field 

approximation naturally hold true. 

The question left to us by Newton’s gravitational scene is that: 

Is Newton’s gravitational scene really a flat spacetime? Or, is the spacetime 

metric g  of Newton’s gravitational scene really the Minkowski metric ? 

According to the theory of OR, Newton’s gravitational scene belongs to the 

Cartesian spacetime X4d
. So, the issue evolves into that: Is the metric g  of the 

Cartesian spacetime X4d
 really the Minkowski metric ? 

The issue involves the theorem of Cartesian spacetime. 

13.2 The Theorem of Cartesian Spacetime 

The theorem of Cartesian spacetime, based on the definition (Def. 10.1) of the 

general observation agent OA() in Chapter 10, proves that the Cartesian spacetime 

X4d
 is a flat spacetime, and the metric g  of Cartesian spacetime is exactly the 

Minkowski metric: =diag(+1,−1,−1,−1). 

Einstein believed that: Newton’s gravitational scene was a flat spacetime; or, in 

a flat spacetime, Newton’s theory of universal gravitation held true. It was based on 

such an understanding that Einstein conceived the logical way of weak-field 
approximation, and then corresponded his theory of general relativity to Newton’s 

theory of universal gravitation to calibrate Einstein’s field equation. 
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According to the theory of GOR, Newton’s theory of universal gravitation is the 

product of the idealized observation agent OA with the idealized observational 

spacetime X4d
, called the Cartesian spacetime in the theory of OR, representing 

the objective and real physical world. 

It should be pointed out that Newton’s theory of universal gravitation is not 

necessarily the theory of weak gravitational fields; the flat spacetime of Cartesian 

spacetime is not due to weak gravitational fields or no gravitational fields, but the 

objectively physical reality presented to observers by the idealized agent OA. 

13.2.1 The Idealized Agent and Cartesian Spacetime 

The theory of OR has clarified that, in order to perceive or observes the natural 

world, observers must make use of certain observation agents. 

In theory, any form of matter motion could be employed as the observation 

medium to transmit observed information to observers. According to Def. 10.1 in 

Sec. 10.3 of Chapter 10, the general observation agent OA() can be formalized as: 

( )
( )

( )( )

0

4d

1 2 3

2

;
:

, ,OA

d d d ,

x t
X

x x x y x z

s g x x g g x  

  








  = 
   

= = =   
 

= =  

 

where  is the information-wave speed of OA(); X4d() is the observational 

spacetime of OA(): x0 is the 1d time, (x1,x2,x3) is the 3d space; g=g(x,) is the 

metric of the observational spacetime X4d(). 

As stated in Sec. 1.4 Observation Agents of Chapter 1 and as shown in Tab. 1.1, 

the so-called Cartesian spacetime refers to the idealized observational spacetime 

X4d
 of the idealized observation agent OA: X4d()→X4d

 as →, where there is 

no observational locality: it takes no time for information to cross space. 

Based on Def. 10.1, the spacetime theory of GOR derives the GOR factor () 

(see Sec. 12.4 in Chapter 12), that is, the factor of spacetime transformation in the 

observational spacetime X4d() of the general agent OA() (Eq. (12.36)): 
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The GOR factor () of spacetime transformation generalizes the factors of the 

optical agent OA(c) and the idealized agent OA: as →c, () is strictly reduced 

to the spacetime-transformation factor (c)= of Einstein’s relativity theory; as 

→, () is strictly reduced to the Galilean factor   (1). 

Here, the Galilean factor   (1) represents the Cartesian spacetime, that is, the 

idealized observational spacetime X4d
: ()→ 1 and X4d()→X4d

 as →. 

It could be imagined (as stated in Sec. 13.1, Einstein also thought the same way) 

that the Cartesian spacetime X4d
 is flat, and its metric g is exactly the Minkowski 
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metric  : if → then g→ . Such an idea could be formalized as the 

following Cartesian-spacetime theorem. 

The Theorem of Cartesian Spacetime: Let OA() be the general observation 

agent, g=g(x,) the metric of the observational spacetime X4d() of OA(), 

and  the information-wave speed, then g→ as →. 

Naturally, proof is required for g→ as →. 

Alternatively, it needs to be proven that the Cartesian spacetime X4d
 is flat, and 

the metric g of Cartesian spacetime X4d
 is exacely the Minkowski metric  , that 

is, g==diag(+1,−1,−1,−1). 

Newton’s gravitational scene belongs to the Cartesian spacetime X4d
. If the 

theorem of Cartesian spacetime holds true, then without the need of the weak-field 

approximation, the theory of GOR could strictly converge to Newton’s theory of 

universal gravitation as → under the idealized agent OA. In this way, the GOR 

gravitational-field equation could be corresponded to Newton’s law of universal 

gravitation in the form of Poisson equation. 

13.2.2 The Lemmas of Cartesian-Spacetime Theorem 

The proof of Cartesian-spacetime theorem consists of several lemmas. 

 

Figure 13.1 The Observer O and the Observed Time t: The observer O observes the 

standard clock TP; the time dt observed by O depends on the observation agent OA() 

that O is armed with. The general observation agent OA() has the observational locality 

(<), and therefore, the observed time dt is not the objectively real time d. However, 

in the Cartesian spacetime X 4d
, the observation agent is the idealized agent OA 

(→), and has is no observation locality, thus dt=d. 

Lemma 13.1 and Corollary 13.1 

Lemma 13.1 is intended to prove that, in the Cartesian spacetime X4d
, the 

observational (observed) time dt of observers is exactly the objectively real time, i.e., 

the intrinsic time (proper time) d. 

Lemma 13.1: Let OA() be the general observation agent, and  the 

information-wave speed of OA(), then in the observational spacetime X4d() of 
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OA(), as →, the observed time dt of any observer is exactly the standard time 

d: dt=d (d=ds/) . 

Proof: 

As depicted in Fig. 13.1, the observer O observes the standard TP, the intrinsic 

period of TP is To. According to the definition of standard time, if O and TP are 

relatively stationary in the free spacetime SF (g= and dxi=0 (i=1,2,3)), then the 

observed time dt of O is the standard time d. 

According to the definition of observation agents (Def. 10.1) and the symmetry 

of the spacetime metric g, the line-element ds of the observational spacetime 

X4d() of OA() obeys 
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Therefore, the standard d=ds/. 

Suppose that the standard clock TP emits the signals of the 0-phase and 2-phase 

of the clock period outward at times 1 and 2, respectively, then naturally, the 

intrinsic period To of TP is To==2−1. 

Suppose that the observer O receives the signals of the 0-phase and 2-phase of 

the clock period at times t1 and t2, respectively, then the period T of the standard 

clock TP observed by O is T=t= t2−t1. 

If →, then the observation agent OA() has no observation locality, the 

observation medium M() takes no time to transmit observed information. Therefore, 

t1=1 and t2=2, the period T of the standard clock TP observed by O is exactly the 

intrinsic period To of the standard clock TP: T= t2−t1=2−1=To. 

Thus, as →, in the observational spacetime X4d() of OA(), the observed 

time dt of an observer is exactly the standard time: dt=d  (d=ds/). 

 Q.E.D. 

According to Lemma 13.1, if →, or in the Cartesian spacetime X4d
 of the 

idealized observation agent OA, the observational time dt observed by an observer 

O (regardless of the space coordinates of X4d
) observing the standard clock TP is 

the standard time, i.e., the intrinsic time (proper time) d. This means that, in the 

Cartesian spacetime X4d
 of the idealized observation agent OA, time does not 

depend on space: space and time are independent of each other. 

Thus, Lemma 13.1 has the following corollary. 

Corollary 13.1: Let OA() be the general observation agent, and  the 

information-wave speed of OA(), then as →, in the metric g of the 

observational spacetime X4d() of OA(), the metric elements of 0i and i0 are zero: 

g0i=gi0=0 ( i=1,2,3). 
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Corollary 13.1 is of important significance. 

(i) Corollary 13.1 suggests that space and time in the objectively physical 

world are originally orthogonal: time is just time, flowing quietly; space is 

just space, existing quietly. 

(ii) Corollary 13.1 indicates that the objectively physical world has no the 

so-called gravitational vector potential imagined by Einstein. 

However, it is worth noting that, in Lemma 13.1,  i=0 (i=1,2,3) requires →. 

This means that when the observation agent OA() has the observation locality 

(<), the gravitational vector potential  i  (i=1,2,3) might appear in the 

observational spacetime as a pure observational effect. 

Lemma 13.2 and its Proof 

Lemma 13.2 is intended to prove that, in the Cartesian spacetime X4d
, the 00 

element g00 of the metric g is the 00 element 00 of the Minkowski metric  . 

Lemma 13.2: Let OA() be the general observation agent, and  the 

information-wave speed of OA(), then as →, the metric element g00 in the 

metric g of the observational spacetime X4d() of OA() equals to one, i.e., the 00 

element 00 of the Minkowski metric  : g00=00=1. 

Proof: 

According to Def. 10.1, the line-element ds in the observational spacetime X4d() 

of the observation agent OA() could be written as follows: 
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= + +
 (13.3) 

According to Lemma 13.1, dt=d as →, and d=ds/. 

So, it follows as → that 

 2 2

00d dg t =  (13.4) 

By contrasting Eq. (13.4) and Eq. (13.2), we have: g00=00=1. 

 Q.E.D. 

Lemma 13.3 and its Proof 

Lemma 13.3 is intended to prove that, in the Cartesian spacetime X4d
, the ii 

element gii of the metric g is the ii element ii of the Minkowski metric . 

Lemma 13.3: Let OA() be the general observation agent, and  the 

information-wave speed of OA(), then as →, the metric element gii in the 

metric g of the observational spacetime X4d() of OA() equals to −1, i.e., the ii 

element ii of the Minkowski metric : gii= ii=−1 (i=1,2,3). 

Proof: 

The metric g in the observational spacetime X4d() of the observation agent 

OA() is independent of the observer O and the observed object TP. Therefore, we 

could set the motion scene of TP moving uniformly along the axis x1 relative to O: 
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dx10 and dx2=dx3=0. 

According to Def. 10.1, as well as Lemma 13.1 and Corol. 13.1, based on the 

given conditions of Lemma 13.3 and the motion scene, it follows that: 
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where dl is the physical space distance or the pure space distance that the 

observed object TP moves during the period dt in the observational spacetime X4d() 

of the observation agent OA(). 

If →, then OA()→OA and X4d()→X4d
. According to the motion scene, 

in the Cartesian spacetime X 4d
 of the idealized observation agent OA, the physical 

space distance (pure space distance) that the observed object TP moves during the 

period dt=d must be dl=dx1. Therefore, by contrasting with the dl=(−g11)dx1 in 

Eq. (13.5), it follows that: g11=−1 as →. 

Similarly, g22=g33=−1 as →. 

Or, gii= ii=−1 (i=1,2,3) as →. 

 Q.E.D. 

Lemma 13.4 and its Proof 

Lemma 13.4 is intended to prove that, in the Cartesian spacetime X4d
, the ik 

element gik of the metric g is the ik element ik of the Minkowski metric . 

Lemma 13.4: Let OA() be the general observation agent, and  the 

information-wave speed of OA(), then as →, the metric element gik in the 

metric g of the observational spacetime X4d() of OA() equals to zero, i.e., the ik 

element ik of the Minkowski metric : gik= ik=0 (i ,k=1,2,3; ik). 

Proof: 

The metric g in the observational spacetime X4d() of the observation agent 

OA() is independent of the observer O and the observed object TP. Therefore, we 

could set the motion scene of TP moving uniformly in the axis x1-x2 plane: dx10 and 

dx20; dx3=0. 

According to Def. 10.1, as well as Lemma 13.1 and Corol. 13.1, based on the 

given conditions of Lemma 13.4 and the motion scene, it follows that: 
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where dl is the physical space distance or the pure space distance that the 

observed object TP moves during the period dt in the observational spacetime X4d() 

of the observation agent OA(). 

According to Lemma 13.3, gii=−1 (i=1,2,3) as →, and then 

 ( ) ( )( )2 2
1 2 1 2

12d d d 2 d dl x x g x x= + −  (13.7) 

If →, then OA()→OA and X4d()→X4d
. According to the motion scene, 

in the Cartesian spacetime X 4d
 of the idealized observation agent OA, the physical 

space distance (pure space distance) that the observed object TP moves during the 

period dt=d must be dl=((dx1)2+(dx2)2). Therefore, by contrasting with the dl in 

Eq. (13.7), it follows that: g12=g21=0 as →. 

Similarly, g23=g32=0 as →. 

Or, gik=ik=0 (i ,k=1,2,3; ik) as →. 

 Q.E.D. 

13.2.3 The Proof of Cartesian-Spacetime Theorem 

According to Lemmas 13.1-4, we can prove the theorem of Cartesian spacetime.  

Proof: 

According to Lemma 13.1, the observed time dt is the standard time d : dt=d.  

According to Corol. 13.1, spacetime is orthogonal: g0i=gi0=0 ( i=1,2,3). 

According to Lemma 13.2, g00=00=1. 

According to Lemma 13.3, gii= ii=−1 (i=1,2,3). 

According to Lemma 13.4, gik= ik=0 (i ,k=1,2,3; ik). 

In summary, the theorem of Cartesian spacetime holds true: g→ as →, 

where,  is the Minkowski metric: =diag(+1,−1,−1,−1). 

 Q.E.D. 

The theorem of Cartesian spacetime means that the objective and real spacetime, 

or, the Cartesian spacetime, is originally flat rather than curved. 

13.2.4 Verifying the Cartesian-Spacetime Theorem 

In his general relativity, Einstein made use the weak-field approximation to 

solve his gravitational-field equation, and obtained the first solution of Einstein field 
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equation [8], i.e., Einstein’s approximate solution, in which the metric g(x,c) in 

the observational spacetime X4d(c) of the optical observation agent OA(c) was: 
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In Eq. (13.8), =−GM/r is the Newtonian gravitational potential; as r→, 

→0 and g(x,c)→=diag(+1,−1,−1,−1). This is in line with the expectation of 

Einstein’s logic of weak-field approximation. 

However, as clarified by the theory of GOR in Sec. 12.5 of Chapter 12, the root 

and essence of gravitational relativistic effects do not lie in gravitational interaction, 

but in the observational locality of the observation agent OA() ( <). Based on 

the principle of GC, through PGC logic route 1, substituting the information-wave 

speed  for the light speed c, one could directly obtain the metric g(x,) in the 

observational spacetime X4d() of the general observation agent OA(), that is, the 

approximate solution of the GOR gravitational-field equation: 

 

( )

( )

( ) ( )

00 2

0

2 2

2
1

0

2
, 1,2,3

i

i k

ik ik

GM
g

r

g

x x
g i k

r


 






 



  
= + = − 

 


=

 = − + =


 (13.9) 

Obviously, regardless of  and r, if → then 

 ( ) ( )lim diag 1, 1, 1, 1g
 


 
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= = + − − −  (13.10) 

It is thus clear that, for both the approximate solution of Einstein field equation 

(Eq. (13.8)) or the approximate solution of the GOR field equation (Eq. (13.9)), the 

theorem of Cartesian spacetime holds true: g(x,)→  as →.  

Likewise, the Schwarzschild metric [80], the first exact solution of Einstein field 

equation, can also be applied to verify the theorem of Cartesian spacetime and to 

draw the conclusion similar to that Einstein’s approximate solution. 

13.2.5 The Significance of Cartesian-Spacetime Theorem 

The theorem of Cartesian spacetime makes the fuzzy image of Cartesian 

spacetime in Chapter 10 and Chapter 12 much clearer. Actually, the theorem of 

Cartesian spacetime is consistent with the statement about the intrinsic spacetime 

and the observational spacetime in Chapter 1 and Chapter 10, as well as, with the 

statement about the GOR factor of spacetime transformation in Chapter 12. 

According to the GOR factor of spacetime transformation in Eq. (12.36), 

()→  as →, which has already clarified that the Cartesian spacetime X4d
 
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of the idealized agent OA is flat. Now, the theorem of Cartesian spacetime proves 

that: g()→  as →, which more clearly indicates that the Cartesian 

spacetime X4d
 (including Newton’s gravitational field) is flat rather than curved. 

Actually, in Einstein’s subconscious, Newton’s gravitational field was originally flat, 

which was reflected in Einstein’s logical way of weak-field approximation. 

According to the theorem of Cartesian spacetime, in the theory of OR (including 

IOR and GOR), the general observation agent OA() generalizes all observation 

agents, including the optical agent OA(c) and the idealized agent OA, unifies the 

Minkowski 4d spacetime of OA(c) and the Cartesian 4d spacetime (with the 

independent 1d time and the independent 3d space) of OA. 

Naturally, as →c, the general observation agent OA() becomes the optical 

agent OA(). In particular, as →, the general observation agent OA() becomes 

the idealized agent OA, and the observational spacetime X4d() becomes the 

Cartesian spacetime X4d
; according to the theorem of Cartesian spacetime, the 

metric g() of the Cartesian spacetime X4d
 is exactly the Minkowski metric  : 

=diag(+1, −1,−1,−1). 

The metric g of the observational spacetime X4d() of the general observation 

agent OA() depends on the information-wave speed  of OA(): g=g(), 

which could be decomposed into: 

 ( ) ( ) ( )( )limg h h
   
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   
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where the Minkowski metric  (i.e., the flat metric) does not rely on OA(), 

while the curved metric h relies on OA(): h=h(); in particular, according 

to the theorem of Cartesian spacetime, h→0 as →. 

According to the definition (Def. 10.1) of Observation Agent in Chapter 10 and 

Eq. (10.2), the line-elements ds of the observation spacetime X4d() of the general 

observation agent OA() is described in: 

 
( ) ( )( )

( ) ( )

2

2 2 2 2 2 2

d d d d d

d d d d d d d d

s g x x h x x

t l h x x l x y z

   

  

 



  

 

= = +

= − + = + +
 (13.12) 

where dt is the observed time, dl is the physical space distance. 

Equation (13.12) can be rewritten as: 
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According to the theory of Cartesian spacetime: h→0  as →. 

Thus, as →, the spacetime line-element ds in Eq. (13.13) splits into two 

independent relations in the Cartesian spacetime X4d
 (i.e., the objectively physical 

world), the independent time-line dt and the independent space-line dl: 
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where the observed time dt is the objectively real time d ; the physical space 

distance (pure space distance) dl is the Cartesian 3d space distance. 

The theorem of Cartesian spacetime has clarified the spacetime characteristics of 

Cartesian spacetime as the intrinsic spacetime of the objective world: 

(i) time is uniform everywhere: different observers have the same time, and 

simultaneity is absolute; 

(ii) time and space are independent of each other: time flows quietly and evenly, 

while space exists quietly and eternally. 

What Eq. (13.14) presents is exactly the scene of the Galilean transformation, 

that is, the scene in observational space time X4d
 of the idealized agent OA, which 

is the Cartesian spacetime X 4d
: the true portrayal of the objectively physical world. 

As →, the observational spacetime X4d() of the general observation agent OA() 

would logically revert to Cartesian spacetime, which from one aspect confirms the 

formal and logical consistency between the general observation agent OA() and the 

idealized agent OA. 

Based on the theorem of Cartesian spacetime, the theory of GOR could 

construct the logical way of idealized convergence under the idealized observation 

agent OA and the conditions of idealized convergence: when the information-wave 

speed  of the general observation agent OA() is large enough, it follows that 

g()=+h() (|h |<< | |). 

The logical way of idealized convergence under the idealized observation agent 

OA will lay the theoretical foundation for the deduction and calibration of GOR 

gravitational-field equation. 

13.3 The GOR Logical Way of Idealized Convergence 

It is the fundamental thought of the principle of general correspondence (GC) 

that: One physical world, one logical system. 

Like Einstein’s theory of general relativity, the theory of GOR also needs to 

maintain the logical consistency with Newton’s theory of universal gravitation; like 

the Einstein field equation, the GOR gravitational-field equation also needs to 

maintain logical consistency with Newton’s law of universal gravitation in the form 

of Poisson equation. However, unlike Einstein’s theory of general relativity, the 

theory of GOR follows the GOR logic of idealized convergence or the GOR logical 

way of idealized convergence under the idealized observation agent OA rather than 

Einstein’s logical way of weak-field approximation. 

The logical consistency between the general Lorentz transformation of OR 

theory and the Galilean transformation does not lie in the slow-speed approximation, 

but in the idealized convergence under the idealized observation agent OA, which 

is the corresponding relationship of isomorphic consistency between the general 

observation agent OA() and the idealized agent OA, that is, the strictly logical 
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consistency: as →, the general Lorentz transformation strictly reduces to the 

Galilean transformation. 

Likewise, the logical consistency between the theory of GOR and Newton’s 

theory of universal gravitation does not lie in the weak-field approximation, but in 

the idealized convergence under the idealized observation agent OA, which is the 

corresponding relationship of isomorphic consistency between the general 

observation agent OA() and the idealized agent OA, that is, the strictly logical 

consistency: as →, the GOR gravitational-field equation strictly reduces to 

Newton’s law of universal gravitation in the form of Poisson equation. 

13.3.1 The Logic of Idealized Convergence 

Restricted by the optical observation agent OA(c), Einstein believed that the 

essence of relativistic effects lies in matter motion and matter interactions：the 

Galilean transformation could only approximately be corresponded to the Lorentz 

transformation in special theory by the slow-speed approximation; Newton’s law of 

universal gravitation could only approximately be corresponded to Einstein field 

equation in general relativity by the weak-field approximation. 

However, the theory of observational relativity (OR) has discovered that all 

relativistic effects are observational effects, and the essence lies in the observational 

locality (<) of the observational agent OA(): different observational agents 

have different degrees of observational locality, and therefore, present different 

degrees of relativistic effects. Newton’s theory of universal gravitation is the theory 

of the idealized observation agent OA; therefore, in logic, the theory of GOR could 

be corresponded to Newton’s theory of universal gravitation by the idealized 

convergence under the idealized observation agent OA, rather than by Einstein’s 

weak-field approximation. 

This is so-called the GOR logical way of idealized convergence. 

As →, the observation agent OA() converges to the idealized agent OA; 

the observational spacetime X4d() converges to the Cartesian spacetime X4d
. 

According to the theorem of Cartesian spacetime, g()→  as →, and 

therefore, the Cartesian spacetime X4d
 (including Newton’s gravitational field) is a 

flat spacetime. At such a case, logically or in logic, the gravitational theory of GOR 

should strictly be corresponded to Newton’s theory of universal gravitation. 

The theory of GOR repeatedly emphasizes that: Newton’s theory of universal 

gravitation is not the theory of the weak-field approximation of Einstein’s general 

relativity; Einstein’s theory of general relativity and Newton’s theory of universal 

gravitation belong to different observational agents and do not have the direct 

corresponding relationship. Einstein’s theory of general relativity is the theory of 

optical agent OA(c), which holds true only if light acts as the observation medium; 

Newton’s theory of universal gravitation is the theory of the idealized agent OA, 

representing the objectively gravitational interaction, which could only be converged 

or corresponded by the idealized convergence under the idealized agent OA. 

The GOR factor  =() of gravitational spacetime transformation depends on 

the observation agent OA(): =1/(1+2 /2) . For a given gravitational potential , 
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the larger the , the flatter the gravitational spacetime, the closer the GOR factor 

 = () is to the Galilean factor  1, and the closer the gravitational spacetime is 

to the Cartesian spacetime X4d
. In particular, as →, ()→ 1, the GOR 

gravitational spacetime X4d() becomes the flat Cartesian spacetime X4d
. At such a 

case, the gravitational theory of GOR and Newton’s theory of universal gravitation 

have strict logical consistency: so-called the idealized convergence. 

In this way, the gravitational theory of GOR could strictly converge to Newton’s 

theory of universal gravitation; the GOR gravitational-field equation could strictly 

converge to Newton’s law of universal gravitation in the form of Poisson equation. 

13.3.2 Quasi Cartesian Spacetime and its Metric 

According to the theorem of Cartesian spacetime, the metric g of the Cartesian 

spacetime X4d
 of the idealized observation agent OA is exactly the Minkowski 

metric: =diag(+1, −1,−1,−1). 

Based on the definition (Def. 10.1) of the general observation agent OA(), the 

theory of GOR has derived the GOR factor (Eq. (12.36)) that is isomorphically 

consistent with Einstein’s general factor  of gravitational spacetime transformation 

(Eq. (12.16)). So, we have the GOR factor of the general observational agent OA(): 

Equation (12.3): 
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The GOR factor  = () of spacetime transformation depends on the 

information-wave speed  of OA(), which could be any speed value; while the 

factor  of spacetime transformation in Einstein’s theory of general relativity is only 

a special case of the GOR factor  = () of spacetime transformation, where  

could only be the speed c of light:  = (c). 

In his theory of general relativity, restricted by the perspective of optical 

observation, Einstein could only use the weak-field approximation to make the 

curved gravitational spacetime X4d(c) of the optical agent OA(c) approximate to the 

Cartesian spacetime X4d
:  , and to make Einstein’s field equation approximate 

to the Newton’s law of universal gravitation in the form of Poisson equation, by 

assuming: (i) weak field (| |<<c2); (ii) slow speed (|v |<<c); (iii) the static field 

(g,0=h,0=0 (,=0,1,2,3)); (iv) Spacetime orthogonality (g0i=gi0=0, (i=1,2,3)); (v) 

The harmonic coordinates ((−g)=1). 

As clarified by the theory of OR, however, Einstein’s theory of general relativity 

does not have the direct corresponding relationship with Newton’s theory of 

universal gravitation, and particularly, Newton’s gravitational field is not necessarily 

a weak gravitational field. 

In the theory of GOR, Newton’s gravitational spacetime is the gravitational 

spacetime X4d
 of the idealized agent OA, i.e., Cartesian spacetime: OA()→OA 

as →. At such a case, the gravitational theory of GOR converges to Newton’s 

theory of universal gravitation. 
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Therefore, in order to make the curved gravitational spacetime X4d() of the 

general observation agent OA() strictly converge to the Cartesian spacetime X4d
, 

and to make the GOR field equation strictly converge to Newton’s law of universal 

gravitation in the form of Poisson equation, the theory of GOR should replace 

Einstein’s logic of weak-field approximation with the logic of idealized convergence. 

(It should be pointed out that this is also a logical way of isomorphically consistent 

correspondence under the principle of GC.) 

In the theory of GOR, the idealized convergence under the idealized agent OA 

does not require to set the conditions of weak-field approximation, including the 

weak field, slow speed, static field, spacetime orthogonality, and harmonic 

coordinates; simply requires the information-wave speed  of OA() to be large 

enough or →, then the curved gravitational spacetime of OA() could be 

flattened or linearized, and become the Cartesian spacetime X4d
: 
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 (13.15) 

Actually, the GOR idealized convergence is also a linearization method. 

The general observation agent OA() has the observation locality (<). 

Therefore, according to the logic of Einstein’s theory of general relativity, the GOR 

gravitational spacetime of OA() should also be described as curved or nonlinear: 

 ()>1. Under the idealized agent OA,  ()→1 as→. At such a case, 

the gravitational theory of GOR would strictly converge to Newton’s theory of 

universal gravitation. 

According to the theorem of Cartesian spacetime: as →, the GOR 

gravitational spacetime X4d() converges to the Cartesian spacetime X4d
, and the 

GOR gravitational spacetime metric g(x,) converges to the Minkowski metric 

=diag(+1,−1,−1,−1). Therefore, based on the GOR idealized convergence, let the 

information-wave speed  be large enough, then the GOR gravitational spacetime 

could be regarded as a quasi Cartesian-spacetime, and the GOR gravitational 

spacetime metric g(x,) could be regarded as a quasi Cartesian-spacetime metric 

that could be decomposed and linearized as: 
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 (13.16) 

where h and its derivative of each order are infinitesimal; According to the 

theorem of Cartesian spacetime: g (x,)→ as →, and hence, h→0. 

Obviously, Eq. (13.16) is isomorphically consistent with Einstein’s condition of 
the weak field in Eq. (13.1). Equation (13.16) is the condition of GOR idealized 

convergence; the metric g (x,) in Eq. (13.16) is the quasi Cartesian-spacetime 
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metric,  is the flat metric, and h is the curved metric. 

Equation (13.1) is the core relationship of Einstein’s weak-field approximation; 

while Eq. (13.16) is the core relationship of the GOR idealized convergence under 

the idealized agent OA in the theory of GOR, and is a linearized equation of the 

gravitational spacetime metric g(x,) in the theory of GOR. It is the result of 

idealized converging and the formalized expression of idealized convergence. 

It is worth noting that the curved metric h=h() depends on the observation 

agent OA(): under different observation agents, the same gravitational scene has 

different curved metrics, and would exhibit different curvatures. 

This fact suggests that h is not so-called the weak gravitational potential, 

does not represent gravitational radiation, nor is the gravitational wave, but the 

carrier wave, that is, the information wave loaded with observed information about 

matter motion (v) and gravitational interaction (). 

The theory of Gravitationally Observational Relativity (GOR) will reveal the 

mystery of Einstein’s prediction for gravitational waves in Chapter 18. 

13.3.3 The Conditions of Idealized Convergence 

The GOR logical way of idealized convergence theory can be analogized with 

Einstein’s logical way of weak-field approximation; the conditions of idealized 

convergence for the theory of GOR can be corresponded to the conditions of 

weak-field approximation for Einstein’s theory of general relativity. 

As stated in Sec. 13.1.3, Einstein’s logical way of weak-field approximation has 

five assumptions; while the COR logical way of idealized convergence under the 

idealized observation agent OA only means one assumption or condition, that is, 

the information-wave speed  of the observation agent OA() is large enough or 

→. According to the theorem of Cartesian spacetime, if  is large enough or 

→, then the linearized equation (13.16) of the idealized convergence holds, and 

naturally, Einstein’s five conditions of weak-field approximation hold true. 

(i) The flat spacetime (corresponding Einstein’s assumption of the weak field) 

In theory of GOR, the gravitational spacetime is the observational spacetime 

X4d() of the general observation agent OA(), the spacetime metric g() of X4d() 

could be decomposed into the flat metric   and the curved metric h():  

g()=+h(). 

According to the theorem of Cartesian spacetime: g= as →. Therefore, 

for any gravitational scene with Newton’s gravitational potential , if  is large 

enough ( >>||), the gravitational spacetime X4d() tends to be flat, which could 

be regarded as the weak-field scene in Einstein’s logical way of weak-field 

approximation. The condition of the weak field condition holds (see Sec. 13.1.3): 

( ) ( ) ( ), ,g x h x h 

       = +  

where h is the curved metric, does not represent the weak gravitational potential, 

but represents the curved state of the observational spacetime X4d(): h→0 as 
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→, or in other words, |h |<<| | if  is large enough. At such a case, the GOR 

observational spacetime X4d() of OA() converges to the Cartesian spacetime X4d
 

and tends to be flat. 

(ii) The slow speed 

As →, the speed v of any observed object P relative to the observer O could 

be regarded as a slow speed. Therefore, if  is large enough ( >>|v |), then the 

condition of the slow speed holds (see Sec. 13.1.3): 

( )
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(iii) The static field 

As → or  is large enough, according to the logic of Einstein’s logical way 

of weak-field approximation, the gravitational spacetime at such a case could be 

regarded as a static gravitational field that does not change with time, or in other 

words, the metric g() or h() does not change significantly with time t : 
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However, it is worth noting that, in the idealized convergence of GOR theory, 

the condition of the static field does not require g() or h() not to significantly 

change with time t, but requires g() or h() not to significantly change with 

time-line x0= t, which only needs  to be large enough or →. 

(iv) The spacetime orthogonality 

In the theorem of Cartesian spacetime, Corol. 13.1 of Lemma 13.1 has proven 

that, as →, the metric elements of 0i and i0 are zero: g0i=gi0=0 ( i=1,2,3), the 

time axis x0 and space axes xi (i=1,2,3) of the observational spacetime X4d() of 

OA() tend to be orthogonal. It is thus clear that the spacetime of the objectively 

physical world is originally orthogonal. (This is consistent with the relevant 

statement in Sec. 12.5.3 of Chapter 12.) 

(v) The harmonic coordinates 

According to the theorem of Cartesian spacetime, g= as →, and 

therefore, if  is large enough, then |h |<<| | or g or (−g)1. Thus, the 

following relation of harmonic coordinates holds true: 

( )( )
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where g()=det(g()) is the determinant of the metric g() of the observational 

spacetime X4d() of the general observation agent OA(). 

To sum up, in the theory of GOR, the condition of GOR idealized convergence 

under the idealized agent OA only has one item: the information-wave speed  of 
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the general observation agent OA() is large enough or →. 

Thus, as → or  is large enough, the conditions of Einstein’s weak-field 

approximation, including the weak field, slow speed, static field, spacetime 

orthogonality, and harmonic coordinates, hold true. 

So, it could imagine that, based on the condition of GOR idealized convergence: 

→ or  is large enough, by analogizing or following the logic of Einstein’s 

weak-field approximation in Einstein’s theory of general relativity, the theory of 

GOR could correspond the GOR gravitational-field equation to Newton’s law of 

universal gravitation in the form of Poisson equation, and finally build and calibrate 

the GOR field equation in the theory of GOR. 

This is namely the GOR logical way of idealized convergence. 

No matter Einstein’s weak-field approximation or the GOR idealized 

convergence is a linearization method, intended to linearize the nonlinear 

gravitational-field equation, so that it could calibrate the coefficient of the 

gravitational-field equation or solve the gravitational-field equation. However, 

Einstein’s weak-field approximation is only an approximate linearization method 

that could only approximately linearize the Einstein field equation; the GOR 

idealized convergence under the idealized agent OA is a strict linearization method 

that could precisely linearize the GOR field equation. 

More importantly, Einstein’s weak-field approximation, restrictedly by the 

perspective of optical observation, is the product of the misconception of spacetime 

curvature; while, the GOR idealized convergence is the logical necessity, which is 

on the basis of universal observations and from the broadest perspective of the 

general observation agent. 

Based on the theorem Cartesian spacetime, following the logic of GOR idealized 

convergence, the theory of GOR will under the idealized agent OA calibrate the 

coefficient of GOR field equation, and finally, build up the GOR field equation. 

The GOR logical way of idealized convergence is the embodiment of the logical 

thought of isomorphic-consistency correspondence in the principle of general 

correspondence (GC), which is the corresponding relationship of isomorphic 

consistency between the GOR general observation agent OA() and the idealized 

observation agent OA; the corresponding relationship of isomorphic consistency 

between the GOR observational spacetime X4d() and Cartesian spacetime X4d
; the 

corresponding relationship of isomorphic consistency between the GOR 

gravitational-field equation and Newton’s law of universal gravitation in the form of 

Poisson equation; the corresponding relationship of isomorphic consistency between 

the gravitational theory of GOR and Newton’s theory of universal gravitation. 

Ultimately, the gravitational theory of GOR will generalize unify Einstein’s 

theory of general relativity and Newton’s theory of universal gravitation. 



98 

14 The GOR Gravitational-Field Equation 

Einstein’s field equation is the most fundamental formula in Einstein’s theory of 

general relativity. In a sense, the Einstein field equation represents Einstein’s theory 

of general relativity. 

Likewise, the GOR gravitational-field equation, or the GOR field equation, is 

the most fundamental formula in the theory of Gravitationally Observational 

Relative (GOR), which represents the theory of GOR. 

This chapter is intended to build up the GOR gravitational-field equation. 

Based on the principle of general correspondence (GC), through PGC logic 

route 1, substituting the information-wave speed  of the general observation agent 

OA() for the light speed c, and directly transforming the Einstein field equation 

from the optical agent OA(c) to the general observation agent OA() isomorphically 

and uniformly, we could easily obtain the GOR field equation. However, relying 

simply on PGC logic route 1, we might fail to understand the essence of 

gravitational interaction and gravitational relativistic phenomena. 

Based on the principle of GC, through PGC logic route 2, by analogizing or 

following the logic of Einstein’s of weak-field approximation in the theory of 

general relativity, we could also deduce and calibrate the GOR field equation. 

However, relying simply on PGC logic route 2, we might fail to understand the 

logical flaws of Einstein’s weak-field approximation, and like Einstein, might 

mistakenly understand the essence of gravitational phenomena and mistakenly 

support the Einstein’s prediction of gravitational waves. 

So, on the one hand, we strive to deduce the GOR field equation based on the 

principle of GC, combining PGC logic route 1 and PGC logic route 2, by 

analogizing or following the logic of Einstein’s general relativity; on the other hand, 

we strive to calibrate the GOR field equation based on the theorem of Cartesian 

spacetime, taking advantage of the GOR logical way of idealized convergence under 

the idealized agent OA that is stated in Chapter 13. 

14.1 The Establishment of Einstein’s Field Equation 

Before deducing the GOR gravitational-field equation under the principle of GC, 

before calibrating the GOR gravitational-field equation by the GOR logical way of 

idealized convergence based on the theorem of Cartesian spacetime, we need to 

analyze and examine Einstein’s logical way of weak-field approximation in the 

theory of general relativity, which will contribute us to understand Einstein’ logic of 

weak-field approximation and the logic of the GOR idealized convergence, and at 

the same time, to reexamine Newton’s theory of universal gravitation and Einstein’s 

theory of general relativity. 

With regard to Einstein’s theory of general relativity, after the form of Einstein’s 

gravitational-field equation had been determined, the remaining problem for 

Einstein to have to solve was how to calibrate the coefficient E of Einstein field 
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equation. Einstein expected that his field equation could be related or corresponded 

to Newton’s law of universal gravitation through a certain logical way, so that the 

coefficient E of Einstein field equation could be calibrated with Newton’s 

gravitational potential  or Newton’s gravitational constant G. 

14.1.1 Newton’s Law of Universal Gravitation 

and Poisson Equation 

Beyond doubt, gravity or universal gravitation is Newton’s great discovery; 

Newton’s law of universal gravitation is a great monument of physics, and is 

Newton’s great contribution to human beings and physics. 

Newton believed that [81]: all things on earth attract or gravitate toward each 

other, and there is the gravitational interaction between any two objects M and m. 

The gravitational force F is directly proportional to the product of the masses M and 

m, and inversely proportional to the square of the distance r between M and m: 
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where G=6.754×10 Nm2/kg2 is the Universal Gravitational Constant,  is the 

Newtonian gravitational potential,  is the material density of m, =2 is the 

Laplace operator; Eq. (14.1a) is Newton’s law of universal gravitation, and Eq. 

(14.1b) is the Poisson equation, a second-order partial differential equation, i.e., the 

partial-differential-equation form of Newton’ law of universal gravitation [125]. 

Naturally, all doctrines or theories in physics are the idealized models of the 

objectively physical world, which inevitably contain idealized assumptions or 

hypotheses. Newton’s law of universal gravitation is no exception. 

As stated in Sec. 12.1 The Problem of the Locality of Gravitational 

Spacetime of Chapter 12, Newton’s gravitational theory, including Newton’s law of 

universal gravitation, has two idealized hypotheses: 

(i) Gravitational interaction acts at a distance, with infinite radiation speed: it 

takes no time for gravity to cross space; 

(ii) Observational information acts at a distance, with infinite transmit speed: it 

takes no time for information to cross space. 

The first hypothesis is the condition of Action at a distance about gravity. 

Newton realized from the very beginning that his law of universal gravitation 

had the problem of gravitational action at a distance. But Newton’s reason told 

Newton that action at a distance is not the objectively physical reality, and 

gravitational radiation must have a limited speed. Although Newton as well as later 

physicists failed to solve the problem of gravitational action at a distance, intuition 

told Newton and later people like Laplace [43] and Flandern [127] that the speed of 

gravitational radiation must be extremely fast: far faster than the speed of light. 

Otherwise, photons would be difficult to be affected by gravity or universal 
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gravitation, and the celestial bodies in the universe would be difficult to maintain 

such a stable operating structure (see Flandern’s literature [127]). 

The second hypothesis may be said the condition of Medium at a distance, 

which is actually a class of Action at a distance, too. 

Newton did not realize that the theories or models of physics needed to be linked 

with observation. He did not realize that his theory, including all his physical laws or 

models, depended on the idealized observation system, was the theory of idealized 

observation; while there was no the idealized observation system (agent) in the 

objectively physical world. However, the hypothesis of medium at a distance is 

implicitly embedded in Newton’s law of universal gravitation. Of course, the 

hypothesis of medium at a distance not only implicitly exists in Newton’s law of 

universal gravitation, but also in all laws or theoretical models of classical physics, 

including Kepler’s three laws of planetary motion, the Galilean transformation, and 

Newton’s three laws of motion. 

The hypothesis of Medium at a distance endows classical physics with an 

idealized observation system: the idealized observation agent OA. As the theory 

of OR has elucidated, Galileo’s doctrine and Newton’s theory are that of idealized 

observation, belonging to the idealized observation agent OA. Newton’s law of 

universal gravitation (Eq. (14.1)) is no exception: strictly speaking, the law is true or 

valid if and only if under the idealized observation agent OA. 

According to the theorem of Cartesian spacetime (see Sec. 13.2 of Chapter 13): 

g=  as →. Newton’s gravitational field belongs to the Cartesian spacetime 

X4d
 of OA, and therefore, Newton’s law of universal gravitation must be true if in 

the Cartesian spacetime X4d
 or under the idealized observation agent OA. 

14.1.2 Einstein’s Field Equation and Motion Equation 

Einstein believed that: the earth’s motion around the sun was due to spacetime 

curvature; spacetime curvature was due to the presence of matter and energy. 

Therefore, Einstein conceived that his theory of general relativity should contain two 

basic equations: one was field equation; the other was motion equation. 

(i) Field Equation: to describe how spacetime is curved, it has the form of 

{Spacetime Curvature = Matter or Energy} 

 
1

2
EG R g R T    − = −  (14.2) 

where G is known as Einstein tensor, R (i.e. the curvature of spacetime) is 

known as Ricci tensor, R is the Gaussian curvature, g is the spacetime metric, T 

is the energy-momentum tensor, and E is the coefficient of Einstein field equation.  

Equation (14.2) does not include the cosmological term: g, or the 

cosmological constant =0. (We are not discussing the cosmological term g of 

Einstein field equation for the moment). 

(ii) Motion Equation: to describe how an object moves in curved spacetime, it is 
determined as the geodesic equation 
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where  
 is referred to as Connection. 

Later, Einstein et al [137] and Fock [138] successively proved that Einstein’s field 

equation (Eq. (14.2)) could be derived from Einstein’s motion equation (Eq. (14.3)). 

This means that Einstein’s theory of general relativity actually has only one basic 

equation: the Einstein field equation. However, this does not mean the denial of the 

value and significance of Einstein motion equation, but only means that Einstein’s 

field equation and Einstein’s motion equation are equivalent, and have the intrinsic 

relevance. 

It is worth noting that the calibration of the coefficient E of Einstein field 

equation depends not only on Einstein’s field equation (Eq. (14.2)) but also on 

Einstein’s motion equation (Eq. (14.3)). 

As a theory or a model of the objectively physical world, Einstein’s theory of 

general relativity, including Einstein’s field equation and Einstein’s motion, must 

have the idealized characteristics and hypothetical preconditions of its own. 

As stated in Sec. 12.1 The Problem of the Locality of Gravitational 

Spacetime of Chapter 12, Einstein’s theory of general relativity also has two 

idealized hypotheses: 

(i) Gravitational interaction acts at a distance, with infinite radiation speed: it 

takes no time for gravity to cross space; 

(ii) Observational information acts at the speed c of light, employing light wave 

or electromagnetic interaction as the observation medium: it takes time for 

information to cross space. 

The first hypothesis is also the condition of Action at a distance about gravity. 

With regard to the first hypothesis of action at a distance, Einstein did not 

realize that, like Newton’s theory of universal gravitation, his theory of general 

relativity also contains the same idealized hypothesis: gravity or gravitational 

interaction is action at a distance. Actually, as stated in Sec. 12.1 of Chapter 12, 

like Newton’s theory of universal gravitation, Einstein’s theory of general relativity, 

including his field equation and motion equation, also is implicitly embedded the 

hypothesis of action at a distance about gravity or gravitational interaction, and 

therefore, there is no prior knowledge or information about gravitational waves and 

the speed of gravitational radiation. Logically or theoretically, it is impossible for 

Einstein or Einstein’s theory of general relativity to predict gravitational waves, let 

alone the speed of gravitational waves. 

The second hypothesis may be said the condition of optical observation. 

Like Newton, Einstein did not realize that the theories or models of physics 

needed to be linked with observation. Einstein also did not realize that his theory of 

relativity, including the special and the general depended on the optical observation 

system, was the theory of optical observation, and restricted by the observational 

locality (c<) of the optical observation agent OA(c). However, the hypothesis of 

optical observation is implicitly embedded in Einstein’s theory of relativity, 
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including the special and the general, and in particular, embedded in Einstein’s 

principle of the invariance of light speed. (Perhaps, Einstein never considered that 

his theory of relativity was the theory of optical observation and needed to employ 

light or electromagnetic interaction as the observation medium.) 

Einstein’s hypothesis of the invariance of light speed endows Einstein’s theory 

of relativity with the optical observation system or the optical observation agent 

OA(c), the most common means by which human beings perceive or observe the 

objectively world. Minkowski formalized the optical agent OA(c) as the 4d 

spacetime coordinate framework of optical observation, known as the Minkowski 

spacetime [50,51]. Although Minkowski spacetime was created specifically for 

Einstein’s theory of special relativity, it was later extended to the theory of general 

relativity by Einstein. It is thus clear that, as the theory of OR has clarified, 

Einstein’s theory of relativity, including the special and the general, is the theory of 

optical observation and belong to optical observation agent OA(c). So, Einstein’s 

theory of relativity is true or valid if and only if under the optical agent OA(c). 

The gravitational spacetime in Einstein’s theory of general relativity is the 

observational spacetime X4d(c) of the optical agent OA(c), which is a curved 

spacetime. So, how is the Einstein field equation in curved spacetime related to or 

corresponded to Newton’s law of universal gravitation in flat spacetime? 

14.1.3 Einstein’s Weak-Field Approximation 

Logically or in logic, as the theoretical systems describing the gravitational 

interaction in the same physical world, Einstein’s theory of general relativity and 

Newton’s theory of universal gravitation should have the intrinsic linkage or 

corresponding relationship. 

Einstein supposed that, as the Lorentz transformation in the theory of special 

relativity approximately reduced to the Galilean transformation in the case of 

slow-speed approximation, his gravitational-field equation in the theory of general 

relativity should approximately reduce to Newton’ law of universal gravitation in 

the form of Poisson equation in the case of weak-field approximation. 

However, as clarified in Chapter 13, there is no the direct corresponding 

relationship between Einstein’s field equation (as an optical observation model) and 

Newton’s law of universal gravitation (as an idealized observation model). 

As far as the calibration of the coefficient E of Einstein field equation is 

concerned, the logical way of weak-field approximation in Einstein’s theory of 

general relativity seemed to be valid or effective: through the weak-field 

approximation, Einstein field equation was linked and corresponded to Newton’s 

law of universal gravitation in the form of Poisson equation, and then, Einstein 

successfully calibrated and built up the gravitational field equation in his theory of 

general relativity. 

Einstein’s field equation is actually a complex system of Nonlinear partial 

differential equations, which is very difficult to calibrate and solve. Einstein had to 

use certain linearization method to process it: the most basic task was to determine 

the coefficient E of Einstein field equation; the most basic method was Einstein’s 

logical way of weak-field approximation. 
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In order to correspond Einstein’s field equation in curved spacetime with 

Newton’s law of universal gravitation or the form of Poisson equation in flat 

spacetime, Einstein had to flatten the curved spacetime, so that the factor  of 

gravitational spacetime transformation was approximate to the Galilean factor: 

 1. According to the factor  =1/(1+2 /c2) of gravitational spacetime 

transformation in Einstein’s theory of general relativity, the speed c of light in 

vacuum is a constant. So, intended to make  1, one has to make the Newtonian 

gravitational potential 0 or | |<<c2, so that Newton’s gravitational field becomes 

the so-called weak Gravitational field. 

The Galilean factor 1 represents the flat Cartesian spacetime, where dt=d. 
(Einstein’s logical way of weak-field approximation implies such a claim; while 

strict theoretical proof comes from the theorem of Cartesian spacetime.) 

According to Eqs. (12.15-16) in Chapter 12, the most general form of the 

Einstein factor  of gravitational spacetime transformation can be written as 
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which suggests that, to make  1, in addition to the gravitational scalar 

potential , it is also necessary to consider the gravitational vector potential  i 

(i=1,2,3) and the speed v of the observed object P. So, as stated in Sec. 13.1 of 

Chapter 13, Einstein’s conditions of weak-field approximation have five hypotheses: 

(i) weak field (| |<<c2); (ii) slow speed (|v |<<c); (iii) static field (g,0=h,0=0 

(,=0,1,2,3)); (iv) spacetime orthogonality (g0i=gi0=0, (i=1,2,3)); (v) harmonic 

coordinates ((−g)=1). 

Under the case of weak-field approximation,  1 means that the spacetime 

of weak gravitational field is approximately flat. Einstein imagined that, since the 

spacetime of weak field is approximately flat, Newton’s law of universal gravitation 

would approximately be true under the weak-field conditions, and therefore, his 

field equation and motion equation in the case of weak field could approximately be 

corresponded to Newton’s law of universal gravitation in the form of Poisson 

equation. In this way, the coefficient E of Einstein field equation could be 

calibrated or determined with Newton’s gravitational potential  or Newton’s 

universal gravitational constant G. 

As stated in Chapter 13, the metric g of curved gravitational spacetime could 

be decomposed into the flat metric (Minkowski metric)  and the curved metric 

h; in the case of weak field, it follows that 

The condition of weak field: ( )g h h     = +   
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Naturally, in the absence of gravity or gravitational field, g= and h=0. 

Therefore, in Einstein’s view, the curved metric h (0) under the conditions 

weak-field approximation represented the weak gravitational potential. 

It is worth noting that, under the condition (g0i=gi0=0 (i=1,2,3)) of spacetime 

orthogonality, the factor  (Eq. (14.4)) of spacetime transformation in Einstein’s 

theory of general relativity would reduce to: 
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Thus, the curved state of gravitational spacetime in Einstein’s theory of general 

relativity only depends on the 00-element h00 of the curved metric h. Equation 

(14.5) shows that, according to Einstein’s logic of weak-field approximation, if 

|h00|<<1 (weak field) and |v |<<c (slow speed), then  1, the curved 

gravitational spacetime would approximately be flat, and Newton’s law of universal 

gravitation would approximately be true. In this way, Einstein’s field equation and 

motion equation in curved spacetime could approximately be corresponded to the 

Newton’s law of universal gravitation in flat spacetime. 

The weak-field approximation is actually Einstein’s linearization theory made 

specifically for his theory of general relativity, in particular, for the linearization and 

calibration of his field equation. 

According to Eq. (14.5), Einstein’s logical way of weak-field approximation 

could be designed as follows. 

The Logical Program of Weak-Field Approximation 

With the goal of calibrating the coefficient E of Einstein field equation, 

according to the Einstein factor  (Eq. (14.5)) of spacetime transformation in the 

weak-field situation, based on Einstein’s logic of weak-field approximation, by 

linking the curved-metric 00-element h00 with Newton’s gravitational potential  

and the field-equation coefficient E, then the logical deduction program could be 

divided into the following two steps. 

(i) The first step: the weak-field approximation of Einstein motion equation, 

that is, linking the curved-metric 00-element h00 in Einstein’s motion 

equation (Eq. (14.3)) with the Newtonian gravitational potential  (h00). 

(ii) The second step: the weak-field approximation of Einstein field equation: 

that is, linking the curved-metric 00-element h00 in Einstein’s field equation 

(Eq. (14.2)) with the field-equation coefficient E (h00E). 

Finally, under the scene of Newton’s law of universal gravitation, by contrasting 

the relations h00 and h00E of weak-field approximation, the coefficient E of 

Einstein field equation could be calibrated with Newton’s gravitational potential  or 

Newton’s universal gravitational constant G. 

The Conditions of Weak-Field Approximation 
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As the linearization theory of Einstein’s general relativity, Einstein’s logical 

way of weak-field approximation has a set of linearization conditions. According to 

the conditions of weak-field approximation stated in Sec. 13.1.3 of Chapter 13, in 

addition to the assumption of 

(i) The weak field: g=+h (|h|<<||); 

Einstein also had to assume 

(ii) The slow speed: |v |<<c; 

(iii) The static field: g ,0=g /x0=0 or h ,0=h /x0=0; 

(iv) The spacetime orthogonality: g0i=gi0=0 (i=1,2,3); and 

(v) The harmonic coordinates: □x=g 
 =0 (=0,1,2,3). 

Newton’s Gravitational Scene 

As described in Sec. 13.1.4 of Chapter 13, in Newton’s gravitational scene, that 

is, the scene set by Newton’s law of universal gravitation, there are only two matter 

particles M and m at a distance of r in the gravitational spacetime: M is the 

gravitational source and the gravitational center, forming the spherically symmetric 

gravitational-field, and therefore, the gravitational potential is the same or equal 

everywhere on the sphere with the same radius r; m (with the matter density ) is the 

object affected by gravity. Let m be located at gravitational potential , then 

according to Newton’s law of universal gravitation: =−GM/r.  

Naturally, in order to be approximately corresponded to Newton’s law of 

universal gravitation, Einstein’s field equation or Einstein’s motion equation should 

be set up the same gravitational scene as that Newton’s law of universal gravitation. 

It should be pointed out again, Newton’s gravitational scene does not mean that 

the gravitational field in Newton’s theory of universal gravitation is the so-called 

weak field. Actually, in the gravitational scene of Newton’s law of universal 

gravitation, the masses of M and m could also be arbitrarily large. 

However, as stated in Sec. 13.1.4 of Chapter 13, Einstein’s conditions of 

weak-field approximation naturally hold true in Newton’s gravitational scene; in 

other words, it was based on Newton’s gravitational scene that Einstein set up his 

conditions of weak-field approximation. It should be pointed out that, for the first 

condition of the weak field, g=+h (h|<<||) is not because that Newton’s 

gravitational field is the so-called weak field, but that Newton’s gravitational field is 

flat spacetime. In Einstein’s view, flat spacetime means weak field. 

14.1.4 The Weak-Field Approximation of Motion Equation 

Einstein’s motion equation (Eq. (14.3)) in general relativity can be written as: 
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What it describes is the geodesic line of the observed object P moving in the curved 
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spacetime of gravitational field, which is related with the connection  
, and the 

connection  
 is related with the spacetime metric g . 

The Imagination on 

the Weak-Field Approximation of Motion Equation 

In Einstein’s view, under the conditions of weak-field approximation, the 

gravitational spacetime was approximately flat, his motion equation (Eq. (14.6)), the 

so-called geodesic line in curved spacetime, would approximately reduce to a 

straight line in Euclidean space of Newton’s Gravitational field: 
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where  is the Newtonian gravitational potential. 

In particular, Multiplying the left and right ends of Eq. (14.7) by m, one could 

get Newton’s law of universal gravitation in the form of Newton’s second law. 

In this way, under the conditions of weak-field approximation, the curved metric 

h could be related with the Newtonian gravitational potential . 

The Operation on 

the Weak-Field Approximation of Motion Equation 

The procedure of weak-field approximation for Einstein’s motion equation (Eq. 

(14.3) is the linearization procedure of Einstein’s motion equation: the nonlinear 

geodesic equation is approximate to a linear equation, or in other words, the curved 

geodesic line is approximate to a straight line. 

In Einstein’s condition of the weak field: gµν=ηµν+hµν (|hµν|<<|ηµν|), hµν 
represents the weak gravitational potential, hµν and its derivative of each order are 

infinitesimal. Therefore, the connection  
 in the geodesic (Eq. (14.6)) only needs 

to reserve the linear term of hµν and ignore the high-order terms. 

In this way, the connection  
 in Einstein’s motion equation (Eq. (14.6)) 

could form an approximate linear relationship with the weak potential hµν: 
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 (14.8) 

It is known that dtd under the conditions of weak-field approximation. 

According to the condition of slow speed |vi |= |dxi/dt |<<c and x0=ct, it follows that 

|dxi/d |<<|dx0/d |.  Therefore, it holds that: 
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Equation (14.6) approximately reduces to: 
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Based on the condition of static field, it follows from Eq. (14.8) that: 
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For the Minkowski metric µν, 0i=0 and  ii=−1 (i=1,2,3). It follows that: 

 0

00 00 00,

1
0 and

2

i

i
h = =  (14.12) 

Thus, the geodesic equation (Eq. (14.6) in curved spacetime splits into two sets 

of equations in flat spacetime: independent time and independent space, that is: 
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This split between time and space reminds us of the Galilean transformation. In 

the Galilean transformation, time and space are independent of each other: 

spacetime splits into independent time and independent space. 

In Eq. (14.13), the time equation (14.13a) suggests that, in the weak 

gravitational field, Einstein’s coordinate time-element dt is approximate to 

Einstein’s standard time-element d. So, one could get the solution of Eq. (14.13a): 

 t a b= +  (14.14) 

Appropriately selecting the time unit (let a=1) and calibrating the time (let b=0), 

then one would have the conclusion of t=. 

Actually, according to Eq. (14.4) and Eq. (14.5), it is known that, under the 

conditions of the weak field, slow speed, and spacetime orthogonality, the Einstein 

factor of spacetime transformation: = (c)1, i.e., dtd. 

Therefore, the space equations (Eq. (14.13b)) reduce to: 
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The geodesic (Eq. (14.6)) in the curved spacetime X4d(c) reduces to the straight line 

of the Cartesian spacetime X4d
 (Eq. (14.15)). By contrasting the geodesic (Eq. 

(14.15)) in the weak-field approximation and the straight line (Eq. (14.7)) in 

Newton’s gravitational field, one would have that: 
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In this way, the curved metric 00-element h00 of weak gravitational spacetime is 

related with the Newtonian gravitational potential: h00. 

14.1.5 The Weak-Field Approximation of Field Equation 

As shown in Eq. (14.2), Einstein’s field equation can be expressed as: 

G=ET, where the left end G represents the curvature of gravitational 

spacetime, and the right end T represents the distribution of matter and energy. 

The curvature G of spacetime and the distribution T of matter and energy are 

related by the coefficient E of Einstein field equation. 

The Imagination on 

the Weak-Field Approximation of Field Equation 

On the one hand, the Einstein tensor G  at the left end of Einstein field 

equation is related with the spacetime curvature R, R is related with the 

connection  
, and  

 is related with the spacetime metric g, forming the 

complicated nonlinear relationship between G  and R or g. On the other hand, 

the Einstein tensor G  at the left end of Einstein field equation and the 

energy-momentum tensor T at the right end of Einstein field equation are related 

by the coefficient E of Einstein field equation, forming the simple linear 

relationship between G  and T. 

In Einstein’s view, under the conditions of weak-field approximation, with the 

weakening of the gravitational potential, the nonlinear relationship between the 

Einstein tensor G  and the spacetime curvature R or the spacetime metric g 

would reduce to the approximate linear relationship between G  and the weak 

potential h, and the nonlinear Einstein field equation in curved spacetime would 

approximately be reduced to the linear field equation in flat spacetime.  

Thus, the curved metric h under the conditions of weak-field approximation 

could be related with the coefficient E of Einstein field equation. 

The Operation on 

the Weak-Field Approximation of Field Equation 

Multiplying the left and right ends of Eq. (14.2) by g, one could get 
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where R is the Gaussian curvature, g is the spacetime metric, and T is the trace of 

the energy-momentum tensor T. 

Thus, R=ET, and Einstein’s field equation (14.2) could be rewritten as 

 
1

2
ER T g T  
 

= − − 
 

 (14.18) 

According to the definition of the spacetime curvature, the Ricci tensor R is 
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It is thus clear that Einstein’s field equation is a complex system of Nonlinear 

partial differential equations and very difficult to calibrate and solve. 

Like the weak-field approximation of Einstein motion equation, by means of the 

logical way of weak field approximation, removing the high-order small quantities 

of the curved metric h and reserving the linear term of h, Einstein’s field 

equation and the spacetime curvature R would approximately be reduced to linear 

equations of the curved metric h. 

From Eq. (14.8), ignoring the high-order terms of the curved metric h, the 

Ricci tensor R is approximate to: 
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From Eq. (14.8), ignoring the high-order terms of the curved metric h, the 

connection  
 is approximate to: 
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By substituting  for  in Eq. (14.21), one could get  
 from  

: 
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Thus, Eq. (14.20) could be rewritten as 
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According to the condition of harmonic coordinates (see Sec. 13.1.3 of Chapter 

13), the formula of harmonic coordinates could be written as □x=g
=0. 

Based on the theory of linearization for weak-field approximation, such a 

normalized condition is equivalent to [139]: 
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Therefore, under the conditions of weak field approximation, the curvature R  

could further be reduced to: 
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 (14.25) 

where the symbol “□” is d’ Alembert operator of the optical observation agent 

OA(c), =2 is Laplace operator. 

It should be pointed out that, originally, Laplace operator =2 is a 

second-order partial differential operator in the 3d Cartesian space; while the 4d 

Minkowski spacetime extends it from 3d space to 4d spacetime, that is, the so-called 

d’ Alembert operator. Actually, the d’ Alembert operator “□” is only a second-order 

partial differential operator in the 4d observational spacetime X4d(c) of the optical 

agent OA(c). The theory of OR further extends it to that in the 4d observational 

spacetime X4d() of the general observation agent OA() (see Sec. 5.5 D’ Alembert 

Operator in OR Theory in Chapter 5). 

According to Eq. (14.25), Einstein’s nonlinear gravitational-field equation (Eq. 

(14.2)) is ultimately linearized by the weak-field approximation as: 
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In this way, the curved metric 00-element h00 of weak gravitational spacetime is 

related with the coefficient E  of Einstein field equation: h00E. 

14.1.6 Calibrating the Coefficient E of Field Equation 

Einstein expected that the linearized field equation (14.26) of weak-field 

approximation could approximately be corresponded to Newton’s law of universal 

gravitation in the form of Poisson equation. 

In Einstein’s view, in Newton’s gravitational scene (see Sec. 10.2 in Chapter 10), 

the larger matter particle M makes the surrounding spacetime curved, and the 

smaller matter particle m moves in the curved spacetime. Let the 3d speed (or 3d 

Proper Speed) of m be v=(v1,v2,v3) (v i=dx i /dt (i=1,2,3)), and the 4d speed (or 

Four-Speed) be u=(u0,u1,u2,u3) (u=dx/d (=0,1,2,3)). Then, under the conditions 

of weak-field and slow-speed, dtd, g, and |v |<<c, it follows that 
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where the gravitational spacetime belongs to the observational spacetime X4d(c) of 

the optical observation agent OA(c) with the time axis x0=ct;  is the material 

density of the matter particle m, T is the energy-momentum tensor of the matter 

particle m in the observational spacetime X4d(c) of OA(c), and T is the trace of T. 

It should be pointed out that the concept of Four-Speed comes from Einstein’s 

theory of special relativity and is the extension of the concept of 3d speed or 3d 

proper speed from the 3d Cartesian space to the 4d Minkowski spacetime. Actually, 

the concept of Einstein’s four-speed is only the speed concept of the 4d 

observational spacetime X4d(c) of the optical agent OA(c). The theory of OR has 

further extended the concept of four-speed to that of the 4d observational spacetime 

X4d() of the general observation agent OA() (see Sec. 5.4 The Four-Speed in OR 

Spacetime in Chapter 5). 

Under the conditions of weak-field and slow-speed, the four-speed of m (the 

observed object P) is u(c,0,0,0), and therefore, as shown in Eq. (14.27), the 

energy-momentum tensor T of m reduces to a scalar: T00. 

Thus, the field equation (Eq. (14.18) and Eq. (14.26)) could be rewritten as: 
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where  is Kronecker tensor. 

Under the conditions of weak-field and slow-speed, d’ Alembert operator “□” of 
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the optical agent OA(c) is approximate to −  (see Sec. 5.5 in Chapter 5): 
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According to Eq. (14.16), Eq. (16.28), and Eq. (14.29), one could get that 
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So, by contrasting Eq. (14.30) with the Poisson-equation form of Newton’s law 

of universal gravitation: 2= 4G, one could get the coefficient E of Einstein’s 

field equation: 
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Einstein linearized his field equation and his motion equation by the logical way 

of weak-field approximation, so that he could calibrated the coefficient E of his 

field equation by the approximate correspondence between Einstein’s equation of 

gravitational field and Newton’s law of universal gravitation in the form of Poisson 

equation. In this way, Einstein’s field equation had been built up finally. 

Obviously, Einstein’s logical way of weak-field approximation played an 

important role in the calibration of Einstein field equation and even in the 

establishment of Einstein’s theory of general relativity. Afterwards, Einstein also 

applied the logical way of weak-field approximation to solve his field equation. 

14.2 GOR Field Equation and GOR Motion Equation 

Beyond doubt, Einstein’s gravitational-field equation is the most important 

formula in Einstein’s theory of general relativity and the core of Einstein’s theory of 

general relativity. Likewise, the GOR gravitational-field equation will be the most 

important formula in the theory of Gravitationally Observational Relativity (GOR) 

and the core of the theory of GOR. 

Like Einstein’s field equation, the establishment of GOR gravitational-field 

equation in the theory of GOR, involves two tasks: 

(i) The deduction of the logical form of GOR field equation; 

(ii) The calibration of the coefficient of GOR field equation. 

It is said that Einstein ever sighed that, it only took him five weeks to establish 

the theory of special relativity, while the theory of general relativity took him ten 

years. It can be speculated that Einstein’s field equation took up most of the time. 

However, taking advantage of the principle of general correspondence (GC), it 

will not take us ten years to establish the GOR gravitational-field equation. 

14.2.1 The GOR Field Equation 

Under the principle of GC, through PGC logic route 1, directly substituting the 
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information-wave speed  of the general observation agent OA() for the light 

speed c in Einstein’s field equation (Eq. (14.2)) including that in the coefficient E 

(Eq. (14.31), one could extend Einstein’s field equation from the optical agent OA(c) 

to the general observation agent OA(), and transform Einstein’s field equation into 

the GOR gravitational-field equation: 
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where GOR is the coefficient of GOR field equation. 

It is worth noting that, unlike Einstein’s field equation, in the GOR field 

equation, the Ricci tensor R=R(), the spacetime metric g=g(), the 

Gaussian curvature R=R(), the energy-momentum tensor T=T(), and the 

field-equation coefficient GOR=GOR(), all depend on the information-wave speed 

 of the general observation agent OA(), rather than the light speed c. 

Under the principle of GC, through PGC logical route 1, we do not even have to 

spend time calibrating the coefficient GOR of GOR field equation (Eq. (14.32)). 

Naturally, under the principle of GC, through PGC logical route 2, we could 

transform Einstein’s three principles in his general relativity: (i) the principle of 

equivalence, (ii) the principle of general covariance, and (iii) the principle of the 

invariance of light speed, into the GOR three principles: (i) the principle of 

equivalence; (ii) the principle of general covariance; (iii) the principle of the 

invariance of information-wave speeds. Then, by analogizing or following the logic 

of Einstein’s general relativity, and starting from the GOR three principles, we also 

could logically and theoretically deduce the gravitational-field equation of GOR 

theory, which must be the same as Eq. (14.32). 

Obviously, the GOR field equation of Eq. (14.32) is isomorphically consistent 

with the Einstein field equation of Eq. (14.2). Moreover, it is worth noting that, if 

=c, the GOR field equation is exactly the Einstein field equation, where GOR=E 

is exactly the coefficient E of Einstein field equation. 

So, the GOR field equation will generalize Einstein’s field equation. 

14.2.2 The GOR Motion Equation 

As we know, Einstein ever imagined that his theory of general relativity should 

contain two basic equations: one is the field equation; the other is the motion 

equation. It was later found that the field equation and the motion equation are 

equivalent [137,138]. Now that they are equivalent, Einstein’s field equation and 

motion equation have the same value and significance. In particular, as stated in Sec. 

14.1, the calibration of the coefficient E of Einstein field equation needs the support 

of Einstein’s motion equation. 

In the same logic, the theory of GOR should also have two fundamental 

formulae that are mutually equivalent: one is the GOR field equation; the other is the 

GOR motion equation. 

Naturally, like the GOR field equation, under the principle of GC, through the 
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PGC logic route 1, directly substituting the information-wave speed  of the general 

observation agent OA() for the light speed c in Einstein’s motion equation (Eq. 

(14.3)), one could extend Einstein’s motion equation from the optical agent OA(c) to 

the general observation agent OA(), and transform Einstein’s motion equation into 

the GOR motion equation: 
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where, in particular, unlike Einstein’s motion equation, in the GOR motion equation, 

the connection 
=

 () and the time axis x0= t depend on the 

information-wave speed  of the general observation agent OA(), rather than the 

speed c of light in vacuum. 

Naturally, under the principle of GC, through PGC logical route 2, we could 

transform Einstein’s three principles of general relativity: (i) the principle of 

equivalence, (ii) the principle of general covariance, and (iii) the principle of the 

invariance of light speed, into the GOR three principles: (i) the principle of 

equivalence; (ii) the principle of general covariance; (iii) the principle of the 

invariance of information-wave speeds. Then, by analogizing or following the logic 

of Einstein’s general relativity, and starting from the GOR three principles, we also 

could logically and theoretically deduce the motion (or geodesic) equation of GOR 

theory, which must be the same as Eq. (14.33). 

Obviously, the GOR motion equation of Eq. (14.33) is isomorphically consistent 

with the Einstein motion equation of Eq. (14.3). Moreover, it is worth noting that, if 

=c, the GOR motion equation is exactly the Einstein motion equation. 

So, the GOR motion equation will generalize Einstein’s motion equation. 

14.2.3 The Problem about 

the Calibration of GOR Field Equation 

Now, under the principle of GC, through PGC logical routes 1 and 2, we have 

established the gravitational-field equation of GOR theory (Eq. (14.32)) and the 

motion equation of GOR theory (Eq. (14.33)). The remaining problem is how to 

calibrate the coefficient GOR=GOR() of GOR field equation and firmly establish 

the GOR field equation. 

The simplest or most convenient way to calibrate the GOR field equation is that, 

under the principle of GC, through PGC logic route 1, directly substituting the 

information-wave speed  of the general observation agent OA() for the light 

speed c in the coefficient E=8G/c4 of Einstein field equation, one could get the 

coefficient GOR=8G/4 of GOR gravitational-field equation. 

However, it should be pointed out that, in that way, we might pay a price for the 

logical simplicity or convenience, fail to correctly understand Einstein’s logic of 

weak-field approximation, fail to correctly understand Einstein’s gravitational-field 

equation and Newton’s law of universal gravitation, fail to correctly understand of 

Einstein’s theory of general relativity and Newton’s theory of universal gravitation, 

and fail to correctly recognized the essence of gravitational relativistic effects. 
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To avoid knowing the result but not knowing the reason, the theory of GOR 

does not intend to simply copy the coefficient E=8G/c 4 of Einstein field equation 

and to directly get the coefficient GOR=8G/4 of GOR field equation by 

substituting  for c through PGC logic route 1. 

Moreover, the theory of GOR does not intend to follow the Einstein’s logical 

way of weak-field approximation to deduce the GOR field equation and calibrate the 

GOR field-equation coefficient GOR=GOR(). Under the theorem of Cartesian 

spacetime, the theory of GOR strives to deduce the GOR field equation and calibrate 

the GOR field-equation coefficient GOR=GOR() through the GOR logical way of 

idealized convergence that is stated and conceived in Chapter 13. 

14.3 The GOR Idealized Convergence 

vs Einstein’s Weak-Field Approximation 

No matter Einstein’s theory of general relativity or the theory of GOR, the 

calibration of its gravitational-field equation has to employ certain logical way to 

correspond the field equation in curved spacetime to Newton’s law of universal 

gravitation in flat spacetime. The difference is that: Einstein’s theory of general 

relativity employed the logical way of weak-field approximation; while the theory of 

GOR will employ the logical way of idealized convergence. 

Based on the theorem of Cartesian space-time, Chapter 13 specifically examines 

Einstein’s logic of weak-field approximation and designs the GOR logical way of 

idealized convergence. Here, we will further sort it out. In particular, by further 

analyzing the logical flaws of the weak-field approximation, we could correctly 

understand Einstein’s weak-field approximation; by further analyzing the condition 

of idealized convergence, we could properly apply the GOR logical way of idealized 

convergence to deduce the GOR gravitational-field equation and calibrate the GOR 

field-equation coefficient GOR. 

14.3.1 The Logic Flaws of Weak-Field Approximation 

In Einstein’s theory of general relativity, in order to correspond the Einstein 

field equation in curved spacetime to Newton’s law of universal gravitation in flat 

spacetime, Einstein conceived and designed the logical way of weak-field 

approximation, intended to flatten the curved gravitational spacetime to let the 

spacetime metric g or the spacetime-transformation factor  1. In this 

way, Einstein’s field equation could be corresponded to Newton’s law of universal 

gravitation in the form of Poisson equation. 

According Einstein’s factor of gravitational spacetime transformation: 
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we know that, the speed c of light is a cosmic constant, the Galilean factor 1 
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represents the flat Cartesian spacetime, including the flat Newtonian gravitational 

field, such as the gravitational scene in Newton’s law of universal gravitation. 

Equation (14.34) shows that, to make  =, it is required that v=0 and =0. 

However, v=0 and =0 are trivial: no matter motion and no matter interaction. So, 

for the gravitational spacetime in his theory of general relativity, Einstein had to 

compile the logical way of weak-field approximation and assume: (i) the weak field 

(| |<<c2); (ii) the slow speed (|v |<<c); (iii) the static field (g,0=h,0=0 

(,=0,1,2,3)); (iv) the spacetime orthogonality (g0i=gi0=0, (i=1,2,3)); (v) the 

harmonic coordinates ((−g)=1). In this way,  1, the curved gravitational 

spacetime could approximately be flattened. 

This is Einstein’s logic of weak-field approximation. 

Einstein’s logical way of weak-field approximation seemed to be valid or 

effective. By means of the weak-field approximation, Einstein had corresponded his 

field equation to Newton’s law of universal gravitation in the form of Poisson 

equation and had calibrated the coefficient of the field equation: E=8G/c4. In this 

way, Einstein had finally established his gravitational-field equation. 

However, the logical flaws of Einstein’s weak-field approximation mislead 

physics and Einstein himself. 

The theory of GOR repeatedly emphasizes that Einstein’s theory of general 

relativity is the gravitational theory of the optical agent OA(c), while Newton’s 

theory of universal gravitation is the gravitational theory of the idealized agent 

OA(). Therefore, there is no direct corresponding relationship between them. By 

means of the weak-field approximation, the theoretical model of the optical agent 

OA(c) is weakly linked to the theoretical model of the idealized agent OA, which is 

the root of the logical flaws of Einstein’s weak-field approximation. 

As stated in Sec. 13.1 Einstein’s Logic of Weak-Field Approximation of 

Chapter 13, actually, both the slow-speed approximation and the weak-field 

approximation reflect Einstein’s mistaken understanding of the essence of 

relativistic effects or relativistic phenomena. Limited by the perspective of the 

optical agent OA(c), Einstein mistakenly believed that: the essence of inertial 

relativistic effects lies in matter motion; the essence of gravitational relativistic 

effects lies in gravitational interaction between matter and matter. 

It is such mistaken understanding of the essence of relativistic effects or 

relativistic phenomena that gave birth to Einstein’s logical way of weak-field 

approximation. Conversely, Einstein’s logical way of the weak-field approximation 

further strengthens the mistaken understanding of the essence of gravitational 

relativistic effects or gravitational phenomena in the physics community. Up to now, 

the mainstream school of physics still insist that Newton’s law of universal 

gravitation is only the weak-field approximation of Einstein’s gravitational-field 

equation, and Newton’s theory of universal gravitation is only the weak-field 

approximation of Einstein’s theory of general relativity, holding true only in the case 

of macroscopic, slow-speed, and weak-field. 

The logical flaws of Einstein’s logical way of weak-field approximation are 

further amplified in Einstein’s theory of general relativity: the information wave that 
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loads the information of gravitational spacetime is mistaken for gravitational wave. 

With no prior knowledge about gravitational radiation, solely relying on the 

weak-field equation, Einstein had predicted the specious gravitational wave 

according to his theory of general relativity. And surprisingly, the speed of 

gravitational waves predicted by Einstein was exactly the speed c of light. 

The theory of GOR strives to make the gravitational theory in physics bakd to 

the correct logical way: following the correct logical way, correctly deduce the GOR 

gravitational-field equation, correctly understand gravitational relativistic effects, 

including gravitational deflection, gravitational redshift, Mercury’s anomalous 

perihelion shift, and Einstein’s gravitational wave. 

14.3.2 The GOR Logic of Idealized Convergence 

Einstein’s theory of general relativity is the gravitational theory of the optical 

agent OA(c); Newton’s theory of universal gravitation is the gravitational theory of 

the idealized agent OA. OA(c) and OA has no direct corresponding relationship. 

The theory of GOR is the gravitational theory of the general agent OA(). 

Under the principle of GC, the theory of GOR could strictly correspond to 

Einstein’s the theory of general relativity: if =c, then OA() is the optical agent 

OA(c), and the theory of GOR strictly reduces to Einstein’s theory of general 

relativity; the theory of GOR could strictly correspond to Newton’s the theory of 

universal gravitation: if →, then OA() is the idealized agent OA, and the 

theory of GOR strictly reduces to Newton’s theory of universal gravitation. 

According to the theorem of Cartesian spacetime, as →, the curved 

gravitational spacetime X4d() of OA() strictly converges to the flat Cartesian 

spacetime X4d
 of OA. Therefore, under the idealized agent OA, the GOR 

gravitational-field equation could strictly correspond to Newton’s law of universal 

gravitation in the flat Cartesian spacetime X4d
. In other words, as →, the GOR 

field equation could converge to Newton’s law of universal gravitation in the form 

of Poisson equation. This is the logic or ideological foundation of the GOR logical 

way of idealized convergence. 

The theory of GOR has conceptualized and designed the logical way of 

idealized convergence based on the theorem of Cartesian spacetime in Chapter 13. 

The GOR logical way of idealized convergence has set up the condition of idealized 

convergence: the information-wave speed  of the general observation agent OA() 

is large enough or →. Here, we will briefly sum up the idealized convergence 

and further compare the GOR idealized convergence with Einstein’s weak-field 

approximation, so that we could properly apply the idealized convergence to deduce 

and calibrate the GOR gravitational-field equation. 

Similar to Einstein’s theory of general relativity, the theory of GOR needs to 

deduce and calibrate the gravitational-field equation by corresponding the GOR field 

equation to Newton’s law of universal gravitation in the flat Cartesian spacetime 

X4d
. Therefore, the theory of GOR needs to flatten the curved spacetime X4d() of 

the general observation agent OA(): to make the spacetime metric g()= or 

the spacetime-transformation factor  ()=. 
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By observing the OR factor of spacetime transformation: 
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we know that, in essence, the OR factor  = () depends on the information-wave 

speed  of the general observation agent OA(), rather than v, , i  (i=1,2,3). 

Equation (14.35) suggests that, if →, then the observation agent OA() 

converges to the idealized agent OA, and the curved gravitational spacetime X4d() 

converges to the flat Cartesian spacetime X4d
. 

Actually, according to the theorem of Cartesian spacetime: g()→ as 

→, which means that, under the idealized observation agent OA, the 

gravitational spacetime metric g() of the general observation agent OA() 

converges to the Minkowski metric . The theorem Cartesian spacetime has more 

clearly clarified that the gravitational spacetime X4d
 of the idealized agent OA has 

the characteristic of flat spacetime and lays the theoretical foundation for the GOR 

logical way of idealized convergence under the idealized agent OA. 

Naturally, the g ()→ as → of the Cartesian-spacetime theorem is 

consistent or equivalent with the  ()→ as → of the OR factor of spacetime 

transformation in Eq. (14.35). 

There is an important corollary from Lemma 13.1 of the theorem of Cartesian 

Spacetime, that is, Corol. 13.1 (see Sec. 13.2 in Chapter 13): g0i=gi0=0 (i=1,2,3) as 

→, which suggests that, under the idealized agent OA, or under the condition of 

GOR idealized convergence, spacetime is orthogonal. So, in the Cartesian spacetime, 

or in the objectively real spacetime (including Newton’s gravitational field), space 

and time are originally orthogonal or independent of each other. 

It is worth noting that, in the case of orthogonal spacetime (g0i=gi0=0 (i=1,2,3)), 

the OR factor  of spacetime transformation (Eq. (12.35)) reduces to: 
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 (14.36) 

So, the curved state of GOR gravitational spacetime only depends on the 

00-element h00 of the curved metric h. 

It is worth noting that, in Einstein’s theory of general relativity, the spacetime 

orthogonality is a hypothetical condition of Einstein’s weak-field approximation as a 



119 

linearization method. However, in the theory of GOR, the spacetime orthogonality is 

a logical consequence of the theorem of Cartesian spacetime and the condition of 

idealized convergence, and in particular, is the essential characteristic of the 

objectively real spacetime. 

According to the theorem of Cartesian spacetime, under the condition of 

idealized convergence, it must be true that: |h00|<<1 and |v |<<. According to the 

spacetime-transformation factor (Eq. (14.35)) in orthogonal spacetime,  ()→  as 

→, the curved gravitational spacetime X4d() of the observation agent OA() 

tends to be flat, and therefore, Newton’s law of universal gravitation holds true. In 

this way, the GOR field equation and the GOR motion equation could correspond to 

Newton’s law of universal gravitation in the form of Poisson equation. 

The GOR logical way of idealized convergence is the linearization theory of 

GOR theory for processing the GOR field equation and the GOR motion equation. 

According to Eq (14.36), by analogizing Einstein’s logical way of weak-field 

approximation, the GOR logical way of idealized convergence under the idealized 

observation agent OA could be conceived or designed as follows. 

The Logical Program of Idealized Convergence 

With the goal of calibrating the coefficient GOR of GOR field equation, 

according to the GOR factor  (Eq. (14.36)) of spacetime transformation in the 

idealized observation situation, based on the GOR logic of idealized convergence, 

by linking the curved-metric 00-element h00 with Newton’s gravitational potential  

and the field-equation coefficient GOR, then the logical deduction program could be 

divided into the following two steps. 

(i) The first step: the idealized convergence of GOR motion equation, that is, 

linking the GOR curved-metric 00-element h00 in the GOR motion equation 

(Eq. (14.33)) with the Newtonian gravitational potential  (h00). 

(ii) The second step: the idealized convergence of GOR field equation, that is, 

linking the GOR curved-metric 00-element h00 in the GOR field equation 

(Eq. (14.32)) with the field-equation coefficient GOR (h00GOR). 

Finally, under the scene of Newton’s law of universal gravitation, by contrasting 

the relations h00 and h00GOR of idealized convergence, the coefficient GOR of 

GOR field equation could be calibrated with Newton’s gravitational potential  or 

Newton’s universal gravitational constant G. 

The Condition of Idealized Convergence 

The theorem of Cartesian spacetime and Eq. (14.35) mean that the theory of 

GOR only needs to set → to satisfy  ()= and g()=. Therefore, the 

theory of GOR does not need to make the assumption of weak-field approximation. 

As stated in Sec. 13.3 The GOR Logical Way of Idealized Convergence of 

Chapter 13, the GOR logical way of idealized convergence is based on the theorem 

of Cartesian spacetime and only has one hypothetical condition, i.e., the so-called 

condition of idealized convergence. 

The Condition of Idealized Convergence: The information-wave speed  of 

the observation agent OA() is large enough or →. 



120 

As clarified in Sec. 13.3 of Chapter 13, based on the theorem of Cartesian 

spacetime, under the condition of idealized convergence:  is large enough or 

→, the conditions of Einstein’s weak-field approximation, including 

(i) The weak field: | |<<2 (or g=+h (|h|<<||)); 

(ii) The slow speed: |v |<<; 

(iii) The static field: g ,0=g /x0=0 or h ,0=h /x0=0 (x0= t); 

(iv) The spacetime orthogonality: g0i=gi0=0 (i=1,2,3); and 

(v) The harmonic coordinates: □x=g 
 =0 (=0,1,2,3), 

all hold true. Therefore, based on the condition of idealized convergence:  is large 

enough or →, by analogizing Einstein’s logic of weak-field approximation, the 

theory of GOR could calibrate the coefficient GOR of GOR field equation. 

Newton’s Gravitational Scene 

Similar to Einstein’s theory of general relativity, in order to be corresponded to 

Newton’s law of universal gravitation, the GOR field equation and the GOR motion 

equation should be set with the same gravitational-interaction scene as that of 

Newton’s law of universal gravitation. 

Chapter 10 has defined the GOR gravitational scene in Sec. 10.2, that is, the 

Newton’s gravitational-interaction scene set by Newton in Newton’s law of 

universal gravitation (see Sec. 13.1.4 of Chapter 13). 

It should be pointed out that, as repeatedly stressed, Newton’s gravitational 

scene is the gravitational field under the idealized observation agent OA(), 

represents the objectively gravitational spacetime, and therefore, does not mean 

weak gravitational fields. 

Now, there is no need to limit the gravitational spacetime to weak gravitational 

fields. The theory of GOR will follow the GOR logic of idealized convergence 

based on the theorem of Cartesian spacetime and the condition of idealized 

convergence:  is large enough or →, corresponding the GOR field equation to 

Newton’s law of universal gravitation in the form of Poisson equation. In this way, 

the theory of GOR could deduce the GOR gravitational-field equation and calibrate 

the GOR field-equation coefficient GOR. 

14.4 The Idealized Convergence of GOR Motion Equation 

The GOR motion equation (14.33) can be written as: 
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 (14.37) 

where, it is worth noting that, unlike Einstein’s motion equation, in the GOR motion 

equation, the connection 
=

 (), the spacetime metric g=g(), and the 

time axis x0= t, all depend on the information-wave speed  of the general 
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observation agent OA(), rather than the speed c of light in vacuum. 

Like Einstein’s motion equation, the GOR motion equation represents the 

geodesic line of the observed object P moving in curved gravitational spacetime. 

The difference is that Einstein’s motion equation belongs to the optical agent 

observation OA(c), while the GOR motion equation belongs to the general 

observation agent OA(). 

The Imagination on 

the Idealized Convergence of GOR Motion Equation 

Actually, the idealized convergence of GOR motion equation is to drive the 

idealized-agent form of GOR motion equation under the condition of idealized 

convergence: the information-wave speed  of OA() is large enough or →. 

Naturally, under the condition of idealized convergence:  is large enough or 

→, gravitational spacetime tends to be flat, the geodesic line in curved spacetime 

(Eq. (14.37)) reduces to the straight line of Newton’s law of universal gravitation in 

the flat Cartesian space: 

The straight line (Eq. (14.7)) 
2

2

d

d

GM

t r
 

 
= − = − 

 

r
  

Multiplying the left and right ends of Eq. (14.7) by m, one could get Newton’s law 

of universal gravitation in the form of Newton’s second law. 
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where  is the Newtonian gravitational potential, V is the Newtonian gravitational 

energy, and F is gravity or universal gravitation. 

In this way, under the condition of idealized convergence, the curved metric h 

could be related with the Newtonian gravitational potential . 

The Operation on 

the Idealized Convergence of GOR Motion Equation 

The GOR motion equation of the general observation agent OA() has 

generalized Einstein’s motion equation of the optical observation agent OA(c): 

Einstein’s motion equation holds true only if OA()→OA(c) as →c. 

One could imagine the case of GOR motion equation under the idealized 

observation agent OA, where the information-wave speed  of OA() were large 

enough or →, OA()→OA, the curved observational spacetime X4d() of OA() 

would reduce to the flat Cartesian spacetime X4d
 of OA, the GOR geodesic line 

(Eq. (14.37)) would reduce to the straight line (Eq. (14.7)) in Cartesian spacetime. 

Here, the idealization procedure of the observation agent OA() is the linearization 

procedure of GOR motion equation: as →, the nonlinear GOR geodesic equation 

is transformed into the linear equation. 
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Under the condition of idealized convergence:  is large enough or →, the 

gravitational-spacetime metric gµν()=ηµν+hµν() (|hµν|<<|ηµν|), hµν and its derivative 

of each order become infinitesimal. Therefore, the connection  
 in the GOR 

geodesic equation (14.37) only needs to reserve the linear term of the curved metric 

hµν and ignore the high-order terms: 
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If the information-wave speed  of OA() is large enough or →, then dt=d 

and |vi |= |dxi/dt |<<; since x0= t, |dxi/d |<< |dx0/d |. So, it follows that 

 

( )

( ) ( )

2

2

2 0 0 0 0

00 0 02

2 0 0

002

d d d

d d d

d d d d d d d d d

d d d d d d d d d

d d d
0,1,2,3

d d d

i k i k

i k ik

x x x

x x x x x x x x x

x x x

  







   





 
  

   
        

  
  

+

= + + + +

= + =

 (14.40) 

Thus, the GOR geodesic equation (14.37) reduces to: 
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If the information-wave speed  of OA() is large enough or →, then 

/t=0 and g ,0=g /x0=h /x0=h /t0=0. So, it follows from Eq. (14.39): 
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For the Minkowski metric µν, 0i=0 and  ii=−1 (i=1,2,3). It follows that: 
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Thus, the GOR geodesic equation (14.37) splits into two sets of equations in the 

Cartesian spacetime X4d
: independent time and independent space, that is: 
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 (14.44b) 

This split between time and space is exactly the characteristic of the Galilean 
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transformation: in the Cartesian spacetime X4d
, time and space are independent of 

each other. 

In Eq. (14.44), the time equation (14.44a) suggests that, in the Cartesian 

spacetime X4d
, the GOR observational (observed) time-element dt is equivalent to 

the intrinsic time-element d. So, one could get the solution of Eq. (14.13a): 

 t a b= +  (14.45) 

Appropriately selecting the time unit (let a=1) and calibrating the time (let b=0), 

then one would have the conclusion of t=. 

This has the same meaning as that in the Galilean transformation, where the 

times t and t  of the observers O and O are the same: t= t . 

This is the same conclusion as the theorem of Cartesian spacetime: dt=d. 

Therefore, in Eq. (14.44), the space equations (Eq. (14.44b)) reduce to: 
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Under the idealized observation agent OA, the GOR geodesic line (Eq. (14.37)) in 

the curved spacetime X4d() of OA() reduces to the straight line (Eq. (14.46)) in 

the Cartesian spacetime X4d
 of OA. By contrasting the straight line (Eq. (14.46)) 

in the Cartesian spacetime X4d
 and the straight line (Eq. (14.7)) in Newton’s 

gravitational field, one would have that: 
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In this way, the curved metric 00-element h00 in the GOR gravitational 

spacetime X4d() of the general observation agent OA() is related with the 

Newtonian gravitational potential: h00. 

14.5 The Idealized Convergence of GOR Field Equation 

The GOR field equation (Eq. (14.32): G()=GORT()) is isomorphically 

consistent with Einstein field equations (Eq. (14.2): G=ET); Similarly, it could 

be interpreted in accordance with the logic of Einstein field equation: the left end 

G() represents the curvature of GOR gravitational spacetime, and the right end 

T() represents the distribution of matter and energy in GOR gravitational 

spacetime. The curvature G of gravitational spacetime and the distribution T of 

matter and energy are related by the coefficient GOR of GOR field equation. 

The difference is that Einstein’s field equation belongs to the optical observation 

agent OA(c), while the GOR field equation belongs to the general observation agent 

OA(). The GOR field equation has generalized Einstein’s field equation, while 

Einstein’s field equation is only a special case of GOR field equation, which holds 

true only if the observation agent OA() is the optical agent OA(c). 

The Imagination on 

the Idealized Convergence of GOR Field Equation 
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One could imagine the case of GOR field equation under the idealized 

observation agent OA, where the information-wave speed  of OA() were large 

enough or →, OA()→OA, the curved observational spacetime X4d() of OA() 

would reduce to the flat Cartesian spacetime X4d
 of OA, the GOR field equation 

(Eq. (14.32)) would reduce to Newton’s law of universal gravitation in the form of 

Poisson equation. Here, the idealization procedure of the observation agent OA() is 

the linearization procedure of GOR field equation: as →, the nonlinear GOR 

field equation is transformed into the linear Poisson equation. 

In this way, under the condition of idealized convergence, the curved metric h 

could be related with the coefficient GOR of GOR field equation. 

The Operation on 

the Idealized Convergence of GOR Field Equation 

Multiplying the left and right ends of Eq. (14.32) by g, one could get 
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where R=R() is the Ricci tensor under OA(), R=R() is the Gaussian 

curvature of OA(), g=g() is the spacetime metric under OA(), T=T() is 

the energy-momentum tensor under OA(), and T=T() is the trace of T(). 

Thus, R=GORT, and the GOR field equation (14.32) could be rewritten as 
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According to the definition of the spacetime curvature, the Ricci tensor R is 
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This means that the GOR field equation of the general observation agent OA() is a 

nonlinear partial differential equation of the metric tensor g() of the general 

observation agent OA(). 

Under the condition of idealized convergence:  is large enough or →, the 

curved metric hµν() and its derivative of each order become infinitesimal. 

Therefore, by reserving the linear term of the curved metric hµν and ignoring the 

high-order terms, the spacetime curvature R() under OA() and even the GOR 

field equation could be reduced to linear relations of hµν(). 

Under the condition of idealized convergence:  is large enough or →, 

according to Eq. (14.39), ignoring the high-order terms of hµν(), the Ricci tensor 
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R() under OA() reduces to: 

 ( )R
x x

 

   
  

 
= −
 

 (14.51) 

Under the condition of idealized convergence:  is large enough or →, 

according to Eq. (14.39), ignoring the high-order terms of hµν(), the connection 

 
() under OA() reduces to: 
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By substituting  for  in Eq. (14.52), one could get  
 from  

: 
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Thus, Eq. (14.51) could be rewritten as 
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Then, the spacetime curvature R() is linearly related to h(). 

According to the condition of harmonic coordinates (see Sec. 13.1.3 of Chapter 

13), the formula of harmonic coordinates could be written as □x=g
=0. 

Under the condition of idealized convergence:  is large enough or →, such a 

normalized condition naturally holds true. In the theory of linearization, this 

normalization condition is equivalent to [139]: 
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Therefore, under the condition of idealized convergence:  is large enough or 

→, the curvature R() could further be reduced to: 
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where the symbol “□” is d’ Alembert operator of the general observation agent 

OA(), =2 is Laplace operator. 

It should be pointed out that the “□” in Eq. (14.56) is the general d’ Alembert 

operator in the theory of OR, that is, the d’ Alembert operator of the general 

observation agent OA() (see Sec. 5.5 in Chapter 5). 

Thus, under the condition of idealized convergence:  is large enough or →, 

the nonlinear GOR field equation (Eq. (14.32) or (14.49)) finally reduces to the 

linear GOR field equation: 
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In this way, the curved metric 00-element h00 of GOR gravitational spacetime is 

related with the coefficient GOR of GOR field equation: h00GOR. 

14.6 The Calibration of GOR Field Equation 

The theory of GOR expects that, under the idealized observation agent OA, the 

GOR field equation (Eq. (14.32) or Eq. (14.49)) could strictly be corresponded to 

Newton’s law of universal gravitation in the form of Poisson equation (Eq. (14.1b)). 

In Newton’s gravitational scene (see Sec. 10.2 in Chapter 10), the matter particle 

M as a gravitational source forms the spherically-symmetric gravitational field; 

under the action of the gravitational force of M, the matter particle m moves in the 

gravitational field of M. Let the 3d speed (or 3d Proper Speed) of m be v=(v1,v2,v3) 

(v i=dx i /dt (i=1,2,3)), and the 4d speed (or Four-Speed) be u=(u0,u1,u2,u3) 

(u=dx/d (=0,1,2,3)). Then, under the condition of idealized convergence:  is 

large enough or →, dt=d, g=, and |v |<<, it follows that 
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where the GOR gravitational spacetime belongs to the observational spacetime 

X4d() of the general observation agent OA() with the time axis x0=t;  is the 

material density of the observed object m, T() is the energy-momentum tensor of 

m in the observational spacetime X4d() of OA(), and T is the trace of T(). 

It should be pointed out that the concept of Four-Speed is the extension of the 
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concept of Einstein’s four-speed from the optical observation agent OA(c) to the 

general observation agent OA() (see Sec. 5.4 The Four-Speed in OR Spacetime 

in Chapter 5). 

Under the condition of idealized convergence:  is large enough or →, the 

four-speed of m (the observed object P) is u=(,0,0,0), and therefore, as shown in 

Eq. (14.58), the energy-momentum tensor T() of m reduces to a scalar: T00. 

Thus, the field equations (14.49) and (14.57)) could be rewritten as: 
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where  is Kronecker tensor. 

Under the condition of idealized convergence:  is large enough or →, the 

general d’ Alembert operator “□” of the general observation agent OA() reduces to 

−  (see Sec. 5.5 in Chapter 5): 
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According to Eq. (14.47), Eq. (16.59), and Eq. (14.60), one could get that 

 

( )2 2 2

00 GOR 00 GOR 00

2 4

GOR

or 2

1
so that

2

h h h     

  

= −  = =

 =
 (14.61) 

By contrasting Eq. (14.61) with the Poisson-equation form of Newton’s law of 

universal gravitation: 2= 4G (Eq. (14.1b)), one could get the coefficient GOR 

of GOR gravitational-field equation: 

 
GOR 4

8 G



=  (14.62) 

This result is exactly the GOR field-equation coefficient in Eq. (14.32) obtained 

from Einstein field equation through PGC logical route 1. 

Now, the GOR field equation has been formally established. 

The establishment of GOR Gravitational-field equation represents the birth of a 

new theory of gravity or gravitational interaction: so-called the Gravitationally 

Observational Relativity (GOR) or the General Observational Relativity (GOR), 

the theory of GOR for short. 

14.7 The GOR Field Equation: 

the Unity of Gravitational Theories 

The field equations are the cores of gravitational theories. 

Newton’s field equation, i.e., the Poisson-equation form of Newton’s law of 
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universal gravitation, represents Newton’s theory of universal gravitation; Einstein’s 

field equation represents Einstein’s theory of general relativity. Now, the GOR field 

equation represents the theory of GOR. 

Newton’s theory of universal gravitation [81] and Einstein’s theory of general 

relativity [8] are the two great gravitational theories of physics. The theory of GOR 

repeatedly emphasizes that Newton’s theory of universal gravitation is not the 

approximate theory of Einstein’s theory of general relativity, and is not only 

applicable to macroscopic, slow-speed, or weak-field. Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity belong to different observation 

systems: Newton’s gravitational theory is the theory of idealized observation, and 

the product of the idealized agent OA; Einstein’s gravitational theory is the theory 

of optical observation, and the product of the optical agent OA(c). To a certain 

extent or relatively speaking, Newton’s theory of universal gravitation is the right 

one, representing the objectively gravitational world; Einstein’s theory of general 

relativity is the approximate one, only the optical image of the objectively 

gravitational world. 

The GOR field equation, i.e., the gravitational-field equation of OR theory, is 

the gravitational-field equation of the general observation agent OA(). The most 

important value and significance lies in that it has generalized Newton’s field 

equation belonging to the idealized agent OA and Einstein’s field equation 

belonging to the optical agent OA(c). 

Actually, this means the unification of Newton’s theory of universal gravitation 

and Einstein’s theory of general relativity. 

The most general form of the GOR field equation (14.32) can be rewritten as: 
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where the Ricci tensor R=R(), the Gaussian curvature R=R(), the spacetime 

metric g=g(), the energy-momentum tensor T=T(), and the coefficient 

GOR=() of GOR field equation, all depend on the general observation agent 

OA(), depend on the information-wave speed  of OA(). 

Naturally, if the information-wave speed  of OA() is the light speed c (→c), 

then the GOR field equation is exactly Einstein’s field equation: 
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where the Ricci tensor R=R(c), the Gaussian curvature R=R(c), the spacetime 

metric g=g(c), the energy-momentum tensor T=T(c), and the coefficient 

=(c), all depend on the optical agent OA(c), depend on the light speed c. 

It is thus clear that Einstein’s field equation (14.64) is the gravitational-field 

equation of the optical agent OA(c), which is only a special case of the GOR field 
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equation (14.63), and is valid or effective only if the observation medium of the 

observation agent OA() is light or electromagnetic interaction, or only if the 

information-wave speed  of OA() is the light speed c. 

In particular, considering the situation of the idealized observation agent OA, 

the GOR field equation (14.63) could be rewritten as: 
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where   is a tensor, the general Newtonian gravitational potential. 

One could prove that, as →, →0 (0 or 0), and particularly, 00→ 

that is a scalar, exactly the Newtonian gravitational potential. 

According to the idealized-convergence equations (Eqs. (14.48), (14.49), and 

(14.57-59)): in the GOR field equation (14.63), as →, the energy-momentum 

tensor T reduces to the scalar T00, and the trace T=T00 of T . 

Accordingly, the Gaussian curvature R is: 
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where  is the Newtonian gravitational potential. 

According to Eqs. (14.59), (14.65) and (14.66):  
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Originally, the GOR field equation consists of 10 independent partial differential 

equations. However, under the idealized agent OA, as the energy-momentum 

tensor T reduces, the GOR field equation reduces correspondingly, leaving only 

the one nontrivial equation: 
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Thus, the Poisson equation follows from Eqs. (14.67) and (14.68): 2=4G. 

Actually, Eq. (14.68) is exactly Newton’s gravitational-field equation, which is 

the same as or equivalent to the Poisson-equation form (14.1b) of Newton’s law of 

universal gravitation. 

In this way, the GOR field equation (14.65) strictly reduces to Newton’s field 

equation (14.68)) as →. In other words, under the idealized agent OA, the GOR 
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field equation strictly reduces to Newton’s field equation, i.e., the Poisson-equation 

form of Newton’s law of universal gravitation. 

It is thus clear that Newton’ field equation, i.e., Newton’s law of universal 

gravitation in the form of Poisson equation, also is only a special case of the GOR 

field equation. It is valid or effective only under the idealized agent OA. 

The ancient Poisson equation (14.1b), as a partial-differential-equation form of 

Newton’s law of universal gravitation or as Newton’s gravitational-field equation, is 

isomorphically consistent with the GOR field equation including Einstein’s field 

equation. This phenomenon is worth thought-provoking. 

To sum up, the GOR Gravitational-field equation has generalized and unified 

Newton’s Gravitational-field equation and Einstein’s gravitational-field equation. 

Under the principle of GC, the GOR field equation has the strict corresponding 

relationship of isomorphic consistency with both Newton’s field equation and 

Einstein’ field equation: as →c, the GOR field equation strictly reduces to 

Einstein’s field equation; as →, the GOR field equation is strictly reduces to 

Newton’s field equation. This strict corresponding relationship of isomorphic 

consistency reflects the logical consistency not only between the GOR field equation 

and Einstein’s field equation but also between the GOR field equation and Newton’s 

field equation, and moreover, confirms the logical self-consistency of the GOR 

gravitational-field equation and even the theory of GOR. 
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15 The Solution of GOR Field Equation 

The calibration and establishment of the GOR gravitational-field equation marks 

the birth of the theory of Gravitationally Observational Relativity (GOR). 

The theory of GOR is the theory of the general observation agent OA(). So, 

based on the theory of GOR, we could examine or reexamine both Newton’s theory 

of universal gravitation and Einstein’s theory of general relativity from a higher or 

broader perspective. 

Physics is both speculative and empirical. 

A new theory of physics must have logical rationality and theoretical validity, 

and moreover, must be subjected to the testing of observation and experiment, must 

be in accordance with observation and experiment, with the natural laws, and with 

the objectively physical reality. 

This chapter aims to solve the GOR field equation, preparing for the subsequent 

test and verification of GOR field equation and even the whole theoretical system of 

GOR, for the reexamination of Einstein’s theory of general relativity, and for the 

rediscovery of the essence of gravitational relativistic effects or gravitational 

relativistic phenomena. 

15.1 GOR and Einstein’s Predictions 

Under the principle of general correspondence (GC), by analogizing or 

following Einstein’s logic of making the scientific predictions and testing his theory 

of general relativity, the theory of GOR will also make the scientific predictions of 

its own, and then, we could make the test for these predictions and make the 

verification for the theory of GOR. 

The test and verification of GOR theory can be conceived as follows: 

(i) The test content: Einstein’s three famous predictions, including (a) the 

gravitational redshift of light, (b) the gravitational deflection of light, and (c) 

the perihelion precession of Mercury orbit; 

(ii) The test scene: a static spherically-symmetric gravitational field in which 

matter distributes in spherical symmetry and the external-vacuum metric is 

the external-vacuum solution of GOR field equation; 

(iii) The test steps: (a) to solve the GOR field equation, (2) to determine the 

metric g() of the observational spacetime X4d() of the general 

observation agent OA(), (c) to calculate the predictive values, and (d) to 

compare the observed values and the predictive values. 

Actually, all the tests and verifications for Einstein’s theory of general relativity 

are also the tests and verifications for the theory of GOR; all observations and 

experiments that support Einstein’s theory of general relativity are also the 

observations and experiments that support the theory of GOR. However, with regard 
to gravitational relativistic effects or gravitational relativistic phenomena, the theory 

of GOR will give us the different interpretation from Einstein’s theory of general 
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relativity, rediscover the root and essence of gravitational relativistic effects or 

gravitational relativistic phenomena, and correct the wrong ideas of Einstein’s 

theory of general relativity. 

15.1.1 Einstein’s Three Great Predictions 

In order to verify his theory of general relativity, Einstein conceived and 

designed three tests, i.e., Einstein’s famous three scientific predictions: 

(i) Gravitational redshift: the frequency of light would present redshift as light 

travels through a gravitational field; 

(ii) Gravitational deflection: light would bend in a gravitational field; 

(iii) Perihelion precession: the orbit of a planet would have a perihelion shift, 

and the precession rate of Mercury’s perihelion is  =43.03/century. 

Einstein’s famous three scientific predictions provided the ways to test and 

verify Einstein’s theory of general relativity. Actually, Newton’s theory of universal 

gravitation and the theory of GOR can also predict the gravitational redshift of light, 

the gravitational deflection of light, and the perihelion precession of Mercury orbit. 

The tests for Einstein’s theory of general relativity imagined by Einstein, no 

matter the gravitational redshift of light or the gravitational deflection of light, or the 

orbital precession of a planet, the predicted value calculated according to Einstein’s 

theory of general relativity depends on the metric g(c) of the optical observation 

spacetime, i.e., the solution of Einstein’s field equations, in which, the dynamic 

problem is that of the idealized celestial two-body system, the gravitational scene is 

the idealized gravitational field, i.e., the static spherically-symmetric gravitational 

spacetime. Actually, this is exactly the same as the gravitational scene of Newton’s 

law of universal gravitation or Poisson equation. 

People are always struggling for whether Newton or Einstein is right. 

The tests of gravitational redshift of light and the gravitational deflection of light 

were proposed by Einstein based on the principle of equivalence before the formal 

establishment of his theory of general relativity; while, the prediction or calculation 

of the perihelion precession of a planet was completed by Einstein after the formal 

establishment of his theory of general relativity. 

The gravitational redshift of light predicted and calculated according to 

Einstein’s theory seems to be the same as that according to Newton’s theory, which 

are difficult to be distinguished in observation. It should be pointed out that there are 

still doubts about the calculation of the gravitational redshift of light according to 

Newton’s theory, which is open to discussion. Before the formal establishment of 

Einstein’s theory of general relativity, the gravitational deflection of light predicted 

and calculated by Einstein’s theory was the same as that by Newton’s theory. 

However, after the formal establishment of Einstein’s theory of general relativity, 

Einstein recalculated the gravitational deflection of light, and got the new predictive 

value that was twice that of Newton’s theory. 

In the idealized gravitational scene, based on the idealized two-body system of 

celestial bodies, the precession rate of Mercury’s perihelion predicted by Einstein’s 

theory of general relativity is 43.03 per 100 years, while the perihelion precession 
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of a planet predicted or calculated by Newton’s theory of universal gravitation 

theory is null. It is not Newton’s theory of universal gravitation that could not 

predict perihelion precession of a planet. Actually, if the non-idealized factors of 

celestial motion systems are considered, Newton’s theory of universal gravitation 

could also predict the perihelion precession of a planet. The actual precession rate of 

Mercury’s orbit is 5600.73 per 100 years, in which the precession of about 5025 is 

the precession of the equinoxes caused by the non-inertial geocentric coordinate 

system. Considering the perturbation of Venus, Earth and Jupiter to Mercury, the 

precession of Mercury’s perihelion needs to be predicted or calculated with 

Newton’s theory of universal gravitation, and the predictive value according to 

Newton’s theory reaches about 532, far greater than the orbital precession of 

Mercury predicted by Einstein’s theory of general relativity. The theory of GOR will 

clarify that, as a matter of fact, the orbital precession of Mercury:  =43.03/century, 

predicted by Einstein’s theory of general relativity, is not the objective and real 

orbital precession of Mercury. 

15.1.2 The Test Scene for the Theory of GOR 

Naturally, the three famous scientific predictions of Einstein’s theory of general 

relativity can also be employed to test or verify the theory of GOR, including the 

GOR field equation and the GOR motion equation. 

The theory of GOR can also predict the gravitational redshift of light and the 

gravitational deflection of light, as well as the orbital precession of a planet. In 

particular, the predictions according to the theory of GOR for celestial bodies and 

even light travelling in gravitational field are the observational phenomena presented 

by the general observation agent OA(), generalizing the observational phenomena 

presented by the idealized agent OA and the optical agent OA(). In other words, 

the theory of GOR can make both the prediction of Einstein’s theory of general 

relativity and the prediction of Newton’s theory of universal gravitation. 

No matter the gravitational redshift of light or the gravitational deflection of 

light, or the orbital precession of a planet, can be summed up as the idealized 

two-body problem of celestial bodies: (M,m), where M is the matter system (such as 

the sun in the solar system) that forms the gravitational field; m is the observed 

object P moving in the gravitational field (often idealized as a mass point) that can 

be a photon in the test of gravitational redshift or gravitational deflection, or a planet 

in the observation of orbital precession. 

The Idealized Test Scene of GOR: There is the two-body system (M,m) of 

celestial bodies, where M is a material sphere with the radius R whose matter is 

distributed in spherical symmetry, forming a static spherically-symmetric 

gravitational field. Without regard to m, the outside of M is a vacuum; m is the 

observed object P (m<<M) moving in the gravitational field of M. (More ideally, 

both M and m could be regarded as two mass points.) 

Like Einstein’s way that he predicted the gravitational redshift of light and the 

gravitational deflection of light, as well as, the orbital precession of Mercury’s 

perihelion according to his theory of general relativity, the primary task of GOR 

theory is to solve the gravitational-field equation of GOR theory and determine the 
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gravitational spacetime metric g() of the two-body system (M,m). Thus, the GOR 

motion equation of the celestial body or photon (m) can be constructed based on the 

spacetime metric g(), and then, the predictive value of the gravitational redshift 

of light or the gravitational deflection of light or even the orbital precession rate of 

Mercury’s perihelion can under the general observational agent OA() be predicted 

or calculated according to the theory of GOR. 

Actually, the approximate solution (by Einstein [8]) and exact solution (by 

Schwarzschild [80]) of Einstein’s field equation, and even the Poisson-equation form 

of Newton’s law of universal gravitation, are all the external vacuum solutions of the 

static spherically-symmetric gravitational field of the two-body system (M,m). 

15.2 The Solution of Einstein’s Field Equation 

For the sake of analogy, we first briefly review and analyze the solutions of 

Einstein gravitational-field equation, including Einstein’s approximate solution and 

Schwarzschild’s exact solution. 

Einstein’s field equation is a nonlinear partial-differential equation system with 

respect to the spacetime metric g, consisting of 10 independent relations. Solving 

Einstein’s field equation means to determine the metric g=g(c) of the 

observational spacetime X4d(c) of the optical observation agent OA(), and calculate 

the 10 independent elements in the spacetime metric tensor g. 

15.2.1 The Approximate Solution of Einstein’s Field Equation 

Due to the nonlinearity and complexity of his field equation, Einstein followed 

his logic of the weak-field approximation to solve his field equation. 

Referring to the scale of the sun in the solar system, if M=MS is the solar mass 

and R=RS is the solar radius, then the Newtonian gravitational potential of the solar 

surface is | |=GM/RS1.91011 m2/s2 <<c2. Therefore, the gravitational potential 

outside of the sun could be regarded as a weak gravitational field. Naturally, if r is 

large enough, then the Newtonian gravitational potential  =−GM/r  could also be 

regarded as a weak gravitational potential. 

Considering a specific case that conforms to Einstein’s conditions of weak-field 

approximation: g(c), accordingly, the determinant g=det(g) of the spacetime 

metric g satisfies (−g)=1. According to Riemannian geometry and tensor calculus, 

it follows that: 
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According to the conceived spherically-symmetric gravitational scene, outside 

M or the sun MS, the material density = 0, the energy-momentum tensor T=0, 

and Einstein’s field equation (14.18) reduces to R=0. According to the definition 

of the Ricci tensor R(c) in Eq. (14.19) and Eq. (15.1), Einstein’s field equations 

(14.18) could be reduced to: 
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The reduced field equation (15.2) is still a nonlinear partial-differential equation 

system, which is also difficult to solve. So, Einstein had to employ his logical way 

of weak-field approximation to linearize the gravitational-field equation (15.2) (see 

Sec. 13.1.3 in Chapter 13). 

Based on the conditions of weak-field approximation (see Sec. 13.1.3 in Chapter 

13), including: the weak field, slow speed, static field, spacetime orthogonality, and 

harmonic coordinates, by combining with the weak-field approximation of Einstein 

motion equation (Eq. (14.16)), Einstein could solve the gravitational-field equation 

(15.2) and get the metric g(c) of the gravitational spacetime X4d(c) of the optical 

observation agent g(c): 
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 (15.3) 

where h was regarded by Einstein as the weak-gravitational potential (|h |<<| |) 

under the flat spacetime background. 

Equation (15.3) shows that, as clarified by the theory of GOR, Einstein’s field 

equation belongs to the optical agent OA(c), the observation medium is light, the 

information-wave speed is the light speed c, and the metric g of the observational 

spacetime X4d(c) of OA(c) depends on the light speed c: g=g(c) and h=h(c). 

Correspondingly, the line-element ds of the gravitational spacetime X4d(c) is: 
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 (15.4) 

where the time axis x0  of the observationally gravitational spacetime X4d(c) of the 

optical observation agent OA(c) is x0=ct. 

Before the formal establishment of his theory of general relativity, Einstein had 

made the predictions of the gravitational redshift of light and the gravitational 

deflection of light based on the principle of equivalence. After the formal 

establishment of his theory of general relativity, Einstein employed the approximate 

solution (in Eq (15.3) or Eq. (15.4)) of his field equation to construct the motion 

equation of the observed object m for theoretically calculating and predicting the 

gravitational redshift of light and the gravitational deflection of light, for calculating 

the orbital precession of the planet m or Mercury, and even for predicting the 

gravitational waves and the speed of gravitational radiation. Interestingly or 

puzzlingly, the speed of gravitational radiation predicted by Einstein was exactly the 
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speed c of light in vacuum. 

15.2.2 The Exact Solution of Einstein’s Field Equation 

In 1916, shortly after Einstein’s theory of general relativity had been officially 

published, German astronomer and physicist Schwarzschild obtained the first exact 

solution of Einstein field equations in the trenches on the front line of World War I, 

that is known as the Schwarzschild solution [80]. 

Like the approximate solution of Einstein field equation, the gravitational scene 

of the Schwarzschild solution is also the static spherically-symmetric gravitational 

field of the celestial-body two-body system (M,m) without matter outside M. 

According to Newton’s law of universal gravitation, the gravitational potential at the 

distance r (>R) from the center of M is =−GM/r. The Schwarzschild solution is the 

external-vacuum solution of M, where the spatial coordinate system is the spherical 

coordinate system rather than the Cartesian coordinate system. Correspondingly, the 

definition of the optical observation agent OA(c) and the observational spacetime 

X4d(c) of OA(c) (in Eq. (10.1)) can be rewritten as: 
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where the spatial coordinates (x1,x2,x3)=(r,,) are the spherical coordinates. 

It is worth noting that the observation agents defined in Eq. (10.1) and in Eq. 

(15.5) are both the optical agent OA(c). Regardless of the definition of the Cartesian 

coordinates (Eq. (10.1)) or the spherical coordinates (Eq. (15.5)), the definition of 

the time axis x0 is the same: x0=ct. And, no matter Eq. (10.1) or Eq. (15.5), the 

formulae of the line-element ds have the same form: 
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Naturally, the spherical metric g=g(r,,,c) and the Cartesian metric 

g=g(x,y,z,c) have different manifestations. In the Cartesian coordinates, the flat 

spacetime refers to the Minkowski spacetime, and the corresponding metric g is 

the Minkowski metric =diag(+1,−1,−1,−1); while, in the spherical coordinates, 

the flat spacetime metric is =diag(+1,−1,−r2,−r2sin2): the spherical-coordinate 

form of the Minkowski metric  . 

The Schwarzschild metric g=g(r,,,c) in the spherical coordinates is [80]: 
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Correspondingly, in the spherical coordinates, the Schwarzschild line-elements 

ds=ds(r,,,c) is [80]: 
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With the Schwarzschild solution (Eq. (15.7) or Eq. (15.8)), based on the exact 

spacetime metric g(c), we are able to build the exact motion equations of celestial 

bodies, i.e., the geodesics of celestial-body motion, so that we could make more 

exact calculations and predictions for the gravitational redshift of light and the 

gravitational deflection of light, as well as, for the perihelion precession of the 

planet m or Mercury. 

15.3 The Approximate Solution of GOR Field Equation 

Like Einstein’s field equation, the GOR field equation is also a nonlinear 

partial-differential equation system with respect to the spacetime metric g, 

consisting of 10 independent relations. Solving the GOR field equation means to 

determine the metric g=g() of the observational spacetime X4d() of the 

general observation agent OA(), and calculate the 10 independent elements in the 

spacetime metric tensor g() 

Under the principle of GC, through PGC logic route 1, by substituting the 

information-wave speed  for the light speed c in Eqs. (15.3-4), the approximate 

solution Eqs. (15.3-4) of Einstein field equations (i.e., the approximate solution of 

the gravitational-field equation of the optical agent OA(c)) could be isomorphically 

and uniformly transformed into the approximate solution of GOR field equation (i.e., 

the gravitational-field equation of the general observation agent OA()). However, 

in order to rediscover the essence of the spacetime metric g or the curved metric 

h, we prefer to solve the GOR field equation through PGC logic route 2, starting 

from more basic logical premises. 

15.3.1 The GOR Field Equation for Approximate Solution 

The approximate solution of the GOR field equation may analogizes and follows 

Einstein’s logic to acquire the approximate solution of Einstein field equation. 

However, unlike Einstein’s logic of weak-field approximation, the theory of GOR 

employs the logic of GOR idealized convergence (see Sec. 13.3 in Chapter 13), 

based on the condition of idealized convergence: the information-wave speed  of 

the observation agent OA() is large enough or →, to acquire the approximate 
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solution of GOR field equation. 

In Chapter 13, the GOR logical way of idealized convergence has clarified that, 

based on the theorem of Cartesian spacetime, if  is large enough or →, then the 

linearization equation (13.16) of the idealized convergence is valid, Einstein’s five 

conditions of weak-field approximation, including the weak field, slow speed, static 

field, the spacetime orthogonality, and the harmonic coordinates, are naturally valid. 

In other words, the GOR logical way of idealized convergence could replace 

Einstein’s logical way of weak-field approximation. In this way, under the principle 

of GC, through PGC logic route 2, by analogizing and following the logic of 

Einstein’s approximate solution, based on the condition of GOR idealized 

convergence, we will get the approximate solution of GOR field equation. 

Under the condition of idealized convergence:  is large enough or →, 

according to the theorem of Cartesian spacetime, g ()→; accordingly, the 

determinant g=det(g) of the spacetime metric g meets (−g) =1. 

Thus, according to Riemannian geometry and tensor calculus, it follows that: 
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 −
= = =
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It is worth noting that, in Einstein’s approximate solution [68], (−g)=1 is a 

forced assumption or condition so as to meet the condition of harmonic coordinates. 

According to the conceived spherically-symmetric gravitational scene, without 

regard to m, there is no matter outside M or the sun MS, the energy-momentum 

tensor T=0, and the GOR field equation (14.49) reduces to R=0. According to 

the definition of the Ricci tensor R(c) in Eq. (14.50), and according to Eq. (15.9), 

the GOR field equations (14.49) will be reduced to: 
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15.3.2 The Approximate Solution 

Based on the Condition of Idealized Convergence 

Finding the approximate solution of GOR field equation is to determine the 

spacetime metric g=g() or h=h () in the GOR field equation (15.10) under 

the condition of GOR idealized convergence:  is large enough or →. 

The reduced GOR field equation (15.10), like the reduced Einstein field 

equations (15.2), is still a nonlinear partial-differential equation system, which is 

also difficult to solve. Einstein followed his logic of weak-field approximation to 

solve the reduced field equation (15.2); while the theory of GOR follows the GOR 

logic of idealized convergence to solve the reduced GOR field equation (15.10). 

(I) Determining the Coupling Metric Elements 

of time and space: g0i (i=1,2,3) 

In Sec. 13.2 The Theorem of Cartesian Spacetime of Chapter 13, Corol. 13.1 

from Lemma 13.1 has proven that, under the condition of idealized convergence:  
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is large enough or →, the condition of spacetime orthogonality naturally holds 

true. In other words, under the condition of GOR idealized convergence, the 0i and 

i0 elements (i=1,2,3) of the gravitational-spacetime metric g() are zero: 
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It is worth noting that, in Einstein’s approximate solution [68], the spacetime 

orthogonality is a forced assumption or condition, rather than a logical consequence. 

The GOR spacetime line-element ds=ds() is the line-element of the 

observational spacetime X4d() of the general observation agent OA(); under the 

condition of GOR idealized convergence, X4d() presents the objectively spacetime 

orthogonality, and hence, the line-element formula reduces to: 
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(II) Determining the Time Metric Element: g00 

Under the condition of idealized convergence:  is large enough or →, all 

the conditions of weal-field approximation hold true, in which, the spacetime 

orthogonality means that time and space are independent of each other, and the GOR 

field equation (15.10) splits into two independent parts: the time equation and the 

space equation. 

Under the condition of GOR idealized convergence, the independent time 

equation can be derived as follows: 
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At the same time, the weak field means that the curved metric h is small 

enough, the static field means that spacetime metric g does not change with x0, and 

the slow speed means that the speed v of the moving object m is far slower than the 

information-wave speed  of the observation agent OA(), that is: 

The weak field: ( ) ( ) ( ),g h x h
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It is worth noting that, in Einstein’s approximate solution [68], the weak field, 

slow speed, and static field, are forced assumptions or conditions, while the 

condition of GOR idealized convergence does not require that the gravitational field 

is really a weak field or a static field, nor that the observed object m really moves at 

a slow speed, but only requires that the information-wave speed  of the observation 
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agent OA() is large enough or →. 

Thus, by combining the Poisson-equation form 2=4G of Newton’s law of 

universal gravitation and the GOR motion equation (i.e., the geodesic equation 

(14.33)), we have the solution of the time equation (15.13) of GOR field equation: 
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This result is the same as Eq. (14.47) in Sec. 14.4 The Idealized Convergence 

of GOR Motion Equation of Chapter 14. 

(III) Determining the Space Metric Elements: gik (i,k=1,2,3) 

Under the condition of GOR idealized convergence, the independent space 

equation can be derived as follows: 
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Likewise, under the condition of idealized convergence:  is large enough or 

→, by combining the Poisson-equation form 2=4G of Newton’s law of 

universal gravitation and the GOR motion equation (i.e., the geodesic equation 

(14.33)), we have the solution of the space equation (15.15) of GOR field equation: 
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By summarizing Eq. (15.11), Eq. (15.14) and Eq. (15.16), we have the 

approximate solution of GOR field equation: 
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where h=h() depends on the observation agent OA(). It is worth noting that 

any element of h contains the factor  /2. 

According to Eq. (15.17), the line-element ds of gravitational spacetime is 



141 

 

( )
2

2 0

00

2 2

2 2 2

d d d d

2 2
1 d d d

i k

ik

i k
i k

ik

s g x g x x

x x
t x x

r

 
 

 

= +

  
= + − −  

   

 (15.18) 

where the time axis of the GOR gravitational spacetime X4d() is x0= t, and the 

space axes are the Cartesian coordinate axes: x1=x, x2=y, x3=z. 

The solution in Eq. (15.17) or Eq. (15.18) of the GOR field equation is the 

approximate solution that requires the information-wave speed  of the observation 

agent OA() to be large enough or →. 

Obviously, the approximate solution of GOR field equation is isomorphically 

consistent with Einstein’s approximate solution of Einstein field equation. 

Based on the approximate solution of GOR field equation (15.17)) or according 

to the GOR line-element formula (15.18), the theory of GOR also could construct 

the motion equation of the observed object m for theoretically calculating and 

predicting the gravitational redshift of light and the gravitational deflection of light, 

for calculating the orbital precession of the planet m or Mercury, and in particular, 

could deduce the information-wave equation, revealing the essence of Einstein’s 

prediction of gravitational waves.  

Based on the approximate solution of the GOR field equation (15.17)) or 

according to the GOR line-element formula (15.18), the theory of GOR will provide 

us with new ideas or views different from Einstein’s theory of general relativity on 

the gravitational redshift of light and the gravitational deflection of light, as well as 

on the relativistic celestial phenomena such as the precession of Mercury, and even 

on Einstein’s gravitational waves. 

15.4 The Exact Solution of GOR Field Equation 

Under the principle of GC, through PGC logic route 1, by substituting the 

information-wave speed  for the light speed c in Eqs. (15.7-8), the Schwarzschild 

exact solution of Einstein field equation [80], i.e., the exact solution of the 

gravitational-field equation of the optical observation agent OA(c) (Eqs. (15.7-8)) 

could be isomorphically and uniformly transformed into the exact solution of GOR 

field equation, i.e., the exact solution of the gravitational-field equation of the 

general observation agent OA(). 

However, in order to understand the logic behind the exact solution of GOR 

field equation, we attempt to deduce the exact solution of GOR field equation from a 

more basic logical premise through PGC logic route 2. In particular, based on the 

GOR logical way of idealized convergence, the theory of GOR will employ the 

GOR condition of idealized convergence, rather than Einstein’s conditions of 

weak-field approximation, as the boundary condition for the GOR field equation. 

15.4.1 The Metric of Spherically-Symmetric Gravitational Field 

and the GOR Line-Element 

Like the Schwarzschild exact solution, the gravitational scene conceived for the 
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exact solution of GOR field equation is also the static spherically-symmetric 

gravitational field: let (M,m) be the two-body system, M be a sphere with the radius 

R, and its matter be distributed in spherical symmetry, forming a 

spherically-symmetric gravitational field; without regard to m, the outside of M is a 

vacuum. According to Newton’s law of universal gravitation, the Newtonian 

gravitational potential  at the distance r (>R) from the center of M is =−GM/r. 

Like the Schwarzschild exact solution, the exact solution of GOR field equation 

is also the external-vacuum solution of M, in which the spatial coordinates are the 

spherical coordinates rather than the Cartesian coordinates. Correspondingly, the 

definition (Def. 10.1) of the general observation agent OA() and the observational 

spacetime X4d() of OA() (in Eq. (10.2)) can be rewritten as: 
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where the spatial coordinate (x1,x2,x3)=(r,,) is the spherical coordinate system. 

It is worth noting that the observation agents defined in Eq. (10.2) and in Eq. 

(15.19) are both the general observation agent OA(). Regardless of the definition 

of the Cartesian coordinates (Def. 10.1 in Eq. (10.2)) or the spherical coordinates (in 

Eq. (15.19)), the definition of the time axis x0 is the same: x0=t. And, no matter Eq. 

(10.2) or Eq. (15.19), the formulae of the line-element ds have the same form: 
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where the spherical metric g=g(r,,,) and the Cartesian metric 

g=g(x,y,z,) is not only the function of the respective spatial coordinates (r,,) 

and (x,y,z), but also the function of the information-wave speed  of the general 

observation agent OA(). 

As shown in Eq. (15.20a) and Eq. (15.20b), the spherical metric g=g(r,,,) 

and the Cartesian metric g=g(x,y,z,) have different manifestations. In the 

Cartesian coordinates, the flat spacetime refers to the Minkowski spacetime, and the 

corresponding metric g is the Minkowski metric =diag(+1,−1,−1,−1); while, in 

the spherical coordinates, the flat spacetime metric is =diag(+1,−1,−r2,−r2sin2): 

the spherical-coordinate form of the Minkowski metric  . 

In spherically-symmetric gravitational field, the spacetime metric is also 
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spherically symmetric. According to Birkhoff’s theorem [140], the spacetime metric 

g of spherically-symmetric gravitational fields of external vacuum must be static 

and does not change over time: g /t=0. 

So, for spherically-symmetric gravitational field of external vacuum, the most 

general form of the spacetime line-element ds could be 

 ( ) ( )2 2 2 2 2 2 2 2 2d d d d sin ds W r t U r r r r   = − − −  (15.21) 

where g00=W(r) and g11=−U(r) are the metric elements to be solved. Actually, Eq. 

(15.21) also means that the space and time of the spherically-symmetric 

gravitational spacetime are orthogonal: g0i=gi0=0 (i=1,2,3). 

In particular, in the theory of GOR, the spacetime metric g=g() of the 

general observation agent OA() depends on the information wave speed  of 

OA(); for Eq. (15.21), g00=W(r,) and g11=−U(r,) are the function not only of r, 

but also of . Therefore, in the theory of GOR, for spherically-symmetric 

gravitational field of external vacuum, the most general form of the spacetime 

metric g and line-element ds under the general observation agent OA() could be 
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 (15.22) 

where g00=W(r,) and g11=−U(r,) are the elements of spacetime metric g under 

the general observation agent OA() to be solved; in other words, (r,) and  (r,) 

are the parameters of Eq. (15.22) to be solved. 

15.4.2 The GOR Field Equation 

of Spherically-Symmetric Gravitational Field 

According to the spherically-symmetric gravitational scene conceived for 

external-vacuum solution, the energy-momentum tensor T=0. 

Thus, by means of the weak-field approximation, Einstein’s field equations 

(14.2) could be reduced from the form of Eq. (14.19) to Eq. (15.2): R(c)=0. In this 

way, Einstein had obtained the approximate solution of Einstein field equation. By 

means of the GOR idealized convergence, the GOR field equation (14.32) can be 

reduced from the form of Eq. (14.49) to Eq. (15.9): R()=0. In this way, we have 

obtained the approximate solution (Eqs. (15.17-18)) of GOR field equation. 

However, just as Schwarzschild’s exact solution seemingly does not rely on the 
weak-field approximation, the exact solution of GOR field equation seemingly can 

also independent of the GOR idealized convergence. Without the GOR idealized 

convergence, the GOR field equation (14.32) could not be reduced from the form of 
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Eq. (14.49) to Eq. (15.10): R()=0. 

According to the logic of Schwarzschild’s exact solution, in view of the 

spherically-symmetric gravitational scene conceived for external-vacuum solution: 

T=0, from the GOR field equation (14.32), the field equation of the 

spherically-symmetric gravitational spacetime X4d()) of the general observation 

agent OA() could be written as: 
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where R can be called the general Ricci tensor, i.e., the curvature of the 

observational spacetime X4d() of the general observation agent OA(), R the 

general Gaussian curvature, and 
 the connection of the general observation 

agent OA(). It is worth noting that, R=R(), R=R(), and 
=

() all 

depend on the information-wave speed  of OA(). 

According to the definition of connection (Eq. (15.23)), we have: 
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 (15.24) 

By further calculations, it follows that: 
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Making use of the equation 
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and based on the definition (Eq. (15.23)) of the spacetime metric R, we have that: 
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Making use of Eq. (15.27), we have the curvature scalar R: 
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 (15.28) 

Then, the GOR field equation (15.23) of the spherically-symmetric gravitational 

spacetime X4d() of the general observation agent OA() leaves four nontrivial 

equations: 

 ( ) ( ) ( )01
0 ; 0,1,2,3

2
R g R x t    − = = =  (15.29) 

15.4.3 The Exact Solution of GOR Field Equation 

and GOR Idealized Convergence 

Actually, the Schwarzschild exact solution is a special case of the solution of Eq. 

(15.29), i.e., the solution as OA() is the optical observation agent OA(c) (=c). 

The boundary conditions set by Schwarzschild for solving Einstein’s field equation 

are: as r→, g00=1 and g11=−1, in which Schwarzschild followed Einstein’s logical 

thought of weak-field approximation: if r→, the Newtonian gravitational potential 
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 →0, the spacetime tends to be flat, and therefore, g→ . 

According to the theorem of Cartesian spacetime in Chapter 13: g→  as 

→. Therefore, the boundary conditions of the GOR field equation (15.29) could 

be set based on the logical thought of GOR idealized convergence. Under the 

condition of idealized convergence:  is large enough or →, we have 
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No matter r→, or →0, or →, the spacetime metric g would reduce to the 

flat-spacetime metric: g→ . It could be expected that the solution of GOR field 

equation (15.29) g=g(r,,). In other words, W=W(r,,) and U=W(r,,) are 

the functions of r, , and . 

Under the principle of GC, by analogizing or following the logic of 

Schwarzschild solution, with the boundary conditions of the GOR idealized 

convergence (Eq. (15.30)), combining Eqs. (15.24-28), we have 
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where =−GM/r is the Newtonian gravitational potential. 

Correspondingly, the line-element ds of the spherically-symmetric gravitational 

spacetime X4d() of the general observation agent OA() and the GOR exact 

solution (the metric g() of the observational spacetime X4d() of OA()) could 

be expressed as follows: 
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 (15.32) 

where both r=0 (representing the mass center of M) and r=2GM/2 are the 

singularities of Eq. (15.32), i.e., the singularities of the GOR field equation; the time 

axis of the observational spacetime X4d() is x0= t, and the space axes of the 

observational spacetime X4d() are x1=r, x2=, and x3=. 

Based on the exact solution of the GOR field equation (15.31) or according to 

the GOR line-element formula (15.32), the theory of GOR could exactly construct 

the motion equation of the observed object m for theoretically predicting the 
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gravitational redshift of light and the gravitational deflection of light, for calculating 

the orbital precession of the planet m or Mercury, and in particular, for deducing the 

information-wave equation, revealing the essence of Einstein’s gravitational wave. 

Based on the exact solution of the GOR field equation (15.31) or according to 

the GOR line-element formula (15.32), the theory of GOR will interpret and analyze 

the relativistic celestial phenomena, provide us with new ideas or new views 

different from Einstein’s theory of general relativity. 

15.5 The Significance of GOR Field-Equation Solution 

As stated in Sec. 13.2.5 The Significance of Cartesian-Spacetime Theorem of 

Chapter 13, the metric g() of the GOR gravitational spacetime X4d() can be 

decomposed into the flat metric  and the curved metric h(): 

The decomposition of spacetime metric: ( ) ( )g h    = +  

where  is the Minkowski metric, represents the flat spacetime, including the 

Cartesian spacetime and the Minkowski spacetime; while h=h() represents the 

curved spacetime, reflecting the curved state of gravitational spacetime. 

The GOR observational spacetime is the gravitational spacetime X4d() of the 

general observation agent OA(). The spacetime metric g=g() of X4d(), 

especially the curved metric h=h() of it, has the profound implication. The 

solutions of GOR field equation, including the approximate and the exact, reveal the 

profound implication of the metric g=g() and h=h() of the gravitational 

spacetime X4d() of OA(). 

15.5.1 Generalizing the Gravitational Spacetime Metrics 

of Different Observation Agents 

The gravitational-field equation of Einstein’s theory of general relativity is 

referred to as the Einstein field equation; the Poisson equation is the 

gravitational-field equation of Newton’s theory of universal gravitation, can be 

referred to as the Newtonian field equation. The solution of Einstein field equation is 

the metric of the observational spacetime X4d(c) of the optical agent OA(c): 

g=g(c); the solution of Newtonian field equation should be the metric of the 

observational spacetime X4d
 of the idealized agent OA: g=g(). 

According to the theorem of Cartesian spacetime, the metric g() of the 

idealized observational spacetime is exactly the Minkowski metric: g()= . 

In Chapter 14, the theory of GOR has clarified that the GOR gravitational-field 

equation generalizes and unifies Einstein’s field equation and Newton’s field 

equation. The metric of GOR observational spacetime is that of the observational 

spacetime X4d() of the general observation agent OA(): g=g(), which 

naturally generalizes the observational spacetime metrics of all observation agents; 

The solution of GOR field equation naturally generalizes the solutions of Einstein 

field equation and Newtonian field equation. 

Obviously, the approximate solution of GOR field equation not only generalizes 
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the approximate solution of Einstein field equation of the optical agent OA(c), but 

also generalizes the solution of Newtonian field equation of the idealized agent OA: 

if →c, then the approximate solution (Eq. (15.17)) of GOR field equation would 

reduce to the approximate solution (Eq. (15.3)) of Einstein field equation; as →, 

the approximate solution (Eq. (15.17)) of GOR field equation would reduce to the 

solution of Newtonian field equation: g()==diag(+1,−1,−1,−1). It is thus 

clear that the approximate solution of GOR field equation based on the GOR 

idealized convergence is isomorphically consistent with both the approximate 

solution of Einstein field equation based on Einstein’s weak-field approximation and 

the solution of Newtonian field equation under the idealized agent OA. 

Likewise, the exact solution of GOR field equation not only generalizes the 

exact solution of Einstein field equation of the optical agent OA(c), but also 

generalizes the solution of Newtonian field equation of the idealized agent OA: if 

→c, then the exact solution (Eqs. (15.31-32)) of GOR field equation would reduce 

to the exact solution (Eq. (15.7-8)) of Einstein field equation; as →, the exact 

solution (Eqs. (15.32-32)) of GOR field equation would reduce to the solution of 

Newtonian field equation: g()==diag(+1,−1,−r2,−r2sin2). It is thus clear that 

the exact solution of GOR field equation based on the GOR idealized convergence is 

isomorphically consistent with both the exact solution of Einstein field equation 

based on Einstein or Schwarzschild’s weak-field approximation and the solution of 

Newtonian field equation under the idealized agent OA. 

The generality of the GOR field equation as the gravitational field equation of 

the general observation agent OA(), and the corresponding relationships of 

isomorphic consistency between the solution of GOR field equation and the solution 

of Einstein field equation as well as between the solution of GOR field equation and 

the solution of Newton field equation, once again reflect the logical consistency of 

the GOR field equation with both Einstein’s field equations and Newton’s field 

equation, and further confirm the logical self-consistency of the logical system or 

theoretical system of GOR. 

15.5.2 Spacetime is not Really Curved 

In Sec. 12.5.2 Could Spacetime Really be Curved? of Chapter 12, based on 

the GOR factor  = () of spacetime transformation, the theory of GOR has 

clarified that spacetime could not really be curved; the so-called spacetime curvature 

is actually just a sort of observational effect that depends on the observation agent 

OA(), and the root and essence lie in the observational locality (<) of the 

observation agent OA(). 

Actually, according to the theorem of Cartesian spacetime (see Sec. 13.2 in 

Chapter 13), under the idealized agent OA, the curved metric h of the idealized 

observational spacetime X4d
 is zero: 

 ( ) ( )lim and lim 0g h  
 

  
→ →

= =  (15.33) 

This also suggests that the objective and real spacetime, whether there were 

gravitational fields or not, would not be curved. 
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Now, we can take a different perspective to further verify this conclusion based 

on the solution of GOR field equation, including the approximate (Eqs. (15.17-8)) 

and the exact (Eqs. (15.31-2)): Spacetime is not really curved. 

In the observational spacetime X4d() of an observation agent OA(), if the 

metric g() of X4d() is a constant tensor (such as the Minkowski metric ), then 

X4d() is a flat spacetime, otherwise, a curved spacetime. 

Observing the solutions in Eq. (15.3) and Eq. (15.7) of Einstein field equation, 

we know that the metric g=g(xi,c) of the gravitational spacetime X4d(c) of the 

optical agent OA(c) depends on the spatial coordinate xi (i=1,2,3): different spatial 

coordinates have different metrics, and therefore, the gravitational spacetime X4d(c) 

in optical observation exhibits a sort of curved shape. In Einstein’s theory of general 

relativity, the speed c of light in vacuum is a cosmic constant. Limited by the 

perspective of the optical observation agent OA(c), Einstein could only attribute the 

root cause of spacetime curvature to the gravitational potential =(xi), and to the 

distribution of matter and energy in gravitational spacetime. 

Observing the solutions in Eq. (15.17) and Eq. (15.32) of GOR field equation, 

we know that the metric g=g(xi,) of the gravitational spacetime X4d() of the 

general observation agent OA() also depends on the spatial coordinate xi (i=1,2,3): 

different spatial coordinates have different metrics, and therefore, the gravitational 

spacetime X4d() in GOR observation also exhibits a sort of curved shape. 

However, the solutions in Eq. (15.17) and Eq. (15.32) of GOR field equation 

show that the metric g=g(xi,) of the gravitational spacetime X4d() of the 

general observation agent OA() in essence depends on the observation agent 

OA(), or in other words, depends on the information-wave speed  of OA(): 

under different observation agents, the same gravitational scene would exhibit 

different curvatures. 

This fact indicates that, in essence, the curvature of the gravitational spacetime 

X4d() of the general observation agent OA() is not caused by the distribution of 

matter and energy, but by the observational locality (<) of the observation agent 

OA(), which is a sort of observational effect and a sort of apparent phenomenon. 

Correspondingly, the curvature of gravitational spacetime in Einstein’s theory of 

general relativity is the observational effect and apparent phenomena caused by the 

observational locality (c<) of the optical agent OA(c). 

As →, the approximate solution of GOR field equation (15.17) reduces to: 
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 (15.34) 

where g=g(xi,) (x1=x, x2=y, x3=z) is the metric form of the Cartesian-coordinate 
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system, and =diag(+1,−1,−1,−1) is the Cartesian-coordinate form of the 

Minkowski metric. 

As →, the exact solution of GOR field equation (15.32) reduces to: 
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where g=g(xi,) (x1=r, x2=, x3=) is the metric form of spherical-coordinate 

system, and =diag(+1,−1,−r2,−r2sin2) is the spherical-coordinate form of the 

Minkowski metric. 

So, if we could employ the idealized observation agent OA to observe 

gravitational spacetime, →, without observational locality, then the solutions of 

GOR field equation, regardless of the approximate or the exact, regardless in the 

Cartesian coordinates or in the spherical coordinates, would converge to the flat 

metric: g→, and the curved metric tends to zero: h→0. 

With regard to the approximate solution (Eq. (15.17)) and the exact solution (Eq. 

(15.32)) of GOR field equation, the limit expressions (Eq. (15.34)) and (Eq. (15.35)) 

under the idealized agent OA not only verify the theorem of Cartesian spacetime, 

but also show us that the objectively real spacetime is the Cartesian spacetime X4d
, 

which is originally flat and not curved due to the distribution of matter and energy. 

The so-called curvature of gravitational spacetime is only an observational effect 

and an apparent phenomenon, caused by that human being’s observation agents are 

not ideal enough: the information-wave speeds are limited. 

So, the objectively real spacetime is not curved. 

But, only under the idealized observation agent OA, the objectively real 

spacetime would present the flat and real appearance of it. 

15.5.3 The Curved Metric h 

does not Represent Gravitational Radiation 

Einstein’s theory of relativity, whether the special or the general, is associated 

with light and the speed c of light in vacuum. However, the mainstream school of 

physics has not truly understood why the speed c of light in vacuum appears in 

Einstein’s theory of relativity. 

In the solutions of Einstein field equation, including the approximate (Eq. (15.3)) 

and the exact (Eq. (15.7)), the metric g=g(c) of gravitational spacetime, 

especially the curved metric h=h(c), is not unexpectedly associated with the 

speed c of light in vacuum. However, Einstein failed to correctly explain why the 
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speed of light appeared in the spacetime metric g and the curved metric h. 

Actually, this is the embodiment of the optical observation agent OA(c). 

Indeed, observations and experiments have shown that gravitational spacetime 

appears to be somewhat curved. 

However, Einstein and the mainstream school of physics hailed to truly realize: 

most of observations and experiments relied on the optical observation agent OA(c); 

the so-called spacetime curvature is caused by the observational locality (c<) of 

the optical agent OA(c), which is only an observational effect or an apparent 

phenomenon. In Einstein’s view, the curvature of gravitational spacetime is caused 

by the accumulation of matter and energy, and is the essential characteristic of the 

objectively physical world. In Einstein’s theory of general relativity, the curved 

metric h represented the gravitational potential , and in particular, represented the 

objective gravitational radiation, i.e., the so-called gravitational wave. 

However, the solutions in Eq. (15.17) and Eq. (15.32) of GOR field equation 

suggest that, in essence, the metric g=g() and the curved h=h() of the 

observational spacetime X4d() of the general observation agent OA() depend on 

the information-wave speed  of OA(). Therefore, the curved metric h=h() 

does not represent the gravitational potential, let alone the objective gravitational 

radiation or the so-called gravitational wave. 

The curved metric in the approximate solution of GOR field equation (15.17) is: 
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The curved metric in the exact solution of GOR field equation (15.32) is: 
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By observing Eq. (15.36) and Eq. (15.37), we know that, regardless of the 

Cartesian coordinates or the spherical coordinates, regardless of the approximate 

solution or the exact solution, the nonzero elements of the curved metric h in the 

solution of GOR field equation contains an important dimensionless factor: 

CW=| | /2, i.e., the ratio of the gravitational potential | | to the square of the 

information-wave speed  ; which can be called the Factor of Carrier Wave. 

If the observation agent OA() is the optical agent OA(c) (like the case of the 

approximate solution (Eq. (15.3)) or the Schwarzschild exact (Eq. (15.7)) of Einstein 

field equation), then: CW=| | /c2. 

It should be pointed out that, it is exactly the factor CW=| | /c2 of carrier wave 

that makes the gravitational spacetime of Einstein’s optical observation appear to be 

somewhat curved. 

From Einstein’s perspective of optical observation: CW=| | /c2, where the speed 
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c of light in vacuum is a cosmic constant. Therefore, Einstein attributed spacetime 

curvature to the gravitational potential : the stronger the gravity, the larger the | |, 

the greater the CW or the |h |, and the more curved the gravitational spacetime is. 

However, in the theory of GOR, from the perspective of the general observation 

agent OA(): CW=| | /2, where  is the information-wave speed of the general 

observation agent OA() and different observation agents might have different 

information-wave speeds. So, the reason why gravitational spacetime appears to be 

somewhat curved is in essence not due to the distribution of matter and energy (), 

but due to the observational locality (<) of the observation agent OA(). The 

solutions in Eq. (15.17) and Eq. (15.32) of GOR field equation show that, in the 

same gravitational scene under different observation agents, the gravitational 

spacetime exhibits different curvatures: the lower the information-wave speed  of 

the observation agent OA(), the greater the carrier-wave factor CW=| | /2 and the 

curved metric |h |=|h()|, the more curved the gravitational spacetime would be. 

Conversely, if →, the carrier-wave factor CW=| | /2→0, and the curved metric 

in the solution of GOR field equation tends to zero: h→0. 

According to the theory of GOR, the curved metric h=h() of gravitational 

spacetime depends on the information-wave speed  of the observation agent OA(). 

This fact suggests that the curved metric h does not represent the gravitational 

potential , let alone gravitational radiation or gravitational waves. 

It could be imagined that the curved metric h=h(,) is the carrier wave of 

gravitational-interaction information (), that is, the information wave () of OA() 

modulated by the gravitational radiation signal , which transmits the information 

about gravitational potential  at the information-wave speed . 

The problem of whether the curved metric h means gravitational wave or 

information wave will be specifically discussed in Chapter 19. 
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16 GOR and Perihelion Precession 

The calibration of the coefficient GOR of GOR gravitational-field equation 

means the formal establishment of the GOR field equation and marks the birth of the 

theory of Gravitationally Observational Relativity (GOR), and at the same time, 

represents the unity of the two great gravitational theoretical systems of physics, 

Newton’s theory of universal gravitation and Einstein’s theory of general relativity. 

Chapter 15 has successfully solved the GOR field equation of static spherically 

symmetric gravitational spacetime. Now, this chapter will test and verify the GOR 

field equation and even the whole theoretical system of GOR around the problem of 

the perihelion precession of Mercury, i.e., one of Einstein’s famous three scientific 

predictions. We will explore the two-body problem of celestial bodies based on the 

theory of GOR, and construct the dynamic model of the two-body system (M,m) of 

celestial bodies based on the solution of GOR field equation. We attempt to, under 

the principle of general correspondence (GC), combining PGC logical route 1 and 

PGC logical route 2, by analogizing or following the logic of Einstein’s theory of 

general relativity, deduce the motion equation of the observed planet m moving 

around the fixed star M. 

The GOR motion equation of planets will be contrasted or analogized with 

Newton’s motion model of planets and Einstein’s motion model of planets to test 

and verify the theory of GOR including the GOR field equation and the GOR 

motion equation, to examine the gravitational relativistic phenomena of celestial 

motion, and in particular, to reexamine Einstein’s prediction about the perihelion 

precession of Mercury. 

16.1 The Evolution of Celestial Motion Images 

It can be imagined and understood that the ancients were full of curiosity about 

the earth they survived on, as well as the sun, moon, and stars that rose in the east 

and fell in the west around the earth every day. 

The concept of the globe naturally was introduced later on. 

Early Chinese people referred to the earth as 大地, equivalent to the earth in 

English. The ancients thought that the earth was like a Persian carpet. Thanks to it, 

we would not fall into the hell at the bottom. It was very difficult for the ancients to 

imagine the earth as a sphere or a globe. However, based on the principle of Seeing 

is believing, the ancients naturally believed that the sun, moon, and stars that rose in 

the east and set in the west revolved around the earth, and their orbits must be circles: 

大地 or the earth must be a globe. 

The concept of the globe originated from Ptolemy’s geocentric theory (as 

depicted in Fig. 16.1(a)) [141]. The geocentric theory was formed approximately in 

the 2nd century AD, and the core ideas of it could be summarized as: firstly, the earth 

was a globe; secondly, the earth was the center of the universe; thirdly, the sun, 

moon, and stars all revolved around the earth. In the ancients’ view, it was 

reasonable that the orbits of the sun, moon and stars revolving around the earth were 
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all the idealized or standard circles. 

 

Figure 16.1 The Evolution of Celestial Motion Images: From the Earth to the Globe, from the 

circles to the ellipses, from the closed ellipses to the precessing ellipses. (a) Ptolemy’s geocentric 

theory: the earth is a ball, that is, the globe; the earth is the center of the universe, the sun, moon, 

and stars revolve around the earth in the idealized or standard circles. (b) Copernicus’ heliocentric 

theory: the sun is the center of the universe, the moon revolves around the earth in the idealized or 

standard circle, and the earth and other planets revolve around the sun also in the idealized or 

standard circle; the orbits of the earth and all other planets form the concentric circles centered 

around the sun. (c) Kepler’s three laws and Newton’s planetary orbit: according Kepler, the orbit 

of a planet is a closed ellipse with the sun at one of its focal points; Newton’s motion equation of 

planets supports Kepler’s three laws. (d) The orbital precession of planets: astronomical 

observation shows that the orbit of a planet is not closed ellipse, and the perihelion of a planet is 

not fixed, but precesses year after year. 

In the 16th century AD, Copernicus created the heliocentric theory (as depicted 

in Fig. 16.1(b)), in which the center of the universe was moved from the earth to the 

sun [141,142]. Copernicus’ heliocentric theory had made a big step in the right 

direction to human being’s understanding of the universe: the earth spun on its own 

axis, the moon revolved around the earth, and the earth and other planets revolved 
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around the sun. However, in Copernicus’ heliocentric theory, no matter the moon 

moving around the earth or the earth or the other planets moving around the sun, 

their orbits still followed the idealized or standard circles, and moreover, all the 

orbits of the planets were the concentric circles centered on the sun. 

In the 17th century AD, Kepler proposed three empirical laws of planetary 

motion based on the astronomical observation data accumulated by Tycho, known as 

Kepler’s three laws (as depicted in Fig. 16.1(c)) [141,143], including the first: orbit law; 

the second: area law; the third: harmonic law. The orbit law is also known as the 

ellipse law: Each planet’s orbit is an ellipse with the sun at a focus. Kepler’s orbit 

law shows that the orbit of a planet is an ellipse rather than the idealized or standard 

circle. However, it is worth noting that Kepler’s planetary orbits are closed ellipses, 

in which there is no the orbital precession or perihelion precession of planets 

After Kepler’s three law of planetary motion, Newton’s three laws as well as 

Newton’s law of universal gravitation were successively born [81]. 

Based on Newton’s laws, Kepler’s three laws of planetary motion could be 

derived theoretically. Since then, Mankind’s physics began to entered a new epoch: 

from phenomenological physics to theoretical physics. Newton’s theory of universal 

gravitation could predict or calculate the more general celestial orbits of conic 

curves: as a material system moves in a gravitational field, the orbit or trajectory of 

it could be a circle, an ellipse, a parabola, or a hyperbola, all of which are the 

idealized or standard conic curves. With respect to the two-body problem of celestial 

bodies or the two-body system (M,m) of celestial bodies, based on Newton’s theory 

of universal gravitation, one could build up the motion model of the celestial-body m 

moving in the gravitational field of the star M for calculating the trajectory of the 

observed object m and predicting the behavior of the observed object m. Newton’s 

motion equation of planets supports Kepler’s orbit law: the orbit of a planet is a 

closed ellipses, and has no orbital precession. 

However, astronomical observation tells us that the orbit of a planet is not a 

closed ellipse, and the perihelion always insistently precesses (as depicted in Fig 

16.1(d)). The precession of Mercury’s perihelion is particularly prominent, and the 

observation of optical astronomy shows that the orbital precession rate of Mercury is 

approximately 5600.73 arc second per 100 years [126]. 

All theories in physics are only the idealized models of physical reality. 

The two-body system (M,m) of the planet m and the star M is itself an extremely 

idealized system, and is often further idealized as the one-body problem where the 

two-body system is reduced to the one-body system: the planet m orbits the 

stationary star M. The corresponding idealized conditions include: (a) the speed of 

gravitational radiation is infinite; (b) the star M is at rest; (c) both the star M and 

planet m are particles or mass points, no matter the one-body or the two-body, the 

(M,m) is an isolated system; (d) it takes no time for the gravitational radiation to 

cross space; (e) The observer O is based on the stellar perspective of M, and is at rest 

relative to the star M and located at the zero potential. However, the actual situation 

of celestial system is that: the speed of gravitational radiation is finite or limited; the 

star M and the planet m relatively move due to gravitational interaction; the star M 

and the planet m are not particles, and their material distributions are non-uniformity, 
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asymmetric, and non-static; the (M,m) is surrounded by countless celestial bodies or 

other matter particles, not an isolated system; the observer O is generally located on 

the earth, trapped in the gravitational field of the sun and the earth, and moves 

relative to the star M and the observed planet m. 

Therefore, it could be imagined that the moon’s orbit around the earth, and the 

earth, Mercury, Venus, Mars Jupiter, and other planets’ orbits around the sun, must 

not be the idealized or standard closed ellipses, let alone the idealized or standard 

closed circles. In the objectively physical world, it is natural and reasonable, and 

even inevitable, for a planet moving around a star to present the orbital precession or 

the perihelion precession. On the contrary, it is hard for us to imagine that the earth 

could move round and round the sun in the same closed ellipse or circle without 

drifting. Actually, as far as the data of astronomical observation are concerned, the 

objective and real celestial systems conform to our theoretical models so well that it 

is far beyond our imagination or expectation. As for Mercury, it only precesses at 

the rate of about 13.5 per revolution around the sun. It is thus clear that Newton’s 

two-body model of celestial bodies is already quite perfect. 

Mercury, as the closest planet to the sun in the solar system, has the most 

prominent orbital precession. Physicists have conducted the modified calculation 

based on Newton’s theory for the non-idealized factors of the two-body system 

(Sun,Mercury). Deducting the precession of the equinoxes caused by the non-inertial 

geocentric coordinate system (about 90%) and the perturbation made by other 

planets (especially Venus, Earth, and Jupiter) to Mercury (about 10%), totaling 

5557.62 arc second, finally, there is only 5600.73−5557.62=43.11 left unable to 

find out the attribution, which is a very small amount of the total of 5600.73. The 

gravitational locality, the irregular shape of the sun, the sun’s spin, and so on could 

also exacerbate the precession of Mercury’s perihelion. 

In 1915, after his theory of special relativity [7] of 1905, Einstein established his 

theory of general relativity [8]. Einstein applied his general relativity to the two-body 

problem of celestial bodies, and constructed the dynamic model of the two-body 

system (M,m) of celestial bodies. Einstein’s motion equation of the planet m 

contains the information of the orbital precession of the planet m: the orbital 

precession term of the planet m that Newton’s motion equation has no. Thus, the 

miracle happened: Einstein’s motion equation of Mercury showed that the perihelion 

precession rate of Mercury’s orbit around the sun was 43.03 per 100 years, which 

was extremely consistent with the 43.11 in the total of 5600.73 that had not yet 

found out the attribution. Although many physicists have doubts about Einstein’s 

prediction of Mercury precession [68], the mainstream school of physics believes that 

this calculation conclusion is the support for Einstein’s theory of general relativity. 

However, the problem is that: whether the 43.11 or the 43.03 is a very small 

fraction of the actual observed value 5600.73 of Mercury’s precession, less than 

0.8%; then, why could Einstein’s theory of general relativity only predict the 0.8% 

of the actual observed value 5600.73 of Mercury’s precession, but could not predict 

the rest 99.2%? In addition, another problem is that: there are many factors that 

could lead to the precession of Mercury’s perihelion; then, why could not physicists 

employ Einstein’s theory of general relativity to deduct the precession of the 
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equinoxes caused by the non-inertial geocentric coordinate system and the 

perturbation of other celestial bodies to Mercury? 

In summary: (i) the actual observed value of Mercury’s precession rate reaches 

5600.73 arc second per 100 years; (ii), the planetary precession predicted by 

Newton’s dynamic model of the two-body system is null, but based on Newton’s 

theory, one could deduct or calculate the orbital precession rate (532 per 100 years) 

of Mercury caused by the perturbation of other celestial bodies to Mercury; (iii), the 

orbital precession rate (43.03 per 100 years) of Mercury predicted by Einstein’s 

theory of general relativity is far from the actual observed value of 5600.73, and 

there is no comparability between them. 

Actually, Einstein’s motion equation of planets based on general relativity 

implies almost all the idealized conditions implied in Newton’s motion equation of 

planets, including the action at a distance of gravitational interaction (see Sec. 12.1 

in Chapter 12). The only difference is that Einstein’s theoretical model implies the 

condition of the observational locality of optical observation: in Einstein’s theory, 

the observation medium for transmitting the spacetime information of observed 

objects is light. As stated repeatedly by the theory of OR (including IOR and GOR), 

Einstein’s theory is the theory of optical observation, belonging to the optical agent 

OA(c), whose information-wave speed is finite or limited by the speed c of light, 

and naturally, OA(c) has the observational locality (c<). 

Both Einstein’s motion equation of planets and Newton’s motion equation of 

planets have no the prior information about the orbital precession of planets, for 

instance, the precession of the equinoxes and the perturbation of other celestial 

bodies, as well as, the non-idealized factors of the sun. Like Newton’s planetary 

mode, Einstein’s planetary motion has no the prior information about the Mercury 

precession of 5557.62. So, it is impossible for Einstein to predict or calculate the 

Mercury perihelion-precession rate of 5557.62 per 100 years. 

The theory of GOR will clarify that the orbital precession rate of Mercury 

predicted by Einstein’s theory of general relativity: 43.03 arc second per 100 years 

does not represent the real precession of Mercury’s perihelion, but the observational 

effect or apparent phenomenon caused by the observational locality (c<) of the 

optical observation agent OA(c). 

It should be pointed out that the data of Mercury precession of the 5600.73 arc 

second per 100 years were observed by the optical observation agent OA(c). 

Suppose that the orbital precession of planets as the observational effects of 

observation agents could be reflected and recorded in the data of astronomical 

observation, then the Mercury precession of the 43.03 predicted by Einstein’s 

theory of general relativity might indeed be employed to explain the 43.11 in the 

actual observed value of 5600.73 that has not yet found out the attribution. Thus, 

this is not only the support for Einstein’s theory of general relativity but more 

importantly the support for the theory of GOR. 

As far as the perihelion precession of Mercury is concerned, astronomical 
observation seems more inclined to support Einstein’s theory of general relativity 

than Newton’s theory of universal gravitation. This is not surprising, nor does it 
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mean that Einstein’s gravitational theory is more correct than Newton’s gravitational 

theory. Human being’s astronomy, including optical astronomy and radio astronomy, 

is the astronomy of the optical observation agent OA(). The information-wave 

speed is the speed c of light in vacuum. Naturally, the astronomical observation by 

means of the optical agent OA(c) is more consistent with Einstein’s theory of 

general relativity rather than Newton’s theory of universal gravitation. 

This chapter will establish the new theoretical model for the two-body system 

(M,m) of celestial bodies based on the theory of GOR, and derive the GOR motion 

equation of the observed planet m. According to the principle of GC, the GOR 

motion equation of the planet m must be isomorphically consistent with Einstein’ 

motion equation of the observed planet m., which naturally will contain the orbital 

precession term of the planet m, and then can predict and calculate the orbital 

precession rate of the planet m or Mercury. Just as Einstein’s motion equation of the 

planet m depends on the optical agent OA(c) and the light speed c, the GOR motion 

equation of the planet m must depend on the general observation agent OA() and 

the information-wave speed  of OA(): under different observation agents, the 

same planet would exhibit different degrees of orbital precession. Accordingly, one 

could make such judgment that both the orbital precession rates of planets predicted 

by Einstein’s theory of general relativity and the orbital precession rates of planets 

predicted by the theory of GOR do not represent the real perihelion precessions of 

planets, but is just observational effects and apparent phenomena. 

16.2 Newton’s Celestial-Body Model 

Kepler’s orbit law suggests that [141], a planet moves around a star in a closed 

elliptical orbit, and the star is located on a focus of the ellipse, which is mainly based 

on Tycho’s observation data of the Mars [143]. 

The establishment of Kepler’s three laws greatly promoted human being’s 

understanding of the operation laws of celestial motion and the exploration of the 

motive forces behind celestial motion. Then, Galileo proposed the concept of 

Central Force; Newton established the law of universal gravitation [81]. Thus, the 

orbit of a planet around the sun could theoretically be derived. However, the motion 

equations of celestial bodies derived from Newton’s law of universal gravitation are 

more general conic curves, and the elliptic orbit is only one form of them. 

Newton’s celestial-body model are naturally based on classical mechanics and 

Newton’s laws, including Newton’s second law and Newton’s law of universal 

gravitation. Newton’s celestial-body model belong to the category of the textbooks 

of general physics. However, as a special case of the GOR celestial-body model, it is 

of important significance for us to understand the theory of GOR. 

16.2.1 Newton’s Two-Body Problem of Celestial Bodies 

Both Newton’s celestial-body model and Einstein’s celestial-body model belong 

to the two-body problem of celestial bodies, that is, the theoretical model of the 

two-body system (M,m) of celestial bodies, which is extremely idealized and can be 

described as follows. 
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Figure 16.2 The Formalized Coordinates of Celestial Two-Body Problem. (a) Central force 

and spherical coordinates: the two-body system (M,m) of celestial bodies is idealized as an 

isolated system in the space of spherical-coordinate O(r,,), where the large mass celestial-body 

M (the sun or a star) is located at the coordinate origin of O, and the small mass celestial-body m 

(a planet or comet or satellite or even photon) moves in the gravitational field of M; universal 

gravitation is a sort of central force that always points towards the large mass celestial-body M (at 

the coordinate origin O). (b) The orbital plane of the small celestial-body m: according to the 

property of central force, the motion of the particle m is limited to a fixed plane. 

Newton’s Two-Body System of Celestial Bodies: (M,m), the star M and the 

planet m interact through the universal gravitation between them, M produces the 

gravitational field, and m moves in the gravitational field. 

The Idealized Conditions for Newton’s Two-Body System: Newton’s 

two-body system (M,m) implies the following idealized conditions. 

(i) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(ii) The isolated system: (M,m) is an isolated system, not affected by the matter 

or energy outside (M,m); both the star M and the planet m could be regarded 

as particles or mass points, M is at rest and the planet m moves in the 

gravitational field of M. 

(iii) The idealized observation agent: Newton’s observation agent is the 

idealized observation agent OA, the information-wave speed of OA is 

idealized to be infinity, the spacetime information of the observed planet m 

takes no time to cross space. 

(iv) The idealized observer: the observer O employs the idealized observation 

agent OA to observe the planet m from the perspective of M; in theory, O 

is at rest relative to M and located at the position of zero potential. 

The Formalized Coordinates of Newton’s Two-Body System: as depicted in 

Fig. 16.2, the motion of Newton’s two-body system (M,m) is described in both the 

3d Cartesian-coordinate O(x,y,z) and the corresponding the 3d spherical-coordinate 

O(r,,) (Fig. 16.2(a); Eq. (15.6)), the large mass celestial-body M is located at the 

coordinate origin O, and the small mass celestial-body m moves in the plane of X-Y 
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( =/2) (Fig. 16.2(b)). 

Actually, the two-body problem of celestial bodies explored by both Newton 

and Einstein could be further idealized and reduced to the one-body problem, only 

examining the motion of the planet m: the star M is at rest; the observer O observe 

the planet m from the perspective of the star M. 

16.2.2 Newton’s Theory of Universal Gravitation 

and The Two-Body System of Celestial Bodies 

In the idealized two-body system (M,m) of celestial bodies, the matter particle M 

and the matter particle m interact through universal gravitation; gravity or 

gravitation is a sort of central force, and the force acting on the matter particle m 

always points the matter particle M. As depicted in Fig. 16.2(a), F(r) represents the 

central force exerted on m; F(r) is a function of r: F(r)=Frr/r. Here, F(r) belongs to 

universal gravitation and always points towards the matter particle M (located at the 

coordinate origin O), so it follows that Fr<0. 

Newton’s Second Law and Planetary Motion 

According to Newton’s second law: 
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where r (r=|r|) is the radius vector of M pointing to m, F(r) is the gravitational force 

or central force exerted by M to m, M and m also denote the masses of celestial 

bodies (m<<M). 

In the Cartesian-coordinate O(x,y,z): 
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In the corresponding spherical-coordinate O(r,,): 
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where hK=rv=L/m is a constant, known as the velocity moment; L=rmv is the 

angular momentum, or the momentum moment; in the Cartesian spacetime with 

the idealized observation agent OA, dt=d. 

Equation (16.3) proves Kepler’s area law (Fig. 16.1(c)): the area swept out by 

the radius vector r (r=|r|) of the planet m per unit time is the same or equal. And 

moreover, Eq. (16.3) proves the conservation law of angular momentum: 

L=mr2d /dt is a constant. 

As a central force, the gravitational force F(r) always points towards the center 

of force and mass, i.e., O or the star M. According to Kepler’s laws or classical 

mechanics, the planet m subjected to the gravitational force (a central force) of the 
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star M must always remains in the plane of X-Y ( =/2). 

Binet Equation 

The universal gravitation F(r) is a kind of conservative force. Based on the 

conservation law and Eq. (16.3), one can get the Binet equation of the planet m: 
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Newton’s Law of Universal Gravitation and Planetary Motion 

Substituting Newton’s law of universal gravitation into Binet equation (16.4), 

one can get Newton’s motion equation of the planet m: 
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where, G is the gravitational constant, and M is the mass of the star (M >>m). 

The Forms of Newton’s Celestial Orbits 

Solving the differential equation (16.5), one has 
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This is the standard conic equation, where the celestial body M is located at a focus 

of the conic curse, e is the orbital eccentricity of the celestial body m, and CS and 0  

are the integration constants. 

By adjusting the zero point of time, or rotating the X-Y plane around the Z-axis 

one could set the initial angle 0  of the orbit of the observed planet m to a specific 

value, or set it to 0=0. In Eq. (16.6), CS depends on the initial angular momentum L 

of m and the initial mechanical energy E of m. 

According to Eq. (16.6), in the two-body system (M,m) of celestial bodies, the 

orbital eccentricity e=CSp of the small celestial body m (which could be a planet or 

comet or satellite or even photon) depends on the gravitational constant G and the 

gravitational field source M, as well as, on the initial angular momentum L of m and 

the initial mechanical energy E of m. 

According to the classical formula of celestial mechanics: 
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EL
e E K V L mvr

G M m
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where the total mechanical energy E=K+V of m is the sum of the kinetic energy K of 

m and the potential energy V of m; v is the speed of m, r (r=|r|) is the radius vector 

of m, and m also denotes the mass of the celestial body m; L is the angular 

momentum of the celestial body m: L=mrv. 

According to Eq. (16.7), in the two-body system (M,m) of celestial bodies, the 

orbital eccentricity e of the celestial body m is a constant. 
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The eccentricity e determines the form of the orbit of the celestial body m: 

(i) e=0: a circle; 

(ii) 1>e>0: an ellipse; 

(iii) e =1: a parabola; 

(iv) e >1: a hyperbola. 

Naturally, the orbit of a planet bound to a star must be an ellipse, and therefore, 

its orbital eccentricity e must be greater than zero and less than one: 1 >e >0. Taking 

Mercury and the earth as examples, the eccentricity e of Mercury’s orbit around the 

sun is e=0.2056; while the eccentricity e of the earth’s orbit around the sun is only 

0.0167, closer to a circle than Mercury’s orbit. 

Newton’s motion equation (Eq. (16.5)) of celestial bodies proves Kepler’s first 

law, i.e., the ellipse law: the orbit of a planet is an ellipse. 

16.2.3 Newton’s Motion Equation of Planets 

and The Orbital Precession of Planets 

Let the initial angle  0  of the orbit of the observed planet m be zero: 0=0, then 

one has the solution of Newton’s motion equation (Eq. (16.5)) of the planet m: 

 ( )
2 2

d
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where the gravitational constant G and the mass M of the star, as well as, the 

velocity moment hK and orbital eccentricity e of the planet m, are all constant. 

At the perihelion of the planet m, naturally, du/d=0. 

Let  be the orbital precession angle of the planet m per revolution. Let k=1, 

that is, the planet m orbits the star M for one cycle, as depicted in Fig. 16.1(d): the 

planet m starts from the perihelion P and travels to the next perihelion P. Then, the 

scanning angle of the planet m should be  =2 +. Substituting  =2 + into Eq. 

(16.8), it follows that  =0. 

This means that, according to Newton’s planetary models (Eq. (16.5) and Eq. 

(16.6)), there is no the orbital precession of planets. 

Actually, Newton’s planetary models (Eqs. (16.5-6)) means that the orbit of the 

planet m around the star M is the idealized or standard ellipse, which is closed and 

has no the orbital precession or the perihelion precession. Therefore, Newton’s 

planetary models of the celestial two-body system could not predict or calculate the 

orbital precession of planets or the perihelion precession of Mercury. 

So, why could not Newton’s planetary model of the celestial two-body system 

predict the perihelion precession of planets or Mercury? 

In the solar system, the precession of Mercury’s orbit is particularly prominent. 

Perhaps, it is because Mercury is closest to the sun that the non-idealized factors of 

the two-body system (Sun, Mercury) are the most prominent. Astronomical 

observation shows that Mercury’s perihelion precesses at the rate of 5600.73 per 

century. The correction calculation after considering the non-idealized factors shows 
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that the 5557.62 of it are rooted from the precession of the equinoxes and the 

perturbation of other celestial bodies. However, Newton’s planetary model of the 

idealized two-body system has no the prior knowledge or information about the 

precession of the equinoxes and the perturbation of other celestial bodies. Therefore, 

Newton’s planetary model (Eqs. (16.5-6)) could not predict and calculate the 

Mercury’s precession of the 5557.62. The rest, i.e., the precession of 43.11, might 

be attributed to observational residuals or other unknown factors, that needs to be 

further examined. 

It will contribute to our understanding of Einstein’s gravitational theory and the 

gravitational theory of OR to review Newton’s planetary model of the celestial 

two-body system. It will contribute to our understanding of Einstein’s prediction of   

Mercury’s precession of the 43.03 per century to analogize Newton’s planetary 

model with Einstein’s planetary model and the GOR planetary model. 

16.3 Einstein’s Celestial-Body Model 

Newton’s planetary mode of the idealized celestial two-body system (M,m) 

failed to predict or calculated the orbital precession of Mercury, so how could 

Einstein’s planetary model predict the orbital precession of Mercury and calculate 

the precession angle of 43.03 arc second per 100 years? 

Newton’s planetary model is derived from classical mechanics and Newton’s 

laws, and is the product of Newton’s theory of universal gravitation; Einstein’s 

planetary model is the product of Einstein’s theory of general relativity. However, 

they are both the celestial motion model of the two-body system, describing the 

motion of celestial bodies in gravitational field. Actually, with respect to the 

idealized two-body problem of celestial bodies, there is no prior knowledge or 

information about the orbital precession of planets or Mercury. Therefore, no matter 

Newton’s theory of universal gravitation, or Einstein’s theory of general relativity, 

or even the theory of GOR, could not predict or calculate the objectively orbital 

precession of planets or Mercury based on the idealized two-body model. 

Based on Einstein’s theory of general relativity, one could build the Einstein 

field equation and motion equation for the two-body problem (M,m) of celestial 

bodies. Like Newton’s motion equation of celestial bodies, Einstein’s motion 

equation of celestial bodies is also a special case of the GOR motion equation of 

celestial bodies. Under the principle of general correspondence (GC), the logic of 

Einstein’s planetary model will serve as a reference for the GOR planetary model, 

including the deduction of the motion equation of the planet m and the calculation of 

the orbital precession of the planet m. 

16.3.1 Einstein’s Two-Body Problem of Celestial Bodies 

Like Newton’s theoretical model of the celestial two-body system, Einstein’s 

theoretical model of the celestial two-body system (M,m) also contains idealized 

conditions, which can be described as follows. 

Einstein’s Two-Body System of Celestial Bodies: (M,m), the star M and the 

planet m interact through the universal gravitation between them, M produces the 
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gravitational field, and m moves in the gravitational field. 

The Idealized Conditions for Einstein’s Two-Body System: Einstein’s 

two-body system (M,m) implies the following idealized conditions. 

(i) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(ii) The isolated system: (M,m) is an isolated system, not affected by the matter 

or energy outside (M,m); both the star M and the planet m could be regarded 

as particles or mass points, M is at rest and the planet m moves in the 

gravitational field of M. 

The above idealized conditions are the same as that of the idealize conditions of 

Newton’s two-body system. However, Einstein’s celestial two-body problem does 

not contain the conditions of the idealized observation agent and the idealized 

observer, but instead of the condition of the optical observation agent and the 

condition of the optical observer. 

The Optical Agent and the Conditions of Optical Observation: In Einstein’s 

celestial two-body system (M,m), the observation agent is realistic and non-idealized, 

and there are the implied observation conditions as follows. 

(i) The optical observation agent: Einstein’s observation agent is the optical 

observation agent OA(c), the information-wave speed of OA(c) is the speed 

c of light, it takes time for OA(c) to transmit the spacetime information of 

the observed planet m to observers. 

(ii) The optical observer: the observer O employs the optical observation agent 

OA(c) to observe the planet m from the perspective of M; in theory, O is at 

rest relative to M and located at the position of zero potential. 

Newton did not realize that his theory is the theory of the idealized agent OA; 

likewise, Einstein also did not realize that his theory is the theory of the optical 

agent OA(c). The theory of OR (including IOR and GOR) has clarified that 

Einstein’s theory of relativity, including the special and the general, is that of optical 

observation. Naturally, the observation agent in Einstein’s planetary model is no 

longer the idealized agent OA of Newton’s theory of universal gravitation, but the 

optical agent OA(c) of Einstein’s theory of general relativity. The optical agent 

OA(c) has the observational locality (c<), which is the fundamental difference 

between Newton’s two-body system of celestial bodies and Einstein’s two-body 

system of celestial bodies. 

The Formalized Coordinates of Einstein’s Two-Body System: as depicted in 

Fig. 16.2, like Newton’s formalized coordinates, the motion of Einstein’s two-body 

system (M,m) is also described in both the 3d Cartesian-coordinate O(x,y,z) and the 

corresponding 3d spherical-coordinate O(r,,) (Fig. 16.2(a); Eq. (15.6)), the large 

mass celestial-body M is located at the coordinate origin O, and the small mass 

celestial-body m moves in the plane of X-Y ( =/2) (Fig. 16.2(b)). 

Like Newton’s two-body problem of celestial bodies, Einstein’s two-body 

problem of celestial bodies could also be idealized and reduced to the one-body 

problem, only examining the motion of the planet m: the star M is at rest; the 

observer O observe the planet m from the perspective of the star M. 



165 

16.3.2 Einstein’s Theory of General Relativity 

and The Two-Body System of Celestial Bodies 

After the establishment of his theory of general relativity, Einstein applied it to 

the two-body problem (M,m) of celestial bodies. Based on his weak-field 

approximate solution of the gravitational-field equation of the star M, Einstein built 

the motion equation of the planet m, and calculated that the orbital precession rate of 

Mercury was 43.03 arc second per 100 years [8]. Later, Schwarzschild obtained the 

exact solution of Einstein field equation of the static spherically-symmetric 

gravitational field in the trenches on the front line of World War I [80]. Based on the 

Schwarzschild solution, one could build the more credible celestial model of the 

two-body system (M,m), and more accurately predict celestial motion. 

For the two-body problem of celestial bodies, based on Einstein’s theory of 

general relativity, by substituting Schwarzschild solution (see Eqs. (15.7-8) in 

Chapter 15) into the line-element formula of general relativity or Einstein’s motion 

equation (the geodesics), one could build the planetary model of the two-body 

system (M,m), i.e., the motion equation of the planet m. 

Schwarzschild Line-Element Formula 

As shown in Eqs. (15.7-8), the Schwarzschild solution is the spacetime metric 

g=g(r,) in the spherical-coordinate O(r,,) form: 
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Then, the Schwarzschild line-element formula can be expressed as: 
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where both r=0 and r=2GM /c2 are the two singularities of the Schwarzschild 

line-element formula 

The Geodesics of the Planet m 

By substituting the Schwarzschild solution into Einstein’s motion equation of 

general relativity, one could get the motion equation of the two-body system of 

celestial bodies, i.e., the geodesics of the observed planet m: 
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where t is the observational time (Einstein called it the coordinate time), and  is the 

intrinsic time (Einstein called it the standard time). 

Equation (16.11) has four relations (=0,1,2,3): (i) t= t(); (ii) r=r(); (iii) 

=(); and (iv) =(). Examining each relation in Eq. (16.11) will contribute to 

our understanding of Einstein’s theoretical model of the celestial two-body system 

(M,m) and to our understanding of the planetary orbits under the optical observation 

agent OA(c). In particular, it will provide the analogy and reference for the 

deduction of the GOR motion equation of the planet m. 

Relation t= t() and the Factor of Spacetime Transformation 

Based on the Schwarzschild metric g=g(r,) [68]: 
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Let  =0, then x=x0=ct. According to Eq. (16.11): 
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By contrasting Eq. (16.11) and Eqs. (16.12-13), one could have the second-order 

differential equation of t: 
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By integrating Eq. (16.14) of t, one could get: 
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where Ct is a constant, and particularly,  =d t /d is exactly the factor of spacetime 

transformation in Einstein’s theory of general relativity. 

According to the concepts of Einstein’s general relativity, the differential 

equation (16.14) of t describes the relationship between the coordinate time t and the 

standard time , which means that the coordinate time t of the observed planet m is 

different from the standard time . Actually, the differential equation (16.14) of t has 

the more profound significance: the observation agent of Einstein’s general relativity 

is the optical agent OA(c), and the observational time t of OA(c) is different from 
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the intrinsic time or the proper time , i.e., the objectively real time. 

Relation  = () and Kepler’s Orbit Law 

Based on the Schwarzschild metric g=g(r,) [68]: 
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Let  =2, then x=x2=. According to Eq. (16.11): 
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By contrasting Eq. (16.11) and Eqs. (16.16-17), one could have the second-order 

differential equation of  : 
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Without loss of generality, suppose that, at the initial time t=0, the observed 

planet m runs in the plane of X-Y ( =/2), then: 
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Equations (16.18) and (16.19) about  mean that the orbital plane of the planet 

m is fixed and constant in Einstein’s theoretical model (Eq. (16.11)) of the two-body 

system. This is consistent with Kepler’s orbit law and Newton’s planetary model. 

Relation  = () and Kepler’s Area Law 

Based on the Schwarzschild metric g=g(r,) [68]: 
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Let  =3, then x=x3=. According to Eq. (16.11): 
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By contrasting Eq. (16.11) and Eqs. (16.20-21), one could have the second-order 

differential equation of  : 
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Since the orbital plane of a planet is fixed and constant, without loss of 

generality, suppose that the planet m runs in the plane of X-Y ( =/2), then the Eq. 

(16.22) of  could be written as follows: 
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By integrating Eq. (16.23) of  , one could get: 

 2 d

d
Kr h const




 =  (16.24) 

where the velocity moment hK=L/m of the planet m is a constant, and naturally, the 

angular momentum L=mhK of the planet m is also a constant. 

Equation (16.24) is exactly the area law (Eq. (16.3)) of Kepler’s three laws as 

shown in Fig. 16.1(c): the area swept out by the radius vector r (r=|r|) of the planet 

m per unit time is the same or equal. Essentially, Eq. (16.24) is the conservation law 

of angular momentum: L=rmv is constant. (It is worth noting that here the mass m of 

the planet is the gravitational mass, or the intrinsic mass of the planet m, rather than 

the relativistic mass.) 

It should be pointed out that, in Newton’s motion equation (Eq. (16.3) and Eq. 

(16.5)) of the planet m, Kepler’s area law is expressed as r2d /dthK, where the 
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time t seems to be the observational time or coordinate time, rather than the intrinsic 

time or standard time . Some physicists believe that there is a slight difference 

between the velocity moment constant hKr2d /d in Kepler’s laws or Newton’s 

classical mechanics and the velocity moment constant hKr2d /dt in Einstein’s 

theory of generalized relativity [68]. However, as a matter of fact, Kepler’s three laws 

of planetary motion, like Newton’s laws, are the laws of the idealized observation 

agent OA. According to the Lemma 13.1 of the theorem of Cartesian spacetime in 

Chapter 13, the observational time t of OA is just the intrinsic time  : dt=d. 

Therefore, Kepler’s area law and that (r2d /dthK in Eq. (16.3)) derived from 

Newton’s laws, as well as that (r2d /dhK in Eq. (16.24)) derived from Einstein’s 

theory of general relativity, are the same or equivalent. 

Relation r=r() and the Orbital Equation of the Planet 

Based on the Schwarzschild metric g=g(r,) [68]: 

 

( )

( )

1 1 1 1

0 12 13 23

1

00 00 11

1

11

1

22

1 2

33

0

1 d
e e , e

2 d

1 d

2 d

e

sin e

i

g g
r

r

r

r

   





   





  



 

−

−

−

 = = = =

 = = = −


 = = −



= −
 = −

 (16.25) 

Let  =1, then x=x1=r. According to Eq. (16.11): 
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By contrasting Eq. (16.11) and Eqs. (16.25-26), one could have the second-order 

differential equation of r: 
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According to the Schwarzschild line-element formula (16.10): 
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Thus, Eq. (16.27) could be rewritten as 
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Since the orbital plane of the planet m is fixed and constant, without loss of 

generality, suppose that the planet m runs in the plane of X-Y ( =/2), then: 
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Equation (16.30) is the theoretical model of the celestial two-body system (M,m) 

based on the Einstein’s theory of general relativity, i.e., Einstein’s motion equation 

of the planet m, which is the second-order nonlinear differential equation of the 

radius vector r (r=|r|) and angle  of the planet m with respect to the standard time , 

where suppose the orbital plane of the planet m is: X-Y  ( =/2). 

16.3.3 The Binet form 

of Einstein’s motion Equation of the Planet 

Usually, the 3d-space motion trajectory of an object can be expressed by a set of 

spherical-coordinate equations: (i) r=r(t); (ii) =(t); and (iii) =(t). However, for 

a central force (such as gravity or universal gravitation), the motion plane of the 

object is fixed or constant, and the motion equation can be reduced to: r=r(t) and 

=(t); and moreover, the angular momentum L=hKm is conserved, and hence, the 

differential of  with respect to the time t can be eliminated by d /dt=hK /r2. Then, 

one can transform Eq. (16.30) to the second-order differential equation of the 

reciprocal u (=1/r): d2r/d2=u(), that is, the Binet form of Einstein’s motion 

equation of the planet m, like Eq. (16.4). 

According to Eq. (16.24): r2d /dhK, Eq. (16.30) could be rewritten as 
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By following the logic of Binet equation, let u=1/r, then d /d=hK /r2=hKu2, 

and from Eq. (16.30), it follows that 
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By substituting Eq. (16.32) into Eq. (16.31), one could get that 
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This is the Binet form of Einstein’s equation of planetary motion. 

Equation (16.33) is a second-order nonlinear differential equation of u (=1/r) 

with respect to  , which contains both the information of the radius vector r (r=|r|) 

of the planet orbit and the angle   of the planet orbit. 

By contrasting with the Binet form of Newton’s equation (Eq. (16.5)) of 

planetary motion, we know that the Binet form of Einstein’s equation (Eq. (16.33)) 

of planetary motion has one more term on the right: 3GM/c2r2. 

This suggests that Einstein’s equation (16.33) of planetary motion: 

(i) is a nonlinear differential equation; 

(ii) is a non-standard conic curve, in which 3GM/c2r2 is the precession term of 

planetary orbit, so the orbit of the observed planet m is no longer a standard 

or closed ellipse, and the planetary orbit would precess slowly. 

16.3.4 Einstein’s motion Equation of the Planet 

and the Orbital Precession of the Planet 

Based on Einstein’s motion equation of the planet, one could predict or calculate 

the orbital precession of the planet by solving Einstein’s planetary equation (16.33). 

As far as the general planets in the solar system are concerned, the term of 

3hK
2/c2r2  (<<1) in Einstein’s planetary equation is a small quantity. Regardless of 

the term of 3hK
2/c2r2 , Einstein’s planetary equation (16.33) reduces to Newton’s 

planetary equation (16.5). As a result, one could get the planetary orbit of the conic 

curve as shown in Eq. (16.6), in which, for the planet bound by the star, the orbital 

eccentricity of it is 0<e<1. 

The orbital eccentricity of Mercury is 0.206, which is the largest among all the 

planets in the solar system. 

Since 3hK
2/c2r2  (<<1) is a small quantity, one could employ the progressive 

approximation method to solve Einstein’s planetary equation (16.33) of motion [68]. 

Substituting Eq. (16.6) into Eq. (16.33): 
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Solving the differential equation (16.34), one has: 
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At the perihelion of the planet m, naturally, du/d=0. Therefore, by taking the 

derivative of u with respect to  at both ends of Eq. (16.35), one has: 
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Regardless of  cos, then 
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So, sin =0, or  =arcsin =2k (k=0,1,2,…). 

This means that, without  cos like Newton’s motion equation of the planet, 

the orbit of the planet would be a closed ellipse and have no the orbital precession. 

Consider  cos . Let  be the orbital precession angle of the planet m per 

revolution. Let k=1, that is, the planet m orbits the star M for one cycle, as depicted 

in Fig. 16.1(d): the planet m starts from the perihelion P and travels to the next 

perihelion P. Then, the scanning angle of the planet m should be  =2 +. 

Substituting  =2 + into Eq. (16.36) and ignoring high-order small quantities, 

then it follows that: 
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K
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c h


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According to the recommendations of the International Standards Organization: 

The speed of light: c=2.9979245108 ms−1 

The universal gravitational constant: G=6.6743010−11 m3kg−1s−2 

The mass of the sun: M=1.988471030 kg 

The mass of Mercury: m=3.3011023 kg 

The orbital angular momentum of Mercury: L=8.98251038 kgm2s−1 

The velocity moment of Mercury: hK=L/m=2.72111015 m2s−1 

According to Eq. (16.38), one could calculate the orbital precession of Mercury 

during one revolution: 

 ( ) ( )
2 2

6

2 2
3.888 10 arc sec 0.1029 arc sec

K

G M

c h
 =   =  (16.39) 

Mercury’s orbital period is TM=87.961 day; the earth’s orbital period is 

TE=365.24219 day. So, every 100 earth years, Mercury’s orbit would precess 

 =100TE /TM=42.77 arc seconds. 
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The precession angle of Mercury’s perihelion calculated by Einstein at that time 

was 43.03, which was extremely consistent with the 43.11 that has not yet found 

out the attribution. In a letter to a friend, Einstein said: “The equation gives the 

correct numbers for Mercury’s perihelion. You could imagine how happy I am. I 

couldn’t help but be happy for several days.” 

However, astronomical observation shows that the orbital precession rate of 

Mercury is 5600.73 arc second per 100 years, which is far greater than that predicted 

by Einstein’s theory of general relativity. Einstein’s theory of general relativity 

could only predict the Mercury’s precession of about 43, which is far from the 

actual observation, less than 1%. So, such a 43.03 is far from being employed to 

determine that Einstein’s theory of general relativity can correctly predict the orbital 

precession of planets. 

16.3.5 What does Einstein’s 43.03 Mean? 

There are two problems worth pondering about Einstein’s prediction of the 

orbital precession of Mercury: 

(i) Now that Einstein’s theory of general relativity can predict the 43.11 that 

has not yet found out the attribution in the actual orbital precession of 

Mercury’s 5600.73, why cannot Einstein predict the rest 5557.62? 

(ii) It is known that there is the 532 per 100 years of Mercury’s perihelion 

procession caused by the perturbation of other celestial bodies to Mercury. 

Then, what factors should be responsible for the 43.03 of Mercury’s 

perihelion precession predicted by Einstein’s theory of general relativity? 

First of all, no matter Newton’s motion equation (16.5) or Einstein’s motion 

equation (16.33), it is impossible to predict the orbital precession of planets caused 

by the precession of the equinoxes and the perturbation of other celestial bodies, for 

both Newton’s planetary model and Einstein’s planetary model have no prior 

information about the precession of the equinoxes and the perturbation of other 

celestial bodies. 

Secondly, Einstein’s planetary model (Eq. (16.33)) has the orbital precession 

term 3hK
2/c2r2  of planets; while Newton’s planetary model (Eq. (16.5)) has no the 

perihelion precession term of planets. This difference could only be attributed to the 

different prerequisites of Newton’s celestial two-body problem and Einstein’s 

celestial two-body problem. As a matter of fact, the difference between Newton’s 

two-body problem (M,m) and Einstein’s two-body problem (M,m) lies only in the 

observation agents: Newton’s observation agent is the idealized agent OA without 

the observational locality, it takes no time for the spacetime information of the 

planet m to cross space; Einstein’s observation agent is the optical agent OA(c) with 

the observational locality (c<), and therefore, it takes time for the spacetime 

information of the planet m to cross space. As shown in Eq. (16.33) and Eq. (16.38), 

the orbital precession term 3hK
2/c2r2  of the planet m in Einstein’s planetary model 

(Eq. (16.33)) and the orbital precession angle  =(c) (Eq. (16.38)) predicted by 

Einstein’s planetary model depend both on the speed c of light. 

Perhaps, the 43.03 precession of Mercury’s perihelion predicted by Einstein’s 
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is exactly the 43.11 that has not yet found out the attribution in the astronomical 

observation of Mercury’s 5600.73 precession. So, that is not so much the support 

for Einstein’s theory of general relativity as the support for the theory of GOR: 

Einstein’s 43.03 is only an observational effect or an apparent phenomenon rooted 

from the observational locality (c<) of the optical agent OA(c). 

The theory of GOR will tell us that, in Einstein's planetary model (Eq. (16.33)), 

the orbital precession term 3hK
2/c2r2  does not represent the objective and real orbital 

precession of the observed planet, but the apparent phenomenon rooted from the 

observational locality (<) of the observation agent OA(). 

16.4 The GOR Celestial-Body Model 

Like Newton’s celestial-body model and Einstein’s celestial-body model, the 

GOR celestial-body model also belongs to the two-body problem of celestial bodies, 

and is the idealized model of the celestial two-body system (M,m). 

The theoretical model of the GOR celestial two-body system (M,m) will be 

deduced from the GOR field equation and GOR motion equation under the principle 

of general correspondence (GC). Naturally, in the sense of the principle of GC, the 

GOR motion equation of the observed planet m must be isomorphically consistent 

with Einstein’s motion equation of the observed planet m. 

However, it is somewhat surprising that the GOR motion equation of the 

observed planet m also is isomorphically consistent with Newton’s motion equation 

of the observed planet m, which is based on Newton’s laws and classical mechanics. 

16.4.1 The GOR Two-Body Problem of Celestial Bodies 

The GOR planetary model, like Newton’s and Einstein’s, also belong to the 

two-body problem (M,m) of celestial bodies, and could be reduced to the celestial 

one-body problem. like Newton and Einstein’s planetary models, the GOR planetary 

model also contains the idealized conditions, and has no prior information that 

contributes to predicting or calculating the orbital precession of planets, such as the 

precession of the equinoxes and the perturbation of other celestial bodies. 

Like Newton and Einstein’s theoretical models of the celestial two-body system, 

the idealized conditions of the GOR theoretical model of the celestial two-body 

system (M,m) can also be described as follows. 

The GOR Two-Body System of Celestial Bodies: (M,m), the star M and the 

planet m interact through the universal gravitation between them, M produces the 

gravitational field, and m moves in the gravitational field. 

The Idealized Conditions for the GOR Two-Body System: The GOR celestial 

two-body system (M,m) implies the following idealized conditions. 

(i) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(ii) The isolated system: (M,m) is an isolated system, not affected by the matter 

or energy outside (M,m); both the star M and the planet m could be regarded 

as particles or mass points, M is at rest and the planet m moves in the 
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gravitational field of M. 

The above idealized conditions are the same as that of the idealize conditions of 

Newton and Einstein’s two-body systems. The difference is that, in the GOR 

celestial two-body system (M,m), the observation agent is the general observation 

agent OA() (0<<). 

The General Agent and the Conditions of General Observation: In the GOR 

celestial two-body system (M,m), the observation agent is the general observation 

agent OA(), rather than a specific observation agent. 

(i) The general observation agent: The GOR observation agent is the general 

observation agent OA() (v), in theory, any form of matter motion could 

be employed as the observation medium, the information-wave speed  of 

OA() should be higher than or equal to the speed v of the observed 

celestial body m. 

(ii) The general observer: the observer O employs the general observation agent 

OA() (v) to observe the planet m from the perspective of M; in theory, 

O is at rest relative to M and located at the position of zero potential. 

The GOR hypotheses of observation agents are reasonable: as stressed 

repeatedly in the theory of OR, the observation medium through which human 

beings perceive or observe the objective world may not necessarily be light alone. 

The Formalized Coordinates of the GOR Two-Body System: as depicted in 

Fig. 16.2, like Newton and Einstein’s formalized coordinates, the motion of the 

GOR two-body system (M,m) is also described in both the 3d Cartesian-coordinate 

O(x,y,z) and the corresponding 3d spherical-coordinate O(r,,) (Fig. 16.2(a); Eq. 

(15.6)), the large mass celestial-body M is located at the coordinate origin O, and the 

small mass celestial-body m moves in the plane of X-Y ( =/2) (Fig. 16.2(b)). 

Based on the above idealized conditions or hypotheses of the GOR two-body 

problem (M,m) of celestial bodies, under the principle of GC, through both PGC 

logic route 1 and PGC logic route 2, we will deduce the GOR celestial-body model 

or the GOR motion equation of the observed planet m by analogizing or following 

the logic of Einstein’s celestial-body mode. 

16.4.2 The Theory of GOR 

and The Two-Body System of Celestial Bodies 

In Sec. 15.3 and Sec. 15.4 of Chapter 15, we have obtained the vacuum solution 

of GOR field equation for the static spherically-symmetric gravitational field, 

including the approximate and the exact. For the two-body problem (M,m) of 

celestial bodies, based on the theory of GOR, by substituting the exact solution (see 

Eqs. (15.31-32) in Chapter 15) of GOR field equation into the GOR line-element 

formula or the GOR motion equation (the geodesics), we can build the planetary 

model of the two-body system (M,m), i.e., the motion equation of the planet m. 

The GOR Line-Element Formula of the Planet 

As shown in Eqs. (15.31-32), the exact solution of GOR field equation is the 

spacetime metric g=g(,r,) in the spherical-coordinate O(r,,) form: 
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Then, the GOR line-element formula can be expressed as: 
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where r=0 and r=2GM /c2 are the singularities of the GOR line-element formula 

The GOR Geodesics of the Planet m 

By substituting the exact solution of GOR field equation into the GOR motion 

equation, we get the GOR motion equation of the two-body system (M,m) of 

celestial bodies, i.e., the geodesics of the observed planet m: 
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where t is the observational time, and  is the intrinsic time (proper time). 

Like Einstein’s motion equation (Eq. (16.11)) of the planet m, Eq. (16.42) also 

has four relations (=0,1,2,3): (i) t= t(), (ii) r=r(), (iii) =(), and (iv) =(), 

in which t= t() is the time equation, while r=r(), =(), and =(), are the 

space equations. 

16.4.3 Relation t=t() 

and the Factor of Spacetime Transformation 

Based on the GOR metric g=g(,r,) in Eq. (16.40) [68]: 
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Let  =0, then x=x0=t. According to Eq. (16.42): 
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By contrasting Eq. (16.42) and Eqs. (16.43-44), we have the second-order 

differential equation of t: 
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By integrating Eq. (16.45) of t, we get: 
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where Ct is a constant, and particularly,  ()=d t /d is exactly the GOR factor of 

spacetime transformation in the theory of GOR. 

According to the concepts of GOR theory, the differential equation (16.45) of t 

describes the relationship between the observational time t and the intrinsic time . 

Equation (16.45) suggests that the observational time t of OA() is different from 

the intrinsic time or the proper time , i.e., the objectively real time. 

16.4.4 Relation  = () and Kepler’s Orbit Law 

Based on the GOR metric g=g(,r,) in Eq. (16.40) [68]: 
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Let  =2, then x=x2=. According to Eq. (16.42): 
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By contrasting Eq. (16.42) and Eqs. (16.47-48), we have the second-order 

differential equation of  : 
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Without loss of generality, suppose that, at the initial time t=0, the observed 

planet m runs in the plane of X-Y ( =/2), then: 
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Equations (16.49) and (16.50) about  mean that the orbital plane of the planet 

m is fixed and constant in Einstein’s theoretical model (Eq. (16.42)) of the two-body 

system. This is consistent with Kepler’s orbit law, as well as, with Newton’s 

planetary model and Einstein’s planetary model. 

16.4.5 Relation  = () and Kepler’s Area Law 

Based on the GOR metric g=g(,r,) in Eq. (16.40) [68]: 
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Let  =3, then x=x3=. According to Eq. (16.42): 
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By contrasting Eq. (16.42) and Eqs. (16.51-52), we have the second-order 

differential equation of  : 
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Since the orbital plane of a planet is fixed and constant, without loss of 

generality, suppose that the planet m runs in the plane of X-Y ( =/2), then the Eq. 

(16.53) of  could be written as follows: 
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By integrating Eq. (16.54) of  , we get: 

 2 d

d
Kr h const




 =  (16.55) 

where the velocity moment hK=L/m of the planet m is a constant, and naturally, the 

angular momentum L=mhK of the planet m is also a constant. 

Equation (16.55) is exactly the area law (Eq. (16.3)) of Kepler’s three laws as 

shown in Fig. 16.1(c): the area swept out by the radius vector r (r=|r|) of the planet 

m per unit time is the same or equal. Essentially, Eq. (16.55) is the conservation law 

of angular momentum: L=rmv is constant. (It is worth noting that here the mass m of 

the planet is the gravitational mass, or the intrinsic mass of the planet m, rather than 

the relativistic mass.) 

This is consistent with the conclusion of Newton’s planetary model and 

Einstein’s planetary model. In particular, it suggests that, like Newton’s planetary 

model and Einstein’s planetary model, the GOR planetary model can also deduce 

Kepler’s area law. 

16.4.6 Relation r=r() and the Planetary Orbit 

Based on the GOR metric g=g(,r,) in Eq. (16.40) [68]: 



179 

 

( )

( )

1 1 1 1

0 12 13 23

1

00 00 11

1

11

1

22

1 2

33

0

1 d
e e , e

2 d

1 d

2 d

e

sin e

i

g g
r

r

r

r

   





   





  



 

−

−

−

 = = = =

 = = = −


 = = −



= −
 = −

 (16.56) 

Let  =1, then x=x1=r. According to Eq. (16.42): 
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By contrasting Eq. (16.42) and Eqs. (16.56-57), we have the second-order 

differential equation of r: 
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According to the GOR line-element formula (16.41): 
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Thus, Eq. (16.58) can be rewritten as 
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Since the orbital plane of the planet m is fixed and constant, without loss of 

generality, suppose that the planet m runs in the plane of X-Y ( =/2), then: 
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Equation (16.61) is the GOR theoretical model of the celestial two-body system 

(M,m) based on the theory of GOR, i.e., the GOR motion equation of the planet m, 

which is the second-order nonlinear differential equation of the radius vector r (r=|r|) 

and angle  of of the planet m with respect to the standard time , where suppose the 

orbital plane of the planet m is: X-Y  ( =/2). 

16.4.7 The Binet form 

of the GOR motion Equation of the Planet 
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According to Eq. (16.55): r2d /dhK, Eq. (16.61) can be rewritten as 
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r r r 
= − + −  (16.62) 

Actually, the GOR theoretical model (Eq. (16.62) of the two-body system (M,m) 

of celestial bodies is the contraction of the spatial equations r=r(), =() and 

=() in the GOR motion equation (16.42) of the planet m, in which  =/2 and 

d /dhK /r2. 

However, Eq. (16.62) is a second-order nonlinear differential equation of the 

radius vector r (r=|r|) with respect to the proper time , which lacks the information 

about the angle  of the planet orbit, could not be independently employed as the 

theoretical model of the celestial body two-body system (M,m), and could not 

independently describe the motion of the planet m. Generally, including classical 

celestial mechanics and Einstein’s theory of general relativity, the theoretical model 

of celestial two-body system tends to be expressed in the form of Binet equation. 

By following the logic of Binet equation, let u=1/r, then d /d=hK /r2=hKu2, 

and from Eq. (16.61), it follows that 
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By substituting Eq. (16.63) into Eq. (16.62), we get that 
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where G is the gravitational constant, M is the mass of the star, r (r=|r|) is the radius 

vector of the star M pointing to the planet m, hK=r2d /d is the velocity moment of 

the planet m running around the star M,  is the information-wave speed of the 

general observation agent OA(), and u=u() can be regarded as the running 

trajectory of the planet m. 

This is the Binet form of the GOR equation of planetary motion. 

By contrasting with the Binet form of Einstein’s equation (Eq. (16.33)) of 

planetary motion, we know that the Binet form of the GOR equation (Eq. (16.64)) of 

planetary motion also has one more term on the right: 3GM/2r2. 

This suggests that the GOR equation (16.64) of planetary motion: 

(i) is a nonlinear differential equation; 

(ii) is a non-standard conic curve, in which 3GM/2r2 is the precession term of 

planetary orbit, so the orbit of the observed planet m is also a non-standard 

and non-closed ellipse, and the planetary orbit would precess slowly. 

It is worth pointing out that the objectively physical world is unique. So, the 

objectively real orbit of a planet must be definite: either precessing or not. 

However, the orbital precession term 3GM/2r2 in Eq. (16.64) completely 

depends on the observation agent OA() and the information-wave speed  of 
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OA(): under different observation agents, the same planet presents different 

degrees of orbital precession. This fact suggests that the orbital precession term 

3GM/2r2 in Eq. (16.64) does not represent the objective and real precession of the 

planet’s perihelion, but the observational effect of OA() due to <. 

It is thus clear that what is observed may not necessarily be objective and real, 

unless the observer O could employ the idealized observation agent OA (→) to 

observe the objectively physical world. 

16.5 The GOR Prediction for Planetary Precession 

Newton’s motion equation (16.5) of the planet m has no the orbital precession 

term. Einstein’s motion equation (16.33) of the planet m contains the orbital 

precession term: 3GM/c2r2; the GOR motion equation (16.64) contains the orbital 

precession term: 3GM/2r2. Einstein’s planetary precession depends on the speed 

light c, while the GOR planetary precession depends on the information-wave speed 

 of the observation agent OA(). Here OA() is the general observation agent. In 

theory, the observation medium of OA() could be any form of matter motion or 

any matter wave, and the speed  of transmitting observed information could be any 

speed of matter motion or matter wave. 

Under the principle of GC, through PGC logic route 1 or through PGC logic 

route 2, by analogizing or following Einstein’s logic for solving Einstein’s motion 

equation (16.33) of the planet m (see Sec. 16.3.4), we can solve the differential 

equation (16.64) of the GOR motion equation of the planet m, and get that: 
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At the perihelion of the planet m, naturally, du/d=0. Therefore, by taking the 

derivative of u with respect to  at both ends of Eq. (16.65), we have: 
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Regardless of  cos, then 
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So, sin =0, or  =arcsin =2k (k=0,1,2,…). 

This means that, if without  cos, then, like Newton’s motion equation of the 

planet, the GOR orbit of the planet would also be a closed ellipse and have no the 

orbital precession. 

Consider  cos . Let  be the orbital precession angle of the planet m per 

revolution. Let k=1, that is, the planet m orbits the star M for one cycle, as depicted 
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in Fig. 16.1(d): the planet m starts from the perihelion P and travels to the next 

perihelion P. Then, the scanning angle of the planet m should be  =2 +. 

Substituting  =2 + into Eq. (16.66) and ignoring high-order small quantities, 

then it follows that: 
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where  is the information-wave speed of the general observation agent OA(), in 

theory, can be any speed, not necessarily the speed light c. 

It is possible for the GOR equation (16.68) in the theory of GOR to predict or 

calculate both Newton’s planetary orbit precession and Einstein’s planetary orbit 

precession. According to the GOR planetary-precession equation (16.68): 
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As shown in Eq. (16.69), under the idealized agent OA, as →, =0: the 

planet has no the orbital precession, which is consistent with the conclusion of 

Newton’s planetary mode; under the optical agent OA(c), as →c, the GOR 

planetary-precession equation (16.68) reduces to Einstein’s planetary-precession 

equation (16.38), (c)>0: Mercury’s orbital precession is 0.1029 arc second per 

revolution, or 42.77 arc second per century, which is consistent with the conclusion 

of Einstein’s planetary model. 

Observing the orbital precession term 3GM/2r2 of the GOR motion equation 

(16.64), we know that the precession of a planet’s perihelion presented by the 

theoretical model of the GOR celestial two-body system depends on the observation 

agent OA() and the speed of observation medium transmitting the spacetime 

information about planetary motion: under the different observation agents, the same 

planet would exhibit different degrees of orbital precession. This fact suggests that 

the planetary orbital precession predicted by the idealized model of GOR celestial 

two-body system, for instance, that predicted by the idealized model of Einstein’s 

celestial two-body system, is not the objective and real planetary precession. In 

essence, it is the observation effect of the observation agent OA(): an apparent 

phenomenon caused by the observational locality (<) of the observation agent 

OA(), which would disappear under the idealized agent OA. 

The theory of Observational Relativity (OR, including IOR and GOR) has 

clarified that all relativistic effects, including the special (inertial) and the general 

(gravitational), are observational effects and apparent phenomena, the root and 

essence lie in the observational locality (<) of the observation agent OA(). The 

time dilation in Einstein’s special relativity is an optical observation effect, and the 

planetary precession in Einstein’s general relativity is also an optical observation 

effect, rooted from the observational locality (c<) of the optical agent OA(c). In 
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terms of the observational effects caused by the observational locality (<) of the 

observation agent OA(), the root and essence of the orbital precession in the 

planetary models of the idealized two-body system is the same as that of the time 

dilation as a relativistic effect in the theory of relativity. The observational or 

observed time would dilate; likewise, the observational or observed precession rate 

of planetary orbits would also dilate. 

The theory of GOR does not doubt the existence of the actual orbital precession 

of planets. Actually, restricted by various non-idealized factors, the orbit of any 

celestial body could not be the idealized or standard conic curve, and even could not 

be fixed to a specific plane. 

However, as stressed repeatedly in the theory of OR, the theoretical model of the 

idealized two-body system (M,m) of celestial bodies, no matter Newton’s or 

Einstein’s, or that of the theory of GOR, has no the prior information about the 

orbital precession of planets, for example, the precession of the equinoxes and the 

perturbation of other celestial bodies, as well as, the non-idealized factors of the sun. 

So, no matter based on Newton’s theory of universal gravitation, or on Einstein’s 

theory of general relativity, or on the theory of GOR, the theoretical model of the 

idealized two-body system (M,m) of celestial bodies could not predict or calculate 

the actual orbital precession of planets. 

16.6 The Unity of Celestial-Motion Theories 

The motion of celestial bodies in the universe has stimulated human infinite 

curiosity. The theory of celestial motion explores how celestial bodies move, what 

laws celestial bodies follow to move, and what forces drive celestial bodies to move. 

The motion of celestial bodies in the universe is rooted from the gravitational 

interaction rather than from the so-called spacetime curvature: it is the universal 

gravitation that drives the celestial bodies in the universe to move. 

As far as gravitational interaction is concerned, there are two great theoretical 

systems in physics: the first is Newton’s theory of universal gravitation [81]; the 

second is Einstein’s the theory of general relativity [8]. Therefore, the theory of 

celestial motion could also be divided into two major theoretical systems: Newton’s 

theory of celestial motion and Einstein’s theory of celestial motion. Newton’s theory 

of celestial motion is naturally the product of classical mechanics and Newton’s 

theory of universal gravitation; while Einstein’s theory of celestial motion is 

naturally the product of Einstein’s theory of general relativity. Beyond doubt, for 

humanity’s physics, the unification of Newton’s classical theory of celestial motion 

and Einstein’s relativistic theory of celestial motion must be of great significance. 

The theory of Observational Relativity (OR, including IOR and GOR) has 

generalized and unified the physical theories or models of all observational agents, 

including Newton’s classical mechanics of the idealized agent OA and Einstein’s 

relativity theory of the optical agent OA(c). As the theoretical system of OR 

gradually unfolds, the characteristics of IOR and GOR generalizing and unifying the 

physical theories or models of all observational agents will be more and more fully 

displayed. In the theory of IOR, the IOR spacetime transformation (i.e., so-called the 
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general Lorentz transformation) has generalized and unified the Galilean 

transformation and the Lorentz transformation. In the theory of GOR, the GOR 

gravitational-field equation has generalized and unified Newton’s field equation (i.e. 

the Poisson-equation form of Newton’s law of universal gravitation) and Einstein’s 

field equation; the GOR motion equation has generalized and unified Newton’s 

motion equation (i.e., the Newton second-law form of Newton’s law of universal 

gravitation) and Einstein’s motion equation. Now, the GOR theory of celestial 

motion has generalized and unified Newton’s classical theory of celestial motion 

and Einstein’s relativistic theory of celestial motion. 

The universe is the sum of all celestial bodies or everything, which is beyond 

doubt enormous and complex. So, both Newton’s theory of universal gravitation and 

Einstein’s theory of general relativity do their best to idealize and simplify the 

problem of celestial motion, and reduce it to the Many-body problem of celestial 

bodies, the three-body problem, the two-body problem, or even the one-body 

problem, as stated in Sec. 16.2 and Sec. 16.3 of this chapter. 

According to the theory of GOR, this chapter builds up the theoretical model of 

the GOR two-body system (M,m) of celestial bodies (Eq. (16.64)), that is, the GOR 

motion equation of the observed planet m. The GOR theoretical model of the 

celestial two-body system represents the GOR theory of celestial motion, that is, a 

new theory of celestial motion, and provides new insights into astrophysics, 

including new interpretations for Newton’s theory of celestial motion and Einstein’s 

theory of celestial motion, as well as, the new understanding of astronomical 

phenomena such as planetary precession. 

More importantly, The GOR theoretical model of the celestial two-body system 

(Eq. (16.64)) has generalized and unified Newton’s theoretical model of the celestial 

two-body system (Eq. (16.5)) and Einstein’s theoretical model of the celestial 

two-body system (Eq. (16.33)). 

As shown in equation (16.64): 
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 (16.70) 

under the optical agent OA(c), as →c, the GOR motion equation (16.64) of the 

planet strictly reduces to Einstein’s motion equation of the planet (16.33); under the 

idealized agent OA, as →, the GOR motion equation (16.64) of the planet 

strictly reduces to Newton’s motion equation (16.5) of the planet. 

As stated above, Newton’s planetary model is derived from classical mechanics 

and Newton’s laws, especially from Newton’s law of universal gravitation; while 

Einstein’s planetary model is derived from Einstein’s theory of general relativity, 
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especially based on Einstein’s field equation and Einstein’s motion equation. 

However, both Newton’s planetary model and Einstein’s planetary model have the 

strict corresponding relationship of isomorphic consistency with the GOR planetary 

model, and therefore, they have both been generalized and unified into the 

theoretical model of the GOR two-body system of celestial bodies. Thus, both 

Newton’s planetary model from Newton’s classical mechanics and Einstein’s 

planetary model from Einstein’s relativity theory are only special cases of the GOR 

planetary model, serving the respective observation agents: Einstein’s theory of 

celestial motion is the product of the optical agent OA(c), under the optical agent 

OA(c), the astronomical observation must be more consistent with Einstein’s theory 

of celestial motion; Newton’s theory of celestial motion is the product of the 

idealized agent OA, under the idealized agent OA, the astronomical observation 

would be more consistent with Newton’s theory of celestial motion, and particularly, 

more consistent with the objectively physical reality. 

The theoretical model of the GOR two-body system of celestial bodies has 

generalized and unified Newton’s theoretical model of celestial two-body system 

and Einstein’s theoretical model of celestial two-body system. This means that: the 

GOR planetary model is logically consistent with both Newton’s planetary model 

and Einstein’s planetary model; and at the same time, confirms the theoretical 

validity of the GOR planetary mode and even the theory of GOR. 
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17 GOR and Gravitational Deflection 

This chapter continues to examine and test the theory of GOR with Einstein’s 

three major scientific predictions. 

This time it the problem of the gravitational redshift of light. 

The problem of the gravitational deflection of light, like the problem of the 

orbital precession of planets stated in Chapter 16, can be reduced to the two-body 

problem of celestial bodies (M,m): the sun M produces the gravitational field; the 

photon m moves in the gravitational field of the sun M. 

Aimed at the problem of the gravitational deflection of light and Einstein’s 

prediction of the gravitational deflection of light, this chapter will apply the GOR 

field equation and the GOR motion equation of to build the theoretical model of the 

two-body system (M,m), that is, the GOR motion equation of the observed photon m. 

Under the principle of general correspondence (GC), through both PGC logical route 

1 and PGC logical routs2, by analogizing or following the logic of Einstein’s theory 

of general relativity, the theory of GOR attempts to deduce the GOR motion 

equation of the photon (m) sweeping over the surface of the sun (M). 

The GOR motion equation of the photon m sweeping over the surface of the star 

M will be analogized or contrasted with the Newton and Einstein’s models of 

photons in gravitation field, so that we can test or verify the theory of GOR and the 

GOR motion equation of photons in gravitation field, reexamine the gravitational 

deflection of light and the corresponding gravitational-relativistic effect, and then, 

reveal why Newton’s prediction gravitational deflection is different from Einstein’s 

prediction of gravitational deflection. 

17.1 On the Gravitational Deflection of Light 

The gravitational deflection of light is one of the three famous predictions made 

by Einstein for testing and verifying his theory of general relativity, which means 

that, since gravitational spacetime is curved, the light must be curved or deflected in 

a gravitational field: the light beam sweeping past the sun must be curved. 

Originally, the prediction of the gravitational deflection of light was proposed by 

Einstein based on the principle of equivalence before the formal establishment of his 

theory of general relativity. 

The Principle of Equivalence: Inertial force and gravitational force, or inertial 

field and gravitational field, are locally equivalent, and have local indiscernibility 

for all physical observations and experiments. 

As depicted in Fig. 17.1(a), a spacecraft is flying in space, and a beam of light is 

perpendicular to the longitudinal axis Y of the intrinsic-coordinate O(X,Y) of the 

spacecraft and enters from the left window of the spacecraft. 

The kinematical equation of the light beam or photons in O(X,Y) is: 



187 

 
0

2

0 0

1

2

x X ct

y Y v t at

= +



= − −

 (17.1) 

where t=0 when the light passes through the window aperture, (X0,Y0) is the 

coordinate of the window aperture, v0 is the initial speed of the spacecraft, a=|a | is 

the acceleration of the spacecraft, and c is the speed of light in vacuum. 

 

Figure 17.1 Equivalence Principle and Gravitational Deflection: According to Einstein’s 

equivalence principle, the astronaut in the space capsule could not distinguish whether the 

spacecraft is in an accelerated state a or in a gravitational field g (=−a). (a) Light emitted into a 

spacecraft: The light or photons enters from the left window aperture into the spacecraft; in the 

astronaut’s view, if the spacecraft at rest relative to the light source, then the light beam is 

horizontal and straight; if the spacecraft at a uniform speed, then the light beam is still straight, 

but slightly tilted; if the spacecraft accelerated, then the light beam appears somewhat curved. (b) 

Light sweeping past of a celestial body: According to Einstein’s equivalence principle, if the 

astronaut is located on the surface of the celestial body (with the gravitational field g of it), then in 

his or her view, the light beam sweeping over the surface of the celestial body must be curved, 

just like the case of the spacecraft in an accelerating state. 

According to Eq. (17.1), generally, in the intrinsic-coordinate O(X,Y) of the 

spacecraft, that is, in the view of the astronaut in capsule, the trajectory the light or 

photons is a quadratic curve like a projectile flying on the earth’s surfaces: 
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According to Eqs. (17.1-2), as depicted in Fig. 17.1(a), in the astronaut’s view: 

(i) if the spacecraft at rest relative to the light source (Fig. 17.1(a1)), the light beam 

is a horizontal straight line; (ii) if the spacecraft at a uniform speed (Fig. 17.1(a2)), 

the light beam is still a straight line, but slightly tilted; (iii) if the spacecraft 

accelerated (Fig. 17.1(a3)), the light beam appears to be slightly curved. 

According to Einstein’s equivalence principle, inertial force is locally equivalent 

to gravitational force, and inertial field is locally equivalent to gravitational field. So, 
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the astronaut could not determine whether the spacecraft is in an accelerated state (a) 

or in a gravitational field (g=−a). 

Therefore, as depicted in Fig. 16.1(b), if the astronaut is located on the surface 

of a celestial body or in a gravitational field (g), then in the astronaut’s view, a light 

beam that sweeps over the surface of the celestial body must be curved, just like the 

case of the spacecraft in an accelerating state (a). This is the gravitational deflection 

of light predicted by Einstein based on the principle of equivalence. 

It should be pointed out that Einstein believed that the gravitational deflection of 

light was caused by the curvature of gravitational spacetime, and that the curvature 

of gravitational spacetime was caused by the accumulation of matter and energy. 

As a matter of fact, Newton’s law of universal gravitation can also predict the 

gravitational deflection of light: as particles of matter, photons are no different from 

projectiles. In a gravitational field, the motion trajectory of photons emitted from a 

light source, like projectiles launched from an artillery, must be curved due to the 

action of gravity or universal gravitation. Moreover, classical mechanics and 

Newton’s theory of universal gravitation can also make the quantitative calculation 

for the gravitational deflection of light. Of course, according to Newton’s theory of 

universal gravitation, the bending of light is not due to the so-called spacetime 

curvature, but the gravitational interaction between matter and matter. 

Before the formal establishment of general relativity, Einstein’s prediction of the 

gravitational deflection of light based on the principle of equivalence was only 

qualitative: a light beam would bend in a gravitational field. Einstein tried to 

quantitatively predict and calculate the gravitational deflection of light, but the 

calculation model he had to employ could only be the Kinematics model described 

by Eqs. (17.1-2). In particular, it is worth noting that the Kinematics equations 

(17.1-2) are the product of classical mechanics, that is, the product of the idealized 

observation agent OA. Therefore, as expected, at that time, Einstein’s calculation 

for the gravitational deflection angle of light was the same as that based on 

Newton’s theory of universal gravitation. 

After the formal establishment of general relativity, Einstein had gotton the field 

equation and the motion equation. Einstein employed his approximate solution (Eq. 

(15.3)) of the field equation to build up the motion equation of photons in 

gravitation field, and obtain the theoretical value of the gravitational deflection angle 

of light. What is particularly striking is that the predictive value of Einstein’s theory 

of general relativity is twice that of Newton’s theory of universal gravitation. In 

order to test his prediction of the gravitational deflection of light and verify his 

equivalence principle and general relativity, Einstein conceived the experiment to 

determine the bending angle of the starlight sweeping past the sun when total solar 

eclipses were occurring. 

Total Solar Eclipses and the Starlight Sweeping past the Sun: As depicted in 

Fig. 17.2, the light or photons emitted by the star S located at the deep sky A sweeps 

past the sun and flies towards the earth; according to the principle of equivalence 

and Einstein’s theory of general relativity, the spacetime around the sun is curved, 

so the flight path of the light or photons must be curved. In the view of the earth’s 

observers, the star S is located in the direction of B, and there must be a deflection 
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angle  between the directions of A and B. Einstein proposed that such a 

phenomenon of the bending of light in gravitational fields could be observed by the 

earth’s observers when total solar eclipses were occurring. 

Observing the starlight sweeping over the surface of the sun through total solar 

eclipses is a good idea, otherwise the starlight would be submerged in the light of 

the sun and could not be observed. 

 

Figure 17.2 The Prediction and Test of Gravitational Deflection. (a) Photons acting as the 

informons: In optical observation, the spacetime information of photons is carried and transmitted 

by photons themselves. Before photons reach, the observer cannot observe them and cannot 

determine their trajectory; only when a photon arrives at the observation point, can the observer 

perceive or observe the photon and determines the visional direction of its image, that is, in theory 

the tangent direction of the photon trajectory at the observation point. (b) The coordinates for 

photon motion: In order to easily describe photon motion in the gravitational field of the sun, take 

the sun as the coordinate origin O, establish the spherical-coordinate O(r,,) and the 

corresponding Cartesian-coordinate O(x,y,z). (c) The observation of the starlight as a total solar 

eclipse occurs: The starlight or the photon m comes from the distant star S located at the point A; 

suppose that the photon m moves in the plane X-Y (= /2), sweeps over the surface of the sun, 

and then, flies towards the earth. Einstein envisioned that: the spacetime around the sun was 

curved, and hence, the trajectory of the photon m would also be curved; thus, in the view of the 

earth’s observers, the star S would be located at the point B rather than A, and there was a 

deflection angle  =2 between the directions of A and B. Einstein proposed to determine the 

gravitational deflection angle  by means of total solar eclipses. 

The Theoretical Value of the Bending angle of Starlight: The predictive 

value N of the star deflection angle calculated with Newton’s theory of universal 

gravitation is N=0.875; while the predictive value E of the star deflection angle 

calculated with Einstein’s theory of general relativity is E=1.75=2N, which is 

twice Newton’s predictive value. 



190 

So, the physics community and even the whole world were eagerly anticipating 

the historical moment of testing and verifying the predictions of the gravitational 

deflection of starlight, looking forward to the confrontation between Einstein’s 

theory of general relativity and Newton’s theory of universal gravitation. 

On May 29, 1919, this historical moment came [145]: on this day, the earth could 

observe a total solar eclipse. In order to verify Einstein’s prediction about the 

gravitational deflection, a team led by British astronomer Eddington set out from 

Britain in Mar, 1919 and went to the island of Príncipe along the coast of West 

Africa to carry out the most important observation of total solar eclipses in human 

history. Taking advantage of the total solar eclipse, Eddington’s team had observed 

the deflection angle of the starlight sweeping past the sun:  =1.610.40. Almost 

at the same time, in Sobral, Brazil, a team led by another British astronomer, Dyson, 

observed the deflection angle of starlight:  =1.980.16. 

Eddington and Dyson’s observations of the total solar eclipse tend to support 

Einstein’s theory of general relativity [146]. 

After the announcement of Eddington and Dyson’s observation conclusions, the 

scientific community generally accepted Einstein’s theory of general relativity. The 

mainstream school of physics believed that the observation of the total solar eclipse 

meant that Einstein’s gravitational theory defeated Newton’s gravitational theory: 

Newton was wrong; Einstein is right! The Times of London published a full-page 

news (on Nov 7, 1919): Revolution in Scientific, New Theory of the Universe, 

Newtonian Ideas Overthrown. 

It was the observation of the 1919 total solar eclipse that established the sacred 

position of Einstein’s general relativity in physics, while Newton’s theory of 

universal gravitation was regarded as the approximation of Einstein’s general 

relativity: only valid under the cases of macrography, slow-speed, and weak-field. 

Is Einstein’s theory of general relativity really right? 

Is Newton’s theory of universal gravitation really wrong? 

Or, is Newton’s theory of universal gravitation really a transitional approximate 

theory of Einstein’s theory of general relativity? 

After the observation of the 1919 total solar eclipse, Eddington wrote a poem to 

express his insights: 

Oh, leave the Wise our measures to collate 

One thing at least is certain, light has weight 

One thing is certain and the rest debate 

Light rays, when near the Sun, do not go straight. 

Eddington’s insights in the poem is rational and discreet. 

According to the observation of the 1919 total solar eclipse, Eddington affirmed 

that light would be curved in gravitational fields. However, it is worth noting that, in 

Eddington’s view, the observation of the 1919 total solar eclipse suggests that: 

“Light has weight.” Here, Eddington had conveyed two important messages to us:  

(i) A photon has its own weight or mass (we prefer to believe that Eddington 

referred to the intrinsic mass of photons, that is, the rest mass of photons); 
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(ii) The bending of light is caused by photons’ weight, in other words, by the 

universal gravitation, rather than by the so-call spacetime curvature. 

Eddington’s knowledge and understanding of the weight of light or photons is 

simple and plain, and consistent with the basic thoughts of the theory of OR. 

According to the theory of OR [26-28], photons, and even all matter particles, have 

their own intrinsic mass (Einstein called it rest mass), that is, the mass with the 

effect of gravity or universal gravitation. Eddington’s understanding of the essence 

of light’s bending conforms to Newton’s theory of universal gravitation, and to the 

gravitational theory of OR, i.e., the theory of GOR. 

Actually, the theory of OR (including IOR and GOR) has already clarified in 

previous chapters that the objectively real spacetime is flat, which could not be 

curved by any thing, nor by the distribution of matter or energy. Therefore, in terms 

of the essence of the gravitational deflection of light, Newton’s theory of universal 

gravitation is right: the gravitational deflection of light is caused by the action of 

gravity or universal gravitation, not by spacetime curvature. 

As far as the phenomenon of the gravitational deflection of light in optical 

observation is concerned, the prediction of Einstein’s theory of general relativity 

seems to be closer to the actual observation of total solar eclipses. The development 

of astronomical observation technology, including Radio Frequency Measurement 

and Astrometric Satellite Measurement, has further improved the observational 

accuracy of the gravitational deflection of the light [130,147]. On Aug 21, 2017, a total 

solar eclipse occurred across the United States; Observers observed it in Wyoming 

and obtained the most accurate result of the gravitational deflection of light in 

history [148]: the deflection angle  =1.7512  of starlight, with the uncertainty of only 

3.4%. This observation is extremely consistent with Einstein’s prediction, which 

naturally represents the support for Einstein’s the theory of general relativity. 

However, according to the theory of OR, observation does not represent the 

objective reality: what is observed may not necessarily be objective or real. 

As far as the current technical level is concerned, human astronomical 

observation, no matter the optical or the radio belongs to that of the optical 

observation agent OA(c), which employs light or electromagnetic interaction as the 

medium for transmitting astronomical information at the speed c of light. Einstein’s 

theory of general relativity is the theory of the optical observation agent OA(c). 

Therefore, it is understandable and even inevitable that the observation conclusions 

of total solar eclipses are more consistent with Einstein’s prediction, or with 

Einstein’s theory of general relativity. 

The theory of OR has clarified that the optical agent OA(c) has the observational 

locality (c<) of its own, and its observations, including the observations of total 

solar eclipses, contain apparent phenomena, that is, the observational effects of 

OA(c), which are not completely objective and real. Therefore, the validity of 

Einstein’s theory of general relativity is only the validity in the sense of optical 

observation, that is, the observational or phenomenal validity, which can be referred 

to as the phenomenalistic validity. 

It is worth noting that the test of the gravitational deflection of light conceived 

by Einstein based on his theory of general relativity was specifically designed for 
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the optical observation agent OA(c), where the photons of starlight are both the 

observed object and the informons of OA(c). As depicted in Fig. 17.2, the observer 

with OA(c) could not observe the motion trajectory of starlight, but could only feel 

or infer that the star S is located in the direction the sun as the photons of starlight 

reach the observation point (for example, human retina or an observation equipment). 

However, what the observers on the earth see or observe in this way is not the 

objective and real star S, but an image of it. 

Newton’s theory of universal gravitation is the theory of the idealized agent 

OA. For the gravitational deflection of light, the observed object is still the starlight 

or the photons of it. However, the informons of OA that transmit the information of 

the starlight or photons are not the photons themselves, but the idealized informons 

of OA with infinitesimal momentum and infinite speed. Therefor, OA has no 

observational perturbation (h→0) and has no observational locality (→). 

The theory of GOR will clarify that if we could observe the gravitational 

deflection of light by means of the idealized observation agent OA, then the 

starlight in total solar eclipses would be consistent with the gravitational deflection 

of light predicted by Newton’s theory of universal gravitation, and would tend to 

support Newton’s theory of universal gravitation rather than Einstein’s theory of 

general relativity. So, Newton’s theory of universal gravitation is really the right 

gravitational theory that is more in line with the objectively physical reality. 

This chapter will calculate the deflection angle of the starlight sweeping over the 

solar surface based on the vacuum solution of the GOR field equation for the static 

spherically-symmetric gravitational spacetime in Chapter 15 and the theoretical 

model of the GOR two-body system (M,m) of celestial bodies, where M is the sun 

producing the gravitational field and m is the starlight or photons as the observed 

object P. We will find out that: different observation agents would observe different 

starlight deflection angles. Therefore, by analogizing Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity, the theory of GOR will 

interpret the phenomenon and essence of the gravitational deflection of light. 

17.2 Newton and Gravitational Deflection 

Newton’s theory of universal gravitation can also predict and calculate the 

gravitational deflection of light. 

According to Newton’s theory of universal gravitation, the reason of the 

gravitational deflection of light is quite simple: in a gravitational field, a flying 

photon is just like a projectile launched from an artillery; naturally, the flying 

trajectory of it must be curved due to the action of universal gravitation. 

Originally, the test of the gravitational deflection of the starlight sweeping past 

the sun when a total solar eclipse occurs was conceived by Einstein for verifying his 

theory of general relativity, but it can also be employed to test or verify Newton’s 

theory of universal gravitation and the theory of GOR. 

17.2.1 Newton’s Gravitational-Deflection Problem 

As depicted in Fig. 17.2, in the test of total solar eclipses conceived by Einstein 
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according to his theory of general relativity, the gravitational-deflection problem of 

the starlight sweeping past the sun could also be reduced to the two-body problem 

(M,m) of celestial bodies, where m could be a planet or comet or satellite or even 

photon, like (star,planet) or (Sun,Mercury): the two-body problem of (Sun,photon). 

Like the theoretical model of the two-body system of (star,planet), one could also 

build the theoretical model of the two-body system of (Sun,photon), and then, 

predict and calculate the gravitational deflection agent of the starlight sweeping over 

the solar surface. 

In the two-body problem of (Sun,Mercury), the observed object m is Mercury; in 

the two-body problem of (Sun,photon), the observed object is starlight or photons. 

Like his the two-body system of (star,planet), Newton’s the two-body system of 

(Sun,photon) is also extremely idealized and can be described as follows. 

Newton’s Two-Body System of (Sun,photon): (M,m), where M is the sun and 

m is the observed photon of the starlight sweeping past the sun, the sun M and the 

photon m interact through the universal gravitation between the sun M and the 

observed photon m, the sun M produces the gravitational field, and the photon m 

moves in the gravitational field. 

The Idealized Conditions for Newton’s Two-Body System of (Sun,photon): 

Newton’s (Sun,photon) system implies the following idealized conditions. 

(v) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(vi) The isolated system: (the Sun M, the photon m) is an isolated system, not 

affected by the matter or energy outside (M,m); both the sun M and the 

photon m could be regarded as particles or mass points, the sun M is at rest 

and the photon m moves in the gravitational field of M. 

(vii) The idealized observation agent: Newton’s observation agent is the 

idealized observation agent OA, the information-wave speed of OA is 

idealized to be infinity, the spacetime information of the observed photon m 

takes no time to cross space. 

(viii) The idealized observer: the observer O employs the idealized observation 

agent OA to observe the photon m from the perspective of the earth; in 

theory, O is at rest on the earth and located at the position of zero potential. 

The Formalized Coordinates of Newton’s Two-Body System of (Sun, 

photon): as depicted in Fig. 17.2, Newton’s two-body system of (Sun,photon) could 

be described in both the 3d Cartesian-coordinate O(x,y,z) and the corresponding the 

3d spherical-coordinate O(r,,) (Fig. 17.2(b); Eq. (15.6)), the sun M is located at 

the coordinate origin O, and the photon m moves in the plane of X-Y ( =/2) (Fig. 

17.2(c)) of the curved spacetime of the sun M.. 

Actually, the two-body problem of (Sun,photon) explored by both Newton and 

Einstein could be further idealized as and reduced to the one-body problem, only 

examining the motion of the photon m. 

It should be pointed out that, in Newton’s gravitational-deflection problem of 

light, the starlight or photons is the observed object, and the transmission of the 

observed information depends on the idealized informons (with infinitesimal 
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momentum and infinite speed) of the idealized agent OA. 

17.2.2 Newton’s Motion Equation of Photons 

As stated earlier, the gravitational-deflection problem of the starlight sweeping 

past the sun could also be reduced to the two-body problem (M,m) of celestial 

bodies, like that of (Sun,Mercury): the two-body problem of (Sun,photon). Moreover, 

as depicted in Fig. 17.2, the two-body system of (Sun,photon) also employs the same 

coordinate system as that of the two-body problem of (star,planet) in Fig. 16.2. 

Therefore, by analogizing or following the logic route in Sec. 16.2 Newton’s 

Celestial-Body Model of Chapter 16, based on classical mechanics and Newton’s 

theory of universal gravitation, one could in the spherical-coordinate O(r,,) build 

the two-body model of (Sun,photon), i.e., Newton’s motion equation of the photon, 

which has the same form as Newton’s motion equation (16.5) of the planet: 
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where, G is the gravitational constant, and M is the mass of the sun, hK=r2d /d 
=RSc is the velocity moment of the photon m, RS is the solar radius, r (r=|r|) is the 

radius vector of the sun M pointing to the photon m, and c is the speed of light. 

On the Velocity Moment of the Photon hK 

In Eq. (17.3), the velocity moment hK of the photon is hK=L/m, where L=mvr is 

the momentum moment of the photon m (i.e. angular momentum), and m slso 

represents the photon mass (in classical mechanics, m must be the Newtonian mass); 

v is the speed of photon m in the gravitational field of the sun M. 

Suppose that the photon m sweeps over the surface of the sun (the point F in Fig. 

17.2(c) is the perihelion of the photon m), then the flight speed v of the photon is 

v=rd /dc, and for the radius vector r (r=|r|), rRS. 

Therefore, the velocity moment hK of the photon m in Eq. (17.3) is: 
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17.2.3 Newton’s Flight Path of Photons 

As stated in Sec. 16.2 of Chapter 16, bound to the star M, the differential 

equation (16.5) or Eq. (16.6) representing the orbit of the planet m must be a circle 

or an ellipse. However, the mass of the photon m is so small and the speed of the 

photon m is so high, that the sun M could not bind the photon m. So, the flight path 

of the photon m must not be a circle or an ellipse. 

The solution of the motion equation (17.3) of the photon m must be the same in 

form as the solution of the motion equation (16.5) of the planet m. By analogizing or 

following the logic route in Sec. 16.2 Newton’s Celestial-Body Model of Chapter 

16, one could get the solution of Eq. (17.3): 



195 

 ( )( )
2 2

02 2

1
1 cos S

S

S

R cGM
u e e C

r R c GM
 

 
= = + − = 

 
 (17.5) 

where the integration constant CS depends on the initial angular momentum L and 

mechanical energy E of the photon m; the integration constant 0  is the initial angle 

of the photon orbit, which can be set to a specific value by adjusting the zero point 

of the time or by rotating the plane X-Y around the Z-axis; e is the orbital 

eccentricity of the photon m. 

Equation (17.5) suggests that Newton’s motion equation of photon m is a 

standard conic curve. According to Eq. (17.5), if  =/2 (the photon m is sweeping 

past the perihelion F on the solar surface), then u=1/r=1/RS and GM/RS
2c2<<1. 

Thus, one could get that: 
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Let 0=/2, then CS =1/RS. 

Thus, according to Fig. 17.2(c), the starlight trajectory (Eq. (17.5)) is: 
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where e is Newton’s eccentricity of the photon orbit 

As stated in Sec. 16.2 of Chapter 16, in the two-body system (M,m) of celestial 

bodies, the orbital eccentricity e of the celestial body m (which could be a planet or 

comet or satellite or even photon) depends on the gravitational constant G and the 

gravitational source M, as well as, on the initial angular momentum L of the celestial 

body m and the initial mechanical energy E of the celestial body m. 

Therefore, the orbital eccentricity e of the photon m in Eq. (17.3) could also be 

calculated according to the classical celestial mechanics formula (16.7). 

Both the mechanical energy E and the angular momentum L of the photon m 

could be regarded as conserved quantities. As shown in Eq. (17.4), considering that 

the photon m sweeps over the surface of the sun (the point F in Fig. 17.2(c) is the 

photon’s perihelion), then with vc and rRS, one could get that: 
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Thus, the orbital eccentricity e of the photon m is: 
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This result is the same as that in Eq. (17.7). 

 

According to the recommendations of the International Standards Organization: 

The speed of light: c=2.9979245108 ms−1 

The universal gravitational constant: G=6.6743010−11 m3kg−1s−2 

The mass of the sun: M=1.988471030 kg 

The radius of the sun: RS=6.96108 m 

based on Eq. (17.7), one could calculate the orbital eccentricity e of the photon m: 
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GM
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where the eccentricity of the photon m is e (>>1), and hence, the orbit of the starlight 

or photons sweeping over the solar surface is a hyperbola. 

According to the solution (Eq. (17.7)) of Newton’s motion equation (17.3) of the 

photon m and the eccentricity e in Eq (17.10), we know that, as far as the theoretical 

model of the idealized two-body system of (Sun,photon) based on Newton’s theory 

of universal gravitation is concerned, the orbit of photons sweeping over the solar 

surface is a idealized and standard conic curve. 

It is thus clear that, even according to Newton’s theory of universal gravitation, 

light would also be curved in gravitational fields. 

However, the gravitational deflection angle of starlight predicted by Newton’s 

theory of universal gravitation is different from that predicted by Einstein’s theory 

of general relativity. 

17.2.4 Newton’s Deflection Angle of Starlight 

Now, based on the solution (Eq. (17.5)) of Newton’s motion equation (17.3) of 

the photon m and the eccentricity equation (Eq. (17.7)) of photon orbit, one could 

calculate the gravitational deflection angle of the starlight or photons sweeping past 

the sun M, denoted as N, and could be called Newton’s gravitational deflection 

angle of starlight. 

As depicted in Fig. 17.2(c), suppose that the photon m is emitted from the 

distant star S, sweeps past the sun M, and reaches the earth faraway from the sun M, 

then one could think that: r→, u→0, and  →+. 

Thus, from Eq. (17.5) or Eq. (17.7), it follows that: 
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Obviously,  is a small quantity: sin. Therefore, based on Newton’s theory 

of universal gravitation, Newton’s gravitational deflection angle of starlight or 

photons sweeping past the sun is 
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Newton’s theory of universal gravitation predicts that: the bending angle N of 

the starlight sweeping past the sun is 0.87525. (This prediction represents the 

objectively gravitational deflection of light, which implies the hypothetical condition: 

Newton’s observation agent is the idealized agent OA.) 

Indeed, the gravitational deflection angle of the starlight sweeping past the sun 

predicted by Newton’s theory of universal gravitation is not quite consistent with the 

actual observation values of the optical observers on the earth: the prediction of 

0.87525 seems to be only half of the actual observation value of the 1.7512 

observed by means of the total solar eclipse in Wyoming [148]. 

It is worth noting that our observations of total solar eclipses, including the 

Eddington’s and the Dyson’s [145-147], as well as that in Wyoming [148], are all the 

astronomical observation of the optical agent OA(c). To test or verify Newton’s 

gravitational deflection of light, we must take advantage of the idealized observation 

agent OA, rather than the optical observation agent OA(c). 

Later on, the theory of GOR will clarify that: it is not Newton’s fault, but the 

observation’s fault; it is not due to the deviation of Newton’s theory of universal 

gravitation, but the deviation of the optical observation agent OA(c). Newton’s 

prediction represents the objective and real gravitational deflection of light; while 

Einstein’s prediction represents the gravitational deflection of light presented by the 

optical observation agent OA(c). The gravitational deflection of light presented by 

optical agent OA(c) contains the observational effects and apparent phenomena of 

OA(c), does not represent the objectively gravitational deflection. 

Actually, both Newton’s bending angle N of starlight and Einstein’s bending 

angle E of starlight are the special cases of the GOR bending angle GOR. 

17.3 Einstein and Gravitational Deflection 

Einstein’s prediction of the gravitational deflection of light originated from his 

thought of spacetime curvature: gravitational spacetime is curved, so the flight path 

of light or photons in gravitational fields must also be curved. 

Einstein’s concept and ideology of spacetime curvature is extremely mysterious 

and abstruse. 

Perhaps, you could understand the curvature of space, but anyway, you could 

not understand the curvature of spacetime: it is extremely difficult for you to 
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imagine the bending time. Perhaps Einstein’s original intention was not to prove the 

gravitational deflection of light by observation or experiment, but to prove that 

gravitational spacetime is curved by the gravitational deflection of light. 

However, the gravitational deflection of light does not mean spacetime 

curvature, or the bending of space and time, for Newton’s theory of universal 

gravitation could also interpret the gravitational deflection of light. 

Before the formal establishment of his general relativity, in order to interpret his 

view of spacetime curvature, Einstein speculated the gravitational deflection of light 

based on the principle of equivalence in the way depicted in Fig. 17.1. After the 

formal establishment of his general relativity, Einstein proposed the test of the 

gravitational deflection of the starlight sweeping past the sun, and calculated the 

theoretical value of the bending angle of the starlight based on his field equation. 

Any case, Einstein’s theory of general relativity gave us the ideas different from 

Newton’s theory of universal gravitation. 

In particular, Einstein’s theoretical value of the starlight bending angle is 

different from Newton’s theoretical value of the starlight bending angle. 

Here, we review Einstein’s prediction of the gravitational deflection of light and 

the theoretical calculation based on general relativity, and reexamine Einstein’s 

problem of the gravitational deflection of light, which will be contributed to our 

recognition and understanding of the theory of GOR. 

17.3.1 Einstein’s Gravitational-Deflection Problem 

As stated in Sec. 17.2.1, the gravitational-deflection problem of light could be 

reduced to the two-body problem (M,m) of celestial bodies, where m could be a 

planet or comet or satellite or even photon, like (star,planet) or (Sun,Mercury): the 

two-body problem of (Sun,photon). Therefore, based on Einstein’s theory of general 

relativity, one could build the theoretical model of the two-body system of 

(Sun,photon), and then, predict and calculate the gravitational deflection agent of the 

starlight sweeping over the solar surface. 

In Einstein’s gravitational-deflection problem, like Einstein’s two-body system 

of (star,planet) or (Sun,Mercury), the theoretical model of Einstein’s two-body 

system of (Sun,photon) also contains the idealized conditions, which could be 

described as follows. 

Einstein’s Two-Body System of (Sun,photon): (M,m), where M is the sun and 

m is the observed photon of the starlight sweeping past the sun, the sun M and the 

photon m interact through the universal gravitation between the sun M and the 

observed photon m, the sun M produces the gravitational field, and the photon m 

moves in the gravitational field. 

The Idealized Conditions for Einstein’s Two-Body System of (Sun,photon): 

Einstein’s (Sun,photon) system implies the following idealized conditions. 

(i) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(ii) The isolated system: (the Sun M, the photon m) is an isolated system, not 

affected by the matter or energy outside (M,m); both the sun M and the 
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photon m could be regarded as particles or mass points, the sun M is at rest 

and the photon m moves in the gravitational field of M. 

The above idealized conditions are the same as that of Newton’s (Sun,photon) 

two-body problem. However, Einstein’s (Sun,photon) two-body problem does not 

contain the conditions of the idealized observation agent and idealized observer, but 

instead of the condition of the optical observation agent and the condition of the 

optical observer. 

The Optical Agent and the Conditions of Optical Observation: In Einstein’s 

gravitational-deflection problem of the two-body system (the Sun M, the photon m), 

the observation agent is realistic and non-idealized, and there are the implied 

observation conditions as follows. 

(iii) The optical observation agent: Einstein’s observation agent in the test of the 

gravitational deflection of light is the optical observation agent OA(c), the 

information-wave speed of OA(c) is the speed c of light, it takes time for 

OA(c) to transmit the spacetime information of the observed starlight or the 

observed photon m to the observers on the earth. 

(iv) The optical observer: the observer O employs the optical observation agent 

OA(c) to observe the observed starlight or the observed photon m from the 

perspective of the earth; in theory, O is at rest on the earth and located at the 

position of zero potential. 

The Formalized Coordinates of Einstein’s Two-Body System of (Sun, 

photon): Like Newton’s two-body problem of (Sun,photon) stated in Sec. 17.2, as 

depicted in Fig. 17.2, Einstein’s two-body system of (Sun,photon) could also be 

described in both the 3d Cartesian-coordinate O(x,y,z) and the corresponding the 3d 

spherical-coordinate O(r,,) (Fig. 17.2(b); Eq. (15.6)), the sun M is located at the 

coordinate origin O, and the photon m moves in the plane of X-Y ( =/2) (Fig. 

17.2(c)) of the gravitational field of the sun M. 

As stated in Sec. 17.2, the two-body problem of (Sun,photon) explored by both 

Newton and Einstein could be further idealized as and reduced to the one-body 

problem, only examining the motion of the photon m. 

It should be pointed out that, in Einstein’s gravitational-deflection problem of 

(Sun,photon), the photon m is not only the observed object, but also the informon of 

the optical agent OA(c): the spacetime information of the observed photon m is 

carried and transmitted by the photon itself. 

In this way, the motion of photons does not have the problem of being perturbed 

by the informons of observation agents. However, observers could only observe the 

arrival position and direction of starlight and photons, but could not observe the 

flight path of starlight or photons. 

17.3.2 Einstein’s Motion Equation of Photons 

After the formal establishment of his general relativity, Einstein applied the 

approximate solution (Eq. (15.3)) of his field equation and the line-element equation 

(15.4) to calculate the gravitational deflection angle of the starlight sweeping past 

the sun. After Schwarzschild obtained the exact solution (Eq. (15.7)) of Einstein 
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field equation [80], one could build the motion equation of photons based on 

Einstein’s theory of general relativity, and then, predict or calculate the gravitational 

deflection angle of the starlight [68]. 

Einstein’s theory of general relativity could also reduce the problem of the 

gravitational deflection of light to the two-body problem (M,m) of celestial bodies, 

like that of (Sun,Mercury): the two-body problem of (Sun,photon). Moreover, as 

depicted in Fig. 17.2, the two-body system of (Sun,photon) also employs the same 

coordinate system as that of the two-body problem of (star,planet) in Fig. 16.2. By 

analogizing or following the logic route in Sec. 16.3 Einstein’s Celestial-Body 

Model of Chapter 16, based on Einstein’s theory of general relativity, one could in 

the spherical-coordinate O(r,,) build the two-body model of (Sun,photon), i.e., 

Einstein’s motion equation of photons, which has the same form as Einstein’s 

motion equation (16.33) of planets: 
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where, G is the gravitational constant, and M is the mass of the sun, hK=r2d /d 
=RSc is the velocity moment of the photon m, RS is the solar radius, r (r=|r|) is the 

radius vector of the sun M pointing to the photon m, and c is the speed of light. 

It is worth noting that, as the theory of the optical agent OA(c), in Einstein’s 

theory of general relativity, the line-element ds=0 as the speed of the observed 

object P (such as the photon m in the two-body system (Sun,photon)) reaches the 

speed c of light. Actually, more generally, under the principle of general 

correspondence (GC), according to the line-element equation ds=g()dxdx of 

the general observation agent OA() in the theory of GOR, the line-element ds→0 

as the speed v→ of the observed object P. 

In a strict sense, the case of ds→0 could only hold when m is both the observed 

object and the informon, for under this case, the speed v of the observed object m is 

strictly equal to the information-wave speed  of the observation agent OA(). 

In the definition of observation agent (Def. 10.1) in the theory of GOR, the 

information-wave speed  should be the real-time speed of the information wave or 

informons of the observation agent OA(). For the optical observation agent OA(c), 

the c in the time axis x0=ct is the speed of light in vacuum. In Einstein’s 

gravitational deflection experiment of observing the starlight passing over the solar 

surface, the speed of the starlight may not be necessarily the speed c of light in 

vacuum; however, the spacetime information of the starlight is carried and 

transmitted by the starlight photons: the photons are both the observed object and 

the messenger of starlight information. At this time, the speed of the photons as the 

observed object and the speed of the photons as the informons is naturally the same, 

regardless of whether the speed of the photon decays in the gravitational field. In 

this way, the spacetime line-element ds of the photon m must be zero: ds=0. 

Therefore, in Eq. (17.13), in the case where the photon is both the observed 

object and the informon, the velocity moment hK of the photon m is: 
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Thus, Einstein’s motion equation (17.13) of the photon m is reduced to: 
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Unlike Newton’s motion equation (17.3) of photons, Einstein’s motion equation 

(17.15) of photons is not a linear equation, but a nonlinear differential equation. 

17.3.3 Einstein’s Flight Path of Photons 

Solving Einstein’s motion equation (17.15) of photons, one could get the flight 

path of the photon m from the perspective of the optical observation agent OA(c). 

Einstein’s motion equation (17.15) of photons is a nonlinear differential equation, 

which is difficult to solve. Fortunately, one could have the following approximate 

solution (see the reference [68]). 

Let the solar mass M=0, then Eq. (17.15) could be reduced to 
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which have the solution 

 ( )0cosSu C  = −  (17.17) 

where both CS and 0  are the integration constants. 

According to Fig. 17.2(c), if  = /2 (the photon m is sweeping past the 

perihelion F on the solar surface), then u=1/r=1/RS, where RS is the solar radius. 

Substituting into Eq. (17.17), one could have that: 
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By adjusting the zero point of the time, 0 could be set to 0= /2, and then 

CS=1/RS. Substituting into Eq. (17.17), one could get the solution of Eq. (17.16), that 

is, the general solution ug of Eq. (17.15): 
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Equation (17.19) is the situation where the photon m sweeps through the point F 

(the perihelion of photon m) on the solar surface in the direction parallel to the 

X-axis. It is thus clear that, in the spacetime without gravitational field (M=0), or in 

other world, in the inertial spacetime, the flight path of photons is a straight line. 

This is in line with our basic knowledge. 

Obviously, the right end 3GMu2/c2<3GM/c2RS
2<<1 (r=1/u>RS) of Eq. (17.15) 

is a small quantity. Therefore, one could employ the progressive approximation 

method to solve Einstein’s motion equation (17.15) of photons [68]: substitute Eq. 
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(17.19) into Eq. (17.16) to get 
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Equation (17.20) has the following solution, that is, the special solution us of 

Einstein’s motion equation (17.15) of photons: 
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Thus, the solution u of Einstein’s motion equation (Eq. (17.15)) of photons 

should be the sum of the general solution ug (Eq. (17.19)) and the special solution us 

(Eq. (17.21)): 
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As depicted in Fig. 17.2(c),  could be set to =+ ( −), where both  

and | | are small quantities, and then cos2(+)=1. Substituting into the right end of 

Eq. (17.22), one could have that: 
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where e=RSc2/GM is the Newton’s eccentricity of photon orbit; ê=e/2=RSc2/GM is 

the Einstein’s eccentricity of photon orbit. 

Equation (17.23) is also a standard hyperbola. However, Eq. (17.22) is the 

approximate solution of Einstein’s motion equation (17.15) of photons, and Eq. 

(17.23) is the approximate expression of equation (17.22). Therefore, Einstein’s 

motion equation (17.15) of photons is actually not a standard hyperbola: in 

Einstein’s theoretical model of the two-body system of (Sun,photon), the flight path 

of the photon m is an approximate hyperbola. According to Eq. (17.23), the orbital 

eccentricity ê=RSc2/2GM of Einstein’s motion equation of photons is half of the 

orbital eccentricity e=RSc2/GM of Newton’s motion equation of photons. This 

means that the flight path of the starlight in a gravitational field presented by the 

optical agent OA(c) is more curved than that by the idealized agent OA. So, 

Einstein’s gravitational deflection angle E of light would naturally be larger than 

Newton’s gravitational deflection angle N of light. 

17.3.4 Einstein’s Deflection Angle of Starlight 

Now, based on the solution (Eq. (17.22)) of Einstein’s motion equation (17.15) 

of the photon m, one could calculate the gravitational deflection angle of the 

starlight or photons sweeping past the sun M, denoted as E, and could be called 

Einstein’s gravitational deflection angle of starlight. 
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As depicted in Fig. 17.2(c), suppose that the photon m is emitted from the 

distant star S, sweeps past the sun M, and reaches the earth faraway from the sun M, 

then we think that: r→, u→0, and  →+. 

Thus, from Eq. (17.22), it follows that: 
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Obviously,  is a small quantity: sin(+)− and cos(+)−1. Therefore, 

based on Einstein’s theory of general relativity, Einstein’s gravitational deflection 

angle E of starlight or photons sweeping past the sun is 
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Einstein’s theory of general relativity predicts that: in the view of the earth’s 

observers, the bending angle E of the starlight sweeping past the sun is 1.7505. 

(This prediction implies the hypothetical condition: Einstein’s observation agent is 

the optical agent OA(c).) 

By contrasting Eq. (17.25) and Eq. (17.12), we know that Einstein’s 

gravitational deflection angle of starlight is twice Newton’s gravitational deflection 

angle: E=2N, which is in line with the actual observation value, and especially, in 

line with the starlight deflection angle 1.7512 of the total solar eclipse in Wyoming, 

the United States [148]. 

As mentioned earlier, our observations of total solar eclipses, including the 

Eddington’s and the Dyson’s [145-147], as well as that in Wyoming [148], are all the 

astronomical observation of the optical agent OA(c). Naturally, as the optical 

observation theory, Einstein’s gravitational deflection angle E of starlight should be 

more in line with the observation conclusion of the optical agent OA(c). 

It is worth noting that, like Newton’s bending angle N of starlight, Einstein’s 

bending angle E of starlight are also a special case of the GOR bending angle GOR. 

17.4 GOR and Gravitational Deflection 

The theory of GOR can also predict the gravitational deflection of light. 

The theory of GOR is the theory of the general observation agent OA(). It 

could be expected that the prediction of the theory of GOR for the gravitational 

deflection of the starlight sweeping past the sun depends on the information-wave 

speed  of OA(): different observation agents would have different bending angles 

of light, which is denoted by GOR or GOR(). This means that, for the same 

gravitational scene, different observation agents would present different degrees of 

the gravitational deflection of light. 

In particular, both Newton’s deflection angle N and Einstein’s deflection angle 

E will become special cases of the GOR deflection angle GOR. 
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17.4.1 The GOR Gravitational-Deflection Problem 

For the theory of GOR, the gravitational-deflection problem of light can also be 

reduced to the two-body problem (M,m) of celestial bodies, where m could be a 

planet or comet or satellite or even photon, like (star,planet) or (Sun,Mercury): the 

two-body problem of (Sun,photon). Therefore, based on the theory of GOR, we can 

build the theoretical model of the two-body system of (Sun,photon), and then, 

predict and calculate the gravitational deflection agent of the starlight sweeping over 

the solar surface. 

In the GOR gravitational-deflection problem, like the GOR two-body system of 

(star,planet) or (Sun,Mercury), the theoretical model of the GOR two-body system 

of (Sun,photon) also contains the idealized conditions described as follows. 

The GOR Two-Body System of (Sun,photon): (M,m), where M is the sun and 

m is the observed photon of the starlight sweeping past the sun, the sun M and the 

photon m interact through the universal gravitation between the sun M and the 

observed photon m, the sun M produces the gravitational field, and the photon m 

moves in the gravitational field. 

The Idealized Conditions for the GOR Two-Body System of (Sun,photon): 

The GOR (Sun,photon) system implies the following idealized conditions. 

(i) The action at a distance of gravitational interaction: gravitational radiation 

is action at a distance; the speed of gravitational radiation is infinite. 

(ii) The isolated system: (the Sun M, the photon m) is an isolated system, not 

affected by the matter or energy outside (M,m); both the sun M and the 

photon m could be regarded as particles or mass points, the sun M is at rest 

and the photon m moves in the gravitational field of M. 

The above idealized conditions are the same as that of the idealized conditions 

of Newton and Einstein’s two-body systems of (Sun,photon). However, the GOR 

two-body problem of (Sun,photon) does not contain the condition of the idealized 

observation agent or the optical agent, but instead of the condition of the general 

observation agent and the condition of the general observer. 

The General Agent and the Conditions of General Observation: In the GOR 

gravitational-deflection problem of the two-body system (the Sun M, the photon m), 

the observation agent is not the specific observation agent, and there are the implied 

observation conditions as follows. 

(i) The general observation agent: The GOR observation agent in the test of the 

gravitational deflection of light is the general observation agent OA() 

(v), in theory, any form of matter motion could be employed as the 

observation medium, the information-wave speed  of OA() should be 

higher than or equal to the speed v (c) of the observed photon m. 

(ii) The general observer: the observer O employs the general observation agent 

OA() (v) to observe the observed starlight or the observed photon m 

from the perspective of the earth; in theory, O is at rest on the earth and 

located at the position of zero potential. 

The Formalized Coordinates of the GOR Two-Body System of (Sun, 
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photon): Like Newton and Einstein’s two-body problems of (Sun,photon) stated in 

Sec. 17.2 and Sec. 17.3, as depicted in Fig. 17.2, the GOR two-body system of 

(Sun,photon) could also be described in both the 3d Cartesian-coordinate O(x,y,z) 

and the corresponding the 3d spherical-coordinate O(r,,) (Fig. 17.2(b); Eq. 

(15.6)), the sun M is located at the coordinate origin O, and the photon m moves in 

the plane of X-Y ( =/2) (Fig. 17.2(c)) of the gravitational field of the sun M. 

17.4.2 The GOR Motion Equation of Photons 

The theory of GOR could also reduce the problem of the gravitational deflection 

of light to the two-body problem (M,m) of celestial bodies, like that of 

(Sun,Mercury): the two-body problem of (Sun,photon). Moreover, as depicted in Fig. 

17.2, the two-body system of (Sun,photon) also employs the same coordinate system 

as that of the two-body problem of (star,planet) in Fig. 16.2.  

Based on the theory of GOR, by analogizing or following the logic route in Sec. 

16.4 The GOR Celestial-Body Model of Chapter 16, we can build the two-body 

model of (Sun,photon) in the spherical-coordinate O(r,,), i.e., the GOR motion 

equation of photons, which has the same form as the GOR motion equation (16.64) 

of planets: 
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where, G is the gravitational constant, and M is the mass of the sun, hK=r2d /d 
=RSc is the velocity moment of the photon m sweeping past the solar surface, RS is 

the solar radius, r (r=|r|) is the radius vector of the sun M pointing to the photon m, 

and  is the information-wave speed of the general observation OA(), 

u=u()=1/r() could be regarded as the trajectory of the photon m. 

The GOR motion equation (17.26) of photons generalizes Newton’s motion 

equation (17.3) of photons, Einstein’s motion equation (17.15) of photons, and even 

the motion equation (17.26) of any observation agent OA() ( [c,+)). 

Newton’s Motion Equation of Photons: → 

Considering the perihelion of the photon m, i.e., the case that the observed 

photon m is sweeping past the point F on the solar surface as depicted in Fig. 17.2(c), 

then the speed of the photon m is v=rd /dc, and for the radius vector r (r=|r|) of 

the sun M pointing to the photon m, rRS. Thus, as shown in Eq. (17.4), the velocity 

moment of photon m is hK=r2d /d=rvR Sc. 

As →, the observation agent OA() would be the idealized observation agent 

OA. Under this case, u=u in Eq. (17.26) would be the flight path of the photon m 

presented by the idealized agent OA, the right end of Eq. (17.26) would be: 

 ( )2

2 2 2

3
lim K S

K K

GM GM GM
u h R c

h h →

 
+ = = 

 
 (17.27) 

In this way, the GOR motion equation (17.26) of photons would be reduced to 

Newton’s motion equation of photons: 
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Einstein’s Motion Equation of Photons: → c 

As →c, the observation agent OA() would be the optical observation agent 

OA(c). Under this case, u=u(c) in Eq. (17.26) would be the flight path of the photon 

m presented by the optical agent OA(c), in which the photon m is both the observed 

object and the informon of OA(c): the speed v of the photon m as the observed 

object and the speed  of the photon m as the informon of OA() are the same as the 

speed of light. Therefore, as stated in Sec. 17.3.2, under this case, the line-element 

of the photon m is zero: ds=0. 

Thus, the right end of Eq. (17.26) would be: 
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In this way, the GOR motion equation (17.26) of photons would be reduced to 

Einstein’s motion equation of photons: 
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The Motion Equation of Photons under OA(): > > c 

According to the theory of OR, the information-wave  of an observation agent 

OA() have to be greater than or equal to the speed v of the observed object P. In Eq. 

(17.26), the observed object P is the photon m in the gravitational field of the sun M, 

with the speed vc. Therefore, it is required that  c; in a strict sense, it is required 

that either the photon m acts as the informon of OA() or the information-wave 

speed  to be greater or even far greater than the speed the photon m:  >>c. 

Considering the general observation agent OA() (>>c), then u=u()  is the 

flight path of the photon m presented by the general observation agent OA(). 

Substituting the velocity moment hK=RSc of the photon m into Eq. (17.26), then the 

GOR motion equation (17.26) of the photon m is: 
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To sum up, whether Newton’s motion equation (17.3) or (17,28) of photons, 

Einstein’s motion equation (17.15) or (17,30) of photons, or the motion equation 

(17.31) of photons under the general observation agent OA() (>>c), is 

generalized and unified in the GOR motion equation (17.26) of the photon m. 

It is worth noting that in the GOR motion equation (17.26) of the photon m, 

u=u(): the flight path of the photon m depends on the observation agent OA(), or 
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depends on the information-wave speed  of OA(). Different observation agents 

present different flight paths of the photon m and different degrees of the 

gravitational deflection of light. 

However, the objectively physical world must be unique. In the two-body 

system of (Sun,photon), the objective and real flight path of the photon m must also 

be unique. It is thus clear that, the flight path of the photon m observed by an 

observer with an observation agent OA() does not represent the objective reality of 

the gravitational deflection of light, unless the observer could take advantage of the 

idealized observation agent OA. 

17.4.3 The GOR Trajectory of Starlight 

Obviously, the first term GM/hK
2 at the right end of the GOR motion equation 

(17.26) of the photon m represents the objective and real physical information of the 

photon m as the observed object, involving the gravitational constant G and the solar 

mass M, as well as the velocity moment hK of the photon m; the second term 

3GMu/2 depends on the information-wave  of the observation agent OA(), 

representing the observational effect of the observation agent OA(). This 

observational effect is caused by the observational locality ( <) of the observation 

agent OA(): the larger the information-wave speed , the smaller the observational 

effect; if →, then 3GMu/2→0, accordingly, the observational effect of OA() 

or apparent phenomenon would disappear. 

Based on the GOR motion equation (17.26) of the photon m, it could be 

expected that, for different observation agents or different information-wave speeds, 

the flight path of the photon m would exhibit different degrees of the gravitational 

deflection of light. If the GOR motion equation (17.26) of the photon m could be 

solved, one could get the flight path of the photon m and calculate the gravitational 

deflection angle G OR=GOR() of a specific agent OA(). 

However, the GOR motion equation (17.26) of the photon m is a nonlinear 

differential equation, which is difficult to solve, unless Eq. (17.26) is reduced to 

Newton’s motion equation (17.3) or (17.28) of the photon m. In the GOR motion 

equation (17.26) of the photon m, the information-wave speed  of the observation 

agent OA() covers the [c,+). In particular, =c may be the discontinuous point 

of the gravitational-deflection model of Eq. (17.26). 

Fortunately, on the [c,+), Eq. (17.26) has approximate solutions. 

The Photon’s Trajectory under the Idealized Agent OA: → 

As →, the observation agent OA() would become the idealized observation 

agent OA, the GOR motion equation (17.26) of the photon m reduces to Newton’s 

motion equation (17.3) or (17.28) of the photon m. Thus, we can get the exact 

solution; as shown in Eq. (17.5) in Sec. 17.2.3, the flight path of the photon m is an 

idealized or standard hyperbola. 

Naturally, as →, the gravitational deflection angle G OR=GOR() of the 

starlight based on the GOR motion equation (17.26) of the photon m would be 

exactly Newton’s deflection angle: N=2GM/RSc2. 
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According to the theory of GOR, the idealized observation agent OA has no 

observational locality, and therefore, it presents observers with the objective and real 

scene of photon motion: N=GOR()=2GM/RSc2 is the objectively gravitational 

deflection angle of the starlight sweeping the solar surface. 

The Photon’s Trajectory under the Optical Agent OA(c): → c 

As →c, the observation agent OA() would naturally become the optical 

observation agent OA(c), the GOR motion equation (17.26) of the photon m reduces 

to Einstein’s motion equation (17.15) or (17.30) of the photon m. Thus, we can get 

the approximate solution as shown in Eqs. (17.22-23) in Sec. 17.3.3: the flight path 

of the photon m is an approximate hyperbola. 

Naturally, as →c, the gravitational deflection angle G OR=GOR(c) of the 

starlight based on the GOR motion equation (17.26) of the photon m is exactly 

Einstein’s deflection angle: E=GOR(c)=4GM/RSc2. 

It should be pointed out that the optical observation agent OA() has the 

observational locality (c <), what it presents to observers does not represent the 

objective and real scene of photon motion. 

 Although it is quite consistent with the observational conclusion of the optical 

agent OA(), the gravitational deflection angle E=4GM/RSc2 calculated by 

Einstein’s theory of general relativity does not represent the objectively bending 

angle of the starlight sweeping over the solar surface. 

The Photon’s Trajectory under the General Agent OA(): > >c 

As > >c, the GOR motion equation (17.26) of the photon m could be 

rewritten as Eq. (17.31), in which neither the first term GM/hK
2=GM/RS

2c2 nor the 

second term 3GMu/2 of the right end is zero. Therefore, Eq. (17.31) is quite 

difficult to solve. The existence of the second term 3GMu/2 means that the photon 

motion scene presented by the observation agent OA() (> >c) to observers 

depends on the information-wave speed  of OA(), and contains the observational 

effects of OA() or apparent phenomena. 

For the specific observation agent OA() (> >c), in order to obtain the 

approximate solution of the GOR motion equation (17.26) of the photon m, it is 

necessary to suppose that the information-wave speed  is far greater than the speed 

c of light:  >>c. In the problem of the gravitational deflection of the starlight 

sweeping past the sun as depicted in Fig. 17.2(c), the velocity moment of the photon 

m is hKRSc and r=1/uRS. If  >>c, then the second term 3GMu2/2 at the right 

end of Eq. (17.31) would be a small quantity relative to the first term GM/RS
2c2: 
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Thus, by following the logic route of the reference [68], we can employ the 

progressive approximation method to solve the GOR motion equation (17.31) of the 

photon m and get the approximate solution. Excluding the second term 3GMu2/2 at 

the right end, the GOR motion equation (17.31) of the photon m is reduced to Eq. 
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(17.28), that is, Newton’s motion equation (17.3) of the photon m, and the solution 

is exactly Eq. (17.7) in Sec. 17.2.3: 
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where e=RSc2/GM is Newton’s orbital eccentricity of the starlight or the photon m. 

Since 3GMu2/2 is a small quantity relative to GM/RS
2c2, one could further 

employ the progressive approximation method to substitute Eq. (17.33) into the right 

end of the GOR motion equation (17.31) of the photon m, and get that: 
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(17.34)

 

Equation (17.34) has the following solution: 
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As depicted in Fig.17.2(c), let =+ (  −), where both  and | | are 

small quantities, cos(+)−1 and cos2(+)1. Since e>>1 and  >>c, Eq. 

(17.35) could be approximated as: 

 

( )

( ) ( ) ( )( )

2 2 2 2 2 2

2 2 2 2

2 2 2

3
1 sin

2 2

1 2
ˆ ˆ1 sin 2 3 2 2

S S S

S

GM GM GM
u e

R c R R

GM
e e c e c

R c


 

  


 
 + + + 
 

 
= + + = + + 

 
 (17.36) 

where ê is the eccentricity of the photon orbit of the observation agent OA() 

( >>c); in particular, ê→e as →, that is, exactly the eccentricity of the photon 

orbit of the idealized observation agent OA (also known as Newton’s eccentricity 

of the photon orbit). 

Equation (17.36) is also a standard hyperbola. However, Eq. (17.35) is the 

approximate solution of the GOR motion equation (17.31) of photons, and Eq. 

(17.36) is the approximate expression of equation (17.35). Therefore, the GOR 

photon orbit of the observation agent OA() ( >c) is actually not a standard 

hyperbola: as shown in Eq. (17.36), in GOR theoretical model of the two-body 

system of (Sun,photon) under the observation agent OA() ( >c), the flight path of 

the photon m is only an approximate hyperbola. 

By observing Eq. (17.36), we know that: as →, the GOR orbital eccentricity 

ê of the photon m under the observation agent OA() ( >>c) converges to 
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Newton’s orbital eccentricity e of the photon m under the idealized agent OA. 

Naturally, this means that the orbital eccentricity of GOR photon Equations of 

motion is logical consistent with the orbital eccentricity of Newton photon motion; 

or that, as →, the GOR photon trajectory (Eq. (17.35)) converges to the idealized 

or standard hyperbola. 

Here, for the problem of the gravitational deflection of light, the GOR motion 

equation (17.26) of the photon m has not only generalized Newton’s motion 

equation (17.3) of the photon m but also Einstein’s motion equation (17.15) of the 

photon m. The theory of GOR once again has unified Newton’s theory and 

Einstein’s theory. This once again reflects the logical consistency not only between 

the theory of GOR and Newton’s theory of universal gravitation but also between 

the theory of GOR and Einstein’s theory of general relativity, and moreover, reflects 

the logical self consistency and the theoretical validity of the theory of GOR. 

17.4.4 The GOR Deflection Angle of Starlight 

The GOR motion equation (17.26) of the photon m shows that: for different 

observation agents, the flight path of the photon m would exhibit different degrees of 

gravitational deflection or different bending angles. 

Now, both Newton’s motion equation (17.3) of the photon m and Einstein’s 

motion equation (17.15) of the photon m have become the special cases of the GOR 

motion equation (17.26) of the photon m. 

The Bending Angle under the Idealized Agent OA: → 

By analogizing and following the logic route in Sec. 17.2 to solve the GOR 

motion equation (17.3) or (17.28) of the photon m, we can get the gravitational 

deflection angle of the starlight under the idealized agent OA: GOR=2GM/RSc2. 

This is the Newton’s gravitational deflection angle N=GOR() of light. 

The Bending Angle under the Optical Agent OA(c): → c 

By analogizing and following the logic route in Sec. 17.3 to solve the GOR 

motion equation (17.15) or (17.30) of the photon m, we can get the gravitational 

deflection angle of the starlight under the optical agent OA(c): GOR=4GM/RSc2. 

This is the Einstein’s gravitational deflection angle E=GOR(c) of light. 

The Bending Angle under the General Agent OA(c): > >c 

In regard to the continuity and monotonicity of the solution of the GOR motion 

equation (17.31) of the photon m with respect to (c,), the GOR gravitational 

deflection angle GOR of the starlight sweeping past the sun should be: 
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where GOR=GOR() depends on the observation agent OA(): different observation 

agents must present different degrees of the gravitational deflection of light. 

As depicted in Fig. 17.2(c), the photon m starts from distant the star S at the 

point A, sweeps over the surface of the sun M and reaches the earth faraway from 
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the sun M, then we think that: r→, u→0, and  →+, where  is a small quantity. 

Thus, according to Eq. (17.35), we have 
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According to Eq. (17.10), Newton’s orbital eccentricity e of the starlight 

sweeping past the sun is e=RSc2/GM >>1. 

Substituting Newton’s eccentricity e into Eq. (17.38), we get 
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Thus, the GOR gravitational deflection angle of the starlight is: 
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where the speed c of light represents the speed vc of the observed photon m and 

involves the velocity moment hK=RSc of the photon m as the observed object; the 

information-wave speed  reflects the observational locality (<) of the GOR 

observation agent OA(). 

The gravitational deflection angle of the starlight GOR in Eq. (17.40) or  in Eq. 

(17.39) is only the approximate solution of the GOR motion equation (17.31) of the 

photon m, which requires that the information-wave speed  of OA() is large 

enough or far greater than the speed c of light:  >>c. 

Nevertheless, Eq. (17.40) still provides us with the following insights: 

(i) The first term 2GM/RSc2 in Eq. (17.40) is exactly Newton’s gravitational 

deflection angle N of the starlight, independent of the observation agent 

OA(), representing the objective and real gravitational deflection of light. 

(ii) The second term 2GM/RS(3c2+22) in Eq. (17.40) depends on the 

observation agent OA(), which means that different observation agents 

exhibit different degrees of the gravitational deflection of light, and hence, 

contains the observation effects of OA() and apparent phenomena. 

(iii) The observation effects or apparent phenomena are rooted from the 

observational locality (<) of the observation agent OA(): under the 

idealized agent OA (→), the GOR gravitational deflection angle GOR 

would converge to Newton’s gravitational deflection angle N: GOR→N. 

According to Eq. (17.40), in terms of an observation agent OA() (>>c): 
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Equation (17.41) means that the larger the information-wave speed  of the 

observation agent OA(), the smaller the GOR gravitational deflection angle GOR() 

of the starlight presented by OA() to an observer, which is closer to the objective 

and real Newton’s gravitational deflection angle N. 

This conclusion is consistent with Eq. (17.37). 

As expected earlier in this chapter, both Newton’s gravitational deflection angle 

N and Einstein’s gravitational deflection angle E are only special cases of the GOR 

gravitational deflection angle GOR of the starlight sweeping past the sun. 

17.5 The Gravitational Deflection of Light: 

Phenomenon and Essence 

The test of the gravitational deflection of light provides a paradigm example for 

us to test and verify the theory of GOR. In this way, we could further recognize and 

understand the role of observation and observation agents in physics, and therefore, 

and we could interpret the phenomena and essence in physical observations and 

physical experiments. 

Aimed at the problem of the gravitational deflection of light, the physics 

community have endlessly been struggling to determine whether Einstein’s 

prediction or Newton’s prediction is right. 

Now, the theory of GOR tells us that: for the gravitational deflection of light, 

Einstein’s prediction and Newton’s prediction are based on different theoretical 

systems with different observation agents. What Einstein’s theory of general 

relativity predicts is the phenomena of optical observation; while what Newton’s 

theory of universal gravitation predicts is the essence of the physical world. 

 As far as the phenomenon is concerned, under optical observation, Einstein’s 

prediction of gravitational deflection is right, supported by the optical observation 

agent OA(c), consistent with the phenomenon in optical observation. However, in 

essence, under ideal observation, Newton’s prediction of gravitational deflection is 

right, supported by the idealized observation agent OA, consistent with the 

gravitational deflection of light in the objectively physical world. 

Different perspectives, different phenomena. 

However, the essence remains the same. 

17.5.1 Galilean-Newtonian Perspective 

As stressed repeatedly by the theory of OR (including IOR and GOR), Galileo’s 

doctrine and Newton’s theory is the theory of ideal observation and the true 

portrayal of the objectively physical world. 

The theory of OR, as stated in Sec. 17.2.1, has already clarified that Galileo’s 

doctrine and Newton’s theory implies the extremely idealized conditions of 

observation: taking advantage of the idealized observation agent OA, in which the 

information-wave speed of OA is infinite, it takes no time to transmit the 
information of observed objects, and there is no observational locality and hence no 

relativistic effects; the momentum of the informons is infinitesimal, and there is no 
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perturbation to observed objects and hence no quantum effects. 

Only under such idealized observation conditions could the natural world 

present us with the objectively original outlook of it. Of course, the idealized 

condition agent OA can only be imagined but cannot be acquired. 

The idealized agent OA can be called Galilean-Newtonian Perspective. 

Once, I interpreted the theory of observational relativity (OR) for youngsters and 

talked about the concept of the idealized observation agent, a young girl suddenly 

said: “That’s God’s perspective!” She was absolutely right: the completely objective 

and real physical world could only be appreciated by God himself. Restricted by the 

observational locality of realistic observation agents, human beings will never be 

able to perceive or observe the completely objective and real physical world. 

However, human reason could touch it. 

It is because the information-wave speed of the idealized agent OA is infinite 

that Galileo’s doctrine and Newton’s theory have no relativistic effects; it is because 

the informon momentum of the idealized agent OA is infinitesimal that Galileo’s 

doctrine and Newton’s theory have no quantum effects. Based on God’s perspective, 

from the perspective of the idealized observation agent OA, Galileo and Newton 

could be able to touch the objectively physical world. 

In the two-body problem of (the star M, the planet m) as stated in Chapter 16, 

the observed object P is the planet m. In general, the informon mass of observation 

agents is far smaller than the mass of the planet m and would not produce the 

significant perturbation to the planet. Therefore, we do not have to take into account 

the problem of the informon momentum of observation agents in the two-body 

problem of (star,planet). However, in the two-body problem of (the sun M, the 

photon m), the observed object P is the photon m with extremely small mass; the 

motion could be easily perturbed by the informons of observation agents, leading to 

quantum effects. Therefore, the two-body problem of (Sun,photon) has to involve 

the problem of the informon momentum of observation agents. Fortunately, the 

informons of the idealized observation agent OA has no momentum. 

It is thus clear that, observing a photon flying in the sky with the idealized 

observation agent OA is just like observing a bird or an airplane flying in the air 

with the optical observation agent OA(c). Aimed at the problem of the gravitational 

deflection of light, the motion trajectory of photons presented by the idealized agent 

OA to observers is the objectively gravitational deflection of light. In other words, 

the gravitational deflection of light predicted by Newton’s theory of universal 

gravitation represents the objectively gravitational deflection of light. 

So, Newton’s gravitational deflection angle N=2GM/RSc2 of the starlight 

sweeping over the solar surface calculated from Newton’s motion equation (17.3) of 

photons is the gravitational deflection scene of the starlight under God’s perspective, 

representing the objectively gravitational deflection. 

17.5.2 Einstein’s Perspective 

As stressed repeatedly by the theory of OR (including IOR and GOR), 

Einstein’s theory of relativity is the theory of optical observation, and the relativistic 
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effects described by Einstein are observational effects and apparent phenomena of 

optical observation. 

As stated in Sec. 17.3.1, Einstein’s theory of general relativity implies the 

conditions of optical observation, belonging to the optical observation agent OA(c): 

the information wave of OA(c) is light wave, and the information-wave speed of 

OA(c) is the light speed c, it takes time to transmit the information of observed 

objects, there is the observational locality (c<) of OA(c), presenting relativistic 

effects; the momentum of the informons of OA(c) is the momentum of photons, 

there is the perturbation to observed objects, presenting quantum effects. 

The optical agent OA(c) can be called Einstein’s Perspective. 

Einstein did not really realize that his theory was only a partial theory, a theory 

of optical observation which is valid only under the optical observation agent OA(c); 

in particular, Einstein did not realize that there is the observational locality (c<) in 

optical observation, and the observational locality (c<) of OA(c) is the root and 

essence of relativistic effects. 

As far as the problem of the gravitational deflection of light is concerned, 

Einstein observes the gravitational deflection of light under the optical agent OA(c), 

in which photons are both the observed object of OA(c) and the informons of OA(c): 

the carrying and transmission of the spacetime information of photons depends on 

photons themselves. Therefore, as depicted in Fig. 17.2(c), the optical agent OA(c) 

cannot observe the real motion trajectory of the photon m, and only as the photon m 

reaches our retina or observation devices can we perceive the existence and position 

of the photon m and take the illusory image (at the point B) of the star S as the real 

star S or the direction of the star S. 

As clarified in Sec. 17.3, the observational locality (c<) of the optical agent 

OA(c) leads to the observational effects and apparent phenomena of OA(c): 

Einstein’s gravitational deflection angle E=4GM/RSc2 of the starlight sweeping 

over the solar surface calculated from Einstein’s motion equation (17.15) of photons 

is the gravitational deflection scene presented by the optical agent OA(c) to 

observers, and does not represent the objectively gravitational deflection. However, 

as far as the phenomenon is concerned, the gravitational deflection of light predicted 

by Einstein’s theory of general relativity is quite consistent with the observational 

conclusion of the optical agent OA(c), and supported by the optical observation of 

total solar eclipses. 

As a matter of fact, the observations of total solar eclipses, including the 

Eddington’s and the Dyson’s [145-147], as well as, that in Wyoming [148], the United 

States, are the optical observations made by the optical agent OA(c), and the 

gravitational deflection phenomena of light presented by OA(c) naturally supports 

Einstein’s prediction for the gravitational deflection of light. 

17.5.3 GOR Perspective 

Human perception of the objective world must rely on certain observation media 

or observation agents. A realistic observation agent OA() must have the 

observational locality (<) of it, and what OA() presents to observers must only 
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be an image of the objective world rather than the objective world itself. We would 

never be able to perceive or observe the completely real objective-world. Different 

observation agents present different observational images to observers. 

However, the objectively physical world must be one-of-a-kind. 

The theory of OR (including IOR and GOR) has already clarified that, in theory, 

all forms of matter motion could serve as observation media for transmitting the 

spacetime information of observed objects to observers. In the theory of GOR, the 

optical observation agent OA(c) no longer holds the special status: as stated in the 

principle of general correspondence (GC) (Chapter 11), All observation agents are 

equal; light is not the only observation medium that human beings could utilize. 

So, we could observe the objective world from the broader perspective. 

This is the so-called GOR perspective. 

Aimed at the problem of the gravitational deflection of light, based on the GOR 

field equation and the GOR motion equation, the theory of GOR has built up the 

GOR theoretical model of the two-body system of (the sun M, the photon m), i.e., 

the GOR motion equation (17.26) of photons, which generalizes and unifies 

Newton’s motion equation (17.3) of photons and Einstein’s motion equation (17.15) 

of photons. The GOR motion equation (17.26) of photons is the theoretical mode of 

the general observation agent OA() ([c,+)), naturally depends on OA() and 

the information-wave speed  of OA(), contains the observational effects of OA(). 

Only as →, the GOR motion equation (17.26) of photons reduces to Newton’s 

motion equation (17.3) of photons, and is independent of the observation agent 

OA() and the information-wave speed  of OA(). In this case, the GOR motion 

equation (17.26) of photons, i.e., Newton’s motion equation (17.3) of photons, 

depicts the objectively gravitational deflection of light. 

Naturally, the GOR deflection angle GOR=GOR() of the starlight calculated 

from the GOR motion equation (17.26) of photons depends on OA() and the 

information-wave speed  of OA(). As calculated and stated in Sec. 17.4: as →c, 

GOR()=E, that is, Einstein’s deflection angle; the larger the information-wave 

speed  of OA(), the closer OA() is to the idealized agent OA, and the closer the 

GOR deflection agent GOR() is to Newton’s deflection angle N; as →, 

GOR()=N, i.e., Newton’s deflection angle, that is, the objectively gravitational 

deflection angle GOR() of the starlight. Sweeping past the sun M. 

The theory of GOR has clarified that, although it is quite consistent with the 

phenomenon of optical observation, the prediction of Einstein’s theory of general 

relativity does not represents the objectively physical reality; on the contrary, 

although it is not quite consistent with the phenomenon of optical observation, the 

prediction of Newton’s theory of universal gravitation is exactly the objectively 

physical realistic. 

Based on the theory of GOR, from the broad perspective of GOR theory, we 

have finally discovered that what we perceive or observe is only phenomenal, may 

not necessarily be essential or objective. 
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18 GOR and Gravitational Redshift 

This chapter continues to examine and test the theory of GOR with Einstein’s 

three major scientific predictions. 

This time it the problem of the gravitational redshift of light. 

The problem of the gravitational redshift of light, like the problem of the 

gravitational deflection of light stated in Chapter 17, can be reduced to the two-body 

problem of celestial bodies (the sun M, the photon m): the sun M produces the 

gravitational field; the photon m moves in the gravitational field. 

Under the principle of general correspondence (GC), by analogizing or 

following the logic of Einstein’s theory of general relativity, the theory of GOR 

attempts to reexamine the phenomenon of the gravitational redshift of light, and 

based on the invariance of time-frequency ratio, deduces the gravitational-redshift 

equation of light. The theory of GOR will redefine the concept of gravitational 

redshift based on the principle of conservation of energy, examining the 

gravitational redshift of photons and informons under different observation agents. 

In particular, the theory of GOR will reinterpret the theory of gravitational redshift 

that is based on the classical mechanics and Newton’s theory of universal 

gravitation. 

The GOR gravitational-redshift equation, like all theoretical models in the 

theory of OR (including IOR and GOR), has the high generalization, which will 

generalize and unify Newton’s gravitational-redshift equation and Einstein’s 

gravitational-redshift equation, and moreover, provide new insight into the theory of 

gravitational redshift. 

18.1 On the Gravitational Redshift of Light 

The prediction of the gravitational redshift of light, like the prediction of the 

gravitational deflection of light, was originally one of Einstein’s three famous 

predictions to test and verify his general relativity and was proposed by Einstein 

based on the principle of equivalence before the formal establishment of Einstein’s 

theory of general relativity. 

The gravitational redshift of light is a kind of phenomenon that the frequency of 

light in a gravitational field would decay with the variation of gravitational potential. 

Of course, in gravitational fields, there are not only the phenomenon of gravitational 

redshift (frequency decay) but also the phenomenon of gravitational blueshift 

(frequency growth). 

As depicted in Fig. 18.1(a1-2), a spacecraft is sailing in space, the light source at 

the rear of the spacecraft emits light or photons with a frequency of f towards the 

front of the spacecraft, and the frequency of the light or photons observed by the 

astronaut at the front of the spacecraft is fO. It can be determined that: fO=f as the 

spacecraft flies at uniform speed (as shown in Fig. 18.1(a1): a=|a|=0); fO< f as the 

spacecraft accelerates (as shown in Fig. 18.1(a2): a=|a|>0). 

According to Einstein’s equivalence principle: inertial force is equivalent to 
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gravitational force, and inertial field is equivalent to gravitational field; so, the 

astronauts in the spacecraft could not determine whether the spacecraft is in an 

accelerated state (a) or in a gravitational state (g=−a). Therefore, as depicted in Fig. 

18.1(b1), suppose that there is a celestial body (a gravitational field: g=−a), then the 

observer would find that the frequency f of the light flying from the celestial body 

towards the inertial space must present decay or redshift (fO<f). 

This is namely the gravitational redshift of light. 

 

Figure 18.1 Equivalence Principle and Gravitational Redshift. (a) The frequency shift of 

light inside a spacecraft: As the spacecraft travels at uniform speed, the light source stationary 

in the spacecraft emits light with the frequency f which is constant relative to the astronauts 

inside the spacecraft (fO=f in (a1) and (a3)); as the spacecraft accelerates, the astronaut at the 

front finds that the frequency f of the light emitted by the light source at the rear presents 

decay or redshifts (fO<f in (a2)), while the astronaut at the rear finds that the frequency f of the 

light emitted by the light source at the front presents growth or blueshift (fO>f in (a4)). (b) 

Frequency shift of light on a celestial body: According to Einstein’s equivalence principle, the 

astronauts inside the spacecraft could not distinguish whether the spacecraft is in an 

accelerated state or in a gravitational field, and therefore, for a massive celestial body (a 

gravitational field g=−a in (b)), the observer would find that the frequency f of the light flying 

from the celestial body towards the inertial space must present decay or redshift (fO<f in (b1)), 

while the observer would find that the frequency f of the light flying from the inertial space 

towards the celestial body must present growth or blueshift (fO>f in (b2)). 

On the contrary, as depicted in Fig. 18.1(a3-4), the light source at the front of 

the spacecraft emits light or photons with a frequency of f towards the rear of the 

spacecraft, and the frequency of the light or photons observed by the astronaut at the 

rear of the spacecraft is fO. It can be determined that: fO=f as the spacecraft flies at 
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uniform speed (as shown in Fig. 18.1(a3): a=|a|=0); fO> f as the spacecraft 

accelerates (as shown in Fig. 18.1(a4): a=|a|>0). 

According to Einstein’s equivalence principle: as depicted in Fig. 18.1(b2), 

suppose that there is a celestial body (a gravitational field: g=−a), then the observer 

would find that the frequency f of the light flying from the inertial space towards the 

celestial body must present growth or blueshift (fO>f). 

This is namely the gravitational blueshift of light. 

Different from the gravitational deflection of light, the gravitational redshift of 

light is usually interpreted based on Einstein’s dilation doctrine of gravitational time, 

rather than based on Einstein’s curvature doctrine of gravitational spacetime. It is 

based on Einstein’s dilation doctrine of gravitational time that Einstein was able to 

predict and calculate the gravitational redshift of light. Actually, in Einstein’s theory 

of general relativity, the gravitational redshift of light and the gravitational dilation 

of time are the same or equivalent physical effects [149-151]. 

The easiest way to test or verify the gravitational redshift of light is for the 

observers on the earth to observe the optical spectrum from the sun. The sun radiates 

light or photon to the earth: let f be the frequency of the sunlight on the solar surface 

and fO the frequency observed by the observer on the earth. Whether based on 

Einstein’s prediction of the gravitational redshift of light or Newton’s prediction of 

the gravitational redshift of light, the optical spectrum of the sun would inevitably 

exhibit redshift as the sunlight from the sun to the earth: fO< f. 

Einstein’s prediction of the gravitational redshift of light based on the principle 

of equivalence is qualitative. 

Before the formal establishment of his theory of general relativity, Einstein 

could not quantitatively predict and calculate the gravitational redshift of light. After 

the formal establishment of his theory of general relativity, Einstein solved the field 

equation of general relativity to obtain the spacetime metric g, and based on the 

spacetime line-element equation of photons ds=gdxdx and the factor  =dt/d of 

spacetime transformation in general relativity, derived the gravitational-redshift 

equation of the solar spectrum. In this way, Einstein calculated the theoretical value 

of the gravitational redshift of the solar spectrum: 
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where G is the gravitational constant, MS is the solar mass, RS is the solar radius, DSE 

is the distance between the sun and the earth, and g00(r) is the metric 00-element at 

the distance of r from the solar centroid; ZE is Einstein’s relative frequency-shift 

(ZE<0 means redshift; ZE>0 means blueshift), Δf is the absolute frequency-shift, and 

f is the reference frequency. 

Adam (1959 [152]) provided the actual observed values of the redshift of the solar 

spectrum: Z=−210−6. Blamont and Roddier (1961 [153]) and Brault (1963 [154]) 
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provided the actual observed value of the red shift of the solar spectrum: 

Z=−2.1210−6, which conforms to the theoretical value predicted by Einstein within 

the accuracy range of 5%. 

The actual observations of the solar spectrum seem to support Einstein’s 

prediction of gravitational redshift. However, there are also views that [68]: the 

gravitational redshift of light in Eq. (18.1) is so small that the turbulence in the solar 

chromosphere and Stark effect may have the uncertain impact on the accuracy of the 

observation or measurement of gravitational redshift. 

In addition to the sun, the spectra of other stars could also be employed to test 

Einstein’s prediction of gravitational redshift; In particular, high-density stars could 

exhibit more significant gravitational redshifts. 

In 1954, Popper observed the spectrum of 40 Eridani B and found that the 

redshift of its optical spectrum was Z=−5.610−5 [155]; the theoretical value 

predicted by Einstein’s theory of general relativity was ZE=−710−5. In 1971, 

Greenstein and et al observed the spectrum of Sirius B and found that the redshift of 

its optical spectrum was Z=−(3.00.05)10−4 [156]; the theoretical value predicted 

by Einstein’s theory of general relativity was ZE=−(2.81)10−4. These 

observations are generally consistent with Einstein’s prediction of gravitational 

redshift of light. However, those stars are so far away from the earth that their 

masses and radii are difficult to accurately be determined, and hence, there are some 

doubts about the accuracy of these observations or measurements. 

In 1958, Mössbauer discovered Mössbauer Effect [157]: the effect of recoil-free 

gamma-ray resonance absorption, which has the extremely high energy-resolution of 

up to 10−13, and created the conditions for precisely measuring the gravitational 

redshift of light on the earth’s surface. Thus, on the surface of the earth, one could 

measure the gravitational redshift of gamma ray with the height difference H of 

only 20 meters. 

Suppose that the generator of light signal on the earth’s surface emits light or 

photons with frequency f from bottom to top (from top to bottom), the receiver of 

light signal at a distance of H >0 (<0) from the earth’s surface measures the light 

signal with frequency fO, then the frequency difference is that  f= fO−f .  

According to Einstein’s theory of general relativity: 

 

( )

( )

00

2

00

2

1

,

E

E

E

E
E

E

g R Hf g
Z H

f cg R

GM
H R g

R

+ 
= = −  − 

 
 = 
 

 

(18.2)

 

where ZE is Einstein’s relative frequency-shift (ZE<0 means redshift; ZE>0 means 

blueshift), ME is the earth’s mass, RE is the earth’s radius, H is the height 

difference between the receiver and the generator, g00(RE) is the metric 00-element 

at the distance of RE from the earth’s centroid, g00(RE+H) is the metric 00-element 

at the distance of RE+H from the earth’s centroid, and g is the gravitational 

acceleration of the earth’s surface. 
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The harder light or photons could obtain stronger Mössbauer effect and more 

significant gravitational redshift, such as the gamma ray emitted by 57Fe nuclei. In 

1960, Pound and Rebka employed the gamma ray emitted by 57Fe nuclei as the 

radiation source and set H=22.5m to observed the gravitational redshift of the 

gamma ray. According to the theoretical value calculated from Eq. (18.2), 

ZE=−2.4610−15. Although ZE is very small, it could be determined by Mössbauer 

effect. The observed value of Pound and Rebka was Z=−(2.570.26)10−15: the 

ratio of the actual Z to the theoretical ZE is Z/ZE=1.050.10; the observed value Z is 

consistent with Einstein’s theoretical value ZE within the accuracy range of 10% [158]. 

In 1964, Pound and Snider repeated the 1960 experiment and improved the 

observation accuracy. This time the ratio of the actual Z to the theoretical ZE is 

0.9900.00760: the observed value Z is quite consistent with Einstein’s theoretical 

value ZE within the accuracy range of 1% [159]. 

The observation and experiment of the gravitational redshift of light are 

generally consistent with the theoretical prediction and calculation of Einstein’s 

theory of general relativity. However, unlike the case of the gravitational deflection 

of light, this time Einstein’s prediction of gravitational redshift seems to have lost its 

challengers and competitors: Newton’s theory of universal gravitation could also 

predict and calculate the gravitational redshift of light, and the theoretical value 

seems to be the same as Einstein’s theoretical value, with no the observational 

distinguishability. 

Newton’s prediction of gravitational redshift is not based on Einstein’s 

equivalence principle nor on Einstein’s dilation doctrine of gravitational time. 

Newton’s prediction of gravitational redshift is based on the most concise 

principle of physics: the principle of conservation of energy. The frequency of light 

represents the kinetic energy of photons; the decay of kinetic energy of photons 

must lead to the decay or redshift of the frequency of light or photons. According to 

the principle of conservation of energy, based on classical mechanics and Newton’s 

theory of universal gravitation, one could calculate the gravitational redshift of light, 

in which it is necessary to calculate the potential energy of photons in the 

gravitational field that depends on the classical mass of photons, especially on the 

gravitational mass of photons. According to Einstein’s relativity theory, photons 

have no rest mass, which means that photons have no classical mass or gravitational 

mass. Without the gravitational mass of photons, it is impossible for Newton’s 

classical mechanics to quantitatively predict or theoretically calculate the 

gravitational redshift of light. 

The current Newtonian formula of the gravitational redshift of light takes 

Einstein’s relativistic mass as the gravitational mass of Newton’s classical 

mechanics to calculate the potential-energy difference V of photons and deduce the 

pseudo Newtonian formula of the gravitational redshift of light: 
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where ZPN is the frequency-shift (ZPN<0 means redshift; ZPN>0 means blueshift) in 

the pseudo Newtonian formula of the gravitational redshift of light, E=mc2 could be 
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regarded as the intrinsic kinetic energy (i.e., the energy of the photon m in vacuum), 

m represents the relativistic mass of a photon (both the relativistic inertial mass and 

the relativistic gravitational mass), E is the increment of energy of the photon from 

the emitter to the observer, V is the potential energy of the photon as it is emitted, 

and VO is the potential energy of the photon as it is observed. 

Suppose that the gravitational mass m of the photon in Eq. (18.3) is constant, 

then one could calculate the difference V of potential energy of the photon and the 

pseudo Newtonian gravitational redshift ZPN. 

For the observation of the gravitational redshift of the solar spectrum in Eq. 

(18.1), based on Newton’s classical mechanics, you could employ Eq. (18.3) which 

mixes with relativity theory and quantum theory to calculate the absolute 

frequency-shift f and the relative frequency-shift ZPN=f / f of the solar spectrum: 
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For the observation of the gravitational redshift of the gamma ray on the earth’s 

surface in Eq. (18.2), based on Newton’s classical mechanics, you could employ Eq. 

(18.3) which mixes with relativity theory and quantum theory to calculate the 

absolute frequency-shift f and the relative frequency-shift ZPN=f / f of the gamma 

ray emitted by 57Fe nuclei: 
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By contrasting Eqs. (18.4-5) and Eqs. (18.1-2), we know that, as far as the 

observation of the gravitational redshifts of the solar spectrum and Mössbauer effect 

are concerned, Newton’s prediction and Einstein’s prediction are nearly identical: 

ZPNZE , and difficult to be distinguished in observation. Thus, people are no longer 

curious about who is right, Newton or Einstein, but why Einstein and Newton are so 

harmonious and consistent this time. 

It should be pointed out that, as shown in Eq. (18.3), the current Newtonian 

formula of gravitational redshift not only relies on Einstein formula E=mc2 

involving relativity theory but also relies on Planck equation E=hf involving 

quantum theory. Accordingly, the current Newtonian formula of gravitational 

redshift is not the product of pure classical mechanics and Newton’s theory of 

universal gravitation, but the mixture of Newton’s theory of universal gravitation 
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and Einstein’s theory of general relativity, and even involves quantum theory. 

Later on, we will deduce Newton’s gravitational-redshift equation purely based 

on classical mechanics and Newton’s theory of universal gravitation, which will be 

generalized and unified into the theoretical system of GOR. 

18.2 Einstein and Gravitational Redshift 

Einstein’s prediction of the gravitational redshift of light, like his prediction of 

the gravitational deflection of light, is based on his equivalence principle. 

Before the formal establishment of his general relativity, Einstein could only 

employ his equivalence principle to qualitatively interpret the logical thought of the 

gravitational redshift of light in the way as depicted in Fig. 18.1, but could not 

quantitatively calculate of the gravitational redshift of light. After the formal 

establishment of his general relativity, Einstein derived the gravitational-redshift 

equation of light based on the approximate solution (Eq. (15.3) in Sec. 15.2.1 of 

Chapter 15) of Einstein field equation and calculated the theoretical value of the 

gravitational redshift of the solar spectrum, providing the basis for testing and 

verifying his general relativity and the gravitational redshift of light. 

It is of important significance to explore the problem of the gravitational redshift 

of light and carry out the observation and experiment of the gravitational redshift of 

light: verifying Einstein’s equivalence principle, testing Einstein’s doctrine of the 

gravitational dilation of time, testing Einstein’s doctrine of the gravitational redshift 

of light, and testing Einstein’s theory of general relativity. 

Here, we review Einstein’s prediction of the gravitational redshift of light and 

the theoretical calculation based on general relativity, and reexamine Einstein’s 

theory of the gravitational redshift of light, which will be contributed to our 

recognition and understanding of the theory of GOR. 

18.2.1 Einstein’s Gravitational-Redshift Equation 

Einstein’s deduction of the gravitational-redshift equation does not directly 

derive and calculate the frequency shift of light or photons moving in gravitational 

spacetime, but based on the equivalence between the gravitational redshift of light 

and the gravitational dilation of time, indirectly derive and calculate the gravitational 

redshift of light. 

The Idealized Static Spherically-Symmetric Gravitational Spacetime 

As depicted in Fig. 18.2, the celestial body M, as the gravitational source, 

produces an idealized static spherically-symmetric gravitational spacetime, which 

satisfies the idealized conditions of static spacetime: 

 ( )00 and 0 1,2,3ig g i
t




= = =


 (18.6) 

where the first term is the condition of stationary spacetime, the second term is the 

condition of orthogonal spacetime. 

The gravitational spacetime that satisfies the two idealized conditions in Eq. 

(18.6) is referred to as static spacetime. 
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Einstein’s approximate solution (Eq. (15.3) in Sec. 15.2.1 of Chapter 15) of 

Einstein field equation and Schwarzschild exact solution (Eq. (15.7) in Sec. 15.2.2 

of Chapter 15) of Einstein field equation are both the static spherically-symmetric 

spacetime metrics, and can be employed to deduce the gravitational-redshift 

equation of light. 

The Deduction of Einstein’s Gravitational-Redshift Equation 

According to the logic of Einstein’s theory of general relativity (see Zhao’s 

literature [160]), as depicted in Fig. 18.2, suppose that, in the gravitational spacetime 

with the celestial body M as the gravitational source and gravitational center O, the 

light source or optical clock TP is stationary at the point A (at the distance of rA from 

the gravitational center) and emits light or photos to the point B (at the distance of rB 

from the gravitational center O): the optical clock TP at the point A emits light or 

photons with the frequency of fA(t1) at the coordinate time t1, and the observer at the 

point B receives the light or photons with the frequency of fB(t2) at the coordinate 

time t2; then TP at A emits light or photons with the frequency of fA(t1) at the 

coordinate time t1, and the observer at B receives the light or photons with the 

frequency of fB(t2) at the coordinate time t2. 

According to the idealized conditions in Eq. (18.6), the gravitational field of M 

is stationary spacetime and does not change with time. Suppose the frequency of the 

optical signals emitted by the light source or optical clock TP at the coordinate times 

t1 and t1 is the same: fA(t1)=fA(t1)=fA, then the observer at the point B should also 

receive the two optical signals with the same frequency at the coordinate times t2 

and t2: fB(t2)=fB(t2)=fB. Moreover, the time interval between the transmission of two 

optical signals from the point A to the point B should also be the same: 
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Equation (18.7) suggests that the time difference between the two optical signals 

emitted by the light source or optical clock TP at the point A is equal to the time 

difference between the two optical signals received by the observer at the point B: 

dtA=dtB. 

According to the reference [160]: “t is the coordinate time, not the intrinsic time 

 that the observer actually measured.” The literature [160] claims that the intrinsic 

times experienced by the observers at the points A and B are dA and dB, 

respectively, and should be different. 

According to the factor  =d t /d (Eq. (12.11) in Sec. 12.2.4 of Chapter 12) of 

spacetime transformation in Einstein’s theory of general relativity: 
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where, as depicted in Fig. 18.2, g00(rA) and g00(rB) are respectively the metric 

00-elements of the point A and the point B in the gravitational field of M. 
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Equation (18.8) suggests that dAdB or dA>dB. 

This is the phenomenon of the time dilation of gravitational spacetime or the 

effect of potential-clock running slower. 

As stated by the reference [160], Einstein ever suggested testing the effect of 

potential-clock running slower by means of the spectral frequency shift (redshift or 

blueshift). The intrinsic frequency of the atomic radiation spectrum reflects the 

intrinsic oscillation frequency of the atom: f=dN/d, where N is the intrinsic number 

of atomic oscillations. In the gravitational spacetime of M, when the number of 

atomic oscillations observed by the observers at the points A and B is the same 

(dNB=dNA), it could be inferred from the formula f=dN/d that: 
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By substituting Eq. (18.9) into Eq. (18.8), Einstein had the frequency shift: 
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where G is the gravitational constant, M is the mass of the celestial body, rA is the 

distance of the point A (where the light source or optical clock TP is at rest) from the 

gravitational center O of M, and rB is the distance of the point B from the 

gravitational center O of M. 

This is Einstein’s gravitational-redshift equation. 

The simplest and easiest way to test the gravitational redshift of light is to 

observe the gravitational redshift of the spectrum of the sun. The corresponding 

theoretical calculation can be based on Eq. (18.10): let M=MS be the solar mass, the 

point A be located on the solar surface (rA=RS), and g00(rB)→1 as rB→. 

By substituting Schwarzschild metric g00(RS)=1+2GMS /RSc2 into Eq. (18.10), 

one could have that: 
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This is the theoretical gravitational redshift of the solar spectrum observed by 

the observers in the free spacetime SF. 

Let B be the earth. Since the distance between the sun and the earth is far greater 

than the solar radius: rB>>RS, the gravitational redshift of the solar spectrum 

observed by the observers on the earth should be approximate to Einstein’s 

predictive value of ZE−2.1210−6 in Eq. (18.11). 



225 

 

Figure 18.2 The Gravitational Redshift of Light in A Static Spherically-Symmetric 

Gravitational Spacetime: The celestial body M is the gravitational source and center of 

the spherically-symmetric gravitational spacetime. The light source or optical clock TP at 

the point A stationary in the gravitational spacetime of M emits the light signal with the 

frequency fA to the point B. The observer at the point B receives the light signal with the 

frequency fB. According to Einstein’s equivalence principle and Einstein’s theory of 

general relativity: fB<fA, which means that the frequency of the light signal exhibits decay 

in gravitational spacetime, showing the phenomenon of gravitational shift. 

18.2.2 The Invariance of Time-Frequency Ratio 

and the Gravitational Redshift of Light 

There are some doubts about Einstein’s gravitational-redshift equation (18.10) 

of light and about the deduction of Eq. (18.10), which is worth a discussion. 

According to the theory of OR (see Sec. 12.3 in Chapter 12), the intrinsic time 

d is the objective and real time, does not depend on observers, essentially but not 

mathematically, nor depends on observation agents. We are not able to understand 

why the intrinsic times dA and dB are different in Eq. (18.8), and moreover, we are 

able to understand why the atomic-oscillation numbers dNA and dNB of different 

observers are the same in Eq. (18.9). 

Logically, the deduction of Einstein’s gravitational-redshift equation (18.10) of 

light is not very clear or definite. 

According to the theory of OR, dA=dB=d. Therefore, based on Einstein’s 

factor  =d t /d (Eq. (12.11) in Sec. 12.2 of Chapter 12) of spacetime transformation 

in general relativity, Eq. (18.8) needs to be transformed into: 
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The theory of OR has an important theorem or even a principle (see Eq. (2.3) in 
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Sec. 2.3.2 of Chapter 2): the invariance of time-frequency ratio, which is the 

important relationship between the time t and the clock frequency f. 

According to the invariance of time-frequency ratio, it follows that: 
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where both dtA and dtB are the observational times of the optical clock TP, while fA 

and fB are the observational frequencies of the optical clock TP. 

In this way, you could also get Einstein’s gravitational-redshift equation of light: 
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Equation (18.14) is the same as Einstein’s equation (18.10). 

However, Eq. (18.14) is based on the invariance of time frequency ratio from the 

theory of OR, with clear and concise logic. This result confirms the principle of the 

invariance of time frequency ratio. As a matter of fact, as stated in Sec. 2.3 of 

Chapter 2, the invariance of time-frequency ratio is the logical consequence of the 

time definition (Def. 2.2) of OR theory, that is, a theorem of the theory of OR. 

18.2.3 The Gravitational Redshift 

of the Optical Observation Agent 

According to the theory of OR, Einstein’s theory of general relativity is the 

theory of optical observation, and the observation agent of it is the optical agent 

OA(c), where the observation medium or the information wave that transmits the 

observed information of observed objects to observers is light or electromagnetic 

interaction. 

By examining Fig. 18.2, you might have some doubts. 

Firstly, as far as Einstein’s theory of general relativity is concerned, in the 

precession problem of Mercury’s perihelion, the observed object is Mercury, and it 

is light that transmits the motion information of Mercury to observers; in the 

gravitational-deflection problem of light, the observed object is light, and it is the 

light itself that transmit the motion information of light to observers. 

So, in the gravitational-redshift problem of light, what is the observed object? Is 

it the moving photon or the stationary light source (optical clock) TP at the point A? 

It is worth noting that, whether Eq. (18.10) or Eq. (18.14), the deduction of 

Einstein’s gravitational-redshift equation needs to make use of the factor  =1/(g00) 

of spacetime transformation. However, in general relativity, the general expression 

of Einstein’s factor of spacetime transformation is  =1/(((g00)− iv
i/c)2−v2/c2) (Eq. 

(12.16) in Sec. 12.2.4 of Chapter 12). Under the condition of orthogonal spacetime 

in Eq. (18.6),  i=0, and therefore,  =1/(g00−v2/c2) (Eq. (12.12) in Sec. 12.2.4 of 
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Chapter 12). Thus, whether Eq. (12.12) or Eq. (12.16)),  =1/(g00) requires the 

observed object to be stationary in gravitational spacetime: v=0. 

It follows that, in the problem of the gravitational redshift of light depicted in 

Fig. 18.2, the observed object is not light or photons, but can only be the light source 

(optical clock) TP stationary at the point A that emits light signals, and the light or 

photons emitted by TP is only the observation medium of Einstein’s optical agent 

OA(c), i.e., the information wave or informons of OA(c) that carries and transmits 

the spacetime information of TP. (It should be noted that, according to Einstein’s 

factor (Eq. (12.16)) of spacetime transformation, there is no need for the condition 

of orthogonal spacetime (gi0=0 (i=1,2,3)) if v=0.) 

Secondly, another issue is: In the problem of the gravitational redshift depicted 

in Fig. 18.2, whether the clock TP as the observed object must be a light source or 

must be an optical clock? 

Actually, as stated earlier, Einstein’s gravitational-redshift equation of light does 

not directly calculate the gravitational redshift of light, but indirectly derives and 

calculates the gravitational redshift of light based on the equivalence between the 

gravitational redshift of light and the gravitational dilation of time. Whether Eq. 

(18.10) or Eq. (18.14), the so-called gravitational redshift f or ZE= f /f of light is 

actually the gravitational dilation of time in Einstein’s factor  =dt/d of spacetime 

transformation:  =dt/d=1/(g00) means the dilation of gravitational time dt. 

Equation (18.11) visually shows the relationship between the gravitational 

redshift ZE of light and Einstein’s spacetime-transformation factor  =1/(g00): 

ZE=1−. In other words, as an observer of the free spacetime SF observes the solar 

spectrum, the observed gravitational-redshift ZE of light is the frequency-shift or 

dilation of the time in the gravitational spacetime of the sun: 
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where dt is the observational (observed) time of the solar gravitational spacetime, 

and may be called the solar gravitational time. 

Accordingly, the clock TP in Eq. (18.15) (as shown in Fig. 18.2) is a potential 

clock at rest in the gravitational spacetime of the celestial body M or at rest on the 

surface of celestial body M. 

In theory, all matter waves or periodic physical phenomena could be employed 

to define clock or time. 

According to de Broglie’s theory of matter waves, all matter particles or matter 

systems are matter waves, and could be employed to define clock or time. So, as the 

observed object of gravitational redshift, the clock TP can be any matter system or 

any periodic physical phenomenon. 

However, in Einstein’s theory of general relativity, it is the optical observation 

agent OA(c) that transmits the information of TP to observers. Therefore, in Fig. 

18.2, the signals emitted by TP from the point A to the point B must be light or 

photons, which is not the observed object, but the observation medium of OA(c): the 

information wave and informons of OA(c), for carrying and transmitting the 
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information of TP, including the temporal and spatial information of TP, and at the 

same time, including the observational effect caused by the observational locality 

(c<) of the optical observation OA(c). 

At this point, it can be concluded that Einstein’s gravitational-redshift equation 

of light is the gravitational-redshift equation of the information wave and informons 

of the optical observation agent OA(c); Einstein’s gravitational-redshift theory of 

light is the gravitational-redshift theory of the optical observation agent OA(c). In 

Einstein’s gravitational-redshift equation (18.10) of light, ZE is the gravitational 

redshift of the optical agent OA(c), representing the gravitational redshift of the 

whole optical observation system or optical agent OA(c): not only the gravitational 

redshift of information waves and informons of OA(c), but also the gravitational 

redshift of the observational time of OA(c), and even the gravitational redshift of de 

Broglie’s matter waves of all matter systems. 

18.3 Newton and Gravitational Redshift 

Newton’s theory of universal gravitation can also interpret and calculate the 

gravitational redshift of light. 

However, unlike Einstein’s theory of general relativity, Newton’s theory of 

universal gravitation does not need the principle of equivalence for interpreting the 

gravitational redshift of light, nor does it need the gravitational effect of time 

dilation or the gravitational effect of potential-clock running slower. 

Actually, as stated in Sec. 18.1 of this chapter, the gravitational redshift of light 

does not mean the time dilation of gravitational spacetime, nor the gravitational 

effect of potential-clock running slower. In essence, the effect of gravitational 

redshift lies in the transformation of energy forms. Newton’s theory of the 

gravitational redshift of light is based on the most concise principle of physics: the 

principle of conservation of energy. 

18.3.1 Pseudo Newtonian Formula 

of the Gravitational Redshift of Light 

Newton’s theory of universal gravitation interprets the gravitational redshift of 

light based on the principle of conservation of energy, which needs to calculate the 

classical kinetic-energy K and the classical potential-energy V of photons in 

gravitational spacetime, and therefore, needs the classical mass m of photons: K 

needs the classical inertia-mass of mi; V needs the classical gravitational-mass of mg. 

However, Newton’s classical mechanics has no knowledge about the classical 

mass m (including mi and mg) of photons. 

Therefore, the current strategy has to borrow Einstein formula E=mc2 and the 

Planck equation E=hf to calculate the photon mass: m=E/c2 or m=hf/c2; moreover, by 

employing Einstein’s relativistic mass m as Newton’s classical mass to deduce the 

so-called Newtonian gravitational-redshift equation. 

The following derivation originates from Zhao’s literature [160]: the current 
derivation of the so-called Newtonian gravitational-redshift equation of light is 

generally the same. (However, we could not determine whether this approach or 
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strategy began with Einstein.) 

As depicted in Fig. 18.2, suppose that, in the static spherically-symmetric 

gravitational spacetime of the celestial body M, a photon flies from the point A to 

point B, then according to Newton’s classical mechanics, the loss of the photon’s 

energy (kinetic energy) should be: 
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where, G is the gravitational constant, M is the mass of the celestial body as 

gravitational source, and mg is the gravitational mass of the photon. 

Suppose that the gravitational mass mg and the inertial mass mi of a photon are 

the same, and that the photon mass is lossless during motion, then: 
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It is worth noting that, in order to deduce Newton’s gravitational-redshift 

equation of light, the literature [160] specifically lists the following relations of 

non-Newtonian classical mechanics: 
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where m is the relativistic mass in Einstein formula E=mc2, used as both the classical 

inertial-mass mi of the photon and the classical gravitational-mass mg of the photon. 

By substituted Eq. (18.17), one could have the absolute redshift of photons: 
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Then, the relative redshift ZPN of photons is: 
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where ZPN is referred to as the pseudo Newtonian redshift. 

As stated earlier in this chapter, the current Newtonian gravitational-redshift 

equation (18.20) of light borrows both Einstein formula E=mc2 and Planck equation 

E=hf for deducing the so-called Newtonian redshift, involving both relativity theory 

and quantum theory. This means that the current Newtonian gravitational-redshift 

equation of light is not the product of the pure Newtonian classical mechanics, but 

the mixture of Newton’s classical mechanics and Einstein’s relativity theory, as well 
as, even quantum theory, which can be called the pseudo Newtonian formula of 

the gravitational redshift of light. 
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Generally, GM/rc2 (<<1) is a small quantity. Therefore, by contrasting 

Einstein’s gravitational-redshift equation (18.10) and the pseudo Newtonian 

gravitational-redshift equation (18.20), one could find out that Einstein’s redshift ZE 

and the pseudo Newtonian redshift ZPN are approximate without the observational 

distinguishability: 
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It should be pointed out that the observational indistinguishability between ZE 

and ZPN is exactly because ZPN is only the pseudo Newtonian. 

We expect the real Newtonian theory of gravitational redshift, that is, Newton’s 

gravitational-redshift equation of light which is purely based on classical mechanics 

and Newton’s theory of universal gravitation. 

18.3.2 Real Newtonian Formula 

of the Gravitational Redshift of Light 

According to the theory of OR: the essence of the gravitational redshift of light 

is not the gravitational dilation of time; both the gravitational effect of time dilation 

and the gravitational effect of potential clock running slower are the observational 

effects, rooted from the observational locality (<) of the observation agent 

OA(). According to the theorem of Cartesian spacetime, under the idealized 

observation agent OA, both the gravitational effect of time dilation and the 

gravitational effect of potential clock running slower would disappear. 

The essence of the gravitational redshift of light is the conservation of energy 

and the transformation of energy forms, following the principle of conservation of 

energy. Therefore, the definition and calculation of the gravitational redshift of light 

should be based on the viewpoint of energy and the idea of conservation of energy, 

rather than the dilative effect of time in gravitational spacetime. 

The frequency f of a photon represents the kinetic energy K of the photon. Under 

the optical observation agent OA(c), the kinetic energy K of the photon (or one of 

the informons of OA(c)) is K=E=mc2=hf, where m is the relativistic mass of the 

photon; Under the idealized observation agent OA, the kinetic energy K of the 

photon as the observed object P of OA is K=mc2/2=moc2/2 (Eq. (5.26) and Eq. 

(5.8)), where m is the classical mass of the photon and mo is the rest mass of the 

photon. According to the theory of OR, a photon has different frequencies under 

different observation agents; in particular, under the idealized agent OA, the 

spectrum of light or photons would be unobservable. Thus, the definition Z= f / f of 

the gravitational redshift of light under the optical agent OA(c) would no longer 

applicable to the idealized agent OA, and naturally, nor to classical mechanics and 

Newton’s theory of universal gravitation. 

According to Newton’s theory of universal gravitation, in the gravitational field, 
there is a relation of as one falls another rise between the kinetic energy K and 

potential energy V of a matter particle, keeping conservation of total energy. 
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As in the case of ordinary matter particles, for a photon moving in gravitational 

spacetime, if its potential energy V increases, then its kinetic energy K decreases, 

and vice versa. In essence, the gravitational redshift of light means the 

kinetic-energy decay of photons. Therefore, the gravitational redshift of light, 

whether under the idealized agent OA or under the optical agent OA(c), can be 

defined as the decay or redshift of photons’ kinetic energy. 

Einstein’s optical agent OA(c) defines the gravitational redshift of light as 

ZE=f /f based on the observational frequency f and the observational frequency-shift 

f of photons in gravitational spacetime. Actually, under the principle of 

conservation of energy, it could be equivalently transformed into the gravitational 

redshift definition ZE=K /K based on the observational kinetic-energy K and the 

observational kinetic-energy shift K of photons in gravitational spacetime: 
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where ZE is Einstein’s gravitational redshift of light, fc and f c are respectively the 

relativistic frequency and relativistic frequency-shift of photons under the optical 

agent OA(c), while Kc and ΔKc are respectively the relativistic kinetic-energy and 

relativistic kinetic-energy shift of photons under the optical agent OA(c). 

In this way, based on the idea of energy, under the principle of conservation of 

energy, by following the logic of Eq. (18.22), Newton’s gravitational redshift of 

light could be defined as follows: 
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where ZN is Newton’s gravitational redshift of light, K and ΔK are respectively the 

classical kinetic-energy and classical kinetic-energy shift of photons under the 

idealized observation agent OA. 

It should be pointed out that: if Newton’s gravitational redshift ZN of light is 

defined with Eq. (18.23), then the observed object of gravitational redshift of light in 

Fig. 18.2 would no longer the light source (potential clock) TP stationary at the point 

A, but the light or photons; the observation agent would no longer the optical agent 

OA(c), but the idealized agent OA, and therefore, the informons transmitting 

gravitational-redshift information of light would no longer photons themselves, but 

the idealized informons of OA with the infinite speed and the infinitesimal 

momentum. In classical mechanics, photons lose their special status as informons 

and are no different from ordinary matter particles. Thus, according to Newton’s 

classical mechanics, the classical kinetic-energy K and the classical 

potential-energy V of a photon in gravitational spacetime should be: 
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where KF=mc2/2 is the kinetic energy of the photon in vacuum or the free 

spacetime SF, K(r) and V(r) are respectively the classical kinetic-energy and 

potential-energy of the photon at the distance r from the gravitational center O, and 

m is the classical mass of the photon. 

According to the principle of conservation of energy: K=−V. 

For the gravitational-redshift scene of light described in Fig. 18.2, from Eq. 

(18.23) and Eq. (18.24), it is follows that: 
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where K(rB) is the classical kinetic-energy of the photon at the distance rB from the 

gravitational center O, and V(rA) and V(rB) are the classical potential-energies of 

the photon at the distances rA and rB from the gravitational center O, respectively. 

This is truly Newton’s gravitational-redshift equation of light. 

Equation (18.25) is purely based on Newton’s classical mechanics and Newton’s 

law of universal gravitation, independent of relativity theory and quantum theory, no 

involving Einstein formula E=mc2 and Planck equation E=hf, and different from 

Einstein’s gravitational-redshift equation (18.10) and the pseudo Newtonian 

gravitational-redshift equation (18.20). 

Suppose that an observer in the free spacetime SF observes the solar spectrum: 

M=MS, rA=RS and rB→, then Newton’s gravitational-redshift equation (18.25) of 

light reduces to: 
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Where, G is the gravitational constant, MS is the solar mass, RS is the solar radius, 

and ZN is Newton’s gravitational redshift of the solar spectrum. 

This is different from our previous knowledge and understanding. 

the conclusion Eq. (18.26) is different from that of the pseudo Newtonian 

gravitational-redshift equation (18.20): as far as the solar spectrum is concerned, 

Newton’s gravitational-redshift ZN of the solar spectrum in Eq. (18.26) is not the 

same as or approximate to Einstein’s gravitational-redshift ZE of the solar spectrum 

in Eq. (18.11), but is twice Einstein’s ZE: ZN=2ZE. 

Later on, the correctness and validity of Newton’s gravitational redshift equation 

(18.25) will be confirmed by the gravitational-redshift theory of GOR and the GOR 

gravitational-redshift equation of light. 

18.4 GOR and Gravitational Redshift 

The theory of GOR can also predict or calculate gravitational redshift. 
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However, the theory of GOR is the theory of the general observation agent 

OA(), and the gravitational redshift of it may not necessarily be the gravitational 

redshift of light. The gravitational redshift of GOR can be the gravitational redshift 

of the informons of the general observation agent OA() and the gravitational 

redshift of the observed object P (including general matter particles and photons) 

under OA(). It can be expected that, as far as light or photons is concerned, the 

gravitational redshift of light predicted by the theory of GOR depends on the 

observation agent OA() and the information-wave speed  of OA(): under 

different observation agents, the light or photons in the same gravitational scene will 

exhibits different degrees of gravitational redshift. 

As a matter of fact, no matter Einstein’s gravitational-redshift equation of light 

or Newton’s gravitational-redshift equation of light is destined to be generalized and 

unified into the gravitational-redshift theory of GOR. 

18.4.1 The Gravitational Redshift 

of the General Observation Agent OA() 

Under the principle of general correspondence (GC), by analogizing the logic of 

Einstein’s gravitational-redshift equation (18.10), no matter following PGC logical 

route 1 or PGC logical route 2, the theory of GOR can derive the GOR 

gravitational-redshift equation that must be isomorphically consistent with 

Einstein’s equation (18.10). What is surprising is that it will still be isomorphically 

consistent with Newton’s equation (18.25). 

It should be pointed out that: Einstein’s gravitational-redshift theory originally 

intended to explore the decay or redshift of the frequency of light or photons in 

gravitational spacetime; but actually, Einstein’s gravitational-redshift equation (Eq. 

(18.10) or Eq. (18.14)) was the gravitational-redshift equation for the observation 

time of the optical agent OA(c), and the logical deduction of it was based on the 

gravitational-dilation effect of the observational time of the optical agent OA(c). As 

stated in Sec. 18.2.3, Einstein’s gravitational-redshift theory is the theory of 

gravitational redshift of the optical observation agent OA(c), representing the 

gravitational redshift of the whole optical observation system. 

Therefore, if the GOR gravitational-redshift equation is derived based on the 

principle of GC, then it will be the gravitational-redshift of the information waves 

and informons of the general observation agent OA(), rather than the gravitational 

redshift of light or photons, unless the observation agent OA() is the optical 

observation agent OA(c). 

Here, by analogizing or following the logic stated in Sec. 18.2.2, the theory of 

GOR will deduce the GOR gravitational-redshift equation of the information wave 

or informons of the general observation agent OA() based on the invariance of 

time-frequency ratio. 

 

Similar to the case of the optical observation agent OA(c), for the general 

observation agent OA() in the theory of GOR, in theory, the clock TP in Fig. 18.2 

could be any wave or any periodic physical phenomenon. However, the signal 
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radiated by TP from the point A to the point B is not light or photons, but the 

information wave or informons of OA(), that is, the observation medium of OA() 

carrying and transmitting the spacetime information of TP, including the temporal 

and spatial information of TP. 

According to the theory of GOR, for the general observation agent OA(), the 

factor GOR of spacetime transformation is  ()=d t /d, or: 
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where  is the information-wave speed of OA(), t is the observational (observed) 

time of OA() depending OA() on and , d is the objective and true time (i.e., the 

intrinsic time or proper time), dt(rA) and dt(rB) are the coordinate time-elements at 

the spatial points A and B, respectively. 

According to the theory of OR, the information waves or informons of a specific 

observation agent OA() has its specific frequency f. However, all observation 

agents follow the invariance of time-frequency ratio: 
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where, it is worth noting that, dt(rA) and dt(rB) are respectively the observational 

time-elements of TP at the spatial points A and B, f(rA) and f(rB) are respectively 

the observational frequencies of TP at the spatial points A and B. 

The gravitational redshift of the information wave or informons of the general 

observation agent OA() should be defined as: ZOA()=f /f. For the gravitational 

redshift scene in Fig. 18.2, the gravitational redshift equation of the information 

wave or informons of the general observation agent OA() can be derived based on 

the invariance of time-frequency ratio: 

 

( ) ( )

( )

( )

( )

( )

( )

( )

( )

B A A A

OA( )

B B B

00 B

00 2

00 A

d
1 1

d

, 2
1 1 ;

,

f f r f r f r t r
Z

f f r f r t r

g r GM
g

rg r

    



   

 




 −
= = = − = −

 
= − = + = − 

 
 

(18.29)

 

This is the GOR gravitational-redshift equation of the general observation agent 

OA(), which is isomorphically consistent with Einstein’s gravitational-redshift 

equation (Eq. (18.10) or Eq. (18.14)) of light. 

Here, it is stressed again that the GOR gravitational-redshift equation (18.29)) is 

not the gravitational-redshift equation of light, but the gravitational-redshift equation 

of the information-wave and informons of the general observation agent OA(). 

ZOA() represents the gravitational redshift of the whole observation system of 

OA(): ZOA() is not only the gravitational redshift of information-wave and 
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informons of OA(), but also the gravitational redshift of observational time of 

OA(), and even the gravitational redshift of the general de Broglie’s matter waves 

of all matter systems; moreover, in theory, OA() could be any observation agent, 

while  could be any speed of matter motion. 

Equation (18.29) suggest that: for different observation systems or different 

observation agents with different information-wave speeds, the observational times 

of them would exhibit different degrees of gravitational dilation, the observational 

frequencies of them would exhibit different degrees of gravitational redshift. In 

particular, suppose that an observer in the free spacetime SF observes the frequency 

spectrum of the information waves or informons of a specific observation agent 

OA(): rB→ and g00(rB)→1, then Eq. (18.29) reduces to: 
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Equations (18.29) and (18.30) can be applied to calculate the gravitational 

redshift ZOA() of the information-wave spectrum of any observation agent OA() 

(including the idealized agent OA and the optical agent OA(c)). 

For the idealized agent OA: →, suppose that TP in Fig. 18.2 radiates the 

information wave and informons of OA from the point A to the point B, then: 
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which means that there is no gravitational redshift in the observational spectrum of 

the information wave and informons of the idealized agent OA: ZOA=0; the 

observational time of the idealized agent OA has no gravitational dilation: dt /d =1. 

This is the same as or consistent with the logical conclusion of the theorem of 

Cartesian spacetime in Chapter 13. 

For the optical agent OA(c): →c, suppose that TP in Fig. 18.2 radiates the 

information wave (light) and informons (photons) of OA(c) from the point A (solar 

surface: M=MS and rA=RS) to the point B, then: 
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where ZOA(c) is exactly the gravitational redshift ZE of the solar spectrum in the 

Einstein’s gravitational-redshift equation (Eq. (18.1) or Eq. (18.11)). 

It is thus clear that, in general, the GOR gravitational-redshift equation (18.29) 

is not the gravitational-redshift equation of light or photons, but rather the 

gravitational-redshift equation for the information waves and informons of the 

observation agent OA(). Only if OA() is OA(c), the GOR gravitational-redshift 

equation (18.29) reduces to Einstein’s gravitational-redshift equation (Eq. (18.10) or 

Eq. (18.14)). At this case, ZOA() is the gravitational redshift of light observed by the 

optical agent OA(c): ZE=ZOA(c). 
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By contrasting with the conclusion of the gravitational redshift under the optical 

observation agent OA(c) in Sec. 18.2.3, one could conclude that the GOR 

gravitational-redshift equation (18.29) is the gravitational-redshift model of the 

general observation agent OA(), where ZOA() is the gravitational redshift of the 

observation agent OA(), representing the gravitational redshift of the whole 

observation system  OA(): it is not only the gravitational redshift of the 

information wave and informons of OA(), but also the gravitational redshift of the 

observational time of OA(), and even the gravitational redshift of the general de 

Broglie’s matter waves of all matter systems. 

18.4.2 The GOR Gravitational-Redshift Equation of Light 

The GOR gravitational-redshift of light is the gravitational redshift of light 

observed by the general observation agent OA(), which means that: the observed 

object P is light or photons, the gravitational redshift refers to the spectroscopic 

redshift of light or photon in gravitational spacetime; the observation agent of 

observer is the general observation agent OA(), which may not necessarily be the 

optical agent OA(c). For example, Newton’s gravitational-redshift equation (18.25) 

in Sec. 18.3.2 is the theoretical model of the idealized agent OA observing light, 

where the photons, like general matter particles in Newton’s classical mechanics, are 

the observed objects of OA. 

According to the theory of OR, according to Corol. 3.2 (The Observational 

Ultimate Speed  ) of the theorem of the invariance of information-wave speeds in 

Chapter 3, the information-wave speed  of the observation agent OA() must be 

greater than or equal to the motion speed v of the observed object P. In the problem 

of the gravitational redshift of light, the observed object P is light or photons with 

the speed vc, so it requires that: c. 

In theory, we could observe and measure the gravitational redshift of light under 

the observation agent OA() (c). By analogizing or following the logic of 

defining ZE=Kc/Kc (Eq. (18.22)) and ZN=K/K (Eq. (18.23)) in Sec. 18.3.2 based 

on the energy shift K, we can deduce the GOR gravitational-redshift equation of 

light under the general observation agent OA() (c). 

The Definition of the GOR Gravitational-Redshift of Light 

As stated in Sec. 18.3.2, the essence of the gravitational redshift of light is the 

conservation of energy and the transformation of energy forms, following the 

principle of conservation of energy in physics. Under the principle of general 

correspondence (GC), based on the idea of conservation of energy, by following the 

logic of Eq. (18.22) and Eq. (18.23), the theory of GOR defines the gravitational 

redshift of light under the general observation agent OA() (c) as: 
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where ZGOR is the gravitational frequency-shift of light or photons observed with 

OA() (c) (ZGOR<0 means redshift), K and K are respectively the relativistic 
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kinetic-energy and its increment of a photon observed with OA() (c), V and 

V are respectively the relativistic potential-energy and its increment of a photon 

observed with OA() (c). 

The Energy of a Photon under the General Observation Agent OA() 

As far as the spherically-symmetric gravitational spacetime under the general 

observation agent OA() (c) is concerned, let K and V be the kinetic energy 

and potential energy of a photon observed with OA(), respectively. According to 

the theory of GOR, the observational kinetic-energy K and potential-energy V of 

the photon under the OA() (c) are: 
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where  is the Newtonian gravitational potential, mo is the rest mass of the photon, 

m is the relativistic mass or observational mass of the photon under OA(), E and 

KF are respectively the observational total energy and kinetic-energy of the photon 

under OA(), K(r) and V(r) are respectively the observational kinetic-energy and 

potential-energy of the photon at the distance r from the gravitational center O: 

KF=K(r)+V(r). 

It should be noted that, in Eqs. (18.33) and (18.34), the observed object P is a 

photon, and the speed v of it is the speed of the photon (in a weak gravitational field, 

vc; specifically, if when =0 then the photon speed is exactly the speed c of light 

in vacuum), while  (c) is the information-wave speed of the observation agent 

OA(); E=m2 is the OR mass-energy relation;  = () is the GOR factor of 

spacetime transformation (see Eqs. (12.35) and (12.36) in Chapter 12), where  |=0 

denotes the inertial spacetime-transformation factor, and  |v =0 denotes as the 

gravitational spacetime-transformation factor: 
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where, =0 means that the observed object is in an inertial state, and not subjected 

to gravity or universal gravitation; v=0 means that the observed object P is at rest in 

a gravitational spacetime. 

The inertial factor  |=0 of spacetime transformation involves the measurement 

of the photon’s relativistic kinetic-energies KF and K(r) under OA(); the 

gravitational factor  |v =0 of spacetime transformation involves the measurement of 
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the photon’s relativistic potential-energy V(r) under OA(). 

It is worth noting that, the kinetic-energy and potential-energy (in Eq. (18.34)) 

observed with OA() not only generalizes Einstein’s relativistic kinetic-energy and 

relativistic potential-energy (observed with OA(c)), but also generalizes Newton’s 

classical kinetic-energy and classical potential-energy (observed with OA). 

As →c, the observation agent OA() is the optical agent OA(c), the photon’s 

observational kinetic-energy KF and potential-energy V(r) in Eq. (18.34) under 

OA() reduce to Einstein’s relativistic kinetic-energy and relativistic-potential 

energy under OA(c): 
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where  is the spacetime-transformation factor of Einstein’s relativity theory (see Eq. 

(12.12) or Eq. (12.16)), m is Einstein’s relativistic mass of a photon observed with 

the optical agent OA(c), and according to Einstein formula E=mc2, the relativistic 

kinetic-energy of a photon in vacuum is E=mc2. 

As →, the observation agent OA() is the idealized agent OA, the photon’s 

observational kinetic-energy KF and potential-energy V(r) in Eq. (18.34) under 

OA() reduce to Newton’s classical kinetic-energy and classical potential-energy 

under the idealized agent OA: 
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Equations (18.36) and (18.37) confirm the logical self-consistency of the energy 

formula (Eq. (18.34)) of GOR theory, and moreover, confirm the logical consistency 

not only between the GOR energy formula and Einstein’s relativistic energy formula 

but also between the GOR energy formula and Newton’s classical energy formula. 

The Deduction of the GOR Gravitational-Redshift Equation of Light 

For the gravitational redshift scene of light depicted in Fig. 18.2: V=VB−VA, 

from Eq. (18.33) and Eq. (18.34), it follows that: 
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where mo is the rest mass of the photon, m  is the observational mass of the photon 

under OA(), KF is the observational kinetic-energy of the photon in vacuum or the 

free spacetime SF under OA(), K(rB) is the observational kinetic-energy of the 

photon at the distance rB from the gravitational center O under OA(), V(rA) and 

V(rB) are respectively the observational potential-energies of the photon at the 

distances rA and rB from the gravitational center O under OA(), g00(rA,) and 

g00(rB,) are respectively the metric 00-elements of the spacetime metric g(rA,) 

at the spatial points A and B under OA(). 

This is the GOR gravitational-redshift equation of light. 

Equation (18.38) indicates that the gravitational redshift ZGOR=ZGOR() (c) of 

light depends on the observation agent OA() and the information-wave speed  : 

the same photon in the same gravitational scene would exhibit different degrees of 

gravitation redshift under different observation agents; the higher the 

information-wave speed  of OA(), the more significant the relativistic 

gravitational redshift of light is. 

For the gravitational redshift of the solar spectrum (rA=RS and rB=): 

As →c, KF=mc2 and ZGOR()=−GMS /RSc2=ZE ; 

As →, KF=mc2/2 and ZGOR()=−2GMS /RSc2=ZN. 

Therefore, due to the continuity and monotonicity of ZGOR() ([c,)) in Eq. 

(18.38), the GOR gravitational-redshift ZGOR() of light obeys: 
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18.5 The Gravitational Redshift and Photon Mass 

Besides Time, perhaps Mass is the most fundamental physical quantity. 

In Newton’s classical mechanics, the mass of matter particles can be called 

classical mass and denoted as m, which has both inertial effect and gravitational 

effect; in Einstein’s relativity theory, the mass of matter particles can be called 

relativistic mass and denoted as m, which includes the rest mass mo and the mass 

m dilated due to the motion (v) of matter: m=m(v)−mo. According to the theory of 
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OR, Δm=m(v) purely depends on the motion speed v of a matter particle, which 

therefore is not the objective and real mass of material particles and does not have 

real physical effects (including inertial effect and gravitational effect). 

In Einstein’s view, photons, as a class of matter particles, seemed to possess 

some particularity: we have not yet determined the classical mass or rest mass of 

photons. Einstein believed that photons have no rest mass. 

However, according to the theory of OR, based on Def. 1.2 in Chapter 1, the 

classical mass m and rest mass mo of matter particles are the same and equal: 

m=mo, which is the objective and true mass of matter particles, that is, the intrinsic 

mass of matter particles. As stated in Sec. 5.1.5 The Problem of Photon Rest Mass 

of Chapter 5, all matter particles, including photons and even gravitons, have the rest 

mass mo or classical mass m of their own. 

Now, the gravitational-redshift theory of GOR has produced a byproduct: the 

theoretical value of the rest mass of photons. 

18.5.1 The Classical Mass m is exactly the Rest Mass mo 

Originally, Classical Mass refers to the mass of matter in Newton’s classical 

mechanics; while Rest Mass is the product of Einstein’s relativity theory. 

Let m be a matter system and at the same denote the mass of it. According to the 

theory of OR, the mass m=m() of a matter system under the general observation 

agent OA() depends on the information-wave speed  of OA(). As →, OA() 

would be the idealized agent OA, and the observational (observed) mass m() 

under OA() would converge to the classical mass m. According to the IOR 

mass-speed relation (Eq. (5.5) in Chapter 5), we have that: 
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Equation (18.40) suggests that the so-called rest mass mo is exactly the classical 

mass m: it turns out that Einstein’s rest mass mo is Newton’s classical m. 

According to the theory of IOR and GOR, the intrinsic mass m of a matter 

particle or a matter system is the objective and real mass, which has the objectively 

inertial effect and the objectively gravitational effect: m=mi=mg=mo. Therefore, 

whether the classical mass m of Newton’s classical mechanics or the rest mass mo 

of Einstein’s relativity theory, there must lead to the effect of gravitational redshift. 

If photons have the intrinsic mass of their own (no matter the classical mass m 

or the rest mass mo), then photons not only have inertial effect, but also have 

gravitational effect, and the photons in gravitational spacetime must exhibit the 

phenomenon of gravitational redshift. 

So, do photons have the intrinsic mass of their own? 

If so, how much does a photon weigh? 

18.5.2 Does a Photon Has Rest Mass? 

Einstein’s theory of special relativity claimed that photons have no rest mass. 
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This means that photons have no classical mass, and even have no the intrinsic mass 

of their own, which is contrary to human being’s simple and plain view of nature. 

The readers familiar with Einstein’s theory of special relativity know that there 

is a Lorentz singularity in the Lorentz transformation: as the speed v of the observed 

object P reaches the speed c of light in vacuum, the Lorentz factor  would reach 

infinity:  =1/(1−v2/c2)→. Therefore, at the Lorentz singularity, the relativistic 

mass m of the observed object P would also be infinity: m=mo=, unless photons 

have no the rest mass mo of their own: mo=0. 

Thus, in special relativity, Einstein had to set the rest mass mo of photons to zero. 

Observations and experiments seem to be quite compatible: until today, the rest 

mass of photons has not yet been detected by observation or experiment, but the 

upper limit value is seemingly decreasing and tends to zero [37,82-84]. 

In 2014, the upper limit value of photon mass recommended by the particle data 

group (PDG) was 1.510−54 kg [85]. 

Actually, people have already observed the rest mass of photons, but they just 

have not realized that it is the rest mass of photons. In 1919, by observing the total 

solar eclipse at the island of Príncipe, Eddington discovered that the trajectory of the 

starlight sweeping over the solar surface was curved as predicted by Einstein, 

affirming that “light has weight” (as remarked in Eddington’s poem). 

The theory of OR has theoretically clarified [26-28] that photons, and even all 

particles or systems of matter, have the rest mass or intrinsic mass of their own, that 

is, the objective and true mass. 

The theory of OR provides a detailed discussion on the issue of the rest mass of 

photons [26-28]. In short, photons, like all matter particles, have the rest mass of their 

own. As far as the relativistic mass m and rest mass mo of photons are concerned, to 

paraphrase Hawking’s words [31], the Lorentz transformation and the mass-speed 

relation in Einstein’s special relativity breaks down or fails at the Lorentz singularity. 

Actually, whether from the view of the singularity of the mathematical model or 

from the view of observations and experiments, the conclusion of photons having no 

mass is only a manifestation of the observational locality (c<) of the optical agent 

OA(c): you could not expect light or photons to act as the observation medium for 

detecting the mass of photons themselves! Alternatively, the rest mass of photons 

could not be measured and determined by the optical observation agent OA(c). 

The theory of OR has clarified [26-28]: if we could observe photons under the 

superluminal observation agent OA() (>c), then we would find out that photons 

have the rest mass of their own. 

From to the IOR mass-speed relation (Eq. (5.5)), it follows that: 
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It is thus clear that: photons, and even all matter particles, have their own rest 

mass mo. As clarified in Sec. 12.5 All Relativistic Effects are Observational 

Effects and Apparent Phenomena of Chapter 12, the relativistic mass m depends 
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on the observation agent OA(): m= ()mo= mo+ ()mo ( 1), where only 

the rest mass mo is the objective and real mass, while m= ()mo is purely the 

observational effect. Both the objectively inertial property and the objectively 

gravitational property of matter particles are decided only by the rest mass mo. 

Since photons have the rest mass mo, naturally, photons have classical mass m. 

Thus, we can calculate the classical mass m of the photon in Eq. (18.24) based on 

Newton’s classical mechanics and Newton’s law of universal gravitation: 
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18.5.3 How Much does a Photon Weigh? 

The problem of photon rest mass is one of the major problems in physics. 

Although Einstein claimed that photons have no rest mass, people, due to their 

intrinsic view of nature, are subconsciously unwilling to accept the argument of 

photons having no rest mass. Many physicists, including great de Broglie [32,33], 

Schrödinger [34,35], and Feynman [36], devote their energy and time to exploring and 

detecting the rest mass of photons. 

The theory of OR has affirmed that photons have the mass of their own, that is, 

the classical mass m or the rest mass mo. 

According to the theory of OR, especially based on the OR mass-speed relation 

(Eq. (5.5)) and the OR mass-energy relation E=m2, and at the same time, by 

combining observations and experiments, we can infer and determine the classical 

mass m or the rest mass mo of photons. 

In Planck’s experiment of blackbody radiation [14], the cavity of blackbody 

radiation is at rest relative to the laboratory and observers. In view of this, the 

literature [27] ever regarded the experiment of blackbody radiation as the 

experiment under the idealized observation agent OA, and regarded the photon 

energy E in Planck equation E=hf as the classical kinetic-energy of photons: 

hf=mc2/2; accordingly, it seemed that the rest mass of photons with the frequency f 

should be mo=m=2hf/c2. 

However, this speculation is somewhat suspicious. 

Actually, the observed object in the experiment of blackbody radiation is light or 

photons, where the messenger transmitting the information of light is light itself, or,  

the messengers transmitting the information of photons are photons themselves. So, 

the observation agent in the experiment of blackbody radiation is the optical agent 

OA(c): the information wave of OA(c) is light and the informons of OA(c) are 

photons. Einstein formula E=mc2, the so-called mass-energy relation, is a formula in 

Einstein’s special relativity, belonging to the optical agent OA(c). For photons, it is 

widely recognized that E=mc2=hf, which suggests that both Einstein formula E=mc2 

and Planck equation E=hf are the theoretical models of the optical agent OA(c). 

Therefore, Planck’s photon energy E=hf under the optical agent OA(c) is not equal 
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to Newton’s photon kinetic-energy K=mc2/2 under the idealized agent OA. 

The theory of OR has affirmed that a photon has the rest mass of its own: 

mo=m. Therefore, according to the GOR energy formulae in Eq. (18.34), the 

observational kinetic-energy Kc and potential-energy Vc of a photon under the 

optical observation agent OA(c) should be: 
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where m and mo are respectively the relativistic mass and rest mass of the photon, 

Kc(r) and Vc(r) are respectively the relativistic kinetic-energy and relativistic 

potential-energy of the photon at the distance r from the gravitational center O, and 

KFc=mc2 is the relativistic kinetic-energy of the photon in vacuum or in the free 

spacetime SF, that is, the total energy of the photon under the optical observation 

agent OA(c): KFc=E=Kc(r)+Vc(r). 

For the gravitational redshift scene of light depicted in Fig. 18.2: V=VB−VA, 

according to the GOR gravitational-redshift equation (18.38) of light, under the 

optical observation agent OA(c), substituting the observational (observed) energy of 

OA(c) in Eq. (18.43) into Eq. (18.38), we have: 
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where K(rB) is the observational kinetic-energy of OA(c) as the photon is at the 

distance rB from the gravitational center O, V(rA) and V(rB) are respectively the 

observational potential-energy of OA(c) as the photon is at the distances rA and rB 

from the gravitational center O, and g00(rA) and g00(rB) are respectively the metric 

00-elements of the points A and B in the gravitational spacetime of OA(c). 

Suppose that observers of the free spacetime SF observe the solar spectrum with 

the optical observation agent OA(c): M=MS, rA=RS, and g00(rA)=1−2GM/RSc2; 

rB→, and g00(rB)=1−2GM/rBc2→1. Then, Eq. (18.44) would be reduced to: 
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where G is the Gravitational constant, MS is the solar mass, RS is the solar radius, 

and ZE is the gravitational redshift of the solar spectrum observed with the optical 

agent OA(c), i.e., Einstein’s gravitational red shift. 

Equation (18.45) is the gravitational-redshift equation of the solar spectrum 

which is based on the energy-shift definition of ZE=K/K and derived from the 
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principle of conservation of energy; while Eq. (18.1) is the gravitational-redshift 

equation of the solar spectrum which is based on the frequency-shift definition of 

ZE= f / f and derived from Einstein’s factor  =dt/d of spacetime transformation 

under the optical agent OA(c). In Eq. (18.1), the theoretical value of the 

gravitational redshift of the solar spectrum is ZE=−GMS /RSc2=−2.1210−6. 

According to the work of Adam, Blamont, Roddier, and Brault et al [152-154], this 

theoretical value has already been verified by observations and experiments. 

So, the contrasting Eq. (18.45) and Eq. (18.1), we get that: 
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where mo is the rest mass of the photon; m and f are respectively the observational 

mass and observational frequency of the photon as an informon of OA(c). 

Equation (18.46) suggests that: photons do indeed have the rest mass mo; in 

particular, photons with different frequencies have different rest masses. 

Substituting the conclusion mo=m from Eq. (18.46) into Eq. (18.44), we have: 
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This is exactly Einstein’s gravitational-redshift equation (Eq. (18.10) or Eq. 

(18.14)) of light. Equation (18.47) not only confirms the GOR gravitational-redshift 

equation (18.38) of light based on the definition ZGOR=K /K of energy shift, but 

also confirms Einstein’s gravitational-redshift equation (18.10) of light based on the 

definition ZE= f / f of frequency shift and the gravitational-redshift equation (18.14) 

of light based on the invariance of time-frequency ratio. At the same time, it 

confirms the important conclusion of photon rest mass: mo=m=hf/c2. 

Equations (18.46) and (18.47) mean that, whether based on the observation of 

the gravitational redshift of the solar spectrum, or based on the equivalence between 

the gravitational-redshift definitions of energy shift and frequency shift, the 

relativistic mass or observational mass m presented by photons as informons of the 

optical agent OA(c) is exactly the rest mass mo or classical mass m of photons; 

moreover, the rest mass mo of photons can be calculated from the observed 

frequency f presented by photons as informons of the optical agent OA(c). 

Photons with different frequencies have different masses: mo=m=m=hf /c2. 

It turns out that, if the observed object P (m) is a photon, then the relativistic 

mass m in Einstein formula E=mc2 is exactly the rest mass mo of the photon or the 

classical mass m of the photon 

In this way, we could finally understand why experimental physicists have been 

working so hard to find the rest mass of photons but have found nothing. This 

indeed echoes the line of a Chinese poet: They would never discern the true face of 

Lushan Mountains, but only for they were in the mountains themselves. 
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Let us leave the observational or experimental verification for the theoretical 

value of photon rest mass in Eq. (18.46) to experimental physicists. 

18.6 The Unity of Newton and Einstein 

in the Gravitational-Redshift Theory of GOR 

Einstein’s prediction of the gravitational redshift of light was based on his 

equivalence principle, while Einstein’s gravitational-redshift equation of light was 

derived from his theory of general relativity. 

People try to derive the gravitational- redshift equation of light from Newton’s 

classical mechanics and Newton’s law of universal gravitation, so as to compare and 

contrast Einstein’s theory of gravitational redshift and Newton’s theory of 

gravitational redshift, and then, compare and contrast Einstein’s theory of general 

relativity and Newton’ theory of universal gravitation. As a result, the pseudo 

Newtonian gravitational-redshift equation has been manufactured. As shown in Eq. 

(18.21), the pseudo Newtonian gravitational-redshift equation (18.20) is the same as 

or approximate to Einstein’s gravitational-redshift equation (18.10): as far as the 

optical spectrum of the sun is concerned, the pseudo Newtonian gravitational 

redshift ZPN and Einstein’s gravitational redshift ZE do not have the observational 

distinguishability. 

Actually, as stressed repeatedly by the theory of GOR, Einstein’s theory of 

general relativity and Newton’s theory of universal gravitation belong to different 

observation agents and serve different observation systems. So, they have no the 

comparability of which is right and which is wrong. For the theoretical models of 

different observation agents, it is natural and even inevitable that there are the 

theoretical and observational differences among them; on the contrary, it is 

abnormal and illogical, just as in the case of the pseudo Newtonian 

gravitational-redshift equation. 

The theory of GOR has deduced the real Newtonian gravitational-redshift 

equation (18.25) which is completely and purely based on Newton’s classical 

mechanics and Newton’s law of universal gravitation. As far as the gravitational 

redshift of the solar spectrum is concerned, the real Newtonian theoretical-value ZN 

(Eq. (18.26)) is twice Einstein’s theoretical-value NE (Eq. 18.1)): ZN=2ZE. 

Furthermore, the theory of GOR has derived the gravitational-redshift equation 

of light for the general observation agent OA() c), the so-called GOR 

gravitational-redshift equation (18.38) of light. 

The gravitational-redshift theory of GOR demonstrates the high generality and 

universality of the theory of GOR. 

According to Sec. 18.5 and Eqs. (18.46-47), the relativistic mass m of photons 

under the optical observation agent OA(c) is exactly the rest mass mo of photons. 

Therefore, we have that: 
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Thus, as →c, under the optical agent OA(), it holds true that: 
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This is exactly Einstein’ gravitational-redshift equation (18.10) of light. 

It is thus clear that, as the observation agent OA() is the optical agent OA(c), 

the GOR gravitational-redshift equation (18.38) of light strictly reduces to Einstein’s 

the gravitational-redshift equation (18.10) of light. 

Under the idealized agent OA, photon momentum is classical momentum: 
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Thus, as →, under the idealized agent OA, it holds true that: 
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This is exactly the real Newtonian gravitational-redshift equation (18.25) of 

light, i.e., Newton’s gravitational-redshift equation of light. 

It is thus clear that, as the observation agent OA() is the idealized agent OA, 

the GOR gravitational-redshift equation (18.38) of light strictly reduces to Newton’s 

gravitational-redshift equation (18.25) of light, which is really based on Newton’s 

classical mechanics and Newton’s law of universal gravitation. 

So, the gravitational-redshift theory of GOR has generalized and unified 

Newton’s theory of gravitational redshift and Einstein’s theory of gravitational 

redshift, indicating that the GOR gravitational-redshift equation of light is logically 

consistent with both Einstein’s gravitational-redshift equation of light and Newton’s 

gravitational-redshift equation of light. This confirms the logical self-consistency 

and theoretical correctness of the GOR gravitational-redshift equation, and also, 

confirm the logical rationality and theoretical correctness of the real Newtonian 

gravitational-redshift equation (18.25). 
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19 GOR and Gravitational Waves 

Perhaps, compared with Einstein’s three major predictions, including (i) the 

gravitational redshift of light, (ii) the gravitational deflection of light, and (iii) the 

abnormal precession of Mercury’s perihelion, the Gravitational Wave is the most 

attractive and specious prediction of Einstein’s theory of general relativity. 

The theory of Gravitationally Observational Relativity (GOR) has no doubt 

about the existence of gravitational waves. 

Actually, in a sense, just as electromagnetic field means electromagnetic waves, 

gravitational field means gravitational wave; just as electromagnetic interaction 

employs photons as the mediated meson to transmit electromagnetic force, 

gravitational interaction employs gravitons as the mediated meson to transmit 

gravitational force. 

However, this does not mean that Einstein correctly predicted gravitational 

waves, nor that the Laser Interferometer Gravitational-Wave Observatory (LIGO) of 

the United States really have detected gravitational waves [161,162]. 

As a matter fact, both Newton’s theory of universal gravitation and Einstein’s 

the general relativity has no the prior information or knowledge about the speed of 

radiation in their axiom systems or logical premises. As stated in Sec. 12.1.1 The 

Gravitational Locality of Chapter 12, both Newton’s gravitational theory and 

Einstein’s gravitational theory imply an important idealized hypothesis: gravity is 

action at a distance; the speed of gravitational radiation is infinite, it takes no time 

for gravity to cross space. 

Newton realized that such an idealized hypothesis was not in line with the 

objectively physical reality [163]: “… is to me such an absurdity that I believe no 
man who has in philosophical matters any competent faculty of thinking can 
ever fall into it.” Einstein also did not believe that the physical world has action at 

a distance. However, with no prior information or knowledge about the speed of 

gravitational radiation, Newton had to take gravity or gravitational force as action at 

a distance in his law of universal gravitation. Likewise, Einstein’s theory of general 

relativity also had no prior information or knowledge about the speed of 

gravitational radiation. So, both Newton and Einstein failed to take into account the 

locality problem of gravitational interaction in their respective gravitational theories. 

According to general relativity, in the case of weak gravitational fields, Einstein’s 

gravitational-field equation is reduced to the Poisson-equation form of Newton’s law 

of universal gravitation. We could not imagine that the speed of gravitational 

radiation would depend on the strength of gravitational fields: Is the weaker the 

gravity, the faster and even infinite the speed of gravity? 

Actually, as stated in Sec. 12.1 The Problem of the Locality of Gravitational 

Spacetime of Chapter 12, the locality in Einstein’s theory of general relativity is 

only the observational locality, not the locality of gravitational interaction. 

So how did Einstein predict Gravitational Waves? 

Based on his theory of general relativity, Einstein derived a wave equation, in 
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which the wave function h− is defined with the curved metric h, and h involves 

the speed c of light in vacuum and Newton’s gravitational potential  : h /c2. 

Accordingly, Einstein believed that h− must represent a gravitational wave, and the 

gravitational wave must propagate at the speed c of light. 

This is Einstein’s prediction of gravitational waves. 

Einstein’s prediction of gravitational waves has two problems: 

(i) Does the wave function h− or the curved metric h really represent the 

gravitational potential  or gravitational waves? 

(ii) Is the speed of gravitational radiation or gravitational wave really the speed 

c of light in vacuum? 

The theory of GOR will analyze Einstein’s prediction of Gravitational Waves: 

to examine the true or false of Einstein’s gravitational-wave function; to examine the 

true or false of LIGO’s gravitational-wave detection. 

19.1 Einstein’s Prediction of Gravitational Waves 

It is said that the concept of Gravitational Wave was first proposed by Einstein 

and Eddington. Of course, the prediction of gravitational waves was originated from 

the so-called gravitational-wave equation derived by Einstein based on his theory of 

general relativity [164,1655]. 

As for the prediction of gravitational waves, Einstein as always took the method 

of weak-field approximation as the linearization method for his theory of general 

relativity, by which the nonlinear gravitational-spacetime problem was simplified 

into the linear problem of weak-field approximation. By following the logic of 

weak-field approximation, as the metric of gravitational spacetime g (x,c) is 

approximate to the Minkowski metric , the nonlinear Einstein field equation is 

approximate to the linear gravitational-field equation. In this way, Einstein could 

deduce his gravitational-wave equation. 

As stated in Sec. 13.1.2 of Chapter 13, according to the factor  (Eq. (13.16)) of 

spacetime transformation in Einstein’s theory of general relativity, in order to make 

the metric g (x,c) of gravitational spacetime under optical observation 

approximate the Minkowski metric : g (x,c), Einstein had to create the 

scene of weak gravitational field: | |<<c2 and | iv
i |<<c. 

In this way, the nonlinear metric g (x,c) of gravitational spacetime could be 

linearized as the linear equation (13.1): 
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This is the condition of weak field in Einstein’s method of weak-field approximation, 

where =diag(+1,−1,−1,−1) is referred to as the flat metric, and h is referred to 

as the curved metric (h and its derivative of each order are small quantities). 

It is worth noting that the curved metric h in the condition of weak field was 
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regarded by Einstein as the weak gravitational potential, that is, the so-called subtle 

ripples rising in the (nearly) flat spacetime (g (x,c)) due to the perturbation 

of weak gravitational radiation. 

As stated in Sec. 13.1.3 The Conditions of Weak-Field Approximation of 

Chapter 13, Einstein’s method of weak-field approximation has five hypothetical 

conditions: (i) the weak field, (ii) the slow speed, (iii) the static field, (iv) the 

spacetime orthogonality, and (v) the harmonic coordinates. 

Reviewing Einstein’s logical deduction of gravitational-wave equation based on 

the method of weak-field approximation will contribute to our recognition and 

understanding of Einstein’s equation of gravitational waves and Einstein’s 

prediction of gravitational waves, so that the theory of GOR could analogize and 

follow Einstein’s logic of deducing the GOR information-wave equation. The theory 

of GOR will take Einstein’s gravitational-wave equation as the analogical object of 

the GOR information-wave equation. 

Most of the books or literature introducing Einstein’s theory of general relativity 

has the content of Einstein’s equation of gravitational waves and Einstein’s 

prediction of gravitational waves. The following introduction and description about 

Einstein’s equation of gravitational waves is in line with the original appearance of 

Einstein’s theory of general relativity, which mainly refers to the literature of Zhao 

and Liu Liao [130,166], and the literature of Henry [167]. 

The left end of Einstein field equation (14.2) is usually defined or marked as the 

tensor G(c), i.e., the so-called Einstein tensor, and then Einstein’s field equation 

can be simply written as: 
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where R is the Ricci tensor (i.e. the curvature of spacetime), R is the Gaussian 

curvature, g is the spacetime metric, T is the energy-momentum tensor, and E is 

the coefficient of Einstein field equation. 

According to Einstein’s logic of weak-field approximation, under the conditions 

of weak-field approximation listed in Sec. 13.1.3 of Chapter 13, the Ricci tensor R 

and the Gaussian curvature R are approximated as: 
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Define the Metric-Perturbation tensor: 

 ( )
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where the tensor h− of metric-perturbation is defined with the curved metric h in 
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the condition (Eq. (13.1)) of weak field: h . 

In Einstein’s theory of general relativity, the so-called metric perturbation means 

that, under the condition of weak field, g=+h (|h|<<1), the curved metric 

h represents the Newtonian gravitational-potential  and is a small quantity; the 

Minkowski metric  represents the flat spacetime perturbed by a weak Newtonian 

gravitational potential, rising subtle ripples. 

Thus, under the conditions of weak-field approximation, the Einstein tensor 

G(c) can be defined with the metric-perturbation tensor h−, and Einstein’s field 

equations (19.1) can be expressed with the metric-perturbation tensor h−: 

 
1

2
EG h T  − = −  (19.4) 

Then, the corresponding condition of harmonic coordinates is reduced to: 

 , 0h 
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− =  (19.5) 

According to Einstein’s theory of general relativity, the metric g of 

gravitational spacetime under the optical observation agent OA(c) depends on the 

spacetime coordinate x (=0,1,2,3) and the speed c of light in vacuum: 

g=g (x,c)=g (t,xi,c) (i=1,2,3), where the time axis x0=ct (t is the time 

coordinate). Likewise, the curved metric h and the metric-perturbation tensor h−, 

as well as, the energy-momentum tensor T , also depend on the spacetime 

coordinate x (=0,1,2,3) and the speed c of light in vacuum: h=h (t,xi,c), 

h−=h−(t,xi,c), and T=T (t,xi,c). 

The field equation (19.4) that meets the condition of harmonic coordinates in Eq. 

(19.5) has the following solution: 
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where the integral domain is the 3d space occupied by the gravitational source, x i 

(i=1,2,3) is the coordinate of the observer, and x i (i=1,2,3) is the coordinate of 

matter distribution, |x i −x i| is the distance between the observation coordinate x i and 

the coordinate x i of gravitational matter. 

Equation (19.6) is the retarded integral formula of the metric-perturbation tensor 

h−, also known as the delayed solution of h− . Here, the so-called retard or delay 

has important implications and is the manifestation of the principle of locality: it 

takes time for energy or information to cross space. Therefore, for the object being 

acted on, energy is only a retarded or delayed force or matter interaction; for the 

object being observed, information is only a retarded or delayed physical signal. 

In the solution of Einstein field equation, whether in Einstein’s approximate 

solution (Eq. (15.3)) or in Schwarzschild’s exact solution (Eq. (15.7)), the curved 

metric h is related with the Newtonian gravitational potential  : h . As Zhao 

observed [166]: “In essence, h− is h. In Einstein’s view, the metric-perturbation 
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tensor h− is just gravitational radiation, representing the gravitational field. 

Accordingly, Einstein had reason to believe: the retarded or delayed integral 

formula (Eq. (19.6)) of the metric-perturbation tensor h− meant that, at the 

coordinate xi of time t, the gravitational field h−(t,xi,c) or gravitational potential 

(t,xi,c) is decided by the distribution and motion of the gravitational matter (T) at 

the time t−|x i−x i |/c; it followed that, the gravitational radiation propagates at the 

speed c of light in vacuum. At this point, the speed of gravitational radiation seemed 

to be affirmed, but the concept of Gravitational Wave had not yet formed. 

Under the conditions of weak-field approximation, the energy-momentum tensor 

T, which serves as the gravitational source, is approximately zero: T0, and thus, 

the field equation (19.4) could be reduced to the form of vacuum field equation: 

□h−(c)=0. From the definition of the d’ Alembert operator “□” in the optical agent 

OA(c) and the definition of the Laplace operator “2” (see Sec. 5.5 in Chapter 5 and 

Eq. (5.29)), it follows that: 
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where, under the case of weak gravitational field, □−2. 

This is Einstein’s wave equation. 

Hendry observed [167]: “This is a key result.” 

Equation (19.7) is the mathematical form of waves: a typical wave equation 

where the metric-perturbation tensor h− is the wave function, and the speed c of 

light in vacuum is exactly the wave velocity of h− (c). Similar to the case of 

retarded or delayed integral formula (Eq. (19.6)), since the connection between 

h−(c) and the Newtonian gravitational potential =−GM/r, according to Eq. (19.7), 

Einstein took it for granted that the wave of h−(c) represented the gravitational 

wave travelling at the speed c of light in vacuum. 

Thus, the concept and prediction of Gravitational Wave were born. 

Later, by analogy with the quantization of electromagnetic wave, gravitational 

wave is also quantized; by analogy with the photon as the mediated meson of 

electromagnetic interaction, physicists have conceived the concept of Graviton, and 

assume that gravitons are the mediated mesons transmitting gravitational force or 

gravitational interaction. According to Einstein’s theory of special relativity, the rest 

mass of a matter particle moving at the speed c of light should be zero. So, the 

graviton is hypothetically an elementary particle with no rest mass. At the same time, 

the graviton must be a spin-2 boson for the gravitational source is the stress-energy 

tensor (a second-order tensor).  

However, Einstein’s theoretical prediction of gravitational waves seems to have 

been wrong from the beginning. 

19.2 LIGO Project: Detecting Gravitational Waves 
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Based on the principle of positivism in physics, after Einstein made the 

prediction of gravitational waves in theory, physics has launched a labor-intensive, 

time-consuming and money-consuming campaign of detecting gravitational waves. 

The gravitational wave is regarded as the last missing piece of the puzzle in the 

demonstration of Einstein’s theory of general relativity. 

In 2015, LIGO Scientific Collaboration announced that LIGO had detected 

gravitational waves for the very first time. 

In 2017, the main members of LIGO team, Weiss, Barish and Thorne, won the 

Nobel Prize in Physics for detecting gravitational waves. At this point, LIGO 

seemed to be brought to successful completion of verifying Einstein’s prediction of 

gravitational waves. Therefore, the sacred and inviolable status of Einstein’s theory 

of general relativity and even the whole theoretical system of Einstein’s theory of 

relativity was further consolidated. 

Reviewing the history of gravitational-wave detection and reexamining LIGO’s 

project of detecting gravitational waves will contribute to our recognition and 

understanding of LIGO’s principle and scheme of gravitational-wave detection as 

well as LIGO’s conclusion of gravitational-wave detection. In this way, the theory 

of GOR will reveal the true or false of LIGO’s gravitational waves. 

19.2.1 The Early Phase: 

the Principle Scheme of Gravitational-Wave Detection 

Originally, detecting gravitational waves seems to be extremely easy. 

We are detecting and utilizing gravitational waves every day. Electromagnetic 

field means electromagnetic radiation, which is also known as electromagnetic 

waves; gravitational field means gravitational radiation, which is now known as 

gravitational wave. According to the retarded integral formula (19.6) and wave 

equation (19.7) of the metric-perturbation tensor h−(c), gravitational radiation or 

gravitational wave is produced by the energy-momentum tensor T : matter or 

energy must radiate gravity or gravitational waves. The distribution of the earth’s 

matter leads to form a nearly spherically-symmetric gravitational field. All matter 

objects on the surface of the earth are affected by gravity or gravitational waves of 

the earth, exhibiting the corresponding gravitational effects. As we weigh an apple 

with a scale, we are detecting the gravity radiated by the earth. In this way, we could 

claim: “We have detected the gravitational wave from the earth!” It is more realistic 

than the gravitational waves detected by LIGO. 

However, detecting gravitational waves also seems to be extremely difficult. 

Compared with the observers of the earth, such as LIGO, the gravitational field 

of the earth seems to be too quiet and lack flows or ripples. The gravitational 

radiation or gravitational wave of the earth acting on the apple is invisible and 

intangible, which is difficult to image or directly detect. Perhaps, fast-moving dense 

stars or black holes could produce the gravitational radiation or gravitational wave 

extremely strong enough to perturb or disturb the quiet gravitational field of the 

earth. Thus, we could devise ways to detect the gravitational radiation or 

gravitational wave from outer space. 
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Figure 19.1 The Principle Scheme of Gravitational-Wave Deflection. (a) A scale for weighing 

gravitational waves: Perhaps, by making use of a scale, you could weigh gravitational waves just 

like your weighing an apple. (b) Pirani’s principle scheme: Based on Einstein’s theory of general 

relativity, Pirani proved that gravitational wave could shrink and stretch space; therefore, as long 

as you have an optical rangefinder, you could measure the shrinking and stretching of Pirani 

length, and in this way, you could detect gravitational waves. (c) Weber bar: Inspired by Pirani’s 

theory, Weber made the so-called Weber bar, an antenna for detecting gravitational waves; Weber 

believed that the shrinking or stretching of space would shrink or stretch the Weber bar, which 

could be detected by the piezoelectric sensors around the Weber bar and converted into electrical 

signals, so that you could detect and discover gravitational waves. 

As depicted in Fig. 19.1(a), put an apple at one end of the balance scale and the 

balance weight with the mass equal to the apple at the other end of the scale. Then, 

in the nearly static gravitational field of the earth, the scale keeps balance. To 

improve resolution and sensitivity, it is assumed that the arms of the scale are long 

enough. If the gravitational radiation or gravitational wave from outer space swept 

past the apple from top to bottom, then the weight of the apple must be changed 

slightly, and the scale would lose its balance, and even exhibit vibrations. In this 

way, one could observe and detect the waves of gravitational radiation that is, 

gravitational waves. 

It is a good idea to make use of a balance scale to weigh gravitational wave – 

Russian scientist Mikhail Lomonosov ever made use of a balance scale to weigh the 

law of conservation of matter. However, experimental physicists would think it 

foolish to use a balance scale to weigh gravitational waves: the gravitational 

interaction between matter is too weak, only the 1/1036 of electromagnetic force; 

even though there are extremely strong gravitational-radiation sources in outer space, 

due to the distance far from the earth and the law of inverse square, they could have 

minimal perturbations on the apple on the scale. So, it would be impossible to weigh 
gravitational radiation or gravitational wave with a scale. 

However, LIGO’s Gravitational-Wave Observatory is exactly a balance scale. 
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Einstein’s specious gravitation waves has exacerbated the complexity of 

detecting gravitational waves. Since the establishment of Einstein’s theory of 

general relativity and the birth of the prediction of gravitational waves in 1916 [168], 

physicists had not put forward a specific scheme for detecting gravitational waves in 

over 30 years. Until 1955, British physicist Pirani proposed [168] that the detection of 

gravitational radiation or gravitational wave should be based on Riemann tensor: 

although it is difficult to detect gravitational waves with a single test object (such as 

an apple on a balance scale as shown in Fig. 19.1(a)), gravitational radiation or 

gravitational wave might be detected or discovered by observing the change of the 

spatial distance between the two small-mass objects as depicted in Fig. 19.1(b) (the 

interaction between them might be negligible). Based on Einstein’s theory of general 

relativity, Pirani proved that the spatial distance between two objects would change 

as gravitational radiation or gravitational wave was sweeping past: the waves of 

gravitational radiation in different directions would lead to either expansion or 

contraction of the spatial distance. 

It should be pointed out that, until today, Pirani’s scheme has still been the 

principle scheme of gravitational-wave detection system, and is even being adopted 

by LIGO’s detection system. 

Inspired by Pirani’s idea and scheme of detecting gravitational waves, Weber of 

the University of Maryland in the United States carried out the actual detection of 

gravitational waves [169]. Weber designed and made the so-called gravitational-wave 

antenna for detecting gravitational waves, which was later known as resonant bar 

detector, or Weber bar. A Weber bar is a solid cylinder made from aluminum, 

about 1 to 2 m in length and 0.2 to 1 m in diameter. According to Pirani’s theory, 

Weber believes that, as depicted in Fig. 19.1(c), as gravitational radiation or 

gravitational wave disturbed the gravitational-wave antenna, the Weber bar would 

shrink or stretch along the lengthwise direction of its own; as the gravitational wave 

frequency is consistent with the resonant frequency of the Weber bar, such shrinking 

or stretching effect could be detected by the piezoelectric sensors around the Weber 

bar and converted into electrical signals. After being amplified by an electronic 

amplifier, the images of gravitational wave could be displayed on the oscilloscope. 

It should be pointed out that, there was the difference between Weber’s view of 

gravitational-wave detection and Pirani’s. 

According to Einstein’s theory of general relativity [8], gravitational spacetime 

would shrink or stretch: space might shrink or stretch; time might also shrink or 

stretch, and the shrinking or stretching of time likely meant the change of motion 

speed or direction of matter (including light or photons) in gravitational spacetime. 

Pirani believed that [168], gravitational radiation or gravitational wave would lead to 

the shrinking or stretching of space; Weber believed that [169], gravitational radiation 

or gravitational wave would lead to the shrinking or stretching of material objects. 

Of course, you can think that the shrinking or stretching of space is equivalent to the 

shrinking or stretching of material objects: space shrinking (stretching) shrinks 

(stretches) material objects. That was exactly what Weber thought. 

In 1968, Weber announced that his Weber bar had detected gravitational wave 
[170,171]. However, many later repeated experiments with copied Weber bar failed to 
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detect gravitational waves. The final conclusion was that the sensitivity of Weber 

bars was not high enough to detect the gravitational radiation or gravitational wave 

that Weber claimed to have detected. 

Weber bars were too short and not easy to lengthen, and therefore, the shrinking 

and stretching effects were extremely limited, which was the fatal disadvantage of 

Weber’s resonant bar detectors. 

19.2.2 Binary Pulsars and Gravitational Waves 

The development of radio astronomy has broadened the horizon of human 

beings, which has extended the electromagnetic-wave spectrum of human perceiving 

the objective world from the frequency band of visible light to almost the whole 

band of electromagnetic waves. The four major discoveries of astronomy in the 20th 

century: quasars, pulsars, interstellar molecules, and the cosmic microwave 

background radiation, are exactly the achievements of radio astronomy. 

However, unlike optical astronomy that employs eyes to see or observe visually, 

radio astronomy relies half on listening and half on guessing, which is often 

specious, and makes one half believe and half doubt. 

From Little Green Men to Pulsars 

To detect gravitational waves, we must have massive compact stars acting as the 

radiation source of gravitational waves. 

In 1967, Jocelyn Bell, a PhD student in the Cavendish Laboratory of the 

University of Cambridge in the United Kindom employed a radio telescope to have 

observed a star in the constellation Vulpecula that continuously emitted periodic 

electromagnetic-pulse signals, once every 1.33 s [172]. After calculation and analysis, 

Bell and her supervisor, Antony Hewish, decided that it is an unknown celestial 

body, and named it Pulsar [173]. In this way, Bell and Hewish discovered the first 

pulsar: PSR1919+21. In 1974, Hewish became the first astronomer to win the Nobel 

Prize in Physics for discovering pulsars [174]. 

Astronomers believe that, a pulsar is a highly magnetized and rotating neutron 

star that emits a beam of electromagnetic radiation, whose mass is enormous, second 

only to a back hole. Thus, pulsars are imagined as the ideal source of gravitational 

waves for testing and verifying Einstein’s prediction. 

However, it is still worth thinking about: Do pulsars really exist? 

Both optical telescopes and radio telescopes can not directly and visually 

identify whether a star is a neutron star, let alone to identify its rotating at a high 

speed. Astronomers can only guess what the periodic electromagnetic-pulse signals 

detected by radio telescopes represent. However, such kind of guesswork is difficult 

to be verified and seems to only stay at the level of guesswork, which can only be 

indirectly verified by the matching of the observational data and the mathematical 

model of pulsars. 

The universe is vast and complex with all kinds of possibilities. 

At the beginning, astronomers even believed that those electromagnetic pulses 

were the signals sent by aliens to the earth, and therefore, the PSR1919+21 was 

nicknamed LGM-1 (for Little Green Men). 
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Before the PSR1919+21, Neutron stars were just a class of hypothetical celestial 

bodies, which existed in the form of mathematical model in the computer database. 

After the PSR1919+21, the calculation of computer simulation showed that the host 

of the periodic electromagnetic-pulse signals conforms to the hypothetical neutron 

star, which is small in size, high in density, large in mass, and rotates at a high speed. 

Thus, pulsars become the product of the hypothesis of neutron stars, in turn, become 

the evidence of the hypothesis of neutron stars. The hypothesis of pulsars and the 

hypothesis of neutron stars constitute circular reasoning that seems to be quite 

suspicious logically. 

In any case, pulsars, or neutron stars rotating as high speeds, provide an option 

for interpreting the periodic electromagnetic-pulse signals detected by radio 

telescopes. It is said that the observatories around the world have already found 

more than 2000 pulsars. In 2016, China built the world’s largest radio telescope: the 

Five-hundred-meter Aperture Spherical radio Telescope (FAST). It is reported that 

FAST has already found over 800 pulsars up to Jul, 2023. Perhaps, more strictly, 

FAST has detected more than 800 periodic Electromagnetic-pulse signals, not 

necessarily neutron stars or pulsars. 

From Pulsars to Binary Pulsars 

A Binary Pulsar is a binary-star system: a pulsar with a binary companion, 

often a white dwarf or neutron star, or even another pulsar. A binary-star system 

with two pulsars is referred to as a Double Pulsar. 

In 1974, the year when Bell’s supervisor Hewish won the Nobel Prize in physics, 

Hulse, a PhD student at the University of Massachusetts in the United States, was 

assigned by his supervisor Taylor to participate in the pulsar detection at Arecibo 

Observatory in Puerto Rico, where there was the radio telescope with the largest 

aperture (305 m) in the world at that time. One day, Hulse detected a weak periodic 

electromagnetic-pulse signal. It was certain that a new pulsar had been discovered. 

However, unlike the general pulsars, the pulse period of this pulsar presented 

periodic variation. Hulse conjectured that this might be because the pulsar was 

moving around a companion star to have formed Doppler effect. Hulse reported his 

findings and conjecture to his supervisor Taylor. So, Taylor flew to Arecibo 

observatory, and together with Hulse, built the mathematical model of the binary 

pulsar, it was calculated that [175]: the period of the pulsar’s orbit around the 

companion star was about 7.75 hours, the maximum speed of the pulsar was about 

300 km/s, the average speed of the companion star was about 200 km/s, and the 

average distance between the pulsar and the companion star was equivalent to the 

solar radius. In this way, Hulse and Taylor discovered the first case of binary pulsars 
[176]: PSR1913+16. 

At first, Bell and Hewish speculated that the periodic pulse signal they detected 

came from a rotating celestial body or star. Now, Hulse and Taylor speculated that 

the periodic variation of the pulse period was due to the revolution of a pulsar 

around a companion star, which had the similar logic to Bell and Hewish’s. 

Later on, according to Einstein’s theory of general relativity [177-179], it was 

asserted that, in theory, a binary pulsar would lose its energy due to gravitational 
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radiation, and therefore, the PSR1913+16’s orbit would gradually precess, and the 

orbital semi-major axis and pulse period of it would be gradually shortened. Thus, 

professor Taylor has been continuously observing PSR1913+16 for decades [180]. It 

is said that the observed values are consistent exactly with the theoretical values, 

with the difference of only 0.4%. It seems that Hulse and Taylor not only discovered 

binary pulsars, but also indirectly verified the existence of gravitational waves 
[181,182]. Everything seems to be developing in the direction of supporting Einstein’s 

theory of general relativity and Einstein’s prediction of gravitational waves. 

In 1993, Hulse and Taylor won the Nobel Prize in Physics for PSR1913+16. 

It is reported that the observatories around the world have already detected more 

than 150 cases of binary pulsars so far: the PSR1913+16 is the first case and has 

been continuously observing for decades [180]. Some believe that the PSR1913+16 

provides the most accurate test for Einstein’s theory of general relativity so far. 

Likewise, it is still worth thinking about: Do binary pulsars really exist? 

Just as both neutron stars and pulsars are only conjectures in essence, binary 

pulsars are also a sort of conjecture in essence. Whether with optical telescopes or 

with radio telescopes, it is impossible to visually identify a binary pulsar. Hulse and 

Taylor could only guess why the pulse period of PSR1913+16 changed periodically. 

No matter how well the observed data of PSR1913+16 matches the mathematical 

model, it does not mean that binary pulsars really exist. Actually, according to the 

theory of GOR, it is the exact match between the observed data of PSR1913+16 

and the theoretical values of mathematical model that shows the PSR1913+16 as a 

binary pulsar has many doubts about the precession of its orbit, the shortening of its 

semi-major axis, and the periodic variation of its pulse period. 

Of course, in any case, binary pulsars provide an option for interpreting the 

periodic variation of the PSR1913+16’s pulse period. 

19.2.3 LIGO Detector and the Principle of Detection 

LIGO, the Laser Interferometer Gravitational-Wave Observatory of the United 

States, has the mission of detecting gravitational radiation or gravitational wave, 

intended to verify Einstein’s prediction of gravitational waves. 

The prototype of LIGO is made by professor Rainer Wesis at the Massachusetts 

Institute of Technology in the United States. 

In the 1970s, Wesis developed a laser interferometry to detect gravitational 

waves. Actually, Weiss and LIGO’s detectors are similar to the Michelson 

Interferometer that was used in the Michelson-Morley experiment to detect ether in 

1887 [2]. Although Michelson and Morley did not find the so-called ether, the 

Michelson-Morley experiment led to the establishment of the principle of the 

invariance of light speed, and finally, led to the establishment of Einstein’s theory of 

relativity, including the special and the general. 

The basic structure of LIGO detection system is depicted in Fig. 19.2(a), where 

the basic principle of detecting gravitational waves was originated from Pirani’s idea 
and scheme [108]: according to Einstein’s theory of general relativity, Pirani believed 

that gravitational radiation or gravitational wave would shrink and stretch space, and 
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therefore, testing the shrinking and stretching of the spatial distance between two 

objects (test masses) could detect and discover the gravitational radiation or 

gravitational wave sweeping past the test objects. 

 

Figure 19.2 The Principle and Structure of LIGO Detector. (a) LIGO Detection System: (i) 

The laser source LS emits monochromatic laser with stable frequency; (ii) The beam splitter BS 

divides the laser into two beams, one entering the arm-X and the other entering the arm-Y; (iii) 

Each laser arm is 4000m long and has two test-mass bodies respectively placed at the both ends; 

(iv) There is the Fabry-Pérot cavity between the two test-mass bodies of each laser arm; (v) The 

two laser beams move back and forth repeatedly in the respective Fabry-Pérot cavity, so that the 

equivalent length of the laser arms could reach 1.12106 m; (vi) Then, the two laser beams in the 

arm-X and arm-Y return to the beam splitter BS to form interference; (vii) The photodetector PD 

records and reports the interference effects. (b) LIGO Trilateration: LIGO has set up two base 

stations in USA, one is the LIGO Livingston and the other is the LIGO Hanford, so that LIGO 

could locate the source of gravitational waves based on trilateration method and then 

determine the speed of gravitational waves. 

Actually, the basic principle of Weber’s detection system, the Weber bar, was 

also originated from Pirani’s idea and scheme. However, Weber bars were too short, 

and the physical effect of shrinking and stretching of space was extremely limited. 

So, it was very difficult for Weber bars to sense or detect the gravitational radiation 

or gravitational wave sweeping past Weber bars. 

In structure, as depicted in Fig. 19.2(a), the LIGO detector imitates the 

Michelson interferometer: it has two perpendicular laser arms (X and Y), each of 

which has two test-mass bodies 4000 m apart from; a beam of laser moves back and 

forth repeatedly in the Fabry-Pérot Cavity between the two test-mass bodies, with 

the equivalent arm-length of 1.12106 m, which is 5×105 times that of Weber bar. So, 

the sensitivity of LIGO detector to detect gravitational radiation and gravitational 

wave is unmatched by Weber’s resonant bar detectors. 

In working process, as depicted in Fig. 19.2(a), the LIGO detector also imitates 
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the Michelson interferometer: the laser source LS emits a beam of monochromatic 

laser with stable frequency, which is divided by the beam splitter BS into two beams 

of the same intensity, one enters the arm-X and the other enters the arm-Y; after 

traveling 1.12106 m in their respective Fabry-Pérot Cavity, the two laser beams 

return to the beam splitter BS to converge and form interference, either constructive 

interference or destructive interference, and the effect of laser interference will be 

recorded by the photodetector PD. According to Einstein’s theory of general 

relativity, if gravitational radiation or gravitational wave sweeps past the LIGO 

detector, then one of the laser arm X or Y will shrink and the other with stretch, 

which makes the two laser beams exhibit an optical-path difference, and thus, the 

interference fringes will display on the screen. 

In this way, the LIGO detector or detection system will record the relevant 

information about gravitational radiation or gravitational wave. 

In 1991, the Massachusetts Institute of Technology and the California Institute 

of Technology, with the support of the National Science Foundation of the United 

States, officially started the joint construction of LIGO detection system. In order to 

improve the reliability of gravitational-wave detection, LIGO has built two base 

stations to detect gravitational radiation or gravitational wave: one is the LIGO 

Livingston, located in Livingston, Louisiana, USA, the other is the LIGO Hanford, 

located in Hanford, Washington, USA, with the distance of about 3002 km 

(equivalent to the optical path of about 10ms). Actually, as depicted in Fig 19.2(b), 

the real intention of LIGO to build the two base stations of gravitational-wave 

detection is to locate the source of gravitational waves based on trilateration method 

and then determine the speed of gravitational waves. 

LIGO detection system was completed at the end of 1999. Perhaps because 

LIGO detection system after completion had failed to detect gravitational waves, 

LIGO detection system was upgraded from 2005 to 2007. The upgraded LIGO is 

called the Advanced LIGO, or aLIGO. 

LIGO has gradually developed into an international scientific commonwealth 

for detecting gravitational waves: LIGO Scientific Collaboration (LSC). To 

accurately locate the gravitational wave source, at least three base stations of 

gravitational-wave detection have to be built on the earth surface. In 2007, the Virgo 

base station established by the European Gravitational Observatory (EGO) and the 

two base stations of LIGO began to be put into grid-connected operation. At the 

same time, all observatories around the world, including the optical and the radio, 

have participated in LIGO’s gravitational-wave detection, that is, the so-called 

omni-directional and multi messenger detection of gravitational waves. 

19.2.4 LIGO’s Detection Targets 

Naturally, detecting gravitational waves needs the source of gravitational 

radiation or gravitational wave to be the detection target. 

We do not need to prove the existence of gravitational radiation or gravitational 

wave. The sea is a natural gravitational-wave observatory. As a gravitational-wave 

observatory, the sea’s detection targets are the matter systems which are massive 

enough to radiate sufficiently strong gravitational waves, such as the moon and the 
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sun. The tides of the sea have already told us that all celestial bodies, including stars, 

planets and satellites, are radiating gravity or gravitational waves. 

According to Newton’s law of universal gravitation, all matter bodies attract 

each other: any matter body, such as the sun, the earth, the moon, an apple, or even a 

photon, is the source of gravitational radiation or gravitational wave. 

The mass of an apple is small and cannot be compared to a massive celestial 

object. However, an apple can be unlimitedly close to the LIGO detector. 

Theoretically, according to the law of inverse square, if an apple is sufficiently 

close to the LIGO detector, then the intensity of gravitational radiation or 

gravitational wave of it would be fully amplified, and thus, the LIGO detector would 

be able to detect the gravitational wave radiated by the apple. For the LIGO detector, 

the mass of apples may be too small, which might be replaced by a train. Suppose 

that a train is traveling closely against one of the LIGO laser arms, then the 

gravitational wave radiated by the train might be strong enough to perturb or disturb 

the spacetime around LIGO. So, could LIGO detect the gravitational radiation or 

gravitational wave emitted by the train? 

All in all, there are so many gravitational-wave sources on the earth’s surface for 

LIGO to test or detect. However, LIGO seeks far and neglects what lies close at 

hand: It has been doing its best to detect the gravitational radiation or gravitational 

wave from the distance stars in outer space. So, what kind of stars are suitable for 

LIGO detector to employ as its detection targets? 

Naturally, LIGO must have made a lot of calculations on candidate targets. 

Let us identify them one by one together with LIGO. 

The first is the earth. Any matter system has the gravitational field of its own 

which radiates gravity or gravitational waves. Naturally, the earth is no exception: 

all matter objects on the earth’s surface, including LIGO, are affected by the gravity 

or gravitational waves of the earth. LIGO detector is located on the earth’s surface, 

in the gravitational field of the earth. So, why could not the earth’s gravitational 

radiation or gravitational wave trigger the LIGO detector? The earth’s gravitational 

field is approximate to a static spherically-symmetric gravitational field, which is 

approximately uniform, symmetrical, and equipotential everywhere on the earth’s 

surface. As far as the spacetime around LIGO is concerned, the gravitational field of 

the earth is stationary or static. Therefore, if there is no the invasion of external 

gravitational radiation or gravitational wave, then there will be no the optical path 

difference between the two laser beams in the laser arms X and Y of the LIGO 

detection system, and thus, no interference fringe will be recorded by the 

photodetector PD of the LIGO laser interferometer. So, the gravitational radiation of 

or gravitational wave of the earth cannot trigger the LIGO detector. 

The second is the moon, the celestial body closest to the earth. The mass of the 

moon is far greater than that of apples and trains. The moon’s gravitational radiation 

or gravitational wave can trigger the tides of the sea. However, although the moon’s 

gravitational field sweeps past and past the LIGO detection system, LIGO has not 
detected the gravitational radiation or gravitational wave of the moon. It seems that 

the strength of the gravitational field of the moon at a distance of 3.844105 km 
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meters apart from the earth is not enough to trigger the LIGO detector. Admittedly, 

compared to the apple and the train, the moon is too far from the earth. 

The third is the sun, the fixed star closest to the earth. The mass of the sun is far 

greater than that of the moon, and therefore, the sun can radiate the gravity or 

gravitational waves that is far stronger than that of the moon and can also trigger the 

tides of the sea. However, the distance between the sun and the earth is much greater 

than the distance between the moon and the earth, and therefore, for the earth’s 

oceans, the tidal force of the sun is only half that of the moon. So, compared to the 

moon, the sun is even less likely to trigger the LIGO detector. 

The remaining candidates can only be the stars deep in outer space, which are 

far from the earth and must have far greater mass than the sun. 

Perhaps, pulsars can be the detection targets of LIGO or the candidates of 

gravitational-wave sources. Pulsars are neutron stars with high density, large mass, 

and high-speed rotation. Theoretically, pulsars could radiate high-energy 

gravitational waves. However, pulsars seem to fail the test of LIGO candidate 

detection-targets. So, what about binary pulsars and double pulsars? Actually, 

pulsars, no matter binary pulsars or double pulsars, are too far away from the earth, 

the intensity of their gravitational radiation decays with distance according to the 

law of inverse square, and hence, it is impossible for them to trigger the LITO 

detector on the earth. As a matter of fact, even the gravitational field of black holes 

cannot trigger the LIGO detector on the earth’s surface. 

In addition to the factors of distance and mass, like the gravitational fields of the 

moon and the sun, relative to the earth or the LIGO detector, the gravitational fields 

of neutron stars and black holes are stationary and static: too calm or too quiet, it is 

also difficult for them to trigger the LIGO detector. Unless, as some astronomers 

have envisioned [177-179], two stars merge or coalesce to violently erupt matter and 

energy in the forms of gravitational radiation or gravitational wave. 

Taylor’s continuous observation of the Hulse-Taylor binary pulsar and the 

computer simulation show that [180], the orbital period of PSR1913+16 around the 

companion star is reduced by 76.5μs per year, and the semi-major axis of elliptical 

orbit is shortened by 3.5 m per year, indicating that the Hulse-Taylor binary pulsar 

will eventually merge or coalesce. LIGO must have established a lot of dynamical 

models of binary stars based on Einstein’s theory of general relativity, and must 

have simulated the evolution of binary-star systems by means of supercomputers 
[183-186], which involves a new technology of computer application: Numerical 

Relativity. The so-called numerical relativity, based on Einstein’s theory of 

relativity (including the special and the general), makes use of the numerical 

simulation on computer to deduce the motion of celestial bodies, for example, the 

merging or coalescing of binary stars. LIGO’s computer simulations based on 

numerical relativity show that: as it merges or coalesces, a binary-star system, 

especially a double-blackhole system, would emit high-energy gravitational waves 

that could be strong enough to trigger the LIGO detector. 

So, the LIGO team targeted the detection target of LIGO detector towards 

binary-star systems, especially double-blackhole systems, looking forward to their 

merging and violently erupting. 
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However, the problem is that: 

(i) Are there really binary-blackhole systems in the universe? 

(ii) Even if there are binary-blackhole systems in the universe, even if a 

binary-blackhole system would merge or coalesce on day, could the erupted 

matter or mass really be all transformed into the energy of gravitational 

radiation? Could the erupted gravitational wave really trigger the LIGO 

detector on the distant earth? 

Relevant issues will be discussed in Sec.19.4. 

19.2.5 LIGO Discovers Gravitational Waves 

On Feb 11, 2016, LIGO officially announced that: at 5:51 (EST) on Sep 14, 

2015, LIGO detected a gravitational-wave signal for the first time erupted by a 

binary-blackhole system during its merging or coalescing, which was named the 

GW150914 [161]. 

It is worth noting that, from the discovery of GW150914 by LIGO detector to 

the official announcement of this discovery, LIGO had experienced 150 days of 

silence. So, what was LIGO doing during those 150 days? Of course, LIGO was 

contemplating and guessing: what did the signal from the LIGO photodetector PD 

mean? LIGO needed time to identify the GW150914, and needed time to locate the 

signal source of the GW150914. So, how did LIGO affirm that the GW150914 was 

a gravitational wave, and how did LIGO affirm that the GW150914 erupted from a 

binary-blackhole system during its merging or coalescing? 

The announcement of discovering GW150914 has drawn some questioning 

voices. There are extreme views that [187-189]: it is impossible for LIGO to detect the 

real gravitational wave, the GW150914 is just the noise that appears on the LIGO 

laser interferometer. The reason for questioning is not necessarily be sufficient, but 

listen to both sides and you will be enlightened. Whether the GW150914 does 

represent the gravitational wave is indeed worth discussing. At least, we should not 

aim it at the merging or coalescing of a binary-blackhole system from the beginning. 

Optical telescopes represent optical astronomy, and radio telescopes represent 

radio astronomy. Now, some astronomers believe that LIGO detector has opened 

gravitational wave astronomy [42]. Of course, like radio astronomy, gravitational 

wave astronomy could not intuitively observe celestial phenomena, or visually see 

celestial bodies or stars with eyes like optical astronomy. 

Therefore, as depicted in Fig. 19.3, LIGO’s gravitational-wave detection has to 

rely half on listening and half on guessing. 

It could be affirmed that the twin detection systems, the LIGO Livingston and 

the LIGO Hanford, did hear the chirp from outer space at 9:50 (UTC) on Sep 14, 

2015 [190,191]: GW150914. That should not be any noise: the probability of the same 

noise appearing successively in two detectors is extremely low. 
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Figure 19.3 GW150914: Half Listening and Half Guessing. (a) The First Half: LIGO’s 

listening, i.e., all the objective and real observation data that LIGO can provide − (a1) the 

observation data of LIGO Hanford; (a2) the observation data of LIGO Livingston. (b) The Second 

Half: LIGO’s guessing, i.e., to locate the signal source of GW150914 based on LIGO’s listening, 

to build the coalescing model of binary-blackhole systems based on Einstein’s theory of general 

relativity, and to match the GW150914 with the appropriate model by computer simulation − (b1) 

the computer simulation based on the data of LIGO’s Hanford; (b2) the computer simulation 

based on the data of LIGO Livingston; (b3) GW150914’s tag: GW150914 had successfully been 

matched with a coalescing mode of binary-blackhole system located at about 1.3 billion 

light-years away from the earth. It is the basis for LIGO's conclusion that the observation data of 

LIGO is in good agreement with computer simulation. As a matter of fact, no matter how close 

the observation data is to the model or computer simulation, the conclusion might be specious: 

One false step will make a great difference. 

Figure 19.3(a) is the first half of LIGO detection: LIGO’s listening. 

The data and curves in Fig. 19.3(a) are the chirp of the gravitational wave 

GW150914 heard by LIGO detector [192,193], where the horizontal axis represents 

time, and the vertical axis represents the vibration amplitude of gravitational wave: 

the strain of space distance distortion; the peak value of the strain of gravitational 

wave is 110−21. Figure 19.3(a1) shows the strain curve of gravitational wave 

recorded by LIGO Hanford; figure 19.3(a2) shows the strain curve of gravitational 

wave recorded by LIGO Livingston. 

The data and curves in Fig. 19.3(a) are relatively objective and real observation 

values of LIGO detector, and in a sense, they are the total of the empirical evidences 

of GW150914 that LIGO can provide. 

The signal detected by LIGO Hanford is 7ms later than that detected by LIGO 

Livingston. LIGO believes that this is in line with Einstein’s prediction that 

gravitational waves propagate at the speed of light. 

However, LIGO still lacks sufficient empirical evidences to affirm that the 

GW150914 is a gravitational wave, and at the same time, still lacks sufficient 

empirical evidences to identify which bird chirped and where the bird chirped. 
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So, in addition to listening, LIGO has to rely on guessing. 

Figure 19.3(b) is the second half of LIGO detection: LIGO’s guessing. 

Human beings have too many unknowns about the universe. In such a world of 

infinite possibilities, GW150914 means infinite options. However, LIGO aimed the 

GW150914 at a gravitational wave from the beginning, and envisioned it erupted 

from a binary-stars system, especially a binary-blackhole system due to its merging 

or coalescing [183-186]. LIGO spent 150 days to guess what GW150914 meant: based 

on the dynamical model of binary-star systems that derived from Einstein’s theory 

of general relativity [194,195], started up the supercomputer of LIGO to carry out the 

numerical simulation on binary-star systems, and expected the GW50914 to be 

matched with a certain binary-star model. 

This is much like a ring toss game on the streets: the GW150914 is the ring, and 

the countless binary-star modes in the computer database of LIGO are the dolls. 

Table 19.1 The Binary-Blackhole Coalescing Mode 

Matched with GW150914 [192,193] 

Physical Quantity Guess Value 
Error 

Upper-Limit 

Error 

Lower-Limit 

Primary black hole mass 36.2 sun +5.2 −3.8 

Secondary black hole mass 29.1 sun +3.7 −4.4 

Final black hole mass 62.3 sun +3.7 −3.1 

Final black hole spin 0.68 +0.05 −0.06 

Luminosity distance 420 Mpc +150 −180 

Source redshift z 0.09 +0.03 −0.04 

Energy radiated 3.0 sun +0.5 −0.5 

where sun is the unit of one solar mass, and Mpc is the unit of luminosity distance. 

Notes: (i) Both the primary and secondary stars are black holes. (ii) Luminosity distance: 

calculate the distance of a matter object based on the law of inverse square and the 

observed luminous flux and intrinsic luminosity, which needs relativistic correction due to 

the redshift of light required; this means that LIGO relies on the optical agent OA(c) to 

calculate the distance of gravitational-wave sources. (iii) The radiated energy of the 

merging or coalescing of binary-blackhole systems takes the unit of mass, which means 

that LIGO applies Einstein formula E=mc2 to calculate the energy of gravitational wave; 

actually, the theory of OR has already clarified that the energy of matter cannot be simply 

converted by the mass m and the light speed c, just as the nuclear energy released by an 

atomic bomb is the release of atomic bound energy, rather than the conversion of atomic 

mass. (iv) It should be pointed out that even if a merging or coalescing event of 

binary-blackhole system really occurs, the eruption of its mass and energy could take 

various forms, including electromagnetic radiation, strong radiation and weak radiation, 

and even pure matter ejection, rather than just gravitational radiation or in the form of 

gravitational waves; in particular, the energy of gravitational radiation energy or 

gravitational waves might be only a tiny part of it. 
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As a matter of fact, before the GW150914 was detected, LIGO had already 

prepared and stored countless binary-star dolls in the computer database of its own: 

there must be one suitable for the GW150914. In the end, the GW150914 fell over a 

coalescing model of binary-blackhole system, which consisted of two blackholes, 

with the total mass of 67sun, located 1.3 billion light years away from the earth (as 

depicted in Fig. 19.3(b)). 

As shown in Tab. 19.1, according to the coalescing model of binary-blackhole 

system matched with GW150914, the signal GW150914 detected by LIGO detector 

originated from an event of binary-blackhole coalescing, 1.3−0.55
+0.60 (0.75-1.9) 

billion light-years away from the earth, in which the primary star has the mass of 

36.2sun, the secondary star has the mass of 29.1sun, the merged black hole has the 

mass of 62.3sun, and the erupted energy is about 3.0sun. As depicted in Fig. 19.3(b), 

the expected strain curves could be calculated by computer simulation based on 

numerical relativity [192,193]. LIGO believes that the expected strain curves predicted 

by the coalescing models of binary-blackhole system are in good agreement with the 

strain curves of GW150914 recorded by LIGO Livingston and LIGO Hanford. 

However, we are not very clear about the criteria for such agreement. Actually, no 

matter how close the observational data is to the model or computer simulation, the 

conclusion might be specious: One false step will make a great difference. 

After the GW150914, LIGO successively detected the second signal of the 

gravitational wave GW151226 (03:38:53 UTC on Dec 26, 2015) and the third signal 

of the gravitational wave GW170104 (10:11:58.6 UTC on Jan 4, 2017). Like the 

GW150914, the GW151226 and GW170104 were matched with the respective 

coalescing model of binary-blackhole system: the GW151226 is about 1.4 billion 

light-years away from the earth and has the total mass of 22sun; the GW170104 is 

about 3.0 billion light-years away from the earth and has the total mass of 51sun. 

For their contributions to LIGO and the gravitational-wave detection, Weiss (an 

honorary professor of MIT), Thorne and Barish (professors of California Institute of 

Technology) jointly won the Nobel Prize in Physics in 2017. 

At 10:30:43 UTC on Aug 14, 2017, for the first time, LIGO Hanford and LIGO 

Livingston, as well as the Virgo base station, jointly detected the gravitational-wave 

signal [196]: GW170817, matching the coalescing model of binary-blackhole system 

about 1.8 billion light-years away from the earth and has the total mass of 56sun. 

At 12:41:04 UTC on Aug 17, 2017, LIGO and Virgo jointly detected the 

gravitational-wave signal [197]: GW170817, successfully matching the coalescing 

model of binary neutron stars for the first time, about 85 million light-years away 

from the earth, with about the total mass of 3sun. 

From GW150914 to GW200322 (no later data can be found), LIGO and LSC 

announced that 91 gravitational-wave signals had been detected in four and a half 

years, and claimed that these signals were all from double-star coalescing events, 

including 84 cases of binary blackhole coalescing, 2 cases of binary neutron star 

coalescing, 5 cases of black hole and neutron star coalescing, and 1 case of either 

black hole and neutron star coalescing or binary neutron star coalescing. On average, 

LIGO can detect one coalescing event of two blackholes every 20 days. 

The binary-blackhole systems matched by LIGO gravitational-wave signals are 
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mostly located within the range of 1-5 billion light-years away from the earth. 

According to observation and simulation calculation [180], the Hulse-Taylor binary 

pulsar PSR1913+16 is precessing and will merge or coalesce in about 300 million 

years. If a binary-blackhole system had the lifespan of 300 million years, then there 

should be far more existing binary-blackhole systems in the universe than we could 

imagine, and moreover, new binary-blackhole systems must have been evolving 

continuously (perhaps, at least one binary-blackhole system per 20 days). 

19.2.6 How does LIGO 

Determine the Speed of Gravitational Waves 

According to the retarded integral formula (19.6) and wave equation (19.7) of 

the metric-perturbation tensor h−(c) derived from Einstein’s theory of general 

relativity, Einstein made his prediction of gravitational waves: matter systems 

radiate gravitational waves, and the speed of gravitational waves is exactly the speed 

c of light in vacuum [164,165]. 

However, it is one thing to predict the speed of gravitational waves theoretically 

or mathematically, and another thing to measure the speed of gravitational waves 

observationally or experimentally. 

LIGO announces that gravitational waves have already been detected by LIGO 

detector. However, LIGO seems to have never explicitly given its conclusion on the 

speed of gravitational waves. As a matter of fact, LIGO has never officially or really 

measured the gravitational-wave speed, and LIGO’s so-called trilateration method 

seems to be ineffective and unreliable. 

Therefore, LIG has to indirectly calculate and conjecture the gravitational-wave 

speed  according to the so-called multi-messenger data [198,199]. 

Originally, LIGO wished to measure the speed of gravitational waves by taking 

advantage of the trilateration method, as depicted in Fig. 19.2(b). However, all the 

sources of LIGO gravitational waves are too far away and their directions and 

distances cannot be accurately determined. Even though the participation of the 

Virgo base station in Italy and the KAGRA base station in Japan has improved the 

positioning accuracy of gravitational-wave sources, it is difficult to meet the 

requirements of accurately measuring the gravitational-wave speed. In particular, if 

the gravitational-wave speed  is not the speed c of light predicted by Einstein [8], 

but the  >7106c predicted by Laplace [43], then the calibration or correction of the 

time between different base stations will become a major obstacle to accurately 

determine the gravitational-wave speed . After LIGO had detected the GW150914, 

some LIGO members once said that whether the gravitational-wave speed is the 

speed of light remains to be further verified. 

Later, all observatories around the world participate the LIGO detection of 

gravitational waves, form the league of so-called multi-messenger astronomy, and 

have detected the so-called electromagnetic counterparts of gravitational waves, 

which seems to have provided LIGO with a new way to infer and determine the 

speed of gravitational waves. It is worth noting that such electromagnetic 

counterparts not only appeared in the events of binary neutron-star coalescing [198,199], 

but also in the events of binary black-hole coalescing [200]. 
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Only 0.4s after LIGO had detected the first signal of the gravitational-wave 

GW150914, the Fermi gamma-ray Burst Monitor detected the gamma-ray burst that 

seemed to come from the same radiation source of GW150914 [201,202]. Although 

some physicists believe that the merging or coalescing of binary-blackhole systems 

could not radiate electromagnetic matter, the eruption of electromagnetic matter is 

actually possible and reasonable. The merging or coalescing of binary-blackhole 

systems must violently erupt matter and energy outwards. If the universe really has 

binary-blackhole systems, they must radiate all forms of matter and energy, 

including to gravitational, electromagnetic, strong and week interactions. Just as 

nuclear explosions can erupt the protons and neutrons confined within atomic nuclei, 

we can imagine that, the merging or coalescing of binary-blackhole systems can 

erupt the quarks confined within protons and neutrons. 

Only 1.7s after LIGO and Virgo had detected the first coalescing event of binary 

neutron-star: GW170817, the Fermi Gamma-ray Burst Monitor (GBM) and the 

International Gamma-Ray Astrophysics Laboratory (INTEGRAL) detected the 

gamma-ray burst GRB170817A that seems to come from the same radiation source 

of GW170817 [198,199]. In the following weeks, observatories around the world 

successively reported that they had detected electromagnetic matter that seemed to 

come from the same radiation source of GW170817 and GRB170817A with 

different frequencies or wavelengths sweeping past the earth. This is regarded as the 

masterpiece of multi-messenger astronomy. 

LIGO believes that [199]: the gravitational-wave signal GW170817 and its 

electromagnetic counterparts came from the same merging or coalescing event of 

binary-star system: they departed almost at the same time, after hundreds of millions 

of light years or even billions of light years, reached the earth almost at the same 

time. Therefore, the speed of gravitational waves must be the speed c of light. 

Due to the better positioning accuracy, GW170817 and GRB170817A are 

selected by LIGO as the samples to determine the gravitational-wave speed . 

Suppose that GW170817 does represent the gravitational wave and does come 

from the coalescing event of a binary-star system with the luminosity distance 

DL=26 Mpc, i.e., D=3.2616106DL light year away from the earth, about 85 

million light-years; GBR170817A does represent the gamma-ray burst erupted from 

the source of GW170817 with the speed vEM of electromagnetic waves, i.e., the 

speed c of light in vacuum. Then, the relative difference between the speed  of 

gravitational waves and the speed c of light can be defined as: v/ct /T, where 

v=−c, T=D/c, t=T−TG, T  is the travel time of GBR170817A, and TG is the 

travel time of GW170817. If the peak signal of GW170817 and the first gamma 

photon of GRB170817A departed at the same time, then  t1.740.05s and  c, 

v/c may be taken as the upper limit value; if GRB170817A departed 10s later than 

GW170817, then  t1.74s−10s=−8.26s and  c, v/c may be taken as the lower 

limit value. Thus, the relative wave-speed difference v/c is [199]: 
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Equation (19.8) originates from the research report jointly submitted by LIGO 
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Scientific Collaboration (LSC), Virgo Collaboration, Fermi Gamma-ray Burst 

Monitor (GBM), and INTEGRAL [199]. The speed of light in vacuum recommended 

by the International Standards Organization (ISO) is: c=2.99792458108
 ms−1. 

Equation (19.8) means that the speed  of gravitational waves is exactly equal to the 

speed vEM of gamma-ray bursts. In other words, the speed  of gravitational waves is 

exactly the speed c of light in vacuum. 

We could understand that, if GW170817 and GRB170817A really originated 

from the same coalescing event of a binary-star system, and after a long journey of 

nearly 100 million light-years, they arrived at the earth almost at the same time (only 

1.7s difference before and after), then the speed of GW170817 must be exactly the 

same as the speed of GRB170817A. 

However, the problem is that: Is the GW170817 really a gravitational wave 

erupted by a binary-star system during its merging or coalescing? 

The theory of GOR will reveal the mystery behind it for us. 

19.3 The GOR Information-Wave Equation 

As indicated in Sec. 12.1.1 The Gravitational Locality of Chapter 12, both 

Einstein’s theory of general relativity and Newton’s theory of universal gravitation 

imply an important idealized hypothesis: gravity or gravitational interaction is action 

at a distance, it takes no time to cross space. Whether Einstein’s theory of general 

relativity or Newton’s theory of universal gravitation, there is no prior knowledge or 

information about the speed of gravitational radiation in their axiom systems or 

logical premises. 

Therefore, no matter logically or theoretically, no matter Einstein’s theory of 

general relativity or Newton’s theory of universal gravitation, it is impossible to 

draw the conclusion that the speed of gravitational radiation or the speed of 

gravitational waves is the speed of light. 

Under the principle of general correspondence (GC), following PGC logic route 

1 or PGC logic route 2, by analogizing the logic of Einstein’s theory of general 

relativity, the theory of GOR can also deduce or derive the retarded integral formula 

and the wave equation of the metric-perturbation tensor h− (). However, in the 

theory of GOR, the metric-perturbation tensor h−() cannot be interpreted as 

gravitational radiation or gravitational wave. Instead, it is the information wave of 

the general observation agent OA(), which transmits the information of observed 

objects for observers at the speed . 

19.3.1 The Deduction of GOR Wave Equation 

Under the principle of GC, the theory of GOR deduces the GOR wave equation 

by analogizing the deductive logic of Einstein’s wave equation. However, the 

deduction of GOR wave equation does not follow the Einstein’s logic of weak-field 

approximation. Like the establishment of GOR field equation in Chapter 14 and the 

solution of GOR field equation of static spherically-symmetric gravitational 
spacetime in Chapter 15, the deduction of GOR wave equation adopts the GOR 

logic of idealized convergence. 
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As stated in Sec. 13.3 The GOR Logical Way of Idealized Convergence of 

Chapter 13, according to the theorem of Cartesian spacetime, if →, then the 

GOR spacetime X4d
 would converge to the Cartesian spacetime X4d

, and the GOR 

spacetime metric g(x,) would converge to the Minkowski metric 

=diag(+1,−1,−1,−1). Therefore, if the information-wave speed of the observation 

agent OA() is high enough, then according to Eq. (13.11), the GOR spacetime 

metric g(x,) could be decomposed and linearized as Eq. (13.16): 

( ) ( ) ( )( )
and :

, , and lim ,

i

iv

g x h x h h x  

     


   

    
→

= + = 0
 

This is the condition of flat spacetime in the GOR logic of idealized convergence, 

where the curved metric hµ and its derivatives of each order are small quantities. 

According to the theorem of Cartesian of spacetime: g (x,)→  as →, or, 

h (x,)→0 as →. 

According to the GOR logical way of idealized convergence (see Sec. 13.3 in 

Chapter 13), the condition of GOR idealized convergence only requires that: the 

information-wave speed  of the observation agent OA() is large enough or →. 

Einstein made the gravitational spacetime X4d(c) of the optical observation agent 

OA(c) approximately flat by taking advantage of the logical way of weak-field 

approximation, and then linearized Einstein field equation; while the theory of GOR 

makes the gravitational spacetime X4d() of the general observation agent OA() 

tend to be flat by taking advantage of the logical way of idealized convergence, and 

then linearized the GOR field equation. Therefore, in the theory of GOR, the 

gravitational field under OA() is not necessarily the weak field. Thus, the curved 

metric h() in the condition of flat spacetime is no longer the disturbance of weak 

gravitational radiation on the flat spacetime (), and the gravitational wave is also 

no longer the subtle ripples in the flat spacetime () caused by the disturbance of 

weak gravitational radiation. 

It should be pointed out that the condition of GOR idealized convergence not 

only meets the condition of flat spacetime, but also meets all the conditions of 

Einstein’s logical way of weak-field approximation, including the weak field, slow 

speed, static field, spacetime orthogonality, and harmonic coordinates (see Sec. 

13.1.3 in Chapter 13). So, by analogizing or following the logic of Einstein’s theory 

of general relativity, the theory of GOR can derive the GOR retarded integral 

formula of h−() which will be isomorphically consistent with Einstein’s retarded 

integral formula (19.6) of h−(c), derive the GOR wave equation of h−() which 

will be isomorphicall consistent with Einstein’s wave equation (19.7) of h−(c). 

Like Einstein field equation (Eq. (14.2)), the left end of the GOR field equation 

(Eq. (14.32)) can also be defined or marked as the GOR tensor G(), and the GOR 

field equation can be simply rewritten as: 
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where  is the information-wave speed of the general observation agent OA(), 

R=R() is the Ricci tensor of OA() (representing the spacetime curvature of 

OA()), R=R() is the Gaussian curvature of OA(), g=g() is the spacetime 

metric of OA(), T=T() is the energy-momentum tensor of OA(), and 

GOR=GOR() is the coefficient of GOR field equation under OA(). 

Under the condition of GOR idealized convergence:  is large enough or →, 

according to Sec. 14.6 of Chapter 14 and Eq. (14.59) in Chapter 14, the Ricci tensor 

R() and Gaussian curvature R()) approximate or tend to: 
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 (19.10) 

Define the metric-perturbation tensor of OA(): 

 ( ) ( )
1

2
h h h h h h 

      −  −  =  (19.11) 

where the metric-perturbation tensor h−=h−() is defined with the curved metric 

h according to the flat-spacetime condition (Eq. (13.16)) of GOR idealized 

convergence; h relies on the Newtonian gravitational potential  : h  . 

Thus, under the condition of GOR idealized convergence, the GOR tensor G() 

can also be defined with the metric-perturbation tensor h− , and the GOR field 

equation (19.9) can also be expressed with the metric-perturbation tensor h−  as: 

 ( ) ( ) ( )GOR

1

2
G h T     − = −  (19.12) 

The corresponding condition of harmonic coordinates reduces to 

 ( ), 0h 

 − =  (19.13) 

According to the theory of GOR, the gravitational-spacetime metric g of the 

observation agent OA() depends on the spacetime coordinates x (=0,1,2,3) and 

the information-wave speed  of OA(): g=g(x,)=g(t,x
i,) (i=1,2,3), where 

the time axis x0=t, t is the observational time of OA(). Likewise, the curved 

metric h, the metric-perturbation tensor h− , and the energy-momentum tensor T, 

all depend on the spacetime coordinates x and the information-wave speed  of 

OA(): h=h(t,x
i,), h−=h−(t,xi,), and T=T(t,x

i,). 

By analogizing or following the retarded solution of h−(c) in Einstein’s theory 

of general relativity, the GOR field equation (19.12) satisfying the condition of 

harmonic coordinate (Eq. (19.13)) has the following retarded integral formula which 
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is isomorphically consistent with Einstein’s retarded integral formula (Eq. (19.6)): 
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where the integral domain is the 3d space occupied by the gravitational source, x i 

(i=1,2,3) is the coordinate of the observer, and x i (i=1,2,3) is the coordinate of 

matter distribution, |x i −x i| is the distance between the observation coordinate x i and 

the coordinate x i of gravitational matter. 

Equation (19.14) is the retarded integral formula of the metric-perturbation 

tensor h−() in theory GOR, or the retarded solution of the metric-perturbation 

tensor h−(), or the GOR retarded integral formula. 

However, it should be pointed out that the so-called retarded in Eq. (19.14) 

depends on the information-wave speed  of the observation agent OA(), rather 

than the speed c of light. More specifically, the so-called retarded in Eq. (19.14) is 

not the delay of gravitational interaction, but the delay of observational (observed) 

information, that is, the delay of the information wave of OA(), rooted from the 

observational locality (<) of OA(). 

The GOR retarded integral formula (19.14) of the metric-perturbation tensor 

h−() suggests that the information received by the observer O at the coordinate x i 

at the time t is the information emitted by the observed object P at the coordinate x i 

at the time t−|x i−x i |/ : in the observational spacetime X4d() of OA(), the 

observational (observed) information would be delayed by |x i−x i |/. 

Under the condition of GOR idealized convergence:  is large enough or →, 

GORT→0. Thus, the GOR field equation (19.12) would reduced to the form of 

vacuum field equation: □h−()=0. From to the definition of the d’ Alembert 

operator “□” in the general observation agent OA() and the definition of the 

Laplace operator “2” (see Sec. 5.5 D’ Alembert Operator in OR Theory in 

Chapter 5 and Eq. (5.31)), it follows that: 

 

( ) ( )

( ) ( )

2 2 2 2

2
2

2 2

0

1
or 0

h t

h h
t



 

 

 


−

− −

= =   −


 − =



 (19.15) 

In this way, we have deduced a wave equation, named as the GOR wave 

equation, in which the wave function is the metric-perturbation tensor h−() of the 

observation agent OA() and the speed of the wave is the information-wave speed  

of the observation agent OA(). 

Now, the problem is that: What does the metric-perturbation tensor h−() in 

the GOR wave equation (19.15) mean? Or, what wave is the metric-perturbation 

tensor h−() as the wave function in the GOR wave equation (19.15)? 

It is worth noting that the GOR wave equation (19.15) has generalized 

Einstein’s wave equation (19.7): as the observation agent OA() is the optical agent 
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OA(c), the GOR wave equation is exactly Einstein’s wave equation. 

Now, you may have had your own judgment: the GOR wave equation, including 

Einstein’s wave equation, is not the gravitational-wave equation, but the 

information-wave equation; the wave function h−() of GOR wave equation, 

including the h− (c) of OA(c), does not represent the wave of gravitational radiation 

predicted by Einstein – the Gravitational Wave, but the Information Wave of the 

observation agent OA(), which transmits the information of observed objects for 

observers. Specifically, Einstein’s wave equation is exactly the information-wave 

equation of the optical agent OA(c). Naturally, the information wave of OA(c) is 

light wave, the information-wave speed of OA(c) is the speed c of light. 

Now, you may have finally been able to understand why Einstein’s gravitational 

wave propagates at the speed of light? 

The theory of GOR, based on the GOR logical way of idealized convergence, 

has derived the retarded integral formula (Eq. (19.14)) of GOR field equation which 

is isomorphically consistent with Einstein’s retarded integral formula (Eq. (19.6)) of 

Einstein field equation, and has derived the GOR wave equation (19.15) which is 

isomorphically consistent with Einstein’s wave equation (19.7). The GOR retarded 

integral formula and the GOR wave equation has provided a theoretical basis for us 

to correctly understand Einstein’s prediction of gravitational waves. 

19.3.2 The Unity of Einstein’s Wave Equation and 

Newton’s Wave Equation 

Einstein’s wave equation is actually the weak-field vacuum form of Einstein 

field equation; the Poisson vacuum form of Newton field equation, i.e., Laplace’s 

equation: 2=0, may be referred to as Newton’s wave equation. 

Like all the relationships in the theory of OR (including IOR and GOR), the 

GOR retarded integral formula (Eq. (19.14)) and the GOR wave equation (19.15) 

has not only generalized Einstein’s retarded integral formula and Einstein’s wave 

equation, but also generalized Newton’s integral formula and Newton’s wave 

equation. In other words, the GOR wave equation has generalized and unified 

Einstein’s wave equation and Newton’s wave equation. 

According to the GOR retarded integral formula (Eq. (19.14)): 
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Equation (19.16a) suggests that: as →c, OA() will be the optical agent 

OA(c), the GOR retarded integral formula (Eq. (19.14)) will reduce to Einstein’s 

retarded integral formula (Eq. (19.6)). Equation (19.16b) suggests that: as →, 

OA() would be the idealized agent OA, the GOR retarded integral formula (Eq. 

(19.14)) would reduce to Newton’s integral formula, the observational locality of 

OA() would disappear, and therefore, the observed information would no longer be 
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retarded or delayed. 

According to the GOR wave equation (19.15): 

 ( ) ( ) ( ) ( )
2 2

2 2

2 2 2 2

1 1
lim h h h c h c

t c t
   


 



− − − −

→

  
 − =  − 

  
 (19.17a) 

 
2

2 2 2 2

2 2

1
lim that is 0 or 0h h h h

t
   






− − − −

→

 
 − =   =  = 

 
 (19.17b) 

Equation (19.17a) suggests that: as →c, OA() will be the optical agent 

OA(c), the GOR wave equation (19.15) will reduce to Einstein’s wave equation 

(19.7). Equation (19.17b) suggests that: as →, OA() would be the idealized 

agent OA, the GOR wave equation (19.15) would reduce to Newton’s wave 

equation, i.e., Newton’s law of universal gravitation in the vacuum form of Poisson 

equation − Laplace’s equation: 2=0, in which the information-wave speed would 

be infinite and it would take no time for the observed information to cross space. 

It is thus clear that both Einstein’s wave equation and Newton’s wave equation 

are special cases of the GOR wave equation: Einstein’s wave equation is that of the 

optical agent OA(c); Newton’s wave equation is that of the idealized agent OA. 

The GOR wave equation is the wave equation of the general observation agent 

OA(), including the optical agent OA(c) and the idealized agent OA. 

In this way, the GOR wave equation has generalized and unified Einstein’s 

wave equation and Newton’s wave equation. 

However, this does not mean that the GOR wave equation supports Einstein’s 

wave equation, let alone Einstein’s prediction of gravitational waves. Quite the 

reverse: the GOR wave equation indicates that Einstein’s prediction of gravitational 

waves is a mistake! 

19.3.3 Einstein’s Prediction of Gravitational Waves 

is a Mistake! 

The retarded integral formula (Eq. (19.14)) of the GOR field equation and the 

GOR wave equation (Eq. (19.15)) indicates that: 

Einstein’s prediction of gravitational waves is wrong! 

After the establishment of general relativity, based on the wave equation (19.7) 

and the retarded solution (Eq. (19.6)) of Einstein field equation, Einstein made his 

famous prediction of gravitational waves. 

As stated in Sec. 19.1, in Einstein’s theory of general relativity, the 

metric-perturbation tensor h−=h−(,c) is connected with the Newtonian 

gravitational potential  and the speed c of light. Accordingly, Einstein believed that 

his retarded integral formula (Eq. (19.6)) represented gravitational radiation, and his 

wave equation (19.7) represented the wave of gravitational radiation, i.e., the 

gravitational wave that propagated at the speed c of light. 

Thus, Einstein’s specious prediction of gravitational waves was born. 

As Zhao said [166]: “In essence, h− is h .” In Sec. 15.5 of Chapter 15, the 
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theory of GOR has clarified that the curved metric h=h( ,) of gravitational 

spacetime does not really represent gravitational radiation, let alone gravitational 

wave. Actually, as stated in Sec. 12.1.1 The Gravitational Locality of Chapter 12, 

Newton’s theory of universal gravitation and Einstein’s theory of general relativity, 

and even the theory of GOR, have on prior information about gravitational radiation 

or gravitational waves, which imply the important idealized hypothesis: gravity or 

gravitational interaction is action at a distance. Therefore, logically, it is impossible 

for Einstein to predict gravitational waves based on his theory of general relativity, 

let alone to calculate the speed of gravitational radiation or gravitational waves. 

As stated in Sec. 12.1.2 The Observational Locality of Chapter 12, the locality 

in Einstein’s theory of general relativity is the observational locality (c<) of the 

optical observation agent OA(c), rather than the gravitational locality. Einstein’s 

theory of relativity, including the special and the general, is the theory of optical 

observation, in which the observation agent OA() is the optical agent OA(c), and 

the transmission speed  of observed information is the speed c of light in vacuum. 

Therefore, the so-called retard or delay in Einstein’s retarded integral formula (Eq. 

(19.6)): |x i−x i |/c, is the retarded or delayed of observed information, not the retard 

or delay of gravitational interaction. In particular, it should be pointed out that: the 

wave speed c in Einstein wave equation (19.7) is the information-wave speed c of 

the optical agent OA(c), not the gravitational-wave speed . 

The theory of GOR does not doubt the existence of gravitational waves. 

However, as one of the objective interactions between matter and matter, 

gravitational waves or the waves of gravitational radiation do not rely on 

observation or the observation agent OA(), do not rely on the speed  of observed 

information transmitted by the observation media of OA(). 

The metric-perturbation tensor h−=h−(,) in the GOR retarded integral 

formula (Eq. (19.14)) and the GOR wave equation (19.15) does not represent 

gravitational waves or the waves radiated by the gravitational source, but the 

information wave of the observation agent OA() transmitting observed information, 

which is naturally carrying the information about gravitational radiation (). As the 

information wave of OA(), the speed at which h−(,) transmits observed 

information is naturally the information-wave speed  of OA(), conforming to the 

GOR retarded integral formula (Eq. (19.14)) and the GOR wave equation (19.15). 

Specifically, as OA() is the optical agent OA(c), the speed at which h−(,c) as the 

information wave of OA(c) transmits observed information is naturally the speed c 

of light, conforming to Einstein’s retarded integral formula (Eq. (19.6)) and 

Einstein’s wave equation (Eq. (19.7)). 

As stated in Sec. 15.5.3 of Chapter 15, for the solution (Eqs. (15.17) and (15.32)) 

of the GOR field equation, regardless of the Cartesian coordinates or the spherical 

coordinates, regardless of the approximate solution or the exact solution, the 

nonzero elements of the curved metric h(,) all contains an important 

dimensionless factor: CW=| | /2, i.e., the ratio of the Newtonian gravitational 

potential | |  to the square of the information-wave speed  of OA(). As →, 

CW→0 and h →0, which suggests that, both the curved metric h(,) and the 
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metric-perturbation tensor h−(,) do not represent gravitational radiation or 

gravitational wave. 

The theory of GOR refers to CW=| | /2 as the Factor of Carrier Wave. In the 

theory of GOR, the wave function h− (,) in the GOR wave equation (19.15) is 

actually the information wave of the observation agent OA(), the so-called Carrier 

Wave, loaded with the observed information of gravitational interaction (), which 

is the information wave of OA() modulated by the gravitational-radiation signal, 

and naturally, propagates at the information-wave speed . 

The GOR wave equation (19.15) means that there is a wave in the observational 

spacetime X4d() of the observation agent OA(): h−(,), that is, the information 

wave of OA(), whose speed is the speed of observation medium of OA() 

transmitting observed information. Naturally, different observation agents have 

different information-wave speeds, which may not necessarily be the speed c of light. 

Einstein’s wave equation (19.7) is only a special case of the GOR wave equation 

(19.15), where OA() is the optical agent OA(c). 

The GOR wave equation, actually, is the GOR information-wave equation. 

It is thus clear that the wave function h−(,) in the GOR wave equation (19.15) 

is not the gravitational wave radiated by matter systems, but the information wave of 

the observation agent OA(). 

This means that, as a special case of the GOR wave equation (19.15), the 

so-called gravitational wave predicted by in Einstein’s wave equation (19.7) is not 

the gravitational wave but the information wave of the optical observation agent 

OA(c): light wave, which transmits observed information at the speed c of light. 

So, Einstein’s wave equation is not the gravitational-wave equation, but the 

information-wave equation, that is, the electromagnetic-wave equation or the 

light-wave equation of the optical observational agent OA(c). 

This is the essence of Einstein’s prediction of gravitational waves. 

19.3.4 Information waves are physical reality 

The significance of the GOR retarded integral formula (Eq. (19.14)) and the 

GOR wave equation (19.15) lies not only in having proved that Einstein’s prediction 

of gravitational waves is a mistake, but also in having proved that the information 

waves as observation media are physical reality, or in other words, the objectively 

physical existence. 

As stated in the first chapter of OR theory: “Human being’s understanding of the 

objective world depends on and is restricted by observation.” However, we have not 

yet truly recognized and understood the role and special statue of observation and 

observation media in physics and its theoretical system. 

By starting from the definition of time (Def. 2.2, the most basic logical premise), 

the theory of OR, has derived the general Lorentz transformation, which has 

generalized and unified the Galilean transformation and the Lorentz transformation 
[26,27]. Thereby, the theory of OR has discovered that both Newton’s classical 

mechanics and Einstein’s relativity theory are the partial theories of physics that 
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depend on and are restricted by their respective observation system and observation 

condition: Newton’s classical mechanics is the theory under idealized observation, 

depending on and being restricted by the idealized observation agent OA; 

Einstein’s relativity theory is the theory of optical observation, depending on and 

being restricted by the optical observation agent OA(c). This means that, in the 

theoretical systems or mathematical models of physics, in addition to the observer 

and the observed object, there must also be another important and indispensable role: 

Observation Agent, which takes advantage of certain observation media for 

transmitting the spacetime information of the observed object to the observer. 

So, the theory of OR has defined the concept of Information Wave. The 

so-called information waves refer to the matter waves, such as water waves, sound 

waves, light waves, electromagnetic waves, and even gravitational waves, employed 

by observation agents for transmitting the observed information. 

Different theoretical systems have different observation agents, employ different 

observation media, and therefore, have different information-wave speeds: the speed 

of the information wave of the idealized agent OA is infinite, the speed of the 

information wave of the optical agent OA(c) is the speed c of light in vacuum, and 

the speed of the information wave of the bat-agent OA(vS) is the speed vS of 

ultrasonic wave in the atmosphere, and so on. 

So, does a theoretical system or mathematical model of physics really need a 

certain observation agent? In other words, does a theoretical system or mathematical 

model of physics really need a certain observation medium for transmitting the 

information of observed objects to observers? 

For this matter, the value and significance of the GOR retarded integral formula 

(Eq. (19.14)) and the GOR information-wave equation (19.15) lies in having proved 

that observation media, or information waves, or observation agents paly the 

indispensable role in the theoretical systems or mathematical models of physics. 

The retarded solution of GOR field equation has proved that: 

In a theoretical system of physics, there must exist a specific observation agent 

OA(), which employs a specific observation medium to transmit the information of 

observed objects to observers at a specific speed . 

The GOR wave equation has proved that: 

In a theoretical system of physics, there must exist a specific matter wave in the 

observational spacetime X 4d() of the observation agent OA(), that is, the 

information wave of OA() transmitting observed information. 

Observation Agent, Information Wave and Informon, were originally coined 

by the theory of OR. Now, Observation Agent and Information Wave have been 

proven to be the objectively physical existence by the GOR retarded integral 

formula (Eq. (19.14)) and the GOR information-wave equation (19.15). Thus, as the 

matter particles that make up the information wave and as the mesons that transmit 

observed information, the existence of informons is natural and rational. 

19.4 GOR Interpreting: What Has LIGO Discovered? 
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According to the GOR information-wave equation, the theory of GOR has 

proved that Einstein’s prediction of gravitational waves is a mistake. 

So, what are the gravitational waves detected by LIGO Observatory? Has LIGO 

really detected gravitational waves? Do gravitational waves really exist? 

The theory of GOR does not doubt the existence of gravity or gravitational 

radiation. Actually, the so-called gravitational waves are namely gravity or 

gravitational radiation: the waves of gravitational radiation. 

LIGO claimed that it had detected gravitational waves. Also, in 2017, LIGO 

won the Nobel Prize in Physics for detecting gravitational waves. However, LIGO’s 

gravitational-wave detection is not strictly empirical observation or experiment. As 

stated in Sec. 19.2 and depicted in Fig. 19.3, LIGO’s gravitational-wave detection is 

half real and half virtual: the first half is listening; the second half is guessing. 

Perhaps, the only thing we could affirm is that LIGO heard the chirping sound from 

a certain matter system. As for the merging or coalescing of binary-blackhole 

systems, it was just an imagination or a speculation of LIGO, the product of the 

technology of computer simulation or the technology of Virtual Reality, which 

might not necessarily exist in reality. 

Since Einstein’s prediction of gravitational waves, which is based on Einstein’s 

theory of general relativity, is a mistake, could LIGO’s computer simulation of 

gravitational waves, which is also based on Einstein’s theory of general relativity, 

still hold true? 

19.4.1 GOR Interpreting LIGO Principle 

For the principle or scheme of LIGO system detecting gravitational radiation or 

gravitational waves, the understanding of the theory of GOR is naturally different 

from the view of Einstein’s theory of general relativity. 

As stated in Sec. 19.2, the detection principle of LIGO originated from Pirani’s 

scheme. Based on Einstein’s theory of general relativity, Pirani believed that [168]: 

gravitational radiation or a gravitational wave could lead to the expansion and 

contraction of space; and therefore, testing the variation of the spatial distance 

between two matter bodies could detect the gravitational radiation or gravitational 

wave sweeping past the two test bodies. Based on Pirani’s view, Weber further 

imagined that [169]: spatial expansion or contraction would shrink or stretch matter 

objects; and therefore, by measuring the shrinking and stretching of an matter object, 

one could determine the expansion and contraction of space. In Weber’s scheme, the 

expansion and contraction of space is equivalent to the shrinking and stretching of 

matter objects. 

LIGO follows Pirani’s ideas and scheme. As stated in Sec. 19.2.3 and depicted 

in Fig. 19.2(a), the architecture of LIGO detector is designed based on the 

Michelson interferometer, in which the core is the two mutually perpendicular laser 

arms (the arm-X and the arm-Y) for measuring the spatial expansion and contraction 

between the test objects by taking use of the laser interference effect. 

It should be pointed out that, originally, what Einstein’s advocated in his theory 

of general relativity was the curvature of 4d spacetime, rather than the expansion or 

contraction of 3d space. 
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According to the GOR factor (Eq. (12.36)) of spacetime transformation, the 

theory of GOR has clarified that, regardless of whether there are gravitational fields 

or not, the objective and real spacetime will not be curved, and naturally, will not 

expand or contract. In Chapter 13, the theorem of Cartesian spacetime has also 

proved this conclusion: the observational spacetime X4d
 of the idealized agent OA 

must be flat, regardless of whether there is matter in spacetime. 

In the theory of GOR, the distribution of matter or the existence of gravitational 

fields would also lead to the optical-path difference between the two laser beams in 

the arm-X and the arm-Y of the LIGO laser interferometer, and then, produce 

interference effect. However, that is not due to the curvature of spacetime or the 

expansion and contraction of space, but due to the variation or perturbation of the 

speed of laser in gravitational spacetime. 

In Sec. 15.4 of Chapter 15, based on the GOR logical way of idealized 

convergence, the theory of GOR has obtained the solution and line-element formula 

(Eq. (15.32)) of the static spherically-symmetric gravitational spacetime: 
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where  is the information-wave speed of the observation agent OA(); =−GM/2 

is the Newtonian gravitational potential, and M is the gravitational mass (also 

representing the center of gravity). 

It is worth noting that the LIGO detector is actually an optical observation 

system, the optical agent OA(c), which employs the laser interferometer to measure 

the optical-path difference between the two perpendicular laser beams, thereby to 

sense the variation of the laser speeds. Therefore, like the Michelson interferometer 

in the Michelson-Morley experiment, the observation agent OA() of LIGO detector 

is the optical observation agent OA(c). 

Suppose that the observed object P is a photon m. According to the theory of 

GOR, as OA() is the optical agent OA(c), the line-element ds of the photon m is 

zero: ds=0 (this is consistent with Einstein’s theory of general relativity). Given the 

isotropy of spherically-symmetric gravitational spacetime, it follows that: d=0 and 

d=0. Thus, the line-element formula (Eq. (15.32)) reduces to: 
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where v is the speed of the photon m in the gravitational spacetime under OA(c). 

Equation (19.18) suggests that: the speed of light or photons in gravitational 

spacetime is different from the speed c of light in vacuum; in addition, the speed of 

light or photons will be different for different gravitational potentials, and for 

different energies of gravitational radiation or gravitational wave. As gravitational 

radiation or gravitational wave invades the LIGO spacetime, in particular, as the 
gravitational radiation or gravitational wave around the arm-X and arm-Y of the 

LIGO laser interferometer is asymmetry, the speeds of laser in the arm-X and the 
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arm-Y would be different. Then, the two laser beams in the arm-X and the arm-Y of 

the LIGO laser interferometer would exhibit optical-path difference and produce 

interference effects or interference fringes. 

The Basic Principle of LIGO detector: According to the theory of GOR, the 

LIGO detector could detect the variation or perturbation of the speed of laser by 

making use of the LIGO laser interferometer; thus, LIGO could detect gravity or 

gravitational waves, detect gravitational radiation or gravitational fields; and 

furthermore, could explore the matter systems that act as gravitational sources 

sweeping the LIGO detector. 

19.4.2 The Distance and Mass 

of LIGO’s Gravitational-Wave Sources 

In order to detect the gravitational waves coming from deep space or out space, 

LIGO requires the celestial bodies as gravitational-wave sources to possess huge 

mass and radiate the gravitational waves with huge energy. 

As stated in Sec. 19.2.4, the sea of the earth is a natural gravitational-wave 

observatory, which could detect gravitational radiation or gravitational waves 

coming from celestial bodies: the sea presents tidal phenomena by sensing the 

gravitational radiation or gravitational waves from the moon and the sun. According 

to Newton’s law of universal gravitation, the induced tidal force FT of the matter or 

sea water with unit mass on the earth’s surface is proportional to the mass M of 

gravitational source and inversely proportional to the cube of the distance d of 

gravitational source: 
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where, G is the gravitational constant, M is the mass of gravitational source or 

gravitational-wave source, RE is the earth radius, m is the unit mass of the matter or 

sea water on the earth’s surface, and aT is the equivalent acceleration. 

The LIGO detector itself is a matter system of the earth’s surface. 

Equation (19.19) has important enlightenment significance: a detector of 

gravitational radiation or gravitational waves on the earth’s surface, including the 

sea and LIGO, are restricted by the law of inverse cubic of the gravitational-source 

distance d. Equation (19.19) means that whether the gravitational-wave observatory 

on the earth’s surface, whether the sea or LIGO, could detect gravitational radiation 

or gravitational waves depends largely on the distance d between the gravitational 

source M and the gravitational-wave observatory on the earth. 

The solar mass is 27.112 million times the lunar; while the distance between the 

sun and the earth is 390.6 times that between the moon and the earth. According to 

Eq. (19.19): the acceleration of the solar tidal force is aT=5.05 10−7 ms−2; the 

acceleration of the lunar tidal force is aT=1.1010−6 ms−2, 2.18 times that of the sun. 

This means that at least one more sun needs to be added in order for the tidal force 

of the sun to reach the level comparable to that of the moon. 

The nearest fixed star to the solar system, Proxima Centauri, has the mass of 
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about 0.12 suns and is about 4.22 light-years away from the earth. According to Eq. 

(19.19), the mass M of it must reach that of 1.881016 suns in order for its tidal force 

on the sea or LIGO detector on the earth’s surface to reach the level comparable to 

that of the sun: 
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Proxima Centauri, even if its mass M reaches 1.881016 suns, might also not 

trigger the LIGO detector. As stated in Sec. 19.2.4, as far as the LIGO detector and 

its surrounding spacetime are concerned, like the situations of the moon and the sun, 

the gravitational field of Proxima Centauri is a relatively static gravitational field, 

which is difficult to make the two laser beams in the arm-X and arm-Y of the LIGO 

laser interferometer form enough optical-path difference to produce the interference 

effects or interference fringes. 

The first gravitational-wave signal detected by LIGO: GW150914, was 

imagined by LIGO as a gravitational wave erupted from a binary-blackhole system 

during merging or coalescing: the binary-blackhole system has the total mass of 

about 67 suns and the distance of about 1.3 billion light-years away from the earth. 

How many suns do such a distant celestial body need to accumulate together to 

generate the tidal effects equivalent to the sun on the earth’s sea or LIGO detector? 

Even if considering the merging and coalescing of the two black holes, no one could 

imagine how LIGO detector could detect a gravitational wave from so far away. 

What makes us curious is that, since GW150914 could trigger LIGO detector, 

why GW150914 could not trigger the earth’s sea and set up huge tides? 

19.4.3 LIGO’s Gravitational Waves 

and the Coalescing of Black Holes 

During the three phases of detection activities, including O1, O2 and O3a+b, 

LIGO detected the total of 91 gravitational-radiation signals, each had matched the 

coalescing model of a binary-star system, of which the vast majority were 

binary-blackhole systems: 84 cases consisting of two black holes, 5 cases of one 

black hole and one neutron star, and 2 cases of two neutron stars. 

Actually, as stated in Sec. 19.2.4, LIGO took binary-blackhole systems as the 

detection target of gravitational waves from the very beginning, and looked forward 

to their merging or coalescing. However, whether neutron stars or black holes, 

whether binary neutron-star systems or binary-blackhole systems, whether merging 

or coalescing, all stay in the hypothetical mathematical models, and all stay in 

computer simulation and virtual reality. 

Do the universe really have binary-blackhole celestial bodies? Do black holes 

really merge or coalesce so frequently and so regularly? Does the universe need the 

coalescing of black holes or does LIGO need the coalescing of black holes? 

LIGO’s Need for the Coalescing of Black Holes 

In 1967, a radio telescope detected a periodic electromagnetic-pulse signal 
[172-174]. Thus, it was speculated that there were pulsars in the universe. Furthermore, 
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it was believed that pulsars were neutron stars (a sort of fictional celestial bodies that 

had almost been abandoned by astronomers). The envisaged neutron stars have huge 

mass, however, as stated in Sec. 19.4.1, they are not massive enough to produce 

high-energy gravitational waves for LIGO’s need. 

In 1974, a radio telescope detected an electromagnetic-pulse signal, whose pulse 

period presented periodic variation [175,176]. Thus, it was speculated that there were 

binary-pulsar systems in the universe. Furthermore, it was believed that [177-179], the 

semi-major axis and orbital period of a binary pulsar would gradually shorten, the 

pulsar and its companion star would eventually merge or coalesce. The merging or 

coalescing of a binary-pulsar system must violently explode and fiercely erupt 

high-energy gravitational waves. However, the mass of a neutron star is limited. 

Even if a binary-pulsar system really merges or coalesces, the gravitational-wave 

energy erupted by it might still not meet LIGO’s need. 

So, physicists came up with the concept of black holes and conceived of 

binary-blackhole systems: what if a binary-blackhole system merges or coalesces 
[183,184]? The mass of a black hole could be freely imagined, and in this way, the 

merging or coalescing of a binary-blackhole systems could erupt the gravitational 

waves with arbitrarily high energy. 

From neutron stars to pulsars, from pulsars to binary-pulsar systems, from 

binary-pulsar systems to binary-blackhole systems, and then to the merging or 

coalescing of binary-blackhole systems, it seems that LIGO’s everything is based on 

conjecture and illusion. So far, except for computer simulation or virtual reality, 

there is no sufficient empirical basis supporting for the merging or coalescing of 

binary-blackhole celestial bodies. 

As a matter of fact, those chirping sounds heard by LIGO detector do not really 

come from the merging or coalescing events of binary-blackhole systems. 

LIGO’s Ring Toss Game 

As stated in Sec. 19.2.5: the universe still has too many unknowns for human 

beings; each gravitational radiation signal detected by LIGO detector implies infinite 

possibilities. However, from the very beginning, LIGO aimed its detection target at 

binary-blackhole systems. 

LIGO’s identification of the gravitational-radiation signals heard by the LIGO 

detector is somewhat like one of the street games: Ring Toss Game. 

Through the computer simulation of virtual reality, a chirp could always match 

one of the mathematical models of binary-stars systems in LIGO’s computer 

database, just as the ring falls over a doll. As shown in Tab. 19.1, the first 

gravitational-radiation signal detected by LIGO: GW150914, matched the merging 

or coalescing event of a binary-blackhole model: the primary star has the mass of 

36.2 suns and the secondary star has the mass of 29.1 suns, the merged black hole 

has the mass of 62.3 suns, 13−5.5
+6.0 billion light-years away from the earth, erupting 

about the matter or energy of about 3.0 suns. If GW150914 was located in a sky 

region 2 billion light-years away from the earth (instead of 1.3 billion light-years), 

then LIGO would only need to make slight adjustments to the masses of the primary 

and secondary black holes in the binary-blackhole model, so that GW150914 could 
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still match one binary-blackhole model, in other words, GW150914 could still fall 

over a doll. The probability of a gravitational-radiation signal detected by the LIGO 

detector matching with one of the binary-blackhole coalescing models is much 

higher than the probability of the ring falling over a doll in playing ring toss. 

Of the 91 cases of the gravitational-radiation signals detected during LIGO’s 

three phases of detection activities, including O1, O2 and O3a+b, only two cases 

matched the binary neutron-star coalescing models: GW170817 and GW190425. 

Compared with binary-blackhole models, both GW170817 and GW190425 are 

closer to the earth: GW170817 is only 130 million light-years away from the earth 

and GW190425 is only 520 million light-years away from the earth. Perhaps, just 

because they are closer to the earth, the matching mass could not be too large to 

reach the magnitude of black holes. Whether a gravitational-radiation signal detected 

by LIGO detector matches a binary-blackhole model or a binary neutron-star model 

depends on their distance from the earth, or vice versa. 

It is worth noting that: LIGO’s binary-blackhole systems could not be too close 

to the earth – if they are too close to the earth, LIGO’s binary-star systems would 

have to be binary neutron-star systems; moreover, the farther away from the earth, 

the blacker LIGO’s binary-blackhole systems, and the greater the total mass. 

LIGO’s binary-blackhole systems depend on the distances between the 

binary-blackhole systems and the earth. 

What exactly does such a phenomenon in LIGO’s detection data mean? 

The Misconception of LIGO’s Binary-Blackhole Models 

Take the GW150914 in Fig. 19.3 and Tab. 19.1 as an example: on the one hand, 

based on the computer simulation of binary-blackhole systems, LIGO claimed that 

the GW150914 detected by LIGO detector was a gravitational wave predicted by 

Einstein, which verified the existence of gravitational waves; on the other hand, 

based on the gravitational-radiation signal GW150914, LIGO claimed that the 

GW150914 detected by LIGO detector came from a binary-blackhole system during 

its merging or coalescing, which verified the existence of binary-blackhole celestial 

bodies and the merging or coalescing of binary-blackhole systems. 

Such a circular reasoning is logically questionable. 

According to LIGO’s computer simulation, the GW150914’s binary-blackhole 

system has lost the mass of about 3.0 suns after merging or coalescing; according to 

Einstein formula E=mc2, the lost mass has been transformed into the energy erupted 

or radiated outward in the form of gravitational radiation or gravitational waves as 

the two black holes merged or coalesced. 

However, there are many doubts in the interpretation of LIGO 

Firstly, LIGO’s binary-blackhole models are the product of numerical relativity, 

which is based on Einstein’s relativity theory, including the special and the general. 

However, LIGO has not realized that Einstein’s theory was only a partial theory, 

belonging to optical observation, being true or valid only under the optical agent 

OA(c). The theory of OR has already clarified that the physical quantities of 
Einstein’s relativity theory are all that of optical observation, containing the 

observational effects of OA(c). We are not sure whether LIGO limits its theoretical 
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model based on Einstein’s relativity theory to the optical observation conditions. 

And, we are not sure what makes LIGO conclude that, during merging or coalescing, 

the GW150914’s binary-blackhole system has transformed the mass of about 3 suns 

into gravitational radiation or gravitational waves. 

Secondly, LIGO mistakenly employed Einsteins formula E=mc2 to calculate the 

energy of the gravitational waves that were erupted by binary-blackhole systems 

during merging and coalescing. The theory of OR has already clarified [26,27] that: 

Einstein formula E=mc2 is only a special case of the OR mass-energy relation 

E=m2, which holds true only if the observation agent OA() is the optical agent 

OA(c); E=mc2 only represents the observational kinetic energy of the observed 

object m moving at the speed of light under OA(c), and does not mean that the mass 

of the observed object m could be transformed into energy, just as the energy of 

nuclear explosion is the release of energy confined within the nucleus, rather than 

the transformation of mass. Therefore, it is theoretically wrong that LIGO calculates 

the energy of gravitational waves erupted by binary-blackhole systems during 

merging and coalescing based on Einstein formula E=mc2. 

At the same time, LIGO mistakenly employed Planck equation E=hf to calculate 

the energy of gravitational waves. As far as the frequency f is concerned: the 

frequency detected by the LIGO detector is not the frequency of gravitational waves, 

but the frequency of relative perturbation of the speeds of laser in the arm-X and the 

arm-Y beams, and depends on the laser frequency. As far as the Planck constant h is 

concerned, the theory of OR has already clarified [26,27] that h is the Planck constant 

of the optical agent OA(c). According to the general Planck equation (6.16), 

different observation agents OA() have different Planck constant h (Eq. (6.29)). 

The quantum theory based on Planck equation E=hf, like Einstein’s relativity theory, 

is the theory of optical observation, which is true or valid only if the observation 

agent OA() is the optical agent OA(c). Therefore, it is theoretically wrong that 

LIGO calculates the energy of gravitational waves erupted by binary-blackhole 

systems during merging and coalescing based on Planck equation E=hf. 

In particular, the merging or coalescing of two black holes must violently 

explode and fiercely erupt matter and energy outwards. According to the theory of 

OR, all the erupted energy must be carried by the erupted matter, but not be 

transformed from the erupted matter. As stated in Sec. 19.2.6, if a binary-blackhole 

system merges or coalesces, then it will not only erupt gravitational radiation or 

gravitational waves, but also erupt electromagnetic matter or even any other form of 

matter outwards. For example, just 0.4s after LIGO had detected the first 

gravitational-radiation signal GW150914, Fermi GBM detected a gamma-ray burst 

from the same sky region [201,202]. If GW150914 really came from the merging or 

coalescing event of a binary-blackhole system, then this gamma-ray burst could be 

regarded as the electromagnetic matter erupted from the binary-blackhole system. 

Actually, even if there are really binary-blackhole systems in the universe, even if 

binary-blackhole systems really merge or coalesce, the erupted energy of 

gravitational waves may only account for a small part of all the erupted energy, 

which cannot trigger the LIGO detector. 

It is thus clear that LIGO’s gravitational-wave dynamic models for computer 
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simulation or virtual reality is theoretically wrong. LIGO’s so-called gravitational 

waves from binary-blackhole celestial bodies lack both sufficient empirical basis 

and sufficient theoretical basis. 

19.4.4 The Problem of LIGO’s Gravitational-Wave Speed 

As stated earlier, the existence of gravity and gravitational waves need not be 

proved and verified. Actually, the sea has already proved and verified it to us 

In a sense, as far as Einstein’s prediction of gravitational waves is concerned, 

the important matter is not whether gravitational waves really exist, but whether the 

speed  of gravitational radiation is really the speed c of light. 

The theory of GOR has proven that the so-called gravitational waves predicted 

by Einstein is not the gravity or gravitational waves radiated by matter systems, but 

the information wave of the optical agent OA(c), that is, light wave, which transmits 

the information of observed objects for observers. The information wave of the 

optical agent OA(c) is light, and the speed of it is naturally the speed of light. 

However, that is not the speed of gravitational radiation or gravitational waves. 

So, what about the speed of the gravitational radiation or gravitational waves? 

There is no doubt that, according to the principle of physical observability or the 

principle of locality, gravity or gravitational interaction must not be action at a 

distance. Therefore, the speed of gravitational radiation must be finite or limited: it 

takes time for gravitational waves to cross space. 

However, the speed of gravitational radiation or gravitational waves may not 

necessarily the speed of light. 

Actually, observations and experiments seem more inclined to support the views 

and conclusions of Laplace [43] and Flandern [127] as well as others [203,204]: the speed 

of gravity or gravitational radiation is far greater than the speed of light – if the 

speed of gravitational waves were the speed of light, then the universe would lose 

the existing stable structure [127]. This kind of view has not been accepted by the 

mainstream school of physics only because it is contrary to Einstein’s theory of 

general relativity and Einstein’s prediction of gravitational waves. 

An obvious fact is that: the reason why black holes are black is because light or 

photons is/are not fast enough to escape from black holes; while, black holes could 

not bind gravitational waves and gravitons, otherwise, black holes would lose their 

gravitational interaction with the external matter systems, and the binary-blackhole 

systems envisioned by LIGO would not exist: two black holes could not attract and 

orbit each other, and naturally, there would be no merging or coalescing event of 

binary-blackhole systems occurring in the universe. 

It is thus clear that the speed  of gravitational radiation, including gravitational 

waves and gravitons, may be greater than or far greater than the speed c of light as 

predicted by Laplace [43] and Flanderen [127]. 

LIGO claims that it has detected gravitational waves. Moreover, as stated in Sec. 

19.2.6, based on the trilateration method and the joint observation data of 

multi-messenger astronomy, LIGO claims that it has proved the speed of 

gravitational waves is exactly the speed of light [199]. Actually, LIGO has not really 
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measured or determined the speed  of gravitational waves. Even by taking 

advantage of multiple base stations and multiple messengers, LIGO still could not 

accurately locate the source of gravitational waves, and hence, could not determine 

the speed of gravitational waves by means of the trilateration method. The LIGO 

Livingston and the LIGO Hanford are 3002 kilometers away, about 10ms optical 

path. It took the gravitational-radiation signal GW150914 about 7ms to sweep past 

the LIGO’s two base stations. In this regard, LIGO could only draw a very vague 

conclusion: the speed of GW150914 conforms to Einstein’s prediction of 

gravitational waves: gravitational waves propagate at the speed of light. 

GW170817 is the first case of LIGO’s gravitational-radiation signal that was 

matched with a binary neutron-star model. It is accompanied before and after it by 

numerous clumps of electromagnetic matter, i.e., the so-called electromagnetic 

counterparts, including the gamma-ray burst GRB170817A., LIGO believed that 

GW170817 and GRB170817A departed from the same binary neutron-stars system 

at the same time and almost simultaneously reached the earth, with a difference of 

only about 1.7s. Finally, on this basis, LIGO indirectly demonstrated that the speed 

 of gravitational waves was equal to the speed c of light (Eq. (19.8)) [199]. 

So, is the speed  of gravitational waves is really the speed c of light? 

The problem is that: Do the gravitational-radiation signal GW170817 and the 

gamma-ray burst GRB170817A really originated from the merging or coalescing 

event of the same binary neutron-star system? 

There is no doubt that: the gamma-ray burst GRB170817A came from a certain 

celestial body, perhaps, it is exactly the binary neutron-star system matched by 

LIGO’s computer simulation of virtual reality: 85 million light-years away from the 

earth, with the total mass of three suns; moreover, merged or coalesced 85 million 

years ago, radiated or erupted GRB170817A which came to the earth after traveling 

85 million years at the speed of light. 

However, the LIGO’s gravitational-radiation signal GW170817 was not 

originated from the binary neutron-star system of GRB170817A, even nor from any 

binary-star systems, including binary-blackhole systems. 

As a matter of fact: LIGO is not sure whether there are really binary-star 

systems in the universe; even if there are, LIGO is not sure whether they will merge 

or coalesce; even if they will, LIGO is not sure how much energy they will radiate 

or erupt; even if LIGO theoretically can calculate the erupted energy, LIGO is not 

sure how much of the erupted energy will belong to gravitational radiation or 

gravitational waves. Actually, regardless of whether there are binary-blackhole 

systems in the universe, regardless of whether binary-blackhole systems will merge 

or coalesce, all the gravitational-radiation signals detected by LIGO detector are not 

directly related to binary-star systems, including binary neutron stars and binary 

black holes. What LIGO actually heard were not the chirp sounds originated from 

the merging or coalescing of binary-star systems, but the chirps of the so-called 

electromagnetic counterparts near by the LIGO detector, such as GRB170817A. 

Actually, both the gravitational-radiation signal GW170817 and the gamma-ray 

burst GRB170817A are the clumps of electromagnetic matter that swept past the 

earth. In particular, the GW170817 (as an clumps of electromagnetic matter) 
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invaded the spacetime around the LIGO detector at close quarters, and therefore, the 

gravitational field of GW170817 own triggered the LIGO detector. 

Thus, LIGO mistakenly takes the speed of GW170817 being electromagnetic 

radiation, i.e., the speed c of light, as the speed  of gravitational radiation. 

Ironically, it is just the LIGO’s mistake [199] that will reveal the essence of 

LIGO’s gravitational waves. 

19.4.5 What Exactly did LIGO Detected? 

LIGO claims that it has detected gravitational waves, and verified Einstein’s 

prediction of gravitational waves: gravitational waves not only exist objectively, but 

also, just as predicted by Einstein, the speed  of gravitational waves is exactly the 

speed c of light. For this, LIGO members, Weiss, Barish and Thorne, won the Nobel 

Prize in Physics in 2017. 

However, the theory of GOR has proven that Einstein’s prediction of 

gravitational waves is a mistake: the wave in Einstein’s wave equation (19.7) is not 

the gravitational wave radiated by a certain gravitational source, but the information 

wave of the optical agent OA(c). As a matter of fact, whatever LIGO has detected, it 

does not mean that Einstein correctly made the prediction about gravitational waves 

and the speed of gravitational waves. 

So, has LIGO really detected gravitational radiation or gravitational waves? Is 

the speed of gravitational radiation or gravitational waves really the speed of light? 

The Trigger Conditions of LIGO Detector 

According to Newton’s law of universal gravitation, all things attract each other. 

In this sense, the LIGO system for detecting gravitational waves is a detector for 

detecting all things or all matter systems with both mass and energy: a matter system 

must carry the gravitational field of its own, radiate gravity or gravitational waves, 

and as stated in Sec. 19.2.4, trigger the LIGO detector under certain conditions. 

Electromagnetic matter must carry the electromagnetic field of its own and 

radiate electromagnetic force and electromagnetic waves, and therefore, radio 

telescopes can sense electromagnetic radiation or electromagnetic waves. So, a radio 

telescope may be called the detector of electromagnetic matter. Any matter 

system has its own mass, carry gravitational fields, radiate gravity and gravitational 

waves, and therefore, LIGO detector can sense gravitational radiation or 

gravitational waves. So, the LIGO system for detecting gravitational waves may be 

called the detector of everything for detecting all matter systems in the universe. 

As long as there is a matter system invading or sweeping past the spacetime 

around the LIGO detector, the gravitational field carried by it might trigger the 

LIGO detector. However, two conditions must be met for the gravitational field of 

the matter system to trigger the LIGO detector: 

(i) The matter system has the enough strength g=GM/d2 of gravitational field 

or the enough tidal-generating force FT=2mGMRE/d3 (Eq. (19.19)): (a) the 

mass M of it is large enough; (b) the distance d of it is small enough, that is, 

the matter system is close enough to the LIGO detector. 
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(ii) Relative to the LIGO detector’s two laser arms of X and Y, the gravitational 

field of the matter system is asymmetric. 

LIGO did detect gravitational waves. 

Gravitational waves are the waves of gravitational radiation. In this sense, LIGO 

did detect gravitational waves. 

Based on the basic principle of LIGO detector interpreted by the theory of GOR, 

the gravitational-radiation signals that triggers the LIGO detector, from the first 

GW150914 to the 91th GW200322, do mean that there were numerous matter 

systems with the gravitational fields of their own invading and sweeping past the 

spacetime around the LIGO detector, leading to the perturbation of the speed of laser 

in the Fabry-Pérot cavity. The two beams of laser in the arm-X and the arm-Y 

presented the optical-path difference. Thus, the LIGO laser interferometer produced 

interference effects and formed interference fringes, triggering the LIGO detector. 

It could be affirmed that LIGO has indeed discovered or detected the invasion of 

numerous matter systems carrying the gravitational fields of their own. In other 

words, indeed, the gravity or gravitational waves radiated by those matter systems 

ever triggered the LIGO detector. 

However, this does not seem to imply that the gravitational-radiation signals 

triggering the LIGO detector were originated from the merging or coalescing event 

of binary-star or binary-blackhole systems. 

LIGO’s gravitational waves 

did not come from binary-star coalescing. 

It could be affirmed that the gravitational-radiation signals or gravitational-wave 

signals detected by LIGO did not come from distant binary-star systems, neither 

from binary neutron-star systems nor from binary-blackhole systems; moreover, the 

speed of gravitational radiation or gravitational waves is not the speed of light. 

According to Sec. 19.4.1 and Sec. 19.4.2, binary-star or binary-blackhole 

celestial bodies, even if they exist and coalesce, could barely meet the triggering 

conditions of the LIGO detector. 

First of all, as stated in Sec. 19.4.1, although the huge mass of a black hole could 

be freely imagined by LIGO, it is too far away from the earth: the strength of its 

gravitational field decays with distance according to the law of inverse square; its 

tidal-generating force decays with distance according the law of inverse cubic. Thus, 

when it sweeps past the earth, its gravitational radiation or gravitational wave would 

be no longer strong enough to trigger the LIGO detector. 

Secondly, as stated in Sec. 19.4.2, we know that: (i) According to the theory of 

GOR, the energy erupted by a binary-star coalescing even must be carried by the 

matter erupted by the binary-star coalescing even, rather than be transformed from 

matter or mass − the total energy erupted is far less than that of the theoretical 

calculation made by LIGO’s computer simulation of virtual reality, and moreover, 

the energy of gravitational radiation or gravitational wave only accounts for a small 
part of it; (ii) The gravitational radiation erupted by the binary-star coalescing even 

is approximate to a spherical wave, and the energy density of it must also decay with 
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distance according to the law of inverse square, and while sweeping past the earth, 

its spherical wave is approximately uniform and symmetrical and equipotential with 

respect to the laser arms X and Y of LIGO detector. 

So, it is difficult even for binary-blackhole coalescing to trigger LIGO detector. 

Why did LIGO’s gravitational waves 

seemingly move at the speed of light? 

LIGO claims that the gravitational waves detected by it propagate at the exactly 

the speed of light just as Einstein’s prediction. 

At first, based on the trilateration method depicted in Fig. 19.2(b), LIGO dimly 

reached the conclusion that the speed of gravitational waves seemed to be the speed 

of light: for example, sweeping past the LIGO Livingston and the LIGO Hanford, 

GW150914 took 7ms, GW170814 took 6ms, and GW170817 took 3ms; the distance 

between Livingston and Hanford is 3002km, with the optical path of about 10ms. 

Later, according to that the GW170817 and the GRB170817A arrived at the earth 

almost simultaneously [199], with Eq. (19.8), LIGO reached the conclusion that the 

speed of gravitational waves was exactly the speed of light. 

So, why did the gravitational waves detected by LIGO seemingly move at the 

speed of light? Alternatively, what does it mean that the speed of LIGO’s 

gravitational waves is exactly the speed of light? 

As a matter of fact, neither the speed measured based on LIGO’s trilateration 

method nor the speed measured based on LIGO’s electromagnetic counterparts is 

the speed of gravitational radiation or gravitational waves. 

The gravitational-radiation or gravitational-wave signals detected and recorded 

by LIGO detector only suggest that: 

(i) Some matter systems carrying gravitational fields invaded and disturbed the 

spacetime around LIGO detector at close quarters. 

(ii) It is not that the gravitational waves detected by LIGO propagated at the 

speed of light, but that the matter systems as the sources of gravitational 

fields moved at the speed of light. 

It could be imagined that, as depicted in Fig. 19.4, for the gravitational-radiation 

or gravitational-wave signals recorded by LIGO detector, from the GW150914 to 

the GW200322, the hosts or gravitational sources of them are actually not 

binary-star systems and binary-blackhole systems, but some certain clumps of 

electromagnetic matter sweeping at the speed of light past the LIGO detector. 

Why were LIGO’s gravitational waves 

accompanied by electromagnetic matter? 

As depicted in Fig. 19.4(a), in LIGO’s joint activity of detecting gravitational 

waves, whenever LIGO detected a gravitational-radiation or gravitational-wave 

signal, it was always found that there were some clumps of electromagnetic matter 

before and after it, including gamma-ray bursts, X-rays, and the electromagnetic 

matter in other frequency bands, which are known as the so-called electromagnetic 

counterparts, i.e., the electromagnetic matter corresponding to or accompanying 

LIGO’s gravitational waves. 
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The events of electromagnetic matter sweeping past the earth are extremely 

common; but, the events of binary-star or binary-blackhole coalescing are 

previously unknown, and no way to verify them. 

As a matter of fact, it is not that LIGO’s gravitational-radiation signals were 

accompanied by electromagnetic counterparts, but that some clumps of 

electromagnetic matter, as matter systems carrying their own gravitational fields and 

radiating gravity or gravitational waves, swept past the spacetime around the LIGO 

detector at close quarters to trigger the LIGO detector. 

According to the theory of OR, all matter or matter systems, including 

electromagnetic matter, have their own mass and carry their own gravitational fields, 

radiating gravity and gravitational waves. 

Naturally, the gravitational field of a matter system must move together with the 

matter system of it. 

Taking the earth as an example, it moves in the orbit around the sun at a speed 

of 3104 ms−1, and naturally, the gravitational field of the earth moves together with 

the earth at the speed of 3104 ms−1. However, this does not mean that the speed of 

gravitational radiation or gravitational waves is 3104 ms−1. 

Electromagnetic matter moves at the speed of light. Naturally, the gravitational 

field of electromagnetic matter moves together with electromagnetic matter at the 

speed of light. However, this does not mean that the speed of gravitational radiation 

or gravitational waves is the speed of light. 

Electromagnetic matter, or electromagnetic counterparts of LIGO’s gravitational 

waves, as depicted in Fig. 19.4(a), are composed of electromagnetic particles 

(photons) and move at the speed of light, which may be called Electromagnetic 

Particle Clump (EPC). The theory of OR has already clarified that photons have 

their own rest mass, which is the intrinsic mass of photons, i.e., the objective and 

real mass. Therefore, as a matter system, an EPC must carry the gravitational field 

of its own, radiate gravity or gravitational waves. In particular, the gravitational field 

of an EPC must move together with the EPC at the speed of light. 

As depicted in Fig. 19.4(b), the conclusion of the trilateral measurement shows 

that the speed of LIGO’s gravitational waves sweeping past the LIGO’s two base 

stations seems to be consistent with the speed of light. However, it is worth noting 

that, as we stressed repeatedly, this does not mean that the speed of gravitational 

waves is the speed of light, but only means that, for the gravitational-radiation or 

gravitational-wave signals detected by LIGO detector, their hosts or their 

gravitational sources move at the speed of light. 

So, who are the hosts of LIGO’s gravitational-radiation signals? 

At this point, the author believes that you must have your own answer. 

The Hosts of LIGO’s Gravitational Waves: EPCs 

Everything points to electromagnetic matter, or to Electromagnetic-Particle 

Clumps (EPCs), which moves at the speed of light. 

Indeed, the LIGO detector has recorded numerous gravitational-radiation signals, 

which may be referred to as Gravitational Waves: the waves of gravitational 
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radiation. However, the gravitational-radiation or gravitational-wave signals 

detected by LIGO detector were not originated from the merging or coalescing 

events of binary stars or binary black holes. 

For the gravitational-radiation or gravitational-wave signals recorded by LIGO 

detector are concerned, the hosts or gravitational sources of them are EPCs. It is 

naturally that the LIGO’s gravitational-radiation or gravitational-wave signals were 

accompanied by electromagnetic counterparts or EPCs. Actually, it is not that the 

LIGO’s gravitational-radiation or gravitational-wave signals were accompanied by 

electromagnetic counterparts or EPCs, but that the LIGO’s gravitational-radiation or 

gravitational-wave signals were emitted by electromagnetic counterparts or EPCs at 

extremely close quarters. 

 

Figure 19.4 Why were LIGO’s Gravitational Waves Always Accompanied by EPCs? (a) 

LIGO’s Gravitational Waves were Accompanied by Electromagnetic Matter: Whenever LIGO 

detected a gravitational-radiation signal, it would always be found that there were some 

electromagnetic-particle clumps (EPCs) before and after it, which are known as electromagnetic 

counterparts, such as gamma-ray bursts and X-rays; naturally, EPCs move at the speed of light. 

(b) The Gravitational Fields of EPCs Sweeping at the Speed of Light past the LIGO Livingston 

and the LIGO Hanford: As matter systems, EPCs have the gravitational fields of their own 

moving together with EPCs; it is not that LIGO’s gravitational-radiation signals or gravitational 

waves moved at the speed of light, but that EPCs moved at the speed of light. (c) The 

Gravitational Fields of EPCs Sweeping over the LIGO Detector: If an EPC swept the LIGO 

detector at close quarters and its gravitational field asymmetrically invaded and disturbed the 

spacetime around the laser arms X and Y of LIGO detector, the EPC might trigger the LIGO 

detector; what LIGO detected were not the gravitational wave originated from the distant black 

hole in deep space, but the gravitational radiation of the EPC in a short distance. 

As depicted in Fig. 19.4(c), although the mass of an EPC is far less than the 
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mass of a black hole, it could sweep past LIGO Gravitational-Wave Observatory at 

extremely close quarters. As an EPC sweeps very closely past the LIGO detector, it 

may meet the triggering conditions of LIGO detector and the gravitational field of it 

may trigger the LIGO detector. 

So, according to the theory of GOR, we may reasonably make the following 

basic judgments: 

LIGO’s Detection or Discovery: There is no doubt that LIGO has detected 

gravitational-radiation signals and discovered gravitational waves, but LIGO has not 

determined the speed of gravitational waves. the gravitational waves detected by 

LIGO were not originated from the coalescing events of binary-blackhole celestial 

bodies but from EPCs sweeping past the LIGO detector at close quarters. The speed 

of gravitation waves is not the speed of light. 

Now, we can explain that: 

(i) Why were the gravitational waves detected by LIGO always accompanied 

by electromagnetic counterparts or EPCs? 

(ii) Why did the gravitational waves detected by LIGO seemingly move at the 

speed of light? 

The hosts or sources of LIGO’s gravitational waves are not binary-star systems 

or binary-blackhole systems, but EPCs. For LIGO’s gravitational-radiation signals, 

the so-called electromagnetic counterparts of them or EPCs are actually the hosts or 

gravitational sources of LIGO’s gravitational waves. 
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20 The Unity of Newton and Einstein in GOR 

One physical world, one logical system. 

As stated in Chapter 8 The Unity of Newton and Einstein in IOR of the 1st 

volume of OR: Inertially Observational Relativity (IOR): “Both Newton’s 

classical mechanics and Einstein’s relativity theory are only the partial theories of 

physics in Hawking’s words [31], and as a matter of fact, both are the partial theories 

of OR theory. The unity of the partial theories of physics is not the mechanical or 

formal reproduction or repetition of old theories, but the progress and even leap in 

human being’s cognition of the objective world, which is a major step in tracing the 

logical origin of the theoretical systems of physics.” 

It is undoubtedly of far-reaching significance to unify Newton’s theory of 

universal gravitation and Einstein’s theory of general relativity, the two great 

gravitational theories of physics, into the same theoretical system under the same 

axiom system. 

The theory of GOR, like the theory of IOR, is based on the most basic axiom 

system and starts from the most basic logical premises. Therefore, it has the high 

degree of generality and universality. The theory of GOR has generalized and 

unified Newton’s theory of universal gravitation and Einstein’s theory of general 

relativity, providing new insight into the theoretical system of universal gravitation 

or gravitational interaction. 

Tab. 20.1 is a list for the analogy of the theory of GOR and Einstein’s theory of 

general relativity as well as Newton’s theory of universal gravitation, demonstrating 

the unification of Newton and Einstein in the theory of GOR. 

Now, the theory of Gravitationally Observational Relativity (GOR), or the 

theory of GOR for short, has been established on the basis of the OR axiom system. 

Newton’s theory of universal gravitation and Einstein’s theory of general relativity 

have been generalized and unified into the 2nd volume of OR: Gravitationally 

Observational Relativity (GOR). 

Perhaps, as Hawking said [31]: “Then we should know the mind of God.” 

20.1 The unity of 

the Coordinate Systems of Gravitational Spacetime 

The theory of GOR is the theoretical system of general observation agency 

OA(). Newton’s theory of universal gravitation is the theory of the idealized 

observation agent OA; Einstein’s theory of general relativity is the theory of the 

optical observation agent OA(c). As the GOR basic formulae shown in Tab. 20.1, if 

OA() is the optical agent OA(c), then the theory of GOR would strictly converge to 

Einstein’s theory of general relativity, while if OA() is the idealized agent OA, 

then the theory of GOR would strictly converge to Newton’s theory of universal 
gravitation. 

Tab. 20.1 takes the basic formulae of GOR theory as examples to demonstrate 
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the generality and unity of GOR theory. 

According to the theory of GOR, for a theoretical system in physics, the 

spacetime, no matter the inertial or the gravitational, is the observational spacetime 

of a specific observation agent OA(), which is different from the objectively real 

spacetime. Under the principle of general correspondence (GC), following the logic 

of Einstein’s theory of general relativity, the 2nd volume of OR: Gravitationally 

Observational Relativity (GOR) extends the coordinate framework of Minkowski 

4d spacetime from inertial spacetime to gravitational spacetime and from the optical 

observation agent OA(c) to the general observation agent OA() 

This section analyzes the generality and unity of the GOR observation agent 

OA() and the coordinate framework of GOR spacetime X4d(). 

20.1.1 Cartesian Spacetime vs Minkowski Spacetime 

Cartesian Coordinate System 

Cartesian spacetime, as the observational spacetime X4d
 of the idealized 

observation agent OA, can describe not only the inertial spacetime of classical 

mechanics, but also the gravitational spacetime of classical mechanics. 

As stated in Sec. 8.1.1 of Chapter 8, the Cartesian coordinate system, or the 

coordinate framework of Cartesian spacetime, reflects the absolutist view of 

space and time held by Galileo and Newton: space and time are independent of each 

other; space is just space and time is just time. As stated in Sec. 1.4.3 The Idealized 

Observation Agent of Chapter 1, the Cartesian coordinate system represents the 

idealized observation system, i.e., the idealized observation agent OA, in which the 

information-wave speed is infinite: it takes no time for the information of observed 

objects to cross space. 

No matter inertial spacetime or gravitational spacetime, as shown in Eq. (1.4), 

the coordinate framework of Cartesian spacetime can be formalized as: 
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where OA is the idealized observation agent, X4d
 is the idealized spacetime of 

OA; dt is the idealized time-element, d is the objectively real time-element 

(proper time), i.e., the mathematical time in Newton’s words; dl is the 

line-element of Cartesian 3d space (x,y,z), the time axis x0 has no physical 

significance as →. 

It is worth noting that, as the information-wave speed  of OA: →, the time 

axis x0 splits with the space axes (x1,x2,x2). Therefore, time and space are 

independent of each other in the coordinate framework of Cartesian spacetime. 

The Coordinate Framework of Minkowski Spacetime 

Minkowski spacetime is a coordinate framework (Eq. (1.1) in Chapter 1) of 4d 

spacetime made by Minkowski [50,51] specially for Einstein’s theory of special 
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relativity. As clarified by the theory of OR, Minkowski spacetime represents the 

optical observation system, i.e., the optical observation agent OA(c), in which the 

observation medium is light, and the speed of transmitting observed information is 

the speed of light in vacuum, and is limited (c<). Therefore, the optical observation 

agent OA(c) has the observational locality, and it takes time for the information of 

observed objects to cross space. 

At the beginning, Einstein did not realize the value and significance of 

Minkowski spacetime. However, when he set about studying the theory of general 

relativity, Einstein found that his general relativity seemed to have to be built on the 

coordinate framework of 4d spacetime created by Minkowski. 

So, Einstein expanded Minkowski spacetime (Eq. (10.1) in Chapter 10) from the 

inertial spacetime of special relativity to the gravitational spacetime of general 

relativity, which can be formalized as the GOR gravitational spacetime: 
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where OA(c) is the optical observation agent, X4d(c) is the optical observational 

spacetime of OA(c); dt is the optical observational time-element, ds is the 

line-element of Minkowski 4d spacetime (x0,x1,x2,x3), the space coordinates 

(x1,x2,x3) may be the Cartesian coordinates (x,y,z). 

20.1.2 GOR Gravitational Spacetime 

The theory of OR has already clarified [26-30]: all the theories of physics depend 

on observation and are restricted by observation; in theory, all the forms of matter 

motion can be employed as observation media to transmit the information of 

observed objects to observers. 

The 2nd volume of OR: Gravitationally Observational Relativity (GOR) 

extended the concept of the general observation agent OA() from inertial spacetime 

(Def. 1.1 in Chapter 1) to gravitational spacetime (Def. 10.1 in Chapter 10). In this 

way, the theory of GOR builds the coordinate framework of 4d gravitational 

spacetime (Eq. (10.2) in Chapter 10) for the gravitational spacetime X4d() the 

general observation agent OA(), that is, the GOR gravitational spacetime: 
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where OA() is the general observation agent, X4d() is the observational spacetime 

of OA(); dt is the observational time-element of OA(), ds is the line-element of 

4d observational spacetime X4d()=(x0,x1,x2,x3), the space coordinates (x1,x2,x3) 

may be Cartesian coordinates (x,y,z). 

Thus, the general observation agent OA() becomes the formalized coordinate 

framework of 4d spacetime in the theory of GOR. 

It should be pointed out that no matter Def. 10.1 of the general observation agent 
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OA() or Eq. (10.2) is not the logical premise presupposed by the theory of OR, but 

the logical consequence derived by the theory of GOR following and analogizing 

Minkowski’s logic [50,51] and Einstein’s logic [8] 

20.1.3 The Unity of Descartes and Minkowski 

The Cartesian coordinate system is the coordinate framework of 3d space that 

can be employed to serve Newton’s classical mechanics (including Newton’s theory 

of universal gravitation); while the extended Minkowski spacetime (Eq. (10.1) in 

Chapter 10) is the coordinate framework of 4d spacetime that can be employed to 

serve Einstein’s relativity theory (including the special and the general). 

Actually, like in inertial spacetime, in gravitational spacetime, no matter 

Cartesian spacetime or Minkowski spacetime is just a special case of the coordinate 

framework of 4d spacetime of the general observation agent OA(): Cartesian 

spacetime is the so-called idealized observation agent OA (→); Minkowski 

spacetime is the so-called optical observation agent OA(c) (→c). 

As shown in Tab. 20.1, in gravitational spacetime, the general observation agent 

OA() of GOR theory has generalized and unified the idealized observation agent 

OA and the optical observation agent OA(c); in other words, the coordinate 

framework of 4d spacetime of GOR theory has generalized and unified the Cartesian 

coordinate system and the coordinate framework of Minkowski 4d spacetime. 

Naturally, if →c, then GOR agent OA() would strictly converge to the optical 

agent OA(c), i.e., the coordinate framework of Minkowski 4d spacetime: 
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In particular, as shown in Eq. (1.3), if →, the 4d spacetime line-element ds in 

the observational spacetime X4d() of the GOR agent OA() would be split into 

independent time-element dt of 1d time (x0) and independent line-element dl of 3d 

space (x1,x2,x3): 
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where d is the objectively real time (proper time). 

Thus, the GOR agent OA() would strictly converge to the idealized agent OA, 

i.e., the Cartesian coordinate system of Cartesian spacetime: 
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So, as shown in the row 20.1-1 of Tab. 20.1, like in inertial spacetime, in 

gravitational spacetime, the general observation agent OA() of the theory of OR or 

GOR has generalized and unified the idealized agent OA and the optical agent 

OA(c); in other words, the coordinate framework of 4d spacetime of GOR theory 

has generalized and unified the Cartesian coordinate system of Cartesian spacetime 

and the coordinate framework of Minkowski spacetime. 

20.2 The Unity of 

the Factors of Spacetime Transformation 

In Chapter 12, under the principle of GC, by analogizing and following the logic 

of Einstein’s theory of general relativity, the theory of GOR has derived the most 

general spacetime-transformation factor  , that is: 

The GOR Factor (Eq. (12.36)): ( )
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The theory of OR has already clarified that the GOR factor, i.e., the 

transformation factor of the gravitational spacetime X4d() of the general 

observation agent OA(), is the important representation of the relativistic effects of 

gravitational spacetime. 

Naturally, if →c, then the GOR factor  () would strictly converge to the 

spacetime-transformation factor  = (c) of Einstein’s theory of general relativity, 

that is, the factor of the spacetime transformation of the optical agent OA(c): 
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 (20.4) 

In particular, if →, then the GOR factor  () would strictly converge to the 

spacetime-transformation factor = () of Newton’s theory of universal 

gravitation, that is, the factor of the spacetime transformation of the idealized agent 

OA, or the Galilean factor  (1): 
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So, as shown in the row 20.1-2 in Tab. 20.1, the GOR factor  () of spacetime 

transformation has generalized and unified the spacetime-transformation factor 

 = (c) of Einstein’s theory of general relativity and the spacetime-transformation 

factor = () of Newton’s theory of universal gravitation. Both Einstein’s factor 

 = (c) of gravitational spacetime transformation and Newton’s factor = () of 

gravitational spacetime transformation are the special cases of the GOR factor  (): 

Einstein’s factor  = (c) belongs to the optical agent OA(c); while Newton’s factor 

= () belongs to the idealized agent OA. Now, they have been generalized and 

unified into the GOR factor  () of gravitational spacetime transformation. 

Actually, as stated in Sec. 12.4 of Chapter 12, the GOR factor, not only has 

generalized and unified the spacetime-transformation factor  = (c) of Einstein’s 

theory of general relativity and the spacetime-transformation factor = () of 

Newton’s theory of universal gravitation, but also has generalized and unified the 

spacetime-transformation factors of static, scalar, and vector gravitational fields, and 

has generalized and unified the spacetime-transformation factors of inertial 

spacetime and gravitational spacetime. 

20.3 The Unity of Gravitational-Field Equations 

and the Unity of Gravitational-Motion Equations 

Einstein once imagined that his theory of general relativity should contain two 

basic formulae: one was gravitational field equation, describing how spacetime is 

curved in gravitational fields; the other was gravitational motion equation (the 

so-called geodesic), describing how an object move in the curved spacetime. 

Later, Einstein et al [137] and Fock [138] independently proved that Einstein’s field 

equation and motion equation were equivalent. 

Actually, Newton’s theory of universal gravitation also has two basic formulae: 

Newton’s Field Equation (14.1a): 
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Newton’s Geodesic Equation (14.1b): 
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where Newton’s field equation is the Poisson-equation form of Newton’s law of 

universal gravitation; Newton’s geodesic equation, i.e., Newton’s motion equation, 

is the second-law form of Newton’s law of universal gravitation. 

So, Newton’s field equation and Newton’s motion equation are also equivalent. 

Now, the GOR field equation has generalized and unified Newton’s field 

equation and Einstein’s field equation; the GOR motion equation has generalized 

and unified Newton’s motion equation and Einstein’s motion equation. From this, 
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we can understand why Einstein’s field equation and Einstein’s motion equation are 

a pair of equivalent equations. 

20.3.1 The Unification of Einstein’s Field Equation 

and Newton’s Field Equation 

In Chapter 14, under the principle of GC, by analogizing and following the logic 

of Einstein’s theory of general relativity, the theory of GOR has derived the 

gravitational-field equation under the general observation agent OA(), that is: 

The GOR Field Equation (14.63): 
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The theory of OR has clarified that the GOR field equation is the theoretical 

model of the general observation agent OA(). In theory, the observation medium of 

OA() could be any form of matter motion. 

Naturally, if →c, then the GOR field equation would strictly converge to 

Einstein’s field equation, that is, the gravitational-field equation under the optical 

observation agent OA(c): 
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 (20.6) 

In particular, as stated in Sec. 14.7 of Chapter 14, if →, then the GOR field 

equation would strictly converge to Newton’s field equation, the Poisson-equation 

form of Newton’s law of universal gravitation, that is, the gravitational-field 

equation of the idealized agent OA: 
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So, as shown in the row 20.1-3 of Tab. 20.1, the GOR gravitational-field 

equation has generalized and unified Einstein’s field equation and Newton’s field 

equation. Einstein’s field equation belongs to the optical agent OA(c); Newton’s 

field equation belongs to the idealized agent OA. Now, both of them have been 

generalized and unified into the GOR gravitational-field equation under the general 

observation agent OA(), becoming the special cases of GOR field equation. 

More importantly, this means the unification of Einstein’s field equation and 

Newton’s law of universal gravitation. 

20.3.2 The Unification of Einstein’s Motion Equation 

and Newton’s Motion Equation 

In Chapter 14, under the principle of GC, by analogizing and following the logic 
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of Einstein’s theory of general relativity, the theory of GOR has derived the motion 

equation (the geodesic) under the general observation agent OA(), that is: 

The GOR Motion Equation (14.37): 
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The theory of OR has clarified that the GOR motion equation is the theoretical 

model of the general observation agent OA(). In theory, the observation medium of 

OA() could be any form of matter motion. 

Naturally, if →c, then the GOR motion equation would strictly converge to 

Einstein’s motion equation, that is, the motion equation under the optical 

observation agent OA(c): 
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 (20.8) 

In particular, as stated in Sec. 14.4 of Chapter 14, if →, then the GOR 

motion equation (14.37), i.e., the so-called GOR geodesic, would be split into two 

independent equations (14.44a) and (14.44b): 
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 (20.9) 

The time equation (14.44a) of Eq. (20.9) suggests: dt=d; indicating that in the 

Cartesian spacetime X4d
, or under the idealized agent OA, the observational time 

dt is the objective and true time (proper time) d, and is independent of space. This 

is consistent with the theorem of Cartesian spacetime in the theory of GOR. The 

space equation (14.44b) of Eq. (20.9) suggests: the moving object m or the observed 

object P is subject to gravitational force F i (i=1,2,3), and the GOR motion equation 

would strictly converge to the second-law form of Newton’s law of universal 

gravitation: 
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So, as shown in the row 20.1-4 of Tab. 20.1, the GOR motion equation has 
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generalized and unified Einstein’s motion equation and Newton’s motion equation. 

Einstein’s motion equation belongs to the optical agent OA(c); Newton’s motion 

equation belongs to the idealized agent OA. Now, both of them have been 

generalized and unified into the GOR motion equation under the general observation 

agent OA(), becoming the special cases of GOR motion equation. 

Likewise, this means the unification of Einstein’s motion equation and 

Newton’s law of universal gravitation! 

20.4 The Unity of 

the Motion Equations of Celestial Two-Body System 

All celestial bodies move by following Newton’s law of universal gravitation in 

the universe. 

Einstein’s three major predictions: (i) the gravitational deflection of light, (ii) the 

gravitational redshift, and (iii) the orbital precession of planets, could be formalized 

as the problem of the celestial two-body system (M,m): How does the small 

celestial-body m (a moving object or an observed object P) moves in the 

gravitational spacetime around the large celestial-body M? 

After the birth of Newton’s law of universal gravitation [81], people built the 

classical motion model of the celestial two-body system (M,m) based on Newton’s 

theory of universal gravitation to describe celestial motion. After the birth of 

Einstein’s theory of general relativity [8], people built the relativistic motion model 

of the celestial two-body system (M,m) based on Einstein’s theory of general 

relativity to describe celestial motion. More than one hundred years have passed, 

and human being’s physics is still in struggle: 

Who is right, Newton or Einstein? 

Now, the theory of GOR has built the GOR motion model of the celestial 

two-body system (M,m) under the general observation agent OA(), which has 

generalized and unified Newton’s celestial-body motion model and Einstein’s 

celestial-body motion model. 

Now, physics may no longer be in struggle. 

20.4.1 The Unification of 

the Metric Equations of Gravitational Spacetime 

In the problem of the celestial two-body system (M,m), gravitational spacetime 

is often idealized as the static spherically-symmetric gravitational field. Based on his 

logic of weak-field approximation, Einstein obtained the approximate solution of 

Einstein field equation, i.e., the approximate metric of static spherically-symmetric 

gravitational spacetime [8]; Schwarzschild obtained the first exact solution of 

Einstein field equation, i.e, the exact metric of static spherically-symmetric 

gravitational spacetime [80]. 

Both Einstein’s approximate metric and Schwarzschild’s exace metric are the 
metrics of the observational spacetime X4d(c) of the optical observation agent OA(c). 

Newton’s gravitational spacetime is Cartesian spacetime, whose spacetime metric is 
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the metric of the idealized spacetime X4d
 of the idealized observation agent OA, 

which is equivalent to the Minkowski metric  . 

In Chapter 15, under the principle of GC, by analogizing the logic of 

Schwarzschild exact solution [80], the theory of GOR has obtained the exact solution 

of GOR field equation, that is, the exact GOR metric of static spherically-symmetric 

gravitational spacetime: 

The GOR spacetime metric (Eq. (15.32): 
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Naturally, if →c, then the GOR spacetime metric g() would strictly 

converge to the exact solution of Einstein’s field equation, that is, the Schwarzschild 

metric g(c) (Eq. (15.7)), the spacetime metric under the optical agent OA(c): 
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 (20.11) 

In particular, if →, then the GOR spacetime metric g() would strictly 

converge to the Minkowski metric  , that is, the Newtonian gravitational metric or 

Cartesian spacetime metric, the spacetime metric under the idealize agent OA: 
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 (20.12) 

where =diag(+1,−1,−r2,−r2sin2) is the spherical-coordinate form of the 

Minkowski metric. 

Equation (20.12) is consistent with the theorem of Cartesian spacetime. 

So, as shown in the row 20.1-5 of Tab. 20.1, the GOR spacetime metric g() 

has generalized and unified Einstein’s metric g(c) of gravitational spacetime and 

Newton’s metric g() of gravitational spacetime. Einstein’s spacetime metric 
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g(c) belongs to the optical agent OA(c); Newton’s spacetime metric g() 

belongs to the idealized agent OA. Now, both of them have been generalized and 

unified into the GOR gravitational-spacetime metric g() under the general 

observation agent OA(), becoming the special cases of GOR spacetime metric. 

20.4.2 The Unification of 

the Energy Equations of Gravitational Spacetime 

According to classical mechanics, in gravitational spacetime (taking the celestial 

two-body system (M,m) as an example), the moving object m has both kinetic 

energy K and potential energy V. The total energy H of it is the sum of the kinetic 

energy K and the potential energy V: H=K+V. 

According to Sec. 18.4 GOR and Gravitational Redshift of Chapter 18, in the 

gravitational spacetime X4d() of the general observation agent OA(), the kinetic 

energy K() and the potential energy V(), as well as the total energy H() of the 

moving object m, can be defined as: 
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Naturally, if →c, then in the GOR observational spacetime, the GOR kinetic 

energy K() and potential energy V() as well as total energy H() of the moving 

object m would strictly converge to the kinetic energy K(c) and potential energy V(c) 

as well as total energy H(c) of m in Einstein’s theory of general relativity: 
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In particular, if →, then in the GOR observational spacetime, the GOR 

kinetic energy K() and potential energy V() as well as total energy H() of the 

moving object m would strictly converge to the kinetic energy K and potential 

energy V as well as total energy H of m in Newton’s theory of universal 

gravitation: 
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So, as shown in the row 20.1-6 of Tab. 20.1, the GOR observational kinetic 

energy K() of the moving object m in the GOR spacetime has generalized and 

unified the relativistic kinetic energy K(c) in Einstein’s theory of general relativity 

and the classical kinetic energy K in Newton’s theory of universal gravitation; the 

GOR observational potential energy V() of the moving object m in the GOR 

spacetime has generalized and unified the relativistic potential energy V(c) in 

Einstein’s theory of general relativity and the classical potential energy V in 

Newton’s theory of universal gravitation. Thus, the GOR observational total energy 

H() of the moving object m in the GOR spacetime has generalized and unified the 

relativistic total energy H(c) in Einstein’s theory of general relativity and the 

classical total energy H in Newton’s theory of universal gravitation 

The relativistic kinetic-energy formula K(c) and relativistic potential-energy 

formula V(c) as well as relativistic total-energy formula H(c) in Einstein’s theory of 

general relativity are the energy formulae in the observational spacetime X4d(c) of 

the optical observational agent OA(c); the classical kinetic-energy formula K and 

classical potential-energy formula V as well as classical total-energy formula H in 

Newton’s theory of universal gravitation are the energy formulae in the idealized 

spacetime X4d
 of the idealized observational agent OA. Now, they have been 

generalized and unified into the GOR energy formulae in the GOR observational 

spacetime X4d() of the general observation agent OA(), becoming the special 

cases of GOR energy formulae in the theory of GOR. 

20.4.3 The Unification of the Motion Equations 

of the Celestial Two-Body System (M,m) 

Before Einstein had established the theory of general relativity, astrophysicists 

built the classical motion equation of the celestial two-body system (M,m) based on 

Newton’s theory of universal gravitation, that is: 

Newton’s celestial motion equation (16.5): 
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where the trajectory of the moving object m is a standard conic curve, the celestial 

body M as the gravitational source is located at a focus of the conic curve; in terms 

of a star M and a planet m, the trajectory of m is a closed ellipse, and therefore, the 

planet m has no orbital precession or perihelion precession. 

Later, Einstein built the relativistic motion equation of the celestial two-body 

system (M,m) based on his theory of general relativity, that is: 

Einstein’s celestial motion equation (16.33): 
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where, compared with Newton’s celestial motion equation (16.5), Einstein’s 

celestial motion equation (16.33) has one more term on the right end: 3GM/c2r2 

(r=1/u), and therefore, the trajectory of m is no longer a standard conic curve. 

As far as the star M and the planet m are concerned, in Einstein’s celestial 

motion equation (16.33), the trajectory of the planet m is no longer a closed ellipse, 
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where 3GM/c2r2 can be referred to as the orbital-precession term of planets, and 

could be employed to predict Mercury’s orbital precession or perihelion precession 

of about 43 every 100 years. 

So, people believe in Einstein’s theory of general relativity. 

However, as clarified in Chapter 16, Einstein’s celestial motion equation (16.33) 

cannot predict the objective and real precession of planet orbits. The so-called 

Mercury’s orbital precession or perihelion precession of about 43 every 100 years 

predicted by Einstein’s celestial motion equation is actually the observational effect 

and apparent phenomenon of the optical observation agent OA(c), rooted from the 

observational locality (c<) of OA(c). 

In Chapter 16, under the principle of GC, by analogizing logic of Einstein’s 

celestial motion equation (16.33), the theory of GOR has derived the GOR celestial 

motion equation (16.64) in the gravitational spacetime X4d() of the general 

observation agent OA(), that is: 

The GOR celestial motion equation (16.64): 
22
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where, like Einstein’s celestial motion equation (16.33), the GOR celestial motion 

equation (16.64) also contains the orbital-precession term of planets: 3GM/2r2 

(r=1/u). Thus, the GOR celestial motion equation (16.64) could also be employed to 

predict the orbital precession of planets. 

However, under different observation agents, the same planet m, would present 

different degrees of orbital precession. This fact suggests that the orbital-precession 

term3GM/2r2 of planets in Eq. (16.64) does not represent the objective and real 

precession of planet orbits, but the observational effect and apparent phenomenon of 

the observation agent OA(), caused by the observational locality (<) of OA(). 

Naturally, if →c, then the GOR celestial motion equation (16.64) would 

strictly converge to Einstein’s celestial motion equation (16.33): 
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 (20.16) 

In particular, if →, then the GOR celestial motion equation (16.64) would 

strictly converge to Newton’s celestial motion equation (16.5): 
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 (20.17) 

So, as shown in the row 20.1-7 of Tab. 20.1, the GOR celestial motion equation 

has generalized and unified Einstein’s celestial motion equation and Newton’s 

celestial motion equation. Einstein’s celestial motion equation belongs to the optical 

agent OA(c); Newton’s celestial motion equation belongs to the idealized agent OA. 

Now, both of them have been generalized and unified into the GOR celestial motion 

equation under the general observation agent OA(), becoming the special cases of 

the GOR celestial motion equation in the theory of GOR. 
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20.4.4 The Unification of 

the Precession Equations of Planet Orbits 

According to Newton’s celestial motion equation (16.5), the orbit of a planet is a 

standard and closed ellipse, and therefore, as far as the celestial two-body system 

(M,m)=(Star,Planet) is concerned, the planet m has no the orbital precession or 

perihelion precession: N=0 (see Sec. 16.2.3 of Chapter 16). 

According to Einstein’s celestial motion equation (16.33), the orbit of a planet is 

not a standard and closed ellipses, and therefore, the planet m has the orbital 

precession and perihelion precession: E=6G2M2/c2hK
2, as shown in Eq. (16.38). 

According to the calculation of Eq. (16.38), Mercury’s orbital or perihelion would 

precesses about 43 arc second every 100 years. 

After all, according to the actual observations, Mercury moving around the sun 

always exhibits the orbital precession or perihelion precession. So, people believe 

that Einstein’s formula for the orbital precession of planets is better than Newton’s. 

However, according to the theory of GOR, under different observation agents, 

the same planet m would exhibit different degrees of orbital precession. The 

difference between Newton and Einstein’s formula for the orbital precession of 

planets is the observational difference between different observation agents, that is, 

the observational difference between the idealized agent OA and the optical agent 

OA(c), which does not mean that Einstein is right, nor that Newton is wrong. 

In Chapter 16, under the principle of GC, by analogizing the logic of Einstein’s 

formula for the orbital precession of planets, the theory the GOR has derived the 

GOR formula (Eq. (16.68)) for the orbital precession of planets under the general 

observation agent OA(), in which the precession rate of the planet m depends on 

the information-wave speed  of OA(): ()=6G2M2/2hK
2. 

Like the other formulae in the theory of GOR, if →c, then the GOR precession 

equation (16.68) of planet orbits would strictly converges to Einstein’s precession 

equation (16.38) of planet orbits; if →, then the GOR precession equation (16.68) 

of planet orbits would strictly converges to Newton’s precession equation (see Sec. 

16.2.3) of planet orbits. 

Just as it is expressed in the following equation (20.18): 
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 (20.18) 

So, as shown in the row 20.1-8 of Tab. 20.1, the GOR precession equation of 

planet orbits has generalized and unified Einstein’s precession equation of planet 

orbits and Newton’s precession equation of planet orbits. Einstein’s precession 

equation of planet orbits belongs to the optical agent OA(c); Newton’s precession 
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equation of planet orbits belongs to the idealized agent OA. Now, both of them 

have been generalized and unified into the GOR precession equation of planet orbits 

under the general observation agent OA(), becoming the special cases of the GOR 

precession equation of planet orbits in the theory of GOR. 

20.4.5 The Unification of 

the Equations of Gravitational Deflection 

Based on Newton’s celestial motion equation (16.5), one could derive Newton’s 

motion equation (17.7) of photons, and calculate Newton’s gravitational-deflection 

angle N of light: N=2GM /RSc2. Based on Einstein’s celestial motion equation 

(16.33), one could derive Einstein’s motion equation (17.22) of photons, and 

calculate Einstein’s gravitational-deflection angle E of light: E=4GM /RSc2. 

Einstein’s gravitational-deflection angle E of light is twice Newton’s N, which 

seems to be more in line with observation. Therefore, people believe that Einstein’s 

gravitational-deflection equation of light is better than Newton’s. (It is worth noting 

that the term observation here refers to optical observation, which is the observation 

under the optical agent OA(c).) 

However, according to the theory of GOR, under different observation agents, 

light would exhibit different degrees of gravitational deflection. The difference 

between Newton’s gravitational-deflection equation (17.7)) and Einstein’s 

gravitational-deflection equation (17.22), or the difference between Newton’s 

gravitational-deflection angle N=2GM /RSc2 of light and Einstein’s 

gravitational-deflection angle E=4GM /RSc2 of light, is the observational difference 

between different observation agents, that is, the observational difference between 

the idealized observation agent OA and the optical observation agent OA(c), which 

does not mean that Einstein is right, nor that Newton is wrong. 

In Chapter 17, under the principle of GC, by analogizing the logic of Einstein’s 

gravitational-deflection calculation, the theory of GOR has derived the GOR 

gravitational-deflection equation of light under the general observation agent OA(), 

and then, as stated in Sec. 17.4.4 of Chapter 17, has made the calculation of the 

GOR gravitational-deflection angle GOR=OA() of light: 

(i) The case of the optical agent OA() (=c): by solving the GOR motion 

equation (17.30) of photons as =c, one could have the gravitational 

deflection angle of light sweeping over the sun M : 

 
( ) ( )GOR OA 2

4

S

GM
c

R c


  = = →  (20.19) 

where the photon m is both the observed object P and the informon of OA(c); the 

speed c of light is both the motion speed of m as the observed object P and the 

information-wave speed of the optical agent OA(c). 

(ii) the case of the superluminal agent OA() ( >>c): by solving the GOR 

motion equation (17.31) of photons as  >>c, one could have the 

gravitational deflection angle of light sweeping over the sun M : 
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where the photon m is the observed object P, but not the informon of OA(); the 

speed c of light is the motion speed of m as the observed object P, but not the 

information-wave speed of the observation agent OA(). 

Naturally, if →c, then the GOR gravitational-deflection angle GOR=OA() (Eq. 

(20.19)) of light would strictly converge to Einstein’s gravitational-deflection angle 

E  (Eq. (17.25)) of light: 
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In particular, if →, then the GOR gravitational-deflection angle GOR=OA() 

(Eq. (20.20)) of light would strictly converge to Newton’s gravitational-deflection 

angle N (Eq. (17.12)) of light: 
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 (20.22) 

So, as shown in the row 20.1-9 of Tab. 20.1, the GOR gravitational-deflection 

equation of light has generalized and unified Einstein’s gravitational-deflection 

equation of light and Newton’s gravitational-deflection equation of light. Einstein’s 

gravitational-deflection equation of light belongs to the optical agent OA(c); 

Newton’s gravitational-deflection equation of light belongs to the idealized agent 

OA. Now, both of them have been generalized and unified into the GOR 

gravitational-deflection equation of light under the general observation agent OA(), 

becoming the special cases of the GOR gravitational-deflection equation of light in 

the theory of GOR. 

20.4.6 The Unification of 

the Equations of Gravitational Redshift 

As stated in Chapter 18, based on his theory of general relativity, Einstein 

derived the gravitational-redshift equation (18.10) of light, that is, Einstein’s 

gravitational-redshift equation of light: 

Einstein’s redshift (Eq. (18.10)): 
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Taking the observers on the earth observing the solar spectrum as an example, 

according to Einstein’s gravitational-redshift equation (18.10) of light, Einstein’s 

redshift ZE of the solar spectrum from the sun to the earth is as shown in Eq. (18.11): 

ZE−GMS/RSc2−2.1210−6, which is consistent with observation. 

Based on Newton’s theory of universal gravitation, one could also build the 

gravitational-redshift equation of light. As stated in Chapter 18, the current 
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Newtonian formula for the gravitational redshift of light is: 

Pseudo Newtonian redshift (Eq. (18.20)): 
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The pseudo Newtonian gravitational-redshift equation (Eq. (18.20)) of light is 

approximate to Einstein’s gravitational-redshift equation (18.10) of light, as far as 

the earth’s observers observing the solar spectrum are concerned, the ZE and the ZPN 

are not distinguishable in observation. 

As stated in Chapter 18, Eq. (18.20) is not the true Newtonian theory of 

gravitational redshift, but a hybrid of Newton’s classical mechanics, Einstein’s 

relativity theory, and even quantum theory. 

Under the principle of conservation of energy, Chapter 18 has established the 

gravitational-redshift theory of light, which is purely based on Newton’s classical 

mechanics, and can be formally referred to as Newton’s gravitational-redshift 

equation of light as described in Eq. (18.34): 

Newton’s redshift (Eq. (18.34)): B

2

B B A

2 1 1

2
N

GMr
Z

r c GM r r

 
= − 

+  
 

As far as the earth’s observers observing the solar spectrum are concerned, 

Newton’s gravitational redshift ZN−2GMS/RSc2 of light is not equal or approximate 

to Einstein’s gravitational redshift ZE−GMS/RSc2  of light. This suggests that, 

similar to the case in the gravitational-deflection problem of light, the gravitational 

redshifts presented by the idealized observation agent OA and the optical 

observation agent OA(c) are also different. 

In Chapter 18, under the principle of conservation of energy, the theory of GOR 

has built the GOR gravitational-redshift theory (see Sec. 18.4 of Chapter 18), and 

has derived the GOR gravitational-redshift equation of light: 
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 (20.23) 

Naturally, as stated in Sec. 18.4.3 of Chapter 18, if →c, then the GOR 

gravitational-redshift equation (20.23) of light would strictly converge to Einstein’s 

gravitational-redshift equation (18.10) of light: 
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309 

 

( ) ( ) ( )

( ) ( )

( )( )
( ) ( )

( )( )
( )

( )

OA OA

2 2

00 B 00 A

2

00 B

2 2

00 B 00 A 00 B

2 2
00 A00 B

OA : lim

lim
1 1

1
1 1

E c
c

o o

c

F o

o o

o o

c Z Z Z

m g r m g r

K g r m

m c g r m c g r g r

g rm c g r m c








 



→

→

= =

−
=

− −

−
= = −

− −
 (20.24b) 

In particular, as stated in Sec. 18.4.3 of Chapter 18, if →, then the GOR 

gravitational-redshift equation (20.23) of light would strictly converge to Newton’s 

gravitational-redshift equation (18.34) of light: 
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So, as shown in the row 20.1-10 of Tab. 20.1, the GOR gravitational-redshift 

theory has generalized and unified Einstein’s gravitational-redshift theory and 

Newton’s gravitational-redshift theory. Einstein’s gravitational-redshift theory 

belongs to the optical agent OA(c); Newton’s gravitational-redshift theory belongs 

to the idealized agent OA. Now, both of them have been generalized and unified 

into the GOR gravitational-redshift theory under the general observation agent 

OA(), becoming the special cases of the GOR gravitational-redshift theory in the 

theory of GOR. 

20.5 The Unity of the Information-Wave Equations 

As stated in Chapter 19, based on his theory of general relativity, Einstein 

derived an important wave equation: 
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In Eq. (20.26), the wave function h−(c) is referred to as the metric-perturbation 

tensor and is defined by the curved metric h, which is related with the Newtonian 

gravitational potential  : h . Accordingly, Einstein believed that the wave 

function h−(c) in Eq. (20.26) represented gravitational radiation, and called it 

Gravitational Wave. Meanwhile, according to Eq. (20.26), the wave speed of 

h−(c) is the speed c of light in vacuum. From this, Einstein made the famous 

prediction: there are gravitational waves in gravitational spacetime, which propagate 

at the speed c of light in vacuum. 

In this way, Einstein’s specious prediction of gravitational waves was born. 

However, as the theory of GOR has already clarified: Einstein’s prediction of 

gravitational waves was a historic mistake! 

Actually, the wave function h−(c) in Einstein’s wave equation (20.26) is not 

gravitational radiation, let alone a gravitational wave, but the information wave of 

the optical observation agent OA(c) that transmits the information of observed 

objects for observers, that is, light, naturally travelling at the speed c of light. 

In Chapter 19, under the principle of GC, by analogizing the logic of Einstein’s 

wave equation, the theory of GOR has derived the wave equation (19.15) in the 

gravitational spacetime X4d() of the general observation agent OA(): 
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 (20.27) 

The GOR wave equation (20.27), exactly the GOR information-wave equation, 

is isomorphically consistent with Einstein’s wave equation (20.26). 

It is worth noting that: the wave function h−=h− () in the GOR wave 

equation (20.27) depends on observation, depends on the observation agent OA(), 

and depends on the information-wave speed  of OA(); moreover, the speed of the 

wave in the wave function h−=h−() is exactly the information-wave speed  of 

the observation agent OA(). 

The theory of GOR does not doubt the existence of gravitational waves. 

However, the objectively gravitational radiation or gravitational waves must not 

rely on observation, and the intrinsic speed of gravitational radiation or gravitational 

waves must be unique and definite. If the wave function h−=h−() in the GOR 

wave equation (20.27) was interpreted as Gravitational Wave following Einstein’s 

logic, then, under different observation agents, the same gravitational wave h−  

would represent different gravitational waves or would have different speeds. 

Actually, with respect to the GOR wave equation (including Einstein’s wave 

equation), the connection between the wave function h−  and the Newtonian 

gravitational potential  does not means that h−  represents gravitational wave, but 

only means that h−  as the information wave of the observation agent OA() is 

carrying the information () about gravitational radiation or gravitational interaction. 
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So, the GOR wave function h−=h−() (including Einstein’s wave function 

h−=h−(c)) does not represents gravitational radiation or gravitational wave, but 

the information wave of the observation agent OA(). The GOR wave equation 

(including Einstein wave equation) is not the so-called gravitational-wave equation, 

but the information-wave equation of OA(). 

In Sec. 19.3.2 of Chapter 19, the theory of GOR has already clarified that: if 

→c, then the GOR wave equation (20.27) would strictly converge to Einstein’s 

wave equation (20.26): 
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There should be also the information-wave equation in Newton’s gravitational 

spacetime, where the information-wave speed is infinite. 

In Sec. 19.3.2 of Chapter 19, the theory of GOR has already clarified that: if 

→, then the GOR wave equation (20.27) would strictly converges to Newton’s 

wave equation, that is, the vacuum form of the Poisson equation of Newton’s law of 

universal gravitation, known as Laplace equation: 

 

2
2 2

2 2

2 2

1
OA : lim

that is 0 or 0

h h h
t

h

  








− − −


→

−

 
 − =  

 

 =  =

 (20.29) 

So, as shown in the row 20.1-11 of Tab. 20.1, the GOR information-wave 

equation has generalized and unified Einstein’s wave equation and Newton’s wave 

equation. Einstein’s information-wave equation belongs to the optical agent OA(c); 

Newton’s information-wave equation belongs to the idealized agent OA. Now, both 

of them have been generalized and unified into the GOR information-wave equation 

under the general observation agent OA(), becoming the special cases of the GOR 

information-wave equation in the theory of GOR. 
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Table 20.1. The Generality and Unity of Newton and Einstein in the theory of GOR 

 
The Theory of GOR 

(the general observation agent OA()) 

Einstein’s General Relativity 

(the optical agent OA(c): →c) 

Newton’s Gravitational Theory 

(the idealized agent OA: →) 
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OA(c) and Minkowski spacetime X4d(c)： 
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OA and Cartesian spacetime X4d
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The GOR factor 

of spacetime transformation:  = () 
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The Einstein factor:  = (c) 
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The Newtonian factor:   
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The GOR field equation: 
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Einstein’s field equation: 
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As →c, the GOR field equation converges 

to Einstein’s field equation. 

Newton’s field equation: 
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As →, the GOR field equation converges 

to Newton’s law of universal gravitation in 

the form of Poisson equation. 
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The GOR motion equation: 

(i.e., the GOR geodesic equation) 
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Einstein’s motion equation: 
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As →c, the GOR motion equation 

converges to Einstein’s motion equation. 

Newton’s motion equation: 
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As →, the GOR motion equation splits 

into two independent relations: the 

time-element dt; the space-element dr which 

converges or reduces to Newton’s law of 

universal gravitation in the form of the 

second law: 
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The GOR metric and line-element: 
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Einstein’s metric and line-element: 
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Newton’s metric and line-element: 
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As →, the GOR metric converges to the 

Minkowski metric, and the line-element ds 

splits into two independent relation: the 

time-element dt and the space-element dr. 
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The GOR energy of the observed object P: 

P’s kinetic K=K() and potential V=V(): 
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P’s total energy H=H(): 
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Einstein’s energy of the observed object P: 

P’s kinetic K=K(c) and potential V=V(c): 
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P’s total energy H=H(c) 
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Newton’s energy of the observed object P: 

P’s kinetic K=K and potential V=V: 

21
and

2
K K m v V V m   = = = =  

As →, the GOR kinetic energy K() and 

potential energy V() converge to classical 

kinetic energy K and classical potential 

energy V., respectively: 
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P’s total energy H=H: 

( )limH H H K V


   
→

= = = +  



315 

2
0

.1
-7

 
The GOR motion equation of 

celestial two-body system (M,m): 
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Einstein’s motion equation of 

celestial two-body system (M,m): 
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As →c, the GOR motion equation of 

celestial bodies converges to Einstein’s 

motion equation of celestial bodies. 

Newton’s motion equation of 

celestial two-body system (M,m): 
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As →, the GOR motion equation of 

celestial bodies converges to Newton’s 

motion equation of celestial bodies. 
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The GOR precession-angle equation 

of planet orbits: GOR 
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Einstein’s precession-angle equation 

of planet orbits: E 
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As →c, the GOR precession angle GOR 

of planet orbits converges to Einstein’s 

precession angle E  of planet orbits. 

Newton’s precession-angle equation 

of planet orbits: N  

( )OA OA
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 →

 =  = =  

As →, the GOR precession angle GOR 

of planet orbits converges to Newton’s 

precession angle N  of planet orbits.  
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The GOR gravitational-deflection angle 

of light sweeping over the sun: GOR 

in the case of the optical agent 

OA(): →c 
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where the photon m is both the observed 

object P and an informon of OA(c); the speed 

c of light is both the speed of P and the speed 

of the information wave of OA(c). 

in the case of the superluminal agent 

OA(): >>c 
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where the photon m is the observed object P, 

but not an informon of OA(); the speed c of 

light is the speed of P, but not the speed of 

the information wave of OA(). 

Einstein’s gravitational-deflection angle 

of light sweeping over the sun: E 

in the case of the optical agent 

OA(): →c 

Einstein’s gravitational-deflection equation is 

a special case of GOR equation: 
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Newton’s gravitational-deflection angle 

of light sweeping over the sun: N  

in the case of the superluminal agent 

OA(): >>c 

Newton’s gravitational-deflection equation 

is a special case of GOR equation: 
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Notes: The theory of GOR has generalized and unified Einstein’s theory of general relativity and Newton’s theory of universal gravitation. All 

formulae or relationships in the theory of GOR, as →c , strictly converge to that of Einstein’s theory of general relativity; →, strictly converge to that 

of Newton’s theory of universal gravitation. It is thus clear that the theory of GOR is logically consistent not only with Einstein’s theory of general relativity, 

but also with Newton’s theory of universal gravitation. Moreover, such strict corresponding relationship between different theoretical systems, from one 

aspect, confirms the logical self-consistency and theoretical validity of the theory of GOR. 
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The GOR gravitational-redshift equation 

of light: ZGOR 
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where  (c) is the information-wave speed 

of the general observation agent OA(); the 

speed c of light is the speed of the photon m 

as the observed object P. 

Einstein’s gravitational-redshift equation 

of light: ZE 
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As →c, the GOR gravitational-redshift 

equation of light converges to Einstein’s 

gravitational-redshift equation of light. 

Newton’s gravitational-redshift equation 

of light: ZN 
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As →, the GOR gravitational-redshift 

equation of light converges to Newton’s 

gravitational-redshift equation of light. 
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The GOR information-wave equation: 
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where the wave function h− () is the 

metric-perturbation tensor under OA(). 

Einstein’s information-wave equation: 
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As →c, the GOR wave equation converges 

to Einstein’s wave equation. 

Newton’s information-wave equation: 

2 20 or 0h  − =  =  

As →, the GOR wave equation 

converges to Newton’s wave equation. 
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21 GOR and the Big Puzzles in Physics 

Table 9.1 in Chapter 9 of the 1st volume of OR: Inertially Observational 

Relativity (IOR) lists 15 big puzzles in modern physics, labelled with BP-01 to 

BP-15, in which BP-01 to BP-08 mainly involve Einstein’s theory of special 

relativity and de Broglie’s theory of matter waves or quantum mechanics, and have 

been interpreted by the theory of IOR and the OR theory of matter waves in the 1st 

volume of OR: Inertially Observational Relativity (IOR), providing new idea and 

insight into Einstein’s theory of special relativity and de Broglie’s theory of matter 

waves or even quantum mechanics. BP-09 to BP-15 mainly involve Einstein’s 

theory of general relativity and the so-called Modern General Relativity. Now, 

they can be interpreted by the theory of GOR in the 2nd volume of OR: 

Gravitationally Observational Relativity (GOR), providing new idea and insight 

into Einstein’s theory of general relativity and even the modern general relativity. 

The theory of IOR in the 1st volume of OR has revealed the essence of inertial 

relativistic phenomena, where the core problem is: Why is the speed of light 

invariant? Now, the theory of GOR in 2nd volume of OR has revealed the essence of 

gravitational relativistic phenomena, where the core problem is: Why is the 

spacetime of gravitation is curved? 

In the big puzzle BP-03: The Essence of Relativistic Effects, the relativity 

effects it states include both the inertial and the gravitational. According to the 

statements in Sec. 9.4 of Chapter 9 in the 1st volume of OR and in Sec. 12.5 of 

Chapter 12 in the 2nd volume of OR, the conclusion that All relativistic phenomena 

are apparent phenomena is valid for both the theory of IOR in the 1st volume of 

OR and the theory of GOR in the 2nd volume of OR. 

With respect to the big puzzle BP-02: The Problem of Photon Mass, according 

to the mass-speed relation (Eq. (5.5)) in the theory of IOR, as stated in Sec. 5.1.5 of 

Chapter 5 and Sec. BP-02.3 of Chapter 9 in the 1st volume of OR, all matter particles, 

including photons and gravitons, have their own rest masses. According to the 

theory of IOR, the so-called rest mass is actually the intrinsic mass of matter, which 

is the objective and real mass of matter. However, in the statement of the big puzzle 

BP-02 The Problem of Photon Mass in the 1st volume of OR, the theory of IOR 

fails to provide the theoretical prediction of photon mass. 

In the 2nd volume of OR, based on the GOR theory of gravitational redshift, the 

theory of GOR has theoretically calculated the rest mass mo of photons, and has 

made the theoretical prediction for photons’ rest mass. 

The GOR Prediction for Photon Weight (stated in Eq. (18.46)): 

 

2

2 2o

E mcE hf
m m

c c E hf

 =
= = = 

=
 (21.1) 

where m is Einstein’s relativistic mass (moving mass) of photons, and E is Einstein’s 

photon energy (the relativistic kinetic energy of photons). According to Einstein 

formula: E=mc2; according to Planck equation: E=hf. 
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It turns out that, the mass or rest mass mo of a photon is actually Einstein’s 

relativistic mass m of a photon. 

As state in Sec. 18.5 of Chapter 18 in the 2nd volume of OR, the theoretical 

value of photon rest mass in Eq. (21.1) is confirmed by observation and experiment 

as well as the GOR theory of gravitational redshift. 

Now, we have finally understood why experimental physicists tried their best 

but still could not find the rest mass of photons [37,82-85]. 

In the 1st volume of OR: Gravitationally Observational Relativity (GOR), 

the Sec. 18.5 GOR Gravitational Redshift and Photon Mass of Chapter 18 has 

obtained the theoretical value of photon rest mass, and can be regarded as the further 

interpretation for the big puzzle BP-02: The Problem of Photon Mass. 

There are numerous big puzzles in modern physics, some of them could be 

interpreted by the theory of IOR in the 1st volume of OR, and some of them could be 

interpreted by the theory of GOR in the 2nd volume of OR. 

The theory of IOR enables us to understand the inertial relativistic effects − why 

the speed of light is invariant. The theory of GOR enables us to understand the 

gravitational relativistic effects − why the spacetime of gravitation is curved. 

From the perspective of the general observation agency OA(), the theory of 

IOR in the 1st volume of OR has clarified and interpreted the big puzzles BP-01 to 

BP-08 listed in Tab. 19.1. Now, from the perspective of the general observation 

agent OA(), the theory of GOR in 2nd volume of OR will clarified and interpret the 

big puzzles BP-09 to BP-15 listed in Tab. 19.1. 

In the view of the theory of GOR, the universe might not have had a Big Bang. 

BP-09 Why is Spacetime Curved? 

BP-09.1 The Statement of the Problem 

The Curvature of Spacetime (Einstein’s original intention): The existence of 

matter or energy makes spacetime curved. 

The concept of spacetime curvature was coined by Einstein. 

In 1915, Einstein established the theory of general relativity [8]: in Einstein’s 

view, matter or energy determines how spacetime is curved, and the curved 

spacetime determines how matter moves. 

Perhaps we can understand or imagine the curvature of space; however, it is 

difficult for us to understand the curvature of spacetime, and in particular, it is 

difficult for us to imagine how time is curved. Einstein’s theory of general relativity 

has been established for over one hundred years, but we still cannot understand why 

spacetime is curved and how spacetime is curved. 

So, is spacetime curved or not, or why is spacetime curved? 

This is the big puzzle marked as BP-09 in the theory of OR. 

BP-09.2 The Mainstream View 
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Actually, the curvature of spacetime is the logical consequence resulting from 

the invariance of the light speed as the logical premise of Einstein’s theory of 

general relativity. The mainstream school of physics could not explain why the 

speed of light is invariant, and naturally, also could not explain why spacetime is 

curved. It could only be attributed to the distribution of matter or energy. 

But why does matter and energy make spacetime curved? 

To this question, the mainstream school of physics will never have an answer. 

BP-09.3 The View of GOR Theory 

With regard to the problem of spacetime curvature, the theory of GOR has 

clarified in Sec. 12.5 of Chapter 12 that spacetime is not really curved. 

The theory of GOR has an important theorem, that is, the theorem of Cartesian 

spacetime: as →, g→ and ()→. The theorem of Cartesian spacetime 

indicates that, under the idealized observation agent OA(), the GOR spacetime 

metric, no matter the inertial or the gravitational, would converge to the Minkowski 

metric =diag(+1,−1,−1,−1), and the GOR factor () of spacetime 

transformation would converge to the Galilean factor 1. 

The theorem of Cartesian spacetime means that, the objective and real spacetime 

is the spacetime described by Galileo and Newton for us, which is flat rather than 

curved, regardless of matter and energy. 

Thus, the theory of GOR has realized that spacetime is not really curved. 

According to the theory of GOR, the so-called spacetime curvature relies on 

observation: under different observation agents, the observational spacetime has 

different degrees of curvature; the so-called spacetime curvature is only an 

observational effect or an apparent phenomenon of the observation agent OA(): the 

observation agent OA() (<) with the observation locality (<) is like a 

wide-angle lens, making gravitational spacetime appear somewhat curved or 

deformed. As a matter of fact, the so-called spacetime curvature in Einstein’s theory 

of general relativity is the observational effect and apparent phenomenon caused by 

the observational locality c<) of the optical observation agent OA(c), which is 

actually the effect of wide-angle lens. 

According to the theory of GOR, according to the theorem of Cartesian 

spacetime in the theory of GOR, the objective and real spacetime, including space 

and time, is never curved. 

The problem of gravitational-spacetime curvature, and even the problem of 

gravitational relativistic effects, has been discussed in detail in Chapter 12. 

BP-10 The Orbital Precession of Mercury 

BP-10.1 The Statement of the Problem 

The Problem of Mercury’s Orbital Precession: Suppose that the planet m 

moves around the star M. Under the idealized conditions, the orbit of the planet m is 

a standard and closed ellipse; but in reality, the orbit of the planet m is always 
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insistently precessing. Taking Mercury as an example, the observational data from 

the optical astronomy shows that the precession rate of Mercury’s orbit around the 

sun reaches 5600.73 arc seconds every 100 years. However, the point is not whether 

Mercury’ orbit precesses, or whether Mercury’s orbit precesses at the rate of 

5600.73 arc seconds every 100 years. The point is that Newton’s celestial two-body 

model (M,m) based on Newton’s theory of universal gravitation has no the orbital 

precession of Mercury, while Einstein’s celestial two-body model (M,m) based on 

Einstein’s theory of general relativity has the orbital precession of Mercury: 43.03 

arc seconds every 100 years. 

So, who is right, Newton or Einstein? 

This is the big puzzle marked as BP-10 in the theory of OR. 

BP-10.2 The Mainstream View 

As stated in Chapter 16, Newton’s celestial two-body model (M,m) is idealized: 

(i) the gravitation of the star M is action at a distance, and the speed of gravitational 

radiation is infinite; (ii) the observation agent of observers is the idealized agent 

OA, and the speed of the information wave of OA transmitting the information on 

the planet m is also infinite. So, the orbit of the planet m in Newton’s celestial 

two-body model (M,m) is a standard and closed ellipse and could not predict the 

orbital precession of Mercury. Actually, in considering the non-idealized factors, for 

example, the precession of the equinoxes caused by the non-inertial geocentric 

coordinate system and the perturbation made by other celestial bodies to Mercury, 

Newton’s theory of universal gravitation could also calculate that Mercury’s orbit 

precesses at the rate of 5557.62 arc seconds every 100 years. Finally, out of the 

5600.73 arc seconds recorded in astronomical observation data, only 43.11 arc 

seconds remained to be determined. 

Coincidentally, Mercury’s orbital-precession rate of 43.03 arc seconds every 

100 years in Einstein’s celestial two-body model (M,m) accurately fills this gap. 

For this result, in a letter to his friend, Einstein said: “The equation gives the 

correct numbers for Mercury’s perihelion. You could imagine how happy I am. I 

couldn’t help but be happy for several days.” 

The mainstream school of physics generally believes that, as far as the 

prediction of Mercury’s orbital precession is concerned, Einstein’s theory of general 

relativity is better than Newton’s theory of universal gravitation. 

BP-10.3 The View of GOR Theory 

There are many doubts about the views of the mainstream school of physics. 

Einstein’s prediction of the 43.03 is less than 0.8% of the 5600.73 recorded in 

astronomical observation, and could almost be included in the observational error. 

Inexplicably, why could not Einstein’s theory of general relativity predict Mercury’s 

orbital precession of the actual 5557.62 every 100 years? 

According to the theory of GOR, as clarified in Chapter 16, both Newton’s 
classical two-body model and Einstein’s relativistic two-body model are the 

idealized motion models of celestial bodies, where there is no prior knowledge and 
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information (such as the influence of non-inertial geocentric coordinate system or 

the perturbation of other celestial bodies) available to predict the actual orbital 

precession of planets or Mercury. 

The theory of GOR has built the GOR celestial two-body model (M,m) (Eq. 

(16.64)) for the general observation agent OA(), and then, has derived the GOR 

planetary-precession equation (16.68). 

The GOR Motion Equation (16.64) of Planets: 
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where G is the gravitational constant, M is the mass of the star, hK is the velocity 

moment of the planet m orbiting the star M. 

The GOR Orbital-Precession Equation (16.68) of Planets: 

( )
2 2

GOR 2 2

6

K

G M

h


 


 =  

where GOR() is the orbital-precession angle of the planet m under the general 

observation agent OA(). 

The GOR orbital-precession equation (16.68) of planets shows that the orbital 

precession angle GOR=GOR() depends on the information-wave speed  of the 

observation agent OA(): under different observation agents, for the same two-body 

system (M,m) of celestial bodies, the planet m would exhibit different orbital 

precession angles. 

It is worth noting that the GOR orbital-precession angle GOR() (Eq. (16.68)) 

of planets has generalized Einstein’s precession angle E=GOR(c) and Newton’s 

precession angle N=GOR(): 
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 (21.2) 

where E is Einstein’s planetary precession angle, i.e., the precession angle under 

GOR(c) the optical agent OA(c); N is Newton’s planetary precession angle, i.e., 

the precession angle GOR() under the idealized agent OA. 

It is thus clear that the so-called orbital precession presented in the GOR motion 

equation (16.64) of planets, including Einstein’s motion equation of planet, is not 

the objective and real precession of planet orbits, but in essence only an observation 

effect or an apparent phenomenon caused by the observational locality (<) of the 

observation agent OA(). 

Einstein’s prediction of Mercury’s orbital precession, based on Einstein’s theory 

of general theory, is actually only an observation effect caused by the observational 

locality (c<) of the optical observation agent OA(c), rather than the actual orbital 

precession of Mercury. Our astronomical observation data all come from optical 
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observation, are the observation data of the optical agent OA(c); Einstein’s theory of 

general relativity is exactly the theory of optical agent OA(c). Therefore, Einstein’s 

prediction for Mercury’s orbital precession angle of the 43.03 arc seconds, based on 

Einstein’s theory of general relativity, might indeed belong to Mercury’s orbital 

precession angle of the 5600.73 arc seconds recorded by the optical astronomy. 

Alternatively, as far as the problem of Mercury’s orbital precession is concerned, 

there are indeed the optical observational effects in the historical records of 

astronomical observation: Mercury’s perihelion precesses at the rate of 5600.73 arc 

seconds every 100 years, of which 5557.62 arc seconds belong the actual perihelion 

precession of Mercury, while the rest 43.11 arc seconds belong the observation 

effects or apparent phenomena caused by the observational locality (c<) of the 

optical agent OA(c). 

In this way, the actual orbital precession of Mercury and the historical data of 

astronomical observation provide the strong support for the theory of GOR, 

verifying the GOR prediction for the orbital precession of planets: in the Mercury’s 

orbital-precession data of the 5600.73 arc seconds every 100 years recorded by the 

optical observation agent OA(c), there is 43.11 arc seconds belonging to the 

observation effects or apparent phenomena of OA(c) and rooted from the 

observational locality (c<) of OA(c). 

The detailed discussion for the problem of Mercury’s orbital precession has 

made and stated in Chapter 16. 

BP-11 The Gravitational Deflection of Light 

BP-11.1 The Statement of the Problem 

The Problem of Gravitational Deflection of Light: Based on the principle of 

equivalence, Einstein predicted that light would be curved in gravitational spacetime, 

which is known as Einstein’s prediction of the gravitational deflection of light. 

Actually, Newton’s theory of universal gravitation could also draw the same 

conclusion. Before the formal establishment of general relativity, Einstein’s 

calculation of the gravitational deflection angle of light was the same as the 

calculation based on Newton’s theory of universal gravitation. However, after the 

formal establishment of general relativity, Einstein recalculated the gravitational 

deflection angle of light based on his general theory, which was twice Newton’s. 

So, who is right, Newton or Einstein? 

This is the big puzzle marked as BP-11 in the theory of OR. 

BP-11.2 The Mainstream View 

Einstein proposed that, by taking advantage of total solar eclipses to observe the 

starlight sweeping over the sun, the deflection angle of starlight could be determined, 

thereby his prediction for gravitational deflection of light could be verified. 

The theoretical values of Newton and Einstein are N and E, respectively: 
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where, G is the of universal gravitational constant, M is the mass of the sun, and RS 

is the radius of the sun; N =0.875 is Newton’s deflection angle of starlight, while 

E=1.75 is Einstein’s deflection angle of starlight. 

In 1919, the team led by British astronomer Eddington determined the starlight 

deflection angle through a total solar eclipse to be  =1.610.40, which tended to 

support Einstein’s prediction for the gravitational deflection of light. 

So far, almost all observations of total solar eclipses have tended to support 

Einstein’s prediction for the gravitational deflection of light. Therefore, as far as the 

gravitational deflection of light is concerned, the mainstream school of physics 

believe that Einstein’s theory of general relativity is better and more accurate than 

Newton’s theory of universal gravitation. 

BP-11.3 The View of GOR Theory 

It should be pointed out that: 

(i) Einstein’s observation agent is the optical agent OA(C), the speed c of light 

in Einstein’s deflection angle E is not only the moving speed v (c) of the 

photon m as the observed object P, but also the information-wave speed  

(=c) of the optical agent OA(c). 

(ii) Newton’s observation agent is the idealized agent OA, the speed c of light 

in Newton’s deflection angle N is only the moving speed v (c) of the 

photon m as the observed object P, but not the information-wave speed  

(=) of the idealized agent OA. 

Actually, it is natural for astronomical observations (including the observation 

of total solar eclipses) to support Einstein’s theory of general relativity, for 

Einstein’s theory of general relativity is the product of the optical observation agent 

OA(c), belonging to the theory of optical observation. 

Human astronomy, including the optical and the radio, employs the optical 

observation agent OA(c) to observe celestial phenomena. 

The support of observation or experiment for Einstein’s prediction of the 

gravitational deflection of light does not mean that Einstein’s theory of general 

relativity is better or more accurate than Newton’s theory of universal gravitation, 

let alone that Einstein’s theory of general relativity is more in line with the physical 

reality than Newton’s theory of universal gravitation. 

Newton’s theory of universal gravitation is the product of the idealized 

observation agent OA, belonging to the theory of idealized observation. If we could 

employ the idealized agent OA to observe the starlight sweeping over the sun, then 

we would find that the deflection angle of starlight is more in line with that 

calculated or predicted by Newton’s theory of universal gravitation. 

The idealized agent OA describes the objective and real physical world. 

In this regard, Newton’s theory of universal gravitation is more objective and in 
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line with the objectively physical reality than Einstein’s theory of general relativity. 

As stated in Sec. 17.4 of Chapter 17, based on the GOR two-body model of the 

celestial system (M,m), i.e., the GOR motion equation of photons in gravitational 

spacetime, where M is the sun and m is a photon, the theory of GOR could make the 

theoretical calculation for the gravitational deflection angle of starlight sweeping 

over the sun under the general observation agent OA(): GOR=OA(). 

According to the theory of GOR: as →c, the GOR motion equation of photons 

would reduce to Einstein’s motion equation of photons, and the GOR deflection 

angle GOR=OA() of starlight would converge to Einstein’s deflection E=OA(c) of 

starlight; as →, the GOR motion equation of photons would reduce to Newton’s 

motion equation of photons, and the GOR deflection angle GOR=OA() of starlight 

would converge to Newton’s deflection N=OA() of starlight. Due to the continuity 

and monotonicity of the solution to the GOR motion equation of photons, the GOR 

deflection angle GOR of starlight should satisfy: 

 ( )GORE N      (21.4) 

where GOR=GOR() depends on the observation agent OA(). So, for the same 

gravitational scene, under different observation agents, the starlight sweeping over 

the sun must exhibit different degrees of gravitational deflection. 

It is thus clear that different observation agents have different degrees of 

gravitational deflection of light: Newton’s theory of universal gravitation describes 

the gravitational deflection of light under the idealized observation agent OA, 

which is supported by objectively physical reality; Einstein’s theory of general 

relativity describes the gravitational deflection of light under the optical observation 

agent OA(c), which is supported by optical observation. 

Anyway, the objective and real gravitational deflection of starlight must be more 

in line with the predictions of Newton’s theory of universal gravitation. 

The detailed discussion for the problem of the gravitational deflection of light 

has made and stated in Chapter 17. 

BP-12 The Gravitational Redshift of Light 

BP-12.1 The Statement of the Problem 

The Problem of Gravitational Redshift of Light: Based on the principle of 

equivalence, Einstein predicted that the frequency of light would decay in 

gravitational spacetime, which is known as Einstein’s prediction of the gravitational 

redshift of light. Actually, Newton’s theory of universal gravitation could also draw 

the same conclusion. As far as the problem of the gravitational redshift of light is 

concerned, Einstein’s prediction and Newton’s prediction seem to be the same or 

approximate, with only differences in second-order approximation, which has no the 

observational distinguishability. 

People are accustomed to comparing Einstein’s theory of general relativity with 
Newton’s theory of universal gravitation. However, it is difficult for observation and 

experiment to identify or determine which one is better or more accurate on the 
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second-order small scale. 

So, why is this? 

This is the big puzzle marked as BP-12 in the theory of OR. 

BP-12.2 The Mainstream View 

In any case, the theory of gravitational redshift has been verified and confirmed 

by observations and experiments, for example, the observation of the solar spectrum 
[152-154] and the gravitational-redshift experiment of Mössbauer Effect [157-159]. 

However, these observations and experiments seem to support not only Einstein’s 

theory of gravitational redshift but also Newton’s theory of gravitational redshift. 

Whether for the observation of the solar spectrum or for the experiments of 

Mössbauer Effect, the observation agent is the optical observation agent OA(c). 

Therefore, it is understandable that the observational conclusions of OA(c) support 

Einstein’s theory of general relativity and Einstein’s prediction for the gravitational 

redshift of light under OA(c); but it is somewhat unreasonable that the observational 

conclusions of OA(c) supports Newton’s theory of universal gravitation and 

Newton’s prediction for the gravitational redshift of light under OA. 

The mainstream school of physics do not seem to fully understand the difference 

between different observation agents. 

The mainstream school of physics appears to be confused about Newton’s 

prediction under the idealized agent OA approximating Einstein’s prediction under 

the optical agent OA(c). And so far, they have had no convincing answer. 

BP-12.3 The View of GOR Theory 

The theory of GOR has already clarified in Chapter 18 that the current so-called 

the Newtonian formula (Eq. (18.20)) for the gravitational redshift of light is the 

pseudo Newtonian gravitational-redshift equation, which is the mixture of Newton’s 

theory of universal gravitation and Einstein’s theory of general relativity, as well as 

quantum theory. This is why the pseudo Newtonian gravitational-redshift equation 

(18.20) approximates Einstein’s gravitational-redshift. 

Based on the viewpoint of the theory of GOR, the gravitational redshift of light 

is the decay of photon kinetic energy, being the redshift of energy. Essentially, it is 

the transformation of different forms of energy, following the principle of 

conservation of energy. 

Under the principle of conservation of energy, the theory of GOR has redefined 

the concept of the gravitational redshift of light, which equivalently transforms the 

definition for the frequency redshift of Z= f / f into the definition for energy redshift: 

Z=K/K. 

According to the definition of energy redshift: Z=K/K, the theory of GOR has 

deduced the gravitational-redshift equation of light purely based on Newton’s 

classical mechanics and Newton’s law of universal gravitation, that is, the real 

Newtonian gravitational-redshift equation of light. 

Newton’s Gravitational-Redshift Equation (18.25) of Light: 
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where G is the gravitational constant, M is the gravitational source; as shown in Fig. 

18.2, rA and rB are respectively the distances of the points A and B from the 

gravitational source M; ZN is the redshift of light at the point A relative to the point 

B calculated purely by Newton’s classical mechanics and Newton’s law of universal 

gravitation, that is, the real Newtonian gravitational redshift. 

Newton’s gravitational-redshift equation (18.25) of light is different not only 

from the pseudo Newtonian gravitational-redshift equation (18.20), but also from 

Einstein’s gravitational-redshift equation (18.14) of light. 

Einstein’s Gravitational-Redshift Equation (18.14) of Light: 

2 2

B A

2 2
1 1 1E

GM GM
Z

r c r c
= − − −  

where ZE is Einstein’s gravitational redshift of light. 

The Pseudo Newtonian Gravitational-Redshift Equation (18.20) of Light: 
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where ZE is the pseudo Newtonian gravitational redshift of light. 

According to the statement in Chapter 18, as far as the problem of gravitational 

redshift for the solar spectrum: 

 and 2E PN N EZ Z Z Z   (21.5) 

Thus, it is clear that the pseudo Newtonian gravitational redshift ZPN is the same 

as or approximate to Einstein’s gravitational redshift ZE; the real Newtonian 

gravitational redshift ZN is different from Einstein’s gravitational redshift ZE, but is 

twice Einstein’s gravitational redshift: ZN=2ZE. This means that the gravitational 

redshift of light observed by the optical agent OA(c) is different from the 

gravitational redshift of light observed by the idealized agent OA. 

Based on the definition Z=K/K of energy redshift, the theory of GOR has 

theoretically derived the gravitational-redshift equation (18.38) for the general 

observation agent OA(): 
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This is the GOR gravitational-redshift equation of light in theory of GOR. 

As stated in Sec. 18.4.3 of Chapter 18, the GOR theory of gravitational redshift 

has generalized and unified Einstein’s theory of gravitational redshift and Newton’s 

theory of gravitational redshift: as →c, the GOR gravitational-redshift equation 

(18.38) or (21.6) of light would strictly converge to Einstein’s gravitational-redshift 

equation (18.14) of light; as →, the GOR gravitational-redshift equation (18.38) 
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or (21.6) would strictly converges to Newton’s gravitational-redshift equation (18.25) 

of light. This not only reflects the logical self-consistency of the GOR theory of 

gravitational redshift, but also confirms the theoretical validity of Newton 

gravitational-redshift equation (18.25)). Meanwhile, the GOR gravitational-redshift 

equation (18.38) or (21.6) of light indicates that, under different observation agents, 

light would exhibit different degrees of gravitational redshift. 

Like the problem of the gravitational deflection of light, it does not mean who is 

right that Newton’s gravitational redshift ZN of light is different from Einstein’s 

gravitational redshift ZE of light. It only means that the gravitational redshift 

observed by different observation agents is different from each other. The difference 

between Einstein’s gravitational redshift and Newton’s gravitational redshift is in 

essence the difference between the optical agent OA(c) and the idealized agent OA, 

which belongs to the differences in observation rather than the differences in the 

correctness of theories. 

The observation of the solar spectrum [152-154] and the experiment of gravitational 

redshift based on Mössbauer Effect [157-159], employing the optical agent OA(c) as 

the observation agent, naturally support Einstein’s prediction of the gravitational 

redshift of light. However, this does not mean that Einstein is right or Newton is 

wrong. If we could employ the idealized agent OA to observe the gravitational 

redshift of the solar spectrum, then we would find out that the objective and real 

gravitational redshift is more in line with Newton’s theory of gravitational redshift. 

The detailed discussion for the problem of the gravitational redshift of light has 

made and stated in Chapter 18. 

BP-13 Gravitational Waves 

BP-13.1 The Statement of the Problem 

Einstein’s Prediction of Gravitational Waves: In 1916, Einstein derived a 

wave equation from his field equation of general relativity, in which the wave in 

gravitational spacetime propagates at the speed c of light in vacuum. Einstein 

believed that the wave function in his wave equation represented gravitational 

radiation and might be called Gravitational Wave for it was related with the 

Newtonian gravitational radiation . Therefore, the corresponding wave equation is 

naturally referred to as the gravitational-wave equation. 

This is Einstein’s famous prediction of gravitational waves, which is based on 

Einstein’s theory of general relativity [164,165]. 

In 2015, LIGO announced that it had detected gravitational waves [161], and 

moreover, the speed of gravitational radiation or gravitational waves it detected was 

exactly the speed c of light in vacuum as predicted by Einstein. 

So far, the problem of gravitational waves seems to have been fully solved. 

However, there are many doubts about Einstein’s prediction of gravitational 

waves and about LIGO’s discovery of gravitational waves. The point is not whether 

gravitational waves really exist, but the problems: 

(i) Is the wave in Einstein’s wave equation really gravitational radiation or a 
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gravitational wave? Or, did Einstein correctly predict gravitational waves? 

(ii) Did LIGO really detect gravitational radiation or gravitational waves? 

(iii) Are gravitational waves really propagate at the speed c of light in vacuum as 

predicted by Einstein or as detected by LIGO? 

This is the big puzzle marked as BP-13 in the theory of OR. 

BP-13.2 The Mainstream View 

Constrained by the perspective of optical observation or the optical observation 

agent OA(c), the mainstream school of physics believe that Einstein’s prediction of 

gravitational waves, which is based on Einstein’s theory of general relativity, is 

theoretically valid and correct with no doubt. 

The theoretical supports for Einstein’s prediction of gravitational waves lie not 

only in the wave equation derived from Einstein field equation, but also in the 

retarded integral formula or retarded solution of Einstein field equation. 

Einstein’s Retarded Integral Formula (19.6): 
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Einstein’s Wave Equation (19.7): 
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According to the retarded solution (Eq. (19.6)) of Einstein field equation, 

Einstein concluded that gravitational interaction is not action at a distance: it takes 

time to cross space and propagate at the speed c of light in vacuum. 

According to Einstein’s wave equation (19.7), the wave function h−=h−(c,) 

is related with the Newtonian gravitational potential . Accordingly, Einstein 

believed that h−(c,) represented gravitational radiation and could be named as 

Gravitational Wave. Therefore, Einstein’s wave equation (19.7) is known as the 

gravitational-wave equation, which suggests that Einstein’s gravitational waves 

propagate exactly at the speed c of light in vacuum. 

In order to test and verify Einstein’s prediction of gravitational waves, the 

physics community has spent enormous manpower and material resources, as well 

as over 100 years of time, of which the most large-scale and representative operation 

is the LIGO project for detecting gravitational waves. 

The mainstream school of physics as always firmly believe that Einstein theory 

of general relativity and his prediction of gravitational waves are valid and correct. 

All observations or experiments revolve around how to affirm or support Einstein’s 

prediction of gravitational waves. Physicists strive to collect and even create the 

evidences that are beneficial for Einstein’s prediction of gravitational waves. 

It seems that no one has ever attempted to refute Einstein’s theory of general 

relativity and his prediction of gravitational waves. 
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It seems that the mission of physicists is not to test Einstein’s prediction of 

gravitational waves, but to make the first discovery of gravitational waves, and so as 

to win the Nobel Prize in Physics. 

In 2015, LIGO announced the first discovery of gravitational waves [161], and 

moreover, the speed of the gravitational waves detected by LIGO was exactly the 

speed c of light in vacuum, affirming Einstein’s prediction of gravitational waves. 

Sure enough, the LIGO team was awarded the 2017 Nobel Prize in Physics. 

BP-13.3 The View of GOR Theory 

According to the theory of GOR, no matter Newton’s theory of universal 

gravitation or Einstein’s theory of general relativity, no matter Newton’s law of 

universal gravitation or Einstein’s field equation, has no prior knowledge or 

information about the speed of gravitational radiation. Therefore, it is impossible for 

both Newton’s theory and Einstein’s theory to deduce an equation of gravitational 

waves or calculate the speed of gravitational waves. 

Of course, the theory of GOR does not suspect the existence of gravitational 

radiation or gravitational waves. 

However, common sense tells us that the speed of gravitational radiation or 

gravitational waves must be higher than the speed of light. Otherwise, how could 

gravitational waves or gravitons escape from a black hole and interact with the 

external matter through gravitational interaction? 

I. Einstein Mistakenly Predicted Gravitational Waves 

As clarified in Sec. 19.3 of Chapter 19, Einstein’s prediction of gravitational 

waves is a historic mistake. 

In Chapter 19, under the principle of GC, by analogizing and following the logic 

of Einstein’s deducing the retarded integral formula (Eq. (19.6) and wave equation 

(19.7) from Einstein field equation, the theory of GOR has derived the GOR 

retarded integral formula and GOR wave equation under the general observation 

agent OA(). 

The GOR Retarded Integral Formula (19.14): 
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The GOR Wave Equation (19.15): 
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where  is the information-wave speed of the general observation agent OA(). 

The GOR retarded integral formula and GOR wave equation derived from the 

GOR field equation are isomorphically consistent with Einstein’s retarded integral 

formula and wave equation, and has generalized Einstein’s retarded integral formula 

and wave equation. Einstein’s retarded formula and wave equation are only special 
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cases of the GOR retarded integral formula and GOR wave equation, which could 

hold true only if the observation agent OA() is the optical agent OA(c). 

It is worth noting that: for the GOR retarded integral formula and GOR wave 

equation, the wave function h−=h−(,) depends on the observation agent OA(); 

the wave speed is the information-wave  of OA(). 

This suggests that: the wave function h−(,) of the GOR wave equation is not 

the so-called gravitational wave, but the information wave of the observation agent 

OA(). Only if OA() is the optical agent OA(c), the wave speed  could be the 

speed c of light. The so-called retard or delay in the GOR retarded integral formula 

is not the delay of gravitational radiation caused by the locality of gravitational 

interaction, but the delay of observed information caused by the observational 

locality (<) of the observation agent OA(). 

Naturally, for the objective and real gravitational radiation or gravitational 

waves, the wave speed is determined, does not rely on observation or observation 

agents, which does not vary with the variation of observation agents. 

Therefore, the so-called GOR wave equation is actually the information-wave 

equation" of the general observation agent OA(), rather than the gravitational-wave 

equation. Einstein’s theory of general relativity is the theory of the optical agent 

OA(c); Einstein’s wave equation (19.7) is only a special case of the GOR wave 

equation (19.15), where the information wave is naturally the wave of light and the 

wave speed is naturally the speed of light. 

So, the theory of GOR has discovered that Einstein’s prediction of gravitational 

waves was actually a mistake: Einstein mistakenly regarded the information wave of 

the optical agent OA(c) in his wave equation as the wave of gravitational radiation. 

Of course: it is not that there is no gravitational wave; but that the gravitational 

waves predicted by Einstein are not gravitational waves. 

II. LIGO Mistakenly Discovered Gravitational Waves 

Since Einstein’s prediction of gravitational waves was a mistake, what should 

the gravitational waves discovered by LIGO be? 

has LIGO really discovered gravitational waves? 

The theory of GOR does not doubt the existence of gravitational waves. In the 

theory of GOR, the so-called gravitational wave refers to gravity or gravitational 

radiation. In this regard, LIGO did indeed detect the gravity or gravitational waves 

radiated by certain matter systems. However, they were not the gravitational waves 

came from distant binary-blackhole systems; the so-called merging or coalescing 

events of binary-blackhole systems are just the imagination of LIGO. 

As clarified in Chapter 19, LIGO’s gravitational-wave detection is not strictly 

empirical observation or experiment. LIGO’s detection relies half on listening and 

half on guessing. The only thing we could affirm is that LIGO heard the chirping 

sound from a certain matter system; while, the so-called binary-blackhole system 

and the merging or coalescing events are only LIGO’s computer simulation of 

virtual reality, which might not necessarily exist objectively. 

The so-called discovery of LIGO is actually just a mistake! 



332 

As clarified in Sec. 19.4 of Chapter 19, LIGO did not detect the gravitational 

waves erupted from the coalescing events of binary-blackhole systems. Instead, 

LIGO only detected some clumps of electromagnetic matter that swept over the 

earth and disturbed the LIGO detector at close quarters: gamma-ray bursts, X-rays, 

or other electromagnetic-particle clumps (EPCs) in various frequency bands, which 

were the gravitational radiation signals emitted by such EPCs. 

As depicted in Fig. 19.4: LIGO mistakenly regards the gravitational radiation of 

EPCs at close range as the gravitational waves came from distant binary-blackhole 

systems during merging or coalescing; LIGO mistakenly regards the moving speed 

of EPCs as the speed of gravitational radiation. 

III. The Basic Judgement of GOR 

In summary, based on the GOR information-wave equation (19.15), the theory 

of GOR has had the following basic judgments: 

(i) Einstein’s prediction of gravitational waves is a mistake 

Einstein’s theory of general relativity is the theory of the optical agent OA(c). 

The wave in Einstein’s wave equation (19.7) is not a gravitational wave, but the 

information wave (light wave) of the optical agent OA(c), and therefore, the speed 

of it is the speed c of light in vacuum. Einstein mistakenly treated the information 

wave of OA(c) as the wave of gravitational radiation. 

(ii) LIGO’s discovery of gravitational waves is a mistake 

The gravitational radiation signals or gravitational waves detected by LIGO are 

not gravitational waves erupted from the merging or coalescing events of 

binary-blackhole systems, but the gravity or gravitational waves radiated by the 

electromagnetic-particle clumps (EPCs) as matter systems as they swept over the 

earth and disturbed the LIGO detector at close range. The gravitational field of EPCs 

moves together with EPCs at the speed of light, but not that gravitational waves 

propagate at the speed of light. 

The theory of GOR does not suspect the existence of gravitational radiation or 

gravitational waves. However, no matter Einstein’s theory of general relativity or 

Newton’s theory of universal gravitation, or even the theory of GOR, has no prior 

information about gravitational waves and the speed of gravitational radiation. 

Therefore, it is impossible for Einstein and Newton and even GOR to deduce their 

gravitational-wave equations, let alone calculate the speed of gravitational radiation. 

One thing seems certain: the speed of gravity or gravitational radiation, or the 

speed of gravitational waves, is not the speed of light. 

Black holes are black because light or photons could not escape from them. 

However, no matter how black a black hole is, the gravitational waves or gravitons 

of it are not bound by itself. Suppose there is a huge black hole: according to the 

theory of black hole, no matter how big it could be, it could still radiate the 

gravitational waves or gravitons to the external spacetime. This suggests that the 

gravitational waves or gravitons must have the speed that far higher than the speed 

of light as calculated by Laplace [43] or Flandern [127]. 

Anyway, the speed of gravitational radiation or gravitational waves requires to 
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be measured or determined by observation and experiment. 

Physicists ever made arduous efforts to determine the speed of light. Perhaps, 

the measurement or determination of the speed of gravitational radiation or 

gravitational waves requires physicists to make more arduous efforts than measuring 

or determining the speed of light. 

The detailed discussion for Einstein’s prediction of gravitational waves and 

LIGO’s detection of gravitational waves has made and stated in Chapter 19. 

BP-14 Black Holes 

BP-14.1 The Statement of the Problem 

Black Holes: A class of celestial bodies with huge mass and huge density, 

which are dark or black because light or photons could not escape from black holes, 

and therefore, the observers outside black holes could not see or observe the light 

emitted by black holes. According to the definition of the so-called modern general 

relativity, a black hole refers to a celestial body whose spacetime curvature reaches 

the point where light could not escape from its Event Horizon. 

Einstein’s theory of general relativity has been established for over 100 years 

since 1915. Now, Einstein’s theory of general relativity is called the classical 

general relativity; while the so-called modern general relativity has newly been 

developed on the basis of Einstein’s general relativity, which mainly involves the 

important application of Einstein’s general relativity in cosmology and astrophysics, 

such as gravitational waves, black holes, binary-star systems, and the theory of 

quantum gravity. Nowadays, black holes play the important role in the modern 

general relativity. 

In 1916, Schwarzschild obtained the first exact solution of Einstein field 

equation [80], in which there is Schwarzschild’s line-element equation (15.8): 

1

2 2 2 2 2 2 2 2 2

2 2

2 2
d 1 d 1 d d sin d

GM GM
s c t r r r

c r c r
  

−

   
= − − − − −   
   

 

where there are two singularities: r=0 and r=2GM/c2. 

These two singularities are endowed with unique functions: 

(i) The singularity r=0 of the big bang: leading to the Big Bang; 

(ii) The singularity r=2GM/c2 of a black hole: leading to the event horizon of 

the black hole. 

This reminds us once again of Hawking’s words in his A Brief History of Time: 

From the Big Bang to Black Holes [31]: “Mathematics cannot really handle infinite 

numbers. At singularity, the theory itself breaks down or fails.” 

The Schwarzschild line-element equation (15.8) and the black-hole singularity 

suggests that, as the radius r of a static spherically-symmetric celestial body is less 

than 2GM/c2, an event horizon in the surrounding spacetime would be formed: 

rs2GM/c2 − entering this horizon means falling into a black hole, even light or 

photons could not escape from the black hole. Here, the horizon radius rs is called 
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the Schwarzschild radius. 

A black hole is a theoretical massive celestial object. In encyclopedias and 

literature, black holes are often described as incredible celestial bodies or the most 

mysterious natural phenomenon in the universe. The term black hole itself is 

clothed upon with a strong mysterious hue, which meets people’s psychology of 

seeking curiosity, and could be freely imagined. 

Black holes are actually not mysterious, but they are much more massive than 

other celestial bodies so that light or photons could not escape from them. 

Without Einstein’s theory of general relativity and the Schwarzschild singularity, 

Newton’s theory of universal gravitation could also produce the concept and theory 

of black holes. Based on Newton’s law of universal gravitation, the larger the mass 

of a celestial body, the stronger the gravity or gravitation of it, and the harder it is 

for a moving object to escape from it. It could be imagined that, as a celestial body 

is massive enough, it would become a black hole, even if light or photons moving at 

an immense speed fall into its event horizon, it could also not escape. 

Suppose there is a celestial body M, an object m moves at the speed v relative to 

M, the initial distance between M and m is R, and m tends to escape from M and fly 

towards the infinity. According to Newton classical mechanics: 
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where FG is the gravitational force exerted by the celestial body M on the moving 

object m. According to Newton’s formula of escape speed: whether the moving 

object m could escape from the celestial body M does not depend on the curvature of 

spacetime, but depends on the gravitational FG between M and m. 

If the moving object m is a photon, then v=c, R is the Schwarzschild radius. 

It is thus clear that Newton’s theory of universal gravitation could also produce 

the concept of black holes and deduce the theory of black holes. 

Naturally, the theory of GOR could also deduce the theory of black holes. 

Logically speaking, the existence of black holes seems to be reasonable, and the 

concept and theory of black holes could be theoretically deducible. However, 

whether the macroscopic matter motion or microscopic matter structure of black 

holes, there are too many unknowns about black holes for us. We could not even be 

completely certain whether black holes really exist. 

At present, human astronomy, including the optical and the radio, is the 

astronomy of the optical observation agent OA(c): we must employ light or 

electromagnetic interaction as the observation medium to observe or measure 

celestial phenomena or celestial motion. Naturally, the optical agent OA(c) could 

not break through the optical horizon of black holes. With regard to black holes, we 

have to guess: or based on Einstein’s theory of general of relativity, although it itself 

is only a partial theory; or based on purely mathematical deduction, although lacking 

clear and definite physical meaning. To this day, the black-hole theory of modern 

general relativity still lacks sufficient empirical evidence. 

So, black holes are still just a mystery to us. 
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This is the big puzzle marked as BP-14 in the theory of OR. 

BP-14.2 The Mainstream View 

The black-hole theory of modern general relativity represents the viewpoint or 

understanding of black holes held by the mainstream school of physics. The 

mainstream school of physics have not recognized that Einstein’s theory of general 

relativity is only a partial theory, and therefore, they do not think that, with regard to 

the concept and theory of black holes based on Einstein’s theory of general relativity, 

including the event horizon, gravitational singularity, photon sphere, accretion, 

gravitational collapse, ergosphere, Hawking radiation or Hawking evaporation, 

spacetime-coordinate transformation, and even black-hole thermodynamics, the 

logical premises might have logical flaws from the very beginning, and as a result, 

the logical consequences might not be valid or correct. 

Perhaps because of this, some scholars have questioned the authenticity or 

existence of black holes in recent years. 

It is worth mentioning the research of American scholar Mersini-Houghton in 

2014 [205,206], which involved Hawking’s theory of radiation or evaporation. Like 

Hawking, Mersini-Houghton also believes that the death and collapse of a star 

would be accompanied by Hawking radiation or Hawking evaporation, which could 

lead to the mass loss of the star. However, the difference is that Mersini-Houghton 

has mathematically proved that the mass lost with Hawking radiation is quite large 

so that the dead star could not form a black hole. 

Thus, Mersini-Houghton concluded that black holes do not exist at all! 

Actually, Mersini-Houghton’s theory, like theory of black holes, is also based on 

Einstein’s theory of general relativity and even on the modern general relativity. 

Therefore, Mersini-Houghton’s questioning of the black-hole theory is irrelevant to 

whether the theory of black holes is valid and correct, which only means that the 

modern general relativity, including the theory of black holes, logically lacks 

consistency and self-consistency. 

Nevertheless, the mainstream school of physics still believe that the black holes 

in the black-hole theory of modern general relativity are the objectively physical 

existence or the objectively celestial phenomena. Thus, the black-hole theory of 

modern general relativity has derived many myths of black holes. 

The Big Bang is exactly the most splendid myth of black holes. 

BP-14.3 The View of GOR Theory 

The theory of GOR repeatedly emphasizes that Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity are two partial theories of 

gravitational interaction in physics: Einstein’s theory is that of the optical 

observation agent OA(c), which would present the observation effects or apparent 

phenomena of OA(c) and would be valid only as we observe the physical world with 

light or the optical agent OA(c); Newton’s theory is that of the idealized observation 

agent OA, which describes the objectively physical world. 

Naturally, the black-hole theory of modern general relativity has been developed 
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on the basis of Einstein’s theory of general relativity (the so-called classical general 

relativity). So, why could not physics develop the black-hole theory on the basis of 

Newton’s theory of universal gravitation? 

The theory of GOR has generalized and unified the two great gravitational 

theories of Newton and Einstein, providing us with the new insight into the theory of 

black holes and into the reconstruction of the theory of black holes. 

I. Why are Black Holes Black? 

As for why black holes are black, Einstein and Newton share the same view: 

because light or photons could not escape from black holes. 

So, why could not light or photons escape from black holes? 

In this regard, the views of Einstein’s theory of general relativity and Newton’s 

theory of universal gravitation are different. Einstein believed that it was due to the 

curvature of spacetime: the spacetime in a black hole was too curved; Newton 

believed that it was due to the universal gravitation: the mass of a black hole was too 

great and hence had huge gravity. 

We do not fully understand how the curved spacetime prevents light or photons 

from escaping black holes, but we can understand that, under the enormous gravity, 

all moving matter objects (including light or photons) might be bound by the huge 

gravity of massive celestial bodies (such as a black hole). Of course, gravitational 

waves or gravitons might or must be exceptions. 

The theorem of Cartesian spacetime in the theory of GOR has proved that the 

objective and real spacetime would never be curved. 

We must abandon Einstein’s erroneous doctrine of spacetime curvature and 

return to Newton’s right stand: the reason why the earth orbits the sun, the reason 

why black holes are black, and the reason why light or photons could not escape 

from black holes, is not due to spacetime curvature, but due to the effects of 

universal gravitation, i.e., the gravitational interaction between matter and matter. 

II. The Event Horizons of Different Observation Agents 

According to the black-hole theory of modern general relativity, light or photons 

could not pass through the event horizon of a black hole, so the observers outside the 

event horizon could not see the black hole. Therefore, according to the black-hole 

theory of modern general relativity, black holes could not be directly seen or 

observed because they are dark and black. 

However, according to the theory of Observational Relativity (OR), whether 

black holes could be directly seen or observed does not depend on whether they are 

black or how black they are, but depends on observers’ observation agents. 

Einstein’s theory of general relativity is the theory of the optical observation 

agent OA(c), under which observers see or observe the world through light. The 

information wave of the optical agent OA(c) is light, which could not pass through 

the event horizon of black holes, and therefore, could not transmit the information 

inside black holes to the observers outside black holes. However, in the future, with 

the progress and development of science and technology, human beings will master 

the technology of superluminal observation agents, for example, the gravitational 
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observation agent OA(). As the theory of OR repeatedly emphasizes, the 

gravitational-wave speed  must be much higher than the speed c of light, as 

calculated by Laplace [43] or Flandern [127]. At that time, by taking advantage of the 

gravitational observation agent OA(), human beings will clearly see or observe the 

scene inside the optical horizon of black holes. 

Under the principle of GC, by analogizing or following the logic of 

Schwarzschild’s solving Einstein field equation [80], the theory of GOR has obtained 

the exact solution (Eq. (15.32)) of the GOR field equation of static 

spherically-symmetric gravitational spacetime under the general observation agent 

OA(), in which there is the GOR line-element equation (15.32): 
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where there are also two singularities: r=0 and r=2GM/2. 

The singularity r=2GM/2 of the general observation agent OA() can be 

called the GOR black-hole singularity of the general observation agent OA(), 

which means that, as the radius r of the static spherically-symmetric celestial body 

M is less than 2GM/2, the surrounding spacetime would form the OA() event 

horizon: rs()=2GM/2 is the radius of OA() horizon − outside the OA() horizon 

is the observable spacetime of OA(); inside the OA() horizon is the unobservable 

black hole of OA(). Entering the OA() horizon means falling into the black hole 

of OA(), the information wave or informons of OA() could not pass through the 

OA() horizon and could not transmit the information inside the OA() horizon to 

the observers outside the OA() horizon. 

In particular, suppose that OA() is a superluminal observation agent:  >c, 

then the OA() event horizon represents a super blackhole: rs()=2GM/2<rs(c) . 

Entering the OA() event horizon means falling into the super blackhole, even the 

superluminal information wave or informons of OA() ( >c) could not pass 

through the OA() horizon and could not transmit the information inside the OA() 

horizon to the observers outside the OA() horizon. 

It is obvious that rs()<rs(c)=2GM/c2 ( >c). Accordingly, a celestial body that 

is black and unobservable for the optical agent OA(c) might not necessarily be black 

or unobservable for a superluminal observation agent OA() ( >c). 

It is thus clear that the so-called Event Horizon of a black hole depends on the 

observation agents, and the radius rs=rs() of OA() event horizon is decided by the 

information-wave speed  of the observation agent OA(). 

III. To Reshape Black-Hole Theory with GOR 

The theory of black holes is the product of modern general relativity. 

Astrophysicist have made the theory of black holes based on Einstein’s theory of 

general relativity, and furthermore, have made the theory of Big Bang based on the 

theory of black holes. In this way, the so-called modern general relativity has been 

formed. The theory of black holes and the theory of Big Bang made by the modern 
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general relativity are actually built on the basis of Einstein’s theory of general 

relativity. However, the mainstream school of physics has not realized that 

Einstein’s theory of general relativity is only a partial theory of gravitational 

interaction, which is valid only under the optical observation agent OA(c). 

The theory of OR has already clarified that all relativistic effects, whether the 

inertial or the gravitational, are observational effects and apparent phenomena, not 

the objective and real natural phenomena or physical reality. The objectively 

physical world is what described by Galileo and Newton for us. What Einstein’s 

theory of relativity (whether the special or the general) described for us is only an 

optical image of the objective world, containing the observational effects and 

apparent phenomena of the optical observation agent OA(c), which does not 

completely represent the objective and real physical world. 

Einstein’s theory of general relativity is actually the partial theory of GOR 

theory. Naturally, the theory of black holes based on Einstein’s theory of general 

relativity could only be a partial theory under the optical observation agent OA(c). 

In particular, it must have the limitations and contain erroneous understandings 

rooted from Einstein’s theory of general relativity. 

If black holes really exist, then we need to reshape the theory of black holes. 

The theory of GOR has laid the base for the reshape of the black-hole theory. 

As stated earlier, the theory of GOR can also deduce the theory of black holes. 

Under the principle of GC, by analogizing and following the logic of modern 

general relativity making the theory of black holes under the optical agent OA(c), 

one would be able to build the GOR theory of black holes, that is, the black-hole 

theory of the general observation agent OA(). 

It could be imagined that, as the black-hole theory of the general observation 

agent OA(), the GOR theory of black holes must be able to generalize and unify 

the black-hole theory of the optical agent OA(c) and the black-hole theory of the 

idealized agent OA. In other words, it must be able to generalize and unify the 

black-hole theory based on Einstein’s theory of general relativity and the black-hole 

theory based on Newton’s theory of universal gravitation. In this way, the GOR 

theory of black holes should be logically consistent with both Einstein’s theory of 

black holes and Newton’s theory of black holes, and vice versa. Thus, the logical 

rationality and theoretical validity of the black-hole theory of modern general 

relativity would have to be tested by the GOR theory of black holes. 

The GOR theory of black holes theory will undoubtedly provide new ideas and 

new insights into the black-hole theory of modern general relativity. 

Now, the concept of Gravitational Wave Astronomy has been formed [144]. But 

that is just a pseudo concept of gravitational wave astronomy, where the so-called 

gravitational waves are not the real gravitational waves: the speed of gravitational 

waves is limited to the speed of light. A pseudo gravitational wave or a pseudo 

graviton moving at the speed of light could not break through the optical horizon of 

black holes, and therefore could not become the superluminal observation agent. 

In the future, only when they master the technology of the gravitational 

observation agent OA() (the gravitational-wave speed  >>c) will human beings 
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truly usher in gravitational wave astronomy. The gravitational observation agent 

OA() will transmit the information inside the event horizon of super blackholes (no 

matter how dark or how black they are) to the observers outside black holes. 

At that time, we will know what the real black hole looks like. 

BP-15 The Big Bang 

BP-15.1 The Statement of the Problem 

The Theory of Big Bang: At first, all matter in the universe curled up into one 

point, with extremely high mass-density and temperature, approaching or reaching 

the Big Bang singularity of Schwarzschild’s spherically-symmetric spacetime metric: 

rs=0, where space and time were meaningless, and spacetime was in the state of 

nothingness or nihility; Suddenly, there were a loud bang (no one could hear) and a 

dazzling flash (no one could see), and all matter erupted violently outward. Then, a 

new universe was born: the space began to expand; the time began to flow − until it 

has been evolving into the universe of today. 

The theory of the Big Bang is a myth, which is fascinating to talk about. 

Let us briefly review the formation of the theory of Big Bang. 

In 1927, Belgian cosmologist Lemaitre proposed a theory: a long long time ago, 

the universe was a Primeval Atom (according to the law of conservation of matter, 

it should have gathered all the matter including the mass and the energy in the 

universe today), and afterwards, the Primeval Atom exploded, forming the 

present-day universe. In 1929, American astronomer Hubble proposed Hubble’s law: 

the spectrum of galaxies exhibits redshift phenomena, and the spectrum redshift of a 

galaxy was proportional to the distance between the galaxy and the earth. Thereby, 

Hubble inferred that all galaxies were moving away from the earth or from each 

other, just like the scene during a huge explosion. This is Hubble’s doctrine of 

cosmic expansion, which provides an excellent annotation to Lemaitre’s doctrine of 

the Big Bang. In 1946, American physicist Gamow officially put forward the theory 

of Big Bang. Gamow built the concept and theoretical model of the Hot Big Bang: 

the universe had been formed by a Big Bang about 14 billion years ago. Later, with 

a more refined calculation, the time of the birth of the universe was determined to be 

13.8 billion years ago. In 1964, Penzias and Wilson discovered the cosmic 

microwave background (CMB) predicted by the theory of Big Bang. Hubble’s law 

and CMB are regarded as the key evidences for the theory of Big Bang. 

Naturally, in order to explain how the universe have been evolving from a 

Primeval Atom to the present-day universe, how the time began to flow from 

stillness, and how the space began to expand from zero, the theory of Big Bang 

could not be separated from Einstein’s theory of general relativity. In the theory of 

Big Bang of modern general relativity, Lemaitre’s Primeval Atom evolved into the 

singularity of Big Bang, also known as the Cosmic Singularity. Thus, the universe 

or spacetime has possessed flexibility: the time could be slowed or sped; the space 

could be shrunk or stretched. In this way, the time could begin to flow from 

stagnation, and the space could begin to expand from zero. 



340 

The mainstream school of physics firmly believes in the theory of the Big Bang. 

However, the voice of questioning the theory of Big Bang have never stopped. 

The simplest questions are often the most difficult questions for the theory of 

Big Bang to answer. 

Did the universe really need a starting point of space and time? 

Could all matter in the universe really be squeezed into the Primeval Atom? 

Was the Primeval Atom in motion or in motionless? 

If the Primeval Atom was in motionless, then there was no the Big Bang in the 

universe. If the Primeval Atom was in motion, then the spacetime would not be one 

4d point: the 1d time would not be stopped into stagnation; the 3d space would not 

be shrunk into the Primeval Atom or the Cosmic Singularity (rs=0). 

Before the Big Bang, was the universe always the Primeval Atom? 

Some people, including Einstein himself, ever imagined that Einstein’s field 

equation should be given a suitable cosmological constant, so that the universe could 

over and over explode to expand from the Cosmic Singularity, and then, shrink into 

the Primeval Atom. 

But why a huge celestial body might explode? How much mass might a celestial 

body need to explode? Why did all matter have to shrink to a single Primeval Atom 

or Cosmic Singularity before the universe exploded? 

In his book The First Three Minutes: A Modern View of the Origin of the 

Universe, Weinberg once observed [63]: “One possibility is that there never really 

was a state of infinite density. The Big Bang may have begun when the density of 

the universe had reached some very high but finite value.” 

So, what kind of high mass-density state would a celestial body have to reach 

before it could explode? Suppose that, after all the celestial bodies in the Milky Way 

exhaust their energy, the matter of the Milky Way collapses and shrinks into a high 

mass-density celestial body. Then, would it lead to a Big Bang? If so, does this mean 

the birth of a new universe? If so, does a supernova explosion mean the birth of a 

new universe? Although black holes are generally not as black as the Primeval 

Atom, according to the logic of modern general relativity, they might explode when 

they get black to a certain extent. So, does the explosion of a general black hole 

mean the birth of a new universe? Does the merging or coalescing of a 

binary-blackhole system means the birth of a new universe? 

We could not continue to imagine it, it would become even more absurd. 

The Primeval Atom, or the Cosmic Singularity before the Big Bang, was the 

greatest black hole. If Mersini Houghton’s theory or conclusion about the existence 

of black holes holds true, then the theory of Big Bang can not hold true. Actually, as 

stated in BP-14, Mersini-Houghton’s theory [205,206], like theory of black holes of 

modern general relativity, is based on Einstein’s theory of general relativity and the 

theory of quantum gravity. Alternatively, Mersini Houghton’s theory is also the 

product of modern general relativity. Therefore, at least, Mersini Houghton’s theory 

means that the so-called modern general relativity, including its theory of black 

holes and its theory of Big Bang, logically lacks consistency and self-consistency. 
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Has the universe of ours had really experienced the so-called Big Bang? 

This is the big puzzle marked as BP-15 in the theory of OR. 

BP-15.2 The Mainstream View 

Actually, the theory of Big Bang made by modern general relativity itself 

represents the views or understandings held by the mainstream school of physics 

about the evolution of the universe and the Big Bang. 

The mainstream school of physics believe that, before the Big Bang, the 

spacetime and matter of the universe curled up into one 4d point, known as the 

Cosmic Singularity or the Big-Bang Singularity: spacetime being infinitely curved, 

1d time being stagnant, 3d space being null, mass density being infinitely great, and 

matter temperature being infinitely high. At some time about 13.8 billion years ago, 

the universe exploded at the Big-Bang Singularity: the time began flowing, the 

space began expanding. 

Eventually, it has been evolving into the universe of today. 

This is the theory of Big Bang. 

The theory of Big Bang is based on two the fundamental principles: 

(i) The principle of universality: physical laws have universal applicability; 

(ii) the principle of cosmology: on large scales, the universe is homogeneous 

and isotropic. 

The theoretical basis of the Big-Bang theory involves: 

(i) Einstein’s theory of general relativity; 

(ii) The theory of quantum gravity. 

The main observational evidences supporting the Big-Bang theory include: 

(i) The cosmological redshift: Hubble’s law of cosmic expansion; 

(ii) The CMB: the Cosmic Microwave Background radiation; 

(iii) The abundance of light elements or primordial elements. 

The Timeline of Big Bang: 

Let us listen to the story of Big Bang about the universe.  

(i) Quantum Gravity Era (0−10−44s): The temperature of the universe reached 

infinity, and the virtual spacetime exploded. 

(ii) Planck Era (1 Planck Time: 10−43s): The universe spanned a region of 1 

Planck Length (10−35m), and the phase transition temperature was the 

Planck Temperature (1032K). 

(iii) Grand Unification Era (10−43−10−36s); At 10−43s, the phase transition of 

grand unification began, and the phase transition temperature was 1028K; 

during 10−43−10−36s, the real spacetime or vacuum was formed, the earliest 

elementary particles began to be created, and the force of gravity was 

separated from other fundamental forces. 

(iv) Inflationary Era (10−36−10−32s): The universe had undergone an extremely 

rapid exponential expansion, the so-called cosmic inflation, matter and 
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antimatter were asymmetric, quarks and leptons were separated. 

(v) Electroweak Era (10−32−10−12s): At 10−32s, the phase transition of 

electroweak unification began, and the phase transition temperature was 

1016K. 

(vi) Quark Era (10−12−10−6s): quarks, electrons and neutrinos formed. 

(vii) Hadron Era (10−6−1s): At 10−6, hadrons formed, quarks were confined, the 

temperature of the universe was 1012K. 

(viii) Lepton Era (1s−3min): Leptons and their antiparticles dominated, and the 

temperature of the universe was 1011K. 

(ix) Nucleosynthesis Era (3−20min): The nuclei of the simple elements of 

hydrogen, helium and lithium was formed, and the temperature of the 

universe was 1010K. 

(x) Photon Era (3min−2105years): The universe was filled with plasma, the 

energy of the universe was dominated by photons, and the temperature of 

the universe fell to 4000K. 

(xi) Galaxy Era (2105−109years): Primitive galaxies formed, and galaxies 

gradually evolved. 

(xii) Star Era (109−51010years): The stars formed, heavy elements formed, 

planets formed, and molecules formed. 

(xiii) Today (13.8 billion years): God created human beings who have observed 

the cosmic expansion and the 3K cosmic background radiation and have 

built the cosmic model of Big Bang based on Einstein’s theory of general 

relativity. 

Of course, there are many different versions of the story of Big Bang. 

However, in the view of OR theory, these are just fictional stories: the universe 

has never experienced the so-called Big Bang. 

BP-15.3 The View of GOR Theory 

It is the basic characteristic of relativistic effects or relativistic phenomena that 

they are apparently real but actually unreal. From the special relativistic effects to 

the general relativistic effects, from the invariance of light speed to spacetime 

curvature, from the gravitational redshift of light and the gravitational deflection of 

light to the orbital precession of planes, from Einstein’s prediction of gravitational 

waves to LIGO’s detection of gravitational waves, from cosmological redshift to 

Hubble’s law of cosmic expansion, from the theory of black holes to the theory of 

Big Bang, all these have reflected this basic characteristic. Now, from the classical 

general relativity to the modern general relativity, the characteristic of this sort has 

been continued and strengthened. 

As clarified by the theory of OR, Einstein’s theory of relativity, including the 

special and the general, is the theory of the optical observation agent OA(c). The 

optical agent OA(c) has the observational locality (c<), which presents to 

observers the optical image of the objective world, that is, the phenomena of optical 

observation rather than the essence of the physical world. This is the reason why 
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relativistic effects or relativistic phenomena are apparently real but actually unreal. 

So, the theory of Big Bang, which are based on Einstein’s theory of general 

relativity are equally apparently real but actually unreal. 

I. The Big Bang and Einstein’s General Relativity 

The theory of Big Bang, like the theory of black holes, is the product of modern 

general relativity. The so-called modern general relativity, including the theory of 

quantum gravity, is mainly based on Einstein’s theory of general relativity. 

However, the physicists whose made the theory of Big Bang have not realized 

that Einstein’s theory of general relativity is the partial theory relying on the optical 

observation agent OA(c), and have not correctly understand Einstein’s theory of 

relativity, including the special and the general. Alternatively, while making the 

theory of Big Bang, they did not realize that: all relativistic phenomena are in 

essence observational effects or apparent phenomena. 

The relativistic effects in Einstein’s relativity theory, such as the spacetime 

curvature, spacetime transformation, space expansion, time expansion, mass-energy 

transformation, and quantum-energy perturbation derived from the principle of 

uncertainty, have already become indispensable elements of the Big-Bang theory. 

The Big Bang of the universe began with the fictional virtual spacetime, where 

space and time were meaningless: time is stagnant, space is null, and then, there was 

a fictional quantum-energy perturbation triggering the Big Bang and leading to the 

extremely rapid exponential expansion of the universe. 

The theory of OR repeatedly emphasizes that the relativistic effects in Einstein’s 

relativity theory is not the objective and real physical reality. In the theory of GOR, 

the theorem of Cartesian spacetime has proved that spacetime could never be curved. 

In the objective and real physical world, time and space are independent of each 

other: time could never dilate and space could never extend; mass and energy are 

independent of each other: energy must be conserved and mass must also be 

conserved. As stated in the big puzzle BP-06 in Chapter 9 of the 1st volume of OR, 

Heisenberg’s uncertainty is in essence the observational uncertainty that cannot 

generate the so-called quantum perturbation or quantum fluctuation. 

Since spacetime could never be curved, the universe would never be curled up 

into the so-called Primeval Atom or Big-Bang singularity: time would never be 

stagnant and space would never be shrunk into one point. Since there is no 

Heisenberg’s quantum perturbation or quantum fluctuation, even if all matter in 

the universe was accumulated together, the Big Bang could not be triggered. Even if 

the all matter of the universe was accumulated together with extremely high density 

and temperature and led to the Big Bang, it would not mean the birth of a new 

universe or the new beginning of time. Even if the Big Bang really happened, it 

would only be an event at a certain time point in the evolution of the universe. 

The theory of Big Bang employs Einstein’s theory of general relativity as the 

main theoretical foundation of its own. However, according to the theory of GOR, 

Einstein’s theory of general relativity is a partial theory, i.e., the theory of optical 
observation, which is valid only under the optical agent OA(c), and the general 

relativistic effects or gravitational relativistic effects are not the objective and real 
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physical reality. Therefore, Einstein’s theory of general relativity is logically 

difficult to serve as the theoretical foundation of the Big-Bang theory. 

So, without Einstein’s theory of general relativity as the theoretical foundation 

of modern general relativity could the theory of Big Bang still hold true? 

II. Hubble’s Law: 

Hubble’s Interpretation for Cosmological Redshift 

The so-called observational evidences supporting the theory of Big Bang, such 

as cosmological redshift, cosmic microwave background radiation, the abundance of 

light elements, primordial gas clouds, and galactic evolution and distribution, might 

have an infinite number of possible interpretations, and not the evidences or source 

materials specifically prepared for the theory of Big Bang. 

The most important and direct observational evidence listed in the theory of Big 

Bang is naturally Hubble’s cosmological redshift. In particular, when interpreted by 

Hubble’s Law, the cosmological redshift became the crucial foundation and pillar of 

the theory of Big Bang made by the modern general relativity. 

Astronomical observations indicate that the spectra of starlight observed by the 

observers of the earth exhibit the redshift phenomenon of frequencies, and moreover, 

the farther away from the earth a star is, the more significant the spectral redshift of 

it is. In other words, the spectral redshift Z of starlight is directly proportional to the 

co-moving distance D the star. 

Under the optical agent OA(c), it follows that: 
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where Z is the cosmological redshift of starlight, fe and fO are the emission frequency 

and observational frequency of light respectively, e and O are the emission 

wavelength and observational wavelength of light respectively, RED is the redshift 

coefficient, and D is the co-moving distance of the star. 

Hubble speculated that the cosmological redshift, like the Doppler effect, was 

caused by the recession of stars or galaxies relative to the earth. 

Let vr be the recession velocity of a galaxy or a star, then according to the 

Fizeau-Doppler formula, it follows that: 
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where the minus sign “−” represents the spectral shift to red. 

Thus, Hubble’s law was born [112]: 

 ( )0 0;r r EDv H D v cZ H cR= = =  (21.10) 
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where vr the recession velocity of the galaxy, H0  is the Hubble constant. 

It is generally believed that H0, vr, and D change with the expansion of the 

universe; while H0=70.4+ 1 . 3
−1 . 4  km/s/Mpc is only the Hubble constant of the 

present-day universe. 

Hubble’s Law: According to Eq. (21.10), all celestial bodies or galaxies in the 

universe are rapidly retreating relative to the earth, and the farther away from the 

earth a galaxy is, the higher the recession velocity of it is. 

Hubble’s Theory of Cosmic Expansion: According to Hubble’s law, Hubble 

further inferred that the present-day universe is rapidly expanding, just like the scene 

presented after a Big Bang. 

The Hubble Distance: According to Hubble’s law, there must be a certain 

distance DH from the earth, known as the Hubble distance, where the recession 

velocity vr of celestial bodies or galaxies has reached the speed c of light, and 

therefore, the optical observers on the earth could not observe the celestial bodies or 

galaxies beyond the Hubble distance of DH. 

Naturally, the Hubble distance DH could be calculated by Hubble’s law: 
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The mainstream school of physics believes that Hubble’s Law of cosmic 

expansion is the significant discovery that has laid the foundation of modern 

cosmology and is the indispensable component of the theory of Big Bang. 

However, the universe might not really follow Hubble’s law. 

Or rather, the universe might not really be expanding. 

III. The Law of Light Traveling: 

the GOR Interpretation for Cosmological Redshift 

With regard to the cosmological redshift of starlight, originally, there could have 

been an infinite number of possible interpretations. Perhaps, inspired by Lemaitre’s 

explosion doctrine of Primeval Atom, which predicted the expansion of the 

universe based on Einstein’s theory of general relativity, Hubble conceived 

Hubble’s law of cosmic expansion. 

Actually, based on the definition and interpretation of the gravitational redshift 

of light in Chapter 18 in the 2nd volume of OR, the redshift of spectral, no matter the 

gravitational redshift of light or the cosmological redshift of starlight, from the 

perspective of waves, it is the frequency decay of light or starlight, this is only a 

phenomenon; from the perspective of particles, it is the energy decay of light or 

photons, this is the essence. 

Astronomers’ observation of the gravitational redshift of starlight belongs to 

optical observation. Naturally, the observation agent OA() is the optical agent 

OA(c), where the kinetic energy K of photons is K=hf (that is, Planck’s energon 

equation: E=hf). Thus, the cosmological redshift ZK=K/K defined based on the 

kinetic-energy decay of light or photons is equivalent to the cosmological redshift 

Z= f / f defined based on the frequency decay of light or photons: 
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where Ke and KO represent the emission kinetic energy of photons and observational 

kinetic energy of photons, respectively; the cosmological redshift ZK of starlight 

represents the kinetic-energy decay of photons, while Z represents the frequency 

decay of starlight. 

Thus, Hubble’s Law should be reshaped into the law of light traveling: 
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where ZK represents the kinetic-energy redshift (decay) of photons, and RED is the 

kinetic-energy redshift (decay) coefficient of photons, that is, the ratio of the Hubble 

constant H0 to the speed c of light in vacuum; pc (3.2616 light-years) is the 

photometric distance, and M=106. 

The GOR law of Light Traveling: According to Eq (21.13), while light or 

photons emitted by stars or galaxies is traveling in the universe, the kinetic-energy K 

of the light or photons gradually decays and the frequency gradually shifts to red. 

The redshift or decay of the kinetic energy ZK=K/K of a photon is proportional to 

the co-moving distance D of the star that emits the photon: |ZK |=R EDD. The larger 

the distance D between the star and the earth, the more significant the redshift or 

decay of photons’ kinetic energy is. 

The GOR law of light traveling is self-evident. the rationality of the GOR law of 

light traveling is obvious: taking a bullet leaving a rifle as an example, the kinetic 

energy of the bullet will inevitably decay gradually, and ultimately, it will stop 

moving due to the depletion of its kinetic energy; the motion of light or photons in 

the universe is in theory the same as that of the bullet. The universe is not a pure 

vacuum or the free spacetime: just like a bullet flying in the atmosphere, a photon 

traveling in the universe must consume energy. 

Waves, such as light waves and sound waves, could always keep their specific 

speeds regardless of whether they are moving in vacuum, atmosphere, or water. 

Therefore, in the same medium, light waves of different frequencies or sound waves 

of different frequencies have the same speeds. It could be imagined that waves have 

a sort of mechanism to keep their specific speeds: as their kinetic energies decay, 

waves could keep their specific speeds by reducing their frequencies; as their kinetic 

energies grow, waves could keep their specific speeds by raising their frequencies. 

In this way, a photon could fly in the universe at the specific speed c before its 

kinetic energy has been depleted. With the gradual decay of energy, the frequency of 

the photon would gradually red-shift until the kinetic energy of the photon has been 

depleted, and finally, the photon has to stop its moving in the universe. 

Naturally, due to the limited energy of light or photons, there must be the limited 

time or the limited space as the upper limit for light or photons to travel in the 

universe. According to the GOR law of light traveling, the upper bound of the 

distance that light or photons could travel in the universe might be called the GOR 
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Distance of Light Traveling. 

The GOR Distance of Light Traveling: According to the GOR law of light 

traveling, there must exist an upper limit DGOR of the distance for light or photons to 

travel in the universe. For stars or galaxies that are beyond the distance of DGOR 

away from the earth, the starlight emitted by those stars or galaxies could never 

reach the earth due to the limitation of energy, and therefore, the observers of the 

earth could not see or observe those stars and galaxies. 

The relative redshift (decay) ZK=1 of the kinetic energy of light or photons 

represents the depletion of the kinetic energy Ke of light or photons. At this point, 

the corresponding the co-moving distance D of stars or galaxies is the upper limit 

DGOR of the distance for light or photons to travel in the universe. 

According to the GOR law of light traveling (Eq. (21.13)): 

 
( )

( )

1 3

GOR 0

10

4.255 10 Mpc

1.388 10 ly 1

ED

K

D R c H

Z

−
= =  

  =
 (21.14) 

where, according to the data provided by the International Organization for 

Standardization (ISO), the distance DGOR of light traveling in the universe is 

approximately 13.9 billion light-years. 

One could make a comparison: a bullet can fly in the earth’s atmosphere only 

within the flight distance of about 1000m and the flight time of about 2s; a photon 

can fly in the universe for up to the flight distance of 13.9 billion light-years and the 

flight time of 13.9 billion years. 

So, what exactly lead to the cosmological redshift of starlight, the cosmic 

expansion after the Big Bang or the energy decay of light? What law exactly the 

cosmological redshift of starlight follows, Hubble’s law of cosmic expansion or the 

GOR law of light traveling? 

IV. The Universe Has No Hubble Distance and Hubble Expansion. 

It is very interesting that the GOR distance DGOR (Eq. (12.14)) of light traveling 

is exactly equal to the Hubble distance DH (Eq. (21.11): DGOR=DH. 

The GOR distance of light traveling and the Hubble distance share a common 

meaning: at this distance, the light or photons emitted by stars or galaxies are 

unobservable by the observers of the earth. 

However, it is worth noting that the GOR distance and the Hubble distance are 

two completely different concepts: the GOR distance DGOR is the upper bound of 

photon flight distance; while the Hubble distance means, at the distance of DH, the 

stars or galaxies recede relative to the earth at the speed c of light. 

So, according to Hubble’s law, you must ask: if the distance between a star and 

the earth is greater that the Hubble distance, will the recession velocity of the star 

relative the earth be higher than the speed c of light? Is this not contrary to 

Einstein’s principle of the invariance of light speed? 

Actually, there is no the so-called Hubble distance in the universe: it is very 

difficult for us to imagine that there are celestial bodies or galaxies in the universe 

moving at light speed or superluminal speed relative the earth 
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However, the GOR distance of light traveling is necessary: no matter particle 

could travel endlessly in the universe without consuming energy. 

The GOR law of light traveling and the GOR distance of light traveling tell us 

that: Hubble’s doctrine of cosmic expansion is not the objectively physical reality, 

but just a conjecture in pursuit of the myth of the Big Bang. 

The phenomenon of cosmological redshift is not the effect of cosmic expansion, 

but the manifestation of the kinetic-energy redshift or decay of light or photons 

traveling in the universe, that is, the effect of the kinetic-energy redshift or decay of 

light or photons. 

The kinetic-energy redshift or decay of light or photons traveling in the universe 

is inevitable and not a conjecture; while the recession of celestial bodies or galaxies 

or the expansion of the universe is purely an imagination or a conjecture. 

V. The Universe Has Never Experienced the Big Bang. 

As a matter of fact, from the beginning of the Primeval Atom, the theory of the 

Big Bang has only been a myth that caters to the psychology of curiosity. 

Now, without Hubble’s Law, without the cosmic expansion of the universe, 

could the theory of Big Bang still hold true? 
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GOR Summary 

In 1915, based on Einstein’s theory of special relativity, under the principle 

of equivalence and the principle of general covariance, starting from the 

hypothesis of the invariance of light speed, Einstein established the theory of 

general relativity and expounded the relativistic phenomenon of gravitational 

spacetime and gravitational interaction. Einstein’s theory of general relativity has 

been verified and supported by observation and experiment. Einstein believed that 

the gravitational relativistic effects or phenomena were the essential characteristics 

of gravitational interaction. 

Einstein’s theory of general relativity has been established for over 100 years. 

Now, the mainstream school of physics still believe that gravitational relativistic 

phenomena are the essential characteristics of gravitational interaction. 

In the 2nd volume of OR: Gravitationally Observational Relativity (GOR), 

under the principle of general correspondence (GC), the theory of OR has 

established the GOR three principles as the axiom system of GOR theory: (i) the 

principle of GOR equivalence; (ii) the principle of GOR covariance; (iii) the 

principle of the invariance of information-wave speeds. Based on the three 

principles of GOR, by analogizing or following the logic of Einstein’s general 

relativity, the theory of OR has derived the GOR gravitational-field equation, 

generalizing and unifying Newton’s field equation and Einstein’s field equation; and 

furthermore, has established the whole theoretical system of GOR, named as the 

theory of Gravitationally Observational Relativity (GOR), generalizing and 

unifying Newton’s theory of universal gravitation and Einstein’s theory of general 

relativity, i.e., the two great gravitational theories in physics, revealing the root and 

essence of the relativistic effects of gravitational interaction. 

The theory of GOR is not only the challenge to Newton’s theory of universal 

gravitation and Einstein’s theory of general relativity, but also the development of 

Newton’s gravitational theory and Einstein’s gravitation theory. 

The principle of the invariance of information-wave speeds was originally the 

logical consequence of the theory of IOR. Now, it has become the most fundamental 

logical premise of the theory of GOR, the so-called Gravitationally Observational 

Relativity or General Observational Relativity (GOR). 

Like in the theory of inertia motion, observation plays an indispensable role in 

the theory of gravitational interaction. 

The theory of GOR has clarified that Newton’s law of universal gravitation is 

the gravitational model for idealized observation, and Einstein’s field equation is the 

gravitational model for optical observation; Newton’s theory of universal gravity is 

the gravitational theory for idealized observation, and Einstein’s theory of general 

relativity is the gravitational theory for optical observation. Newton’s theory of 

universal gravitation is the true portrayal of gravitational spacetime and gravitational 
interaction, while Einstein’s theory of general relativity is only the optical image of 

gravitational spacetime and gravitational interaction. 
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This is the origin of the name of Gravitationally Observational Relativity or 

General Observational Relativity (GOR). 

The new theory leads to the new discoveries. 

The theory of GOR provides new insights into physics. 

The theory of GOR has discovered that: Spacetime is not really curved. 

According to the theorem of Cartesian spacetime in the theory of GOR, all 

gravitational relativistic effects are observational effects and apparent phenomena. 

The theory of GOR tells us that: the scientific predictions based on Einstein’s theory 

of general relativity are not more accurate than the scientific predictions based on 

Newton’s theory of universal gravitation; Einstein’s prediction of gravitational 

waves is a mistake, and LIGO did not detect the gravitational waves came from deep 

space; Hubble’s cosmological redshift does not mean the expansion of the universe, 

and the universe has never experienced the so-called Big Bang. 

The elements of GOR theory, or the contents of the 2nd volume of OR: 

Gravitationally Observational Relativity (GOR), can be summarized as follows. 

(i) The Essence of Gravitational Relativistic Effects 

The theory of GOR has discovered that, like inertial relativistic effects, the 

gravitational relativistic effects or phenomena are in essence observational effects 

and apparent phenomena, but not the essential characteristics of gravitational 

spacetime and gravitational interaction. 

(ii) The Root of Gravitational Relativistic Effects 

The theory of GOR has discovered that, like inertial relativistic effects, the root 

of gravitational relativistic effects or phenomena lies in the observational locality − 

the speeds of observation media transmitting the information of observed objects to 

observers are all finite: it takes time for the observed information to cross space. 

(iii) Spacetime is not Really Curved 

According to the theory of GOR, under different observation agents, spacetime 

exhibits different degrees of curvature. This means that: spacetime is not really 

curved; the so-called spacetime curvature is actually an observational effect or an 

apparent phenomenon, depending on observational agents and rooted from the 

observational locality of observational agents. The optical agent OA(c) (c<) is just 

like a wide-angle lens, making the gravitational spacetime in Einstein’s theory of 

general relativity appear somewhat curved or deformed. 

(iv) The Problem of Photon Rest Mass 

In the 1st volume of OR, the theory of IOR has already clarified that: any 

particle of matter, including photons, must have the rest mass mo of its own, that is, 

the intrinsic mass of it, which is the objectively real mass and has real gravitational 

effects. Now, in the 2nd volume of OR, based on the theory of GOR gravitational 

redshift, the theory of GOR has calculated and predicted that: the rest mass mo of a 

photon is actually the relativistic mass m of it − mo=m=hf /c2 (see Eq. (18.46) in 

Chapter 18). This conclusion may have the enlightening meaning to the 

experimental physicists who are dedicated to detecting the rest mass of photons. 
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(v) The Perihelion Precession of Planetary Orbits 

In the theory of GOR, the GOR model of the celestial two-body system (M,m) 

has generalized Einstein’s celestial two-body model and can also calculate and 

predict the perihelion precession of planetary orbits. However, the theory of GOR 

has discovered that this sort or precession depends on observation and observation 

agents: under different observation agents, the perihelion of a planet exhibits 

different precession rates. This suggests that the precession rate predicted by the 

GOR motion model of planets is only an observational effect or an apparent 

phenomenon. Einstein’s celestial two-body model is a special case of the GOR 

celestial two-body model; and therefore, Einstein’s prediction of Mercury’s 

perihelion-precession rate of the 43.03 arcseconds every 100 years is only the 

apparent phenomenon presented by the optical agent OA(c), but not the objectively 

real precession of Mercury’s perihelion. As a matter of fact, whether the theory of 

GOR or Einstein’s theory of general relativity, the idealized celestial two-body 

model cannot predict the actual precession of planetary orbits, including Mercury’s 

actual precession of the 5557.62 arcseconds every 100 years. 

(vi) The Gravitational Deflection of Light 

In the theory of GOR, the GOR model of the gravitational deflection of light has 

generalized Einstein’s model of the gravitational deflection of light and Newton’s 

model of the gravitational deflection of light, and can also predict the gravitational 

deflection angle of light. However, the theory of GOR has discovered that this sort 

of gravitational deflection depends on observation and observation agents: under 

different observation agents, the light in gravitational spacetime exhibits different 

degrees of deflection. This suggests that the gravitational deflection of light 

predicted by the GOR model of the gravitational deflection of light contains the 

observational effects or apparent phenomena of observation agents. 

As far as the deflection angle of starlight passing over the sun is concerned: 

Newton’s prediction is N=0.875; while Einstein’s prediction is E=1.75, being 

twice Newton’s prediction. 

Astronomical observation tends to support Einstein’s prediction. However, this 

does not mean that Einstein’s theory of general relativity is better than Newton’s 

theory of universal gravitation. On the contrary, according to the theory of GOR, 

Newton’s prediction is the observational value of the idealized observation agent 

OA, representing the objective and real gravitational deflection of light; while 

Einstein’s prediction is the observational value of the optical observation agent 

OA(c), which, although supported by OA(c), contains the optical observation effects 

or apparent phenomena of OA(c), is not completely objective and real. Actually, the 

gravitational deflection of starlight observed during total solar eclipses provides 

another enlightening empirical evidence for the theory of GOR. 

(vii) The Gravitational Redshift of Light 

In the theory of GOR, the GOR model of the gravitational redshift of light has 

generalized Einstein’s model of the gravitational redshift of light and Newton’s 

model of the gravitational redshift of light, and can also predict the gravitational 

redshift of light. However, the theory of GOR has discovered that this sort of 
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gravitational redshift depends on observation and observation agents: under different 

observation agents, the light in gravitational spacetime exhibits different degrees of 

redshift. This suggests that the gravitational redshift of light predicted by the GOR 

model of the gravitational redshift of light contains the observational effects or 

apparent phenomena of observation agents. 

As far as the gravitational redshift of the solar spectrum is concerned: Newton’s 

prediction is ZN=−4.1410−6; while Einstein’s prediction is ZE=−2.1210−6, being 

only half of Newton’s prediction. 

According to the theory of GOR, Newton’s prediction is the observational value 

of the idealized agent OA, representing the objective and real gravitational redshift 

of light; Einstein’s prediction is the observational value of the optical agent OA(c), 

which, although supported by OA(c), contains optical observational effects and is 

not completely objective and real. 

(viii) GOR’s Information Waves and Einstein’s Gravitational Waves 

Based on the gravitational-field equation in his general relativity, Einstein 

derived a wave equation, in which the wave had the factor  /c2 with the Newtonian 

gravitational potential  and the light speed c. Accordingly, Einstein believed that is 

a gravitational wave, and made the famous prediction: there were gravitational 

waves propagating at the speed c of light in gravitational spacetime. 

From the GOR gravitational-field equation, the theory of GOR has also derived 

a wave equation that is isomorphically consistent with Einstein’s wave equation, in 

which the wave has the factor  /2 with the Newtonian gravitational potential  and 

the information-wave speed  of the general observation agent OA(). The GOR 

wave equation has generalized and unified Einstein’s wave equation and Newton’s 

wave equation (that is, Laplace equation). This suggests that the wave in the GOR 

wave equation is the information wave of the general observation agent OA(), and 

the wave speed naturally depends on the information-wave speed  of the general 

observation agent OA(). 

It is thus clear that: the wave in Einstein’s wave equation is not a gravitational 

wave, but rather the information wave of the optical observation agent OA(c) that 

transmits the information of observed objects at the speed c of light. 

(ix) GOR and the Expansion of the Universe 

Hubble’s doctrine of cosmic expansion and Einstein’s theory of general 

relativity are the important evidence and theoretical foundation for the theory of Big 

Bang. However, there seems to be contradiction between Hubble’s doctrine and 

Einstein’s theory: Einstein believed that the speed of light could not be exceeded; 

Hubble believed that galaxies at Hubble’s distance regressed relative to earth at the 

speed of light, and naturally, the galaxies beyond Hubble’s distance regressed at a 

speed faster than the speed of light. It is unimaginable that massive galaxies could 

move relative to earth at the speed of light or even faster than light. Of course, what 

the theory of GOR questions is not only the recession velocity of galaxies, but also 

the doctrine of cosmic expansion: the spectrum redshift of starlight, the so-called 

cosmological redshift, does not mean that the universe is expanding. In the view of 
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GOR theory, the redshift of light is the kinetic-energy redshift or decay of photons. 

The observers of the earth could not observe the starlight emitted by the stars or 

galaxies beyond the Hubble distance, not because the stars or galaxies are retreating 

at the speed faster than light, but because the energy of light or photons is limited 

and the long-distance travel of light or photons must consume energy. So, it is 

impossible for starlight to cross the Hubble distance (rightly the GOR distance of 

light traveling) to reach the earth. 

Actually, the phenomenon of cosmological redshift does not mean the so-called 

cosmic expansion or the expansion of the universe. Cosmological redshift follows 

the GOR Law of Light traveling rather than Hubble’s Law of cosmic expansion. As 

clarified in BP-15 of Chapter 21, the cosmological redshift is the manifestation of 

the kinetic-energy redshift or decay of starlight traveling over long distances in the 

universe. Naturally, the farther the distance from the earth, the more significant the 

energy redshift or decay is. 

(x) GOR and the Big Bang 

Einstein’s theory of general relativity is the important theoretical foundation of 

the theory of Big Bang. However, those cosmologists, who are keen on the theory of 

Big Bang, have not realized that Einstein’s theory of general relativity is only a 

partial theory and the physical model of optical observation, which is effective and 

valid only when the observation agent OA() is the optical agent OA(c). Since 

cosmologists could create the theory of Big Bang under the optical observation 

agent OA(c), they could also create the theory of Big Bang under the general 

observation agent OA(). Naturally, based on Newton’s theory of universal 

gravitation, cosmologists could also create the theory of Big Bang under the 

idealized observation agent OA. 

The Hubble doctrine of cosmic expansion and Einstein’s theory of general 

relativity are the two pillars of the theory of Big Bang. In the view of the theory of 

GOR, the cosmological redshift of starlight does not mean the expansion of the 

universe. So, could the theory of Big Bang still hold true without Einstein’s theory 

of general relativity and Hubble’s doctrine of cosmic expansion? 

(xi) The GOR Gravitational-Field Equation: 

Generalizing and Unifying Newton and Einstein’s Field Equations 

The Poisson-equation form of Newton’s law of universal gravitation is the 

gravitational-field equation of the idealized observation agent OA; while Einstein’s 

field equation in Einstein’s theory of general relativity is the gravitational-field 

equation of the optical observation agent OA(c). In the theory of GOR, the GOR 

field equation is the gravitational-field equation of the general observation agent 

OA(). The GOR gravitational-field equation has generalized and unified Newton’s 

field equation and Einstein’s field equation: as →c, the GOR field equation would 

strictly (rather than approximately) converge to Einstein’s field equation; as →, 

the GOR field equation would strictly (rather than approximately) converge to 

Newton’s field equation. 
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(xii) The Theory of GOR: 

Generalizing and Unifying Newton’s Theory of Universal Gravitation 

and Einstein’s Theory of General Relativity 

In the theory of GOR, the GOR field equation generalizes and unifies Einstein’s 

field equation and Newton’s field equation; the GOR motion equation generalizes 

and unifies Einstein’s motion equation and Newton’s motion equation; The GOR 

formula for the GOR total-energy H() (the GOR kinetic energy K() and the GOR 

potential energy V()), or the GOR Hamiltonian, generalizes and unifies Einstein’s 

formula for the relativistic total energy H(c) and Newton’s formula for the classical 

total energy H; the GOR celestial motion model generalizes and unifies Einstein’s 

celestial motion model and Newton’s celestial motion model; and so on.  

Finally, the theory of GOR has generalized and unified Einstein’s theoretical 

system of general relativity and Newton’s theoretical system of universal gravitation, 

the two greatest theoretical systems in the history of human physics. 

The theory of GOR, so-called Gravitationally Observation Relativity or 

General Observational Relativity, has generalized and unified Einstein’s 

gravitational theory and Newton’s gravitational theory. This indicates that the theory 

of GOR is logically consistent with both Einstein’s theory of general relativity and 

Newton’s theory of universal gravitation. In particular, such logical consistency 

confirms the logical self-consistency of GOR theory, and from one aspect, confirms 

the logical rationality and theoretical validity of GOR theory. 

The theory of GOR is both speculative and empirical. 

It should be pointed out that the theory of GOR has empirical basis and is 

supported by observation and experiment. 

As a matter of fact, the support of observation and experiment for Einstein’s 

theory of general relativity is also the support for the theory of GOR; the support of 

observation and experiment for Newton’s theory of universal gravitation is also the 

support for the theory of GOR. 
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