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  Abstract 

In this paper we will use Geometric Algebra to be able to embed the Klein-Gordon 

equation for a particle in a non-Euclidean field (vacuum solution in a gravitational 

field) arriving to the following equation: 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚2𝑐2

ℏ2
𝜓†𝜓 − 𝑅𝜓†𝜓 

Which is similar to the Klein-Gordon equation but with an extra term involving the 

Ricci scalar R. 

 

The element 𝜓†𝜓 is the wavefunction collapsed (multiplied by its reverse), this way: 

 

𝜓†𝜓 = (𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 − 𝜓4𝑒4 − 𝜓5𝑒5 − 𝜓6𝑒6 − 𝜓7𝑒7)(𝜓0𝑒0

+ 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 𝜌 + 𝑗 

 

Being 𝜌 and 𝑗 the probability density and the fermionic current respectively. 

The equation above can be factored to be simplified into: 

 

∇𝛼𝜓 = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛼𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅 𝜓𝑒𝛼 

Which again, is similar to the Dirac equation but with an extra term involving the 

Ricci scalar R. 

 

Meaning that the energy of a particle is somehow decreased by a term that depends 

on the Ricci scalar (the curvature of the space where it lies in): 
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𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑚𝑐2√1 −
𝑅ℏ2

𝑚2𝑐2
 

 

This reduction is in general negligible, being several orders of magnitude below the 

normal energy. Anyhow, as the mass increases, the Ricci scalar increases also due to 

gravitational effects. As the Ricci scalar is being subtracted to the energy depending 

on the mass, the system will arrive to a balance before becoming a singularity.  

 

This is summed up in the following equation that impose a limit to the Ricci scalar 

depending on the mass (not the mass density), highly reducing the possibilities of 

arriving to singularities: 

𝑅 <
𝑚2𝑐2

ℏ2
 

 

Even considering the Dirac equation in standard tensor notation: 

𝑖𝛾𝜇𝜕𝜇𝜓 =
𝑚𝑐

ℏ
𝜓 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
𝜓 

We could adapt it, just adding that element to the equation:  

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅𝜓 

In a similar way we obtain a variation of the Einstein equation with this form: 

 

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (1 −

ℏ2

𝑚2𝑐2
𝑅) = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈  

 

Following other path, we will find another equation: 

 

1

2

ℏ2

𝑚
𝑔𝜇𝜈 (𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼)) +

1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + 𝛬𝑔𝜇𝜈) = 0 

 

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown varia-

bles: 8 coefficients of the wavefunction 𝜓0 𝑡𝑜 𝜓7  and 6 metric elements 𝑔𝑖𝑗  (i,j 

from 1 to 3) with a possible added 𝑔00. 

 

The rest of the needed equations (8 equations more) come from the continuity equa-

tion: 
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∇𝜆𝑇𝜆𝜌 = 0 

Being: 

 

𝑇𝜆𝜌 = 𝑔𝜆𝜇𝑔𝜌𝜈𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜆𝜓†𝜓𝑒𝜌 +

1

2

ℏ2

𝑚
𝑒𝜆(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜌 

 

So, the equation is in fact, solvable. 

 

Keywords 

Geometric Algebra, Einstein Tensor, Klein-Gordon Equation, Bra-ket product, Non-

Euclidean metric 

 

1. Introduction  

In this paper we will embed the Klein-Gordon equation for a particle in a non-Euclidean 

field (gravitational field) using Geometric Algebra and the Einstein equations. This will 

lead to new equations that we will show in the paper. 

 

2. Geometric Algebra Cl3,0. Basis vectors 

There is a discipline in mathematics that is called Geometric Algebra [1][3] also known as 

Clifford Algebras.  

In the specific Geometric Algebra Cl3,0, it is considered a three-dimensional space, so we 

need three independent vectors to define a basis. The classical definition of a basis is as 

follows: 

                

            Fig. 1 Basis vectors in three-dimensional space. 

In this paper we will use the nomenclature ei (without any hat or vector sign) to name these 

three vectors instead the classical �̂� �̂� �̂�. Above, I have considered an orthonormal basis as 

an example.  

But in the general case, this is not even necessary. The only necessary constraint to form a 

basis is that the three vectors are linearly independent (this is, they do not lie on the same 

plane). An example below: 
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In geometric algebra, it is defined an operation called the geometric product. The geometric 

product is not represented by any symbol. It is the implicit operation when two vectors are 

represented one after the other. 

Its definition is: 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

Being: 

𝑒𝑖 · 𝑒𝑗 = ‖𝑒𝑖‖‖𝑒𝑗‖ cos(𝛼𝑖𝑗) 

The classical definition of the scalar product. The product of the two norms (the length) of 

the vectors by the cosine of the angle formed by them (we have called it αij in this case). 

The result of the scalar product is a number, a scalar. An important property of the scalar 

product is that it is commutative: 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = ‖𝑒𝑖‖‖𝑒𝑗‖co s(𝛼𝑖𝑗) 

As the cosine of the angle is included in the product, you can check that when ei and ej are 

perpendicular (right angle), the scalar product is zero. And the vectors are colinear (the 

angle is zero), the scalar product is just the product of the modules of the vectors. 

The other element of the geometric product above is: 

𝑒𝑖 ∧ 𝑒𝑗 

What it is called the outer, exterior or wedge product of the two vectors. 

The result of this operation is not a number. It is another entity that is not a number and not 

a vector. It is called a bivector. The bivector is an entity that represents an oriented surface 

area (in a same way that a vector “represents” an oriented line segment). 

          

It can be checked above that the module (area of the surface) when reversing the order of 

the exterior product is the same. But the orientation (its sign) changes. So, the exterior 

product is anticommutative: 

𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 

The module (area of the surface) of the exterior product is: 
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‖𝑒𝑖 ∧ 𝑒𝑗‖ = ‖𝑒𝑗 ∧ 𝑒𝑖‖ = ‖𝑒𝑖‖‖𝑒𝑗‖ sin(𝛼𝑖𝑗) 

You can see that when the vectors are colinear (the angle is zero), the exterior product 

result is zero. And when the vectors are perpendicular, the module of the exterior product 

is the product of the modules of the vectors. 

Coming back to the definition of the geometric product: 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

We can see that when we perform the square of a vector, this is, the product of a vector by 

itself (the vector is colinear with itself, its angle is zero) the result is:  

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 + 𝑒𝑖 ∧ 𝑒𝑖 = ‖𝑒𝑖‖‖𝑒𝑖‖ · 1 + 0 = ‖𝑒𝑖‖‖𝑒𝑖‖ = ‖𝑒𝑖‖

2 

So, the square of a vector is its norm squared. The important thing here, is that the result is 

just a number. It is not a vector, it is not a bivector, it is just a number. We have converted 

a vector to a number just multiplying it by itself. 

If now, we multiply (geometric product) two perpendicular vectors (the angle between 

them is a right angle): 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 0 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 

So, you can see that the result is a pure bivector. It does not include vectors or scalars, just 

a bivector. 

If we reverse the angle, we have: 

𝑒𝑗𝑒𝑖 = 𝑒𝑗 · 𝑒𝑖 + 𝑒𝑗 ∧ 𝑒𝑖 = 0 + 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑖𝑒𝑗 

So, when two vectors are perpendicular, not only the exterior product, but also the geomet-

ric product is anticommutative. 

From the equations above we can obtain the following equations.  

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

𝑒𝑖 ∧ 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖) 

The demonstration comes directly from the definition of the geometric product. If we sum 

a geometric product by its reverse, we put the definition of geometric product, we take into 

account that the scalar product is commutative and the exterior product anticommutative: 

𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 + 𝑒𝑗 · 𝑒𝑖 + 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 + 𝑒𝑖 · 𝑒𝑗 − 𝑒𝑖 ∧ 𝑒𝑗

= 2(𝑒𝑖 · 𝑒𝑗) 

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

If instead of summing, we subtract: 

𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 − 𝑒𝑗 · 𝑒𝑖 − 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 − 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗

= 2(𝑒𝑖 ∧ 𝑒𝑗) 
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𝑒𝑖 ∧ 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖) 

We will see in next chapters that when we apply the exterior product instead of the geo-

metric product of two vectors, this means that we want only the result that appears in the 

plane they form (in the bivector they form). And we “remove” from the result the scalars 

(that will appear with the scalar product of the vectors) and also, we remove the possible 

result in vectors (in more complicated products that we will see in next chapters). 

Another point to comment is that the exterior product of bivectors (instead of vectors) is 

defined in the opposite way (summing instead of subtracting). I am not going to enter into 

details, you can check it in [3]. 

(𝑒𝑖𝑒𝑗) ∧ (𝑒𝑟𝑒𝑠) =
1

2
(𝑒𝑖𝑒𝑗𝑒𝑟𝑒𝑠 + 𝑒𝑟𝑒𝑠𝑒𝑗𝑒𝑖) 

The same way, the scalar product of bivectors is also defined as the opposite of vectors. 

See [3]. 

(𝑒𝑖𝑒𝑗) · (𝑒𝑟𝑒𝑠) =
1

2
(𝑒𝑖𝑒𝑗𝑒𝑟𝑒𝑠 − 𝑒𝑟𝑒𝑠𝑒𝑗𝑒𝑖) 

Also, to remark that the geometric product is always associative and distributive as you can 

see in [3]. But in general, is not commutative or anticommutative as commented (it depends 

on the specific product) We will see more examples in the following chapters. 

To conclude this chapter about geometric algebra, we will define the trivector. When two 

vectors are exterior multiplied, they form a bivector as seen above. The same way, when 

three vectors are exterior multiplied, they create an oriented volume, called the trivector: 

   

You can see again, that when we reverse the vectors, we get the same volume (module of 

the trivector) but with different orientation (sign): 

𝑒𝑖 ∧ 𝑒𝑗 ∧ 𝑒𝑘 = −𝑒𝑘 ∧ 𝑒𝑗 ∧ 𝑒𝑖 

We will check more thing regarding reversion and change of signs in the next chapter. 

 

3. Geometric Algebra Cl3,0. Different types of bases 

3.1 Orthonormal basis 

In an orthonormal basis, the norm of the basis vectors is equal to one. And the basis vectors 

are perpendicular to each other.  
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So, from the properties commented in chapter 2, we can get obtain the following equations 

(for orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = 1 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖      (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

Making the equations explicit for three dimensions: 

 

(𝑒1)2 = 𝑒1𝑒1 = 1 

(𝑒2)2 = 𝑒2𝑒2 = 1 

(𝑒3)2 = 𝑒3𝑒3 = 1 

𝑒1𝑒2 = −𝑒2𝑒1 

𝑒2𝑒3 = −𝑒3𝑒2 

𝑒3𝑒1 = −𝑒1𝑒1 

We can define the inverse of a vector and name it ei , as the vector that fulfills (Einstein 

summation is not implied here): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)

−1 ≡ 𝑒𝑖𝑒
𝑖 

To calculate ei we can post multiply by ei: 

(𝑒𝑖)
−1𝑒𝑖𝑒𝑖 ≡ 𝑒𝑖𝑒𝑖𝑒𝑖 = 1 · 𝑒𝑖 

𝑒𝑖(𝑒𝑖)
2 = 𝑒𝑖 

𝑒𝑖 · 1 = 𝑒𝑖 

𝑒𝑖 = 𝑒𝑖 = (𝑒𝑖)
−1 

So, in orthonormal metric the inverse of a basis vector is itself. It is important to remark 

here that in Geometric Algebra there are no covectors (or 1-forms). There are only scalars, 

bivectors, trivectors… We will see that the concept of covector in Geometric Algebra is 

just a vector that is the inverse of another vector.  

 

In traditional algebra you cannot define the inverse of a vector, so it is used a different type 

of element. In Geometric Algebra, the covectors are also vectors. And in fact, the product 

of inverse vectors by vectors outputs scalars as it would be expected by the product of a 

covector by a vector. 

3.2. Geometric Algebra Cl3,0. Orthogonal but not orthonormal basis 

In an orthogonal basis, the vectors are perpendicular to each other. But in general, the norm 

of the vectors is not one. In Geometric Algebra Cl3,0, the norm of the basis vectors is always 

positive and different from zero.  

The 3 in the name Cl3,0 , makes reference to that there are 3 basis vectors with positive 

norm. The 0 in the name Cl3,0, makes reference to that there are no basis vectors with neg-

ative norm. And the absence of a third number makes reference to that there are no basis 

vectors with zero norm. 

From the properties commented in chapter 2, we can obtain the following equations (for 

orthogonal, not orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖  

𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

Making the equations explicit for three dimensions: 

  

(𝑒1)2 = 𝑒1𝑒1 = ‖𝑒1‖2 = 𝑔11 

(𝑒2)2 = 𝑒2𝑒2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = 𝑒3𝑒3 = ‖𝑒3‖2 = 𝑔33 

𝑒1𝑒2 = −𝑒2𝑒1 

𝑒2𝑒3 = −𝑒3𝑒2 

𝑒3𝑒1 = −𝑒1𝑒1 
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Where the 𝑔𝑖𝑖 makes reference to the metric tensor components. See paper [2]. Take into 

account that when you multiply two colinear vectors (and a vector is colinear with itself), 

its geometric product is equal to the scalar product. And this is exactly the definition of 𝑔𝑖𝑖 

(the scalar product of ei with itself). 

The definition of the inverse of a vector, and naming it ei , is the vector that fulfills (not 

Einstein summation is implied here): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)

−1 ≡ 𝑒𝑖𝑒
𝑖 

To calculate ei we can post multiply by ei: 

(𝑒𝑖)
−1𝑒𝑖𝑒𝑖 ≡ 𝑒𝑖𝑒𝑖𝑒𝑖 = 1 · 𝑒𝑖 

𝑒𝑖(𝑒𝑖)
2 = 𝑒𝑖 

𝑒𝑖‖𝑒𝑖‖
2 = 𝑒𝑖 

𝑒𝑖𝑔𝑖𝑖 = 𝑒𝑖 

𝑒𝑖 =
𝑒𝑖

𝑔𝑖𝑖

=
𝑒𝑖

‖𝑒𝑖‖
2

= (𝑒𝑖)
−1 

 

So, in orthogonal metric the inverse of a basis vector is itself divided by its norm squared 

(by 𝑔𝑖𝑖). Everything commented regarding covectors in 3.1 applies also here. 

 

One important consequence of this, is that if the basis vectors are orthogonal (as in this 

chapter), all the basis vectors and all the inverse of the basis vectors are also orthogonal 

among them (when i≠j). this is: 

𝑒𝑖 · 𝑒𝑗 =
𝑒𝑖

𝑔𝑖𝑖

· 𝑒𝑗 =
1

𝑔𝑖𝑖

(𝑒𝑖 · 𝑒𝑗) =
1

2𝑔𝑖𝑖

(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 0 

𝑒𝑖 · 𝑒𝑗 =
𝑒𝑖

𝑔𝑖𝑖

·
𝑒𝑗

𝑔𝑗𝑗

=
1

2𝑔𝑖𝑖𝑔𝑗𝑗

(𝑒𝑖 · 𝑒𝑗) =
1

2𝑔𝑖𝑖𝑔𝑗𝑗

(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 0 

In the last equation (but when i=j) we get: 

𝑒𝑖 · 𝑒𝑖 = (𝑒𝑖)2 =
𝑒𝑖

𝑔𝑖𝑖

·
𝑒𝑖

𝑔𝑖𝑖

=
1

𝑔𝑖𝑖𝑔𝑖𝑖

(𝑒𝑖 · 𝑒𝑖) =
1

𝑔𝑖𝑖𝑔𝑖𝑖

(𝑒𝑖𝑒𝑖) =
1

(𝑔𝑖𝑖)2
· 1 =

1

(𝑔𝑖𝑖)2
 

These last properties apply also to chapter 3.1 (orthonormal basis) but in that case 
the elements gii or gjj are always 1. 

3.3. Geometric Algebra Cl3,0. Non-Orthogonal (and therefore not or-
thonormal) basis 

In a non-orthogonal basis, the vectors are not perpendicular from each other. And in gen-

eral, the norm of the vectors is not one. As commented in 3.2, in Geometric Algebra Cl3,0, 

the norm of the basis vectors is always positive and different from zero. 

From the properties commented in chapter 2 and also in [2], we can get obtain the following 

equations (for orthogonal, not orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 𝑔𝑖𝑗 = 𝑔𝑗𝑖 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑔𝑖𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

Making the equations explicit for three dimensions: 

  

(𝑒1)2 = 𝑒1𝑒1 = ‖𝑒1‖2 = 𝑔11 

(𝑒2)2 = 𝑒2𝑒2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = 𝑒3𝑒3 = ‖𝑒3‖2 = 𝑔33 

𝑒1𝑒2 = 2𝑔12 − 𝑒2𝑒1 = 2𝑔21 − 𝑒2𝑒1 

𝑒2𝑒3 = 2𝑔23 − 𝑒3𝑒2 = 2𝑔32 − 𝑒3𝑒2 

𝑒3𝑒1 = 2𝑔31 − 𝑒1𝑒3 = 2𝑔13 − 𝑒1𝑒3 

Where the 𝑔𝑖𝑗 makes reference again to the metric tensor components (the scalar products 

of the basis vectors). See paper [2] for more information. You can obtain the above 
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equations from the definition of scalar product in geometric algebra as commented in chap-

ter 2. 

𝑒𝑖 · 𝑒𝑗 = 𝑔𝑖𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

Multiplying by 2: 

2𝑔𝑖𝑗 = 𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 

Rearranging terms (and knowing that the metric tensor is symmetric): 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

Now, we will define again the inverse of the basis vectors and name them ei. To obtain the 

inverse of the basis vectors is this case, you have to get the inverse of the metric tensor, so 

you are able to define a vector ei that fulfills for every i and every j the following (Einstein 

summation does not apply): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)

−1 ≡ 𝑒𝑖𝑒
𝑖 

                     𝑒𝑖 · 𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒

𝑗 + 𝑒𝑗𝑒𝑖) = 0   𝑓𝑜𝑟 𝑖 ≠ 𝑗 

In general, this is written as: 

𝑒𝑖 · 𝑒𝑗 = 𝛿𝑗
𝑖 

Where 𝛿𝑗
𝑖 is the Kronecker Delta, that is equal to 1 when i=j and 0 when i≠j. 

If we multiply two inverse vectors between them, in non-orthogonal metric, we do not 

obtain zero as a general case. See below: 

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 𝑔𝑖𝑗 = 𝑔𝑗𝑖  

So: 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 

And: 

𝑒𝑖𝑒𝑖 = (𝑒𝑖)2 = 𝑒𝑖 · 𝑒𝑖 = 𝑔𝑖𝑖  

In this paper, we will work mainly with orthogonal (or orthonormal basis), so do not worry 

about these above points. For more info regarding how to invert the metric you have a lot 

of literature [58][59][60][61][62][64]. 

What we will do in general, is to make all the calculations with orthogonal metrics and then 

try to generalize to the case of non-orthogonal metric applying the above relations. 

 

3.4. Geometric Algebra Cl3,0. Sum of geometric products of basis vectors 
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We will calculate the following sum. Take into account that the product inside the sum is 

geometric (not scalar) and that we have not imposed anything regarding the basis (it can 

be not orthogonal). 

𝑆 = ∑ ∑ 𝑒𝑖𝑒𝑗

3

𝑗=1

3

𝑖=1
 

If we operate, we get: 

𝑆 = 𝑒1𝑒1 + 𝑒1𝑒2 + 𝑒1𝑒3 + 

+𝑒2𝑒1 + 𝑒2𝑒2 + 𝑒2𝑒3 + 

+𝑒3𝑒1 + 𝑒3𝑒2 + 𝑒3𝑒3 = 

𝑒1𝑒1 + 𝑒2𝑒2 + 𝑒3𝑒3 + 

+(𝑒1𝑒2+𝑒2𝑒1) + 

+(𝑒2𝑒3+𝑒3𝑒2) + 

+(𝑒3𝑒1+𝑒1𝑒3) = 

𝑒1 · 𝑒1 + 𝑒2 · 𝑒2 + 𝑒3 · 𝑒3 + 

+2(𝑒1 · 𝑒2) + 

+2(𝑒2 · 𝑒3) + 

+2(𝑒3 · 𝑒1) 

As the scalar product is always symmetric (independently if the basis is orthogonal or not) 

we can convert the elements that are multiplied by 2, in the sum of two scalar products 

reversed (with the same result). 

𝑆 = 𝑒1 · 𝑒1 + 𝑒2 · 𝑒2 + 𝑒3 · 𝑒3 + 

+𝑒1 · 𝑒2 + 𝑒2 · 𝑒1 + 

+𝑒2 · 𝑒3 + 𝑒3 · 𝑒2 

+𝑒3 · 𝑒1 + 𝑒1 · 𝑒3 = 

∑ ∑ 𝑒𝑖 · 𝑒𝑗 =
3

𝑗=1

3

𝑖=1
∑ ∑ 𝑔𝑖𝑗

3

𝑗=1

3

𝑖=1
 

So: 

∑ ∑ 𝑒𝑖𝑒𝑗

3

𝑗=1

3

𝑖=1
= ∑ ∑ 𝑒𝑖 · 𝑒𝑗 =

3

𝑗=1

3

𝑖=1
∑ ∑ 𝑔𝑖𝑗

3

𝑗=1

3

𝑖=1
 

As commented, this holds, independently of the type of metric. And in fact, it holds even 

for more than three dimensions, but I have preferred to do it explicitly for three dimensions 

to avoid any doubt and avoid getting lost in the subindices. 

Now, consider a symmetric tensor (or a symmetric matrix if you want) that have the com-

ponents aij: 
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𝑎𝑖𝑗 = 𝑎𝑗𝑖  

And now want to perform the sum (don’t worry, I will explain the reason of all this later): 

∑ ∑ 𝑎𝑖𝑗𝑒𝑖𝑒𝑗

3

𝑗=1

3

𝑖=1
 

Making the same calculation as above (and only if aij is symmetric) we will obtain a similar 

result: 

∑ ∑ 𝑎𝑖𝑗𝑒𝑖𝑒𝑗

3

𝑗=1

3

𝑖=1
= ∑ ∑ 𝑎𝑖𝑗(𝑒𝑖 · 𝑒𝑗) =

3

𝑗=1

3

𝑖=1
∑ ∑ 𝑎𝑖𝑗𝑔𝑖𝑗

3

𝑗=1

3

𝑖=1
 

Or using the Einstein notation to simplify: 

𝑎𝑖𝑗𝑒𝑖𝑒𝑗 = 𝑎𝑖𝑗(𝑒𝑖 · 𝑒𝑗) = 𝑎𝑖𝑗𝑔𝑖𝑗         𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑖𝑗 =  𝑎𝑗𝑖  

Similarly, we can obtain: 

𝑎𝑖𝑗𝑒𝑖𝑒𝑗 = 𝑎𝑖𝑗(𝑒𝑖 · 𝑒𝑗) = 𝑎𝑖𝑗𝑔𝑖𝑗         𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑖𝑗 =  𝑎𝑗𝑖  

But if: 

𝑎𝑖
𝑗
𝑒𝑖𝑒𝑗 = 𝑎𝑖

𝑗
(𝑒𝑖 · 𝑒𝑗) = 𝑎𝑖

𝑗
𝛿𝑗

𝑖 = 𝑎𝑖
𝑖           𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑖

𝑗
=  𝑎𝑗

𝑖    

𝑎𝑖
𝑗
𝑒𝑗𝑒𝑖 = 𝑎𝑖

𝑗
(𝑒𝑗 · 𝑒𝑖) = 𝑎𝑖

𝑗
𝛿𝑗

𝑖 = 𝑎𝑖
𝑖           𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑖

𝑗
=  𝑎𝑗

𝑖    

Where the last move of above equations is a property of the Kronecker Delta that you can 

check in [59][60][61][62]. 

3.5. Geometric Algebra Cl3,0. Expanding the basis 

 

One of the properties of the Geometric Algebra is that the number of elements that conform 

the algebra of a certain realm are more than the number of dimensions of that realm. In 

three dimensions we have three basis vectors as commented, but we have 8 different ele-

ments that conform that algebra, that are: 

• The scalars 

• The three vectors 

• The three bivectors 

• One trivector 

 

We will call these elements with these names: 

 

𝑒0 → 𝑠𝑐𝑎𝑙𝑎𝑟𝑠 

𝑒1 

𝑒2 

𝑒3 

𝑒4 = 𝑒2𝑒3 

𝑒5 = 𝑒3𝑒1 

𝑒6 = 𝑒1𝑒2 

𝑒7 = 𝑒1𝑒2𝑒3 

Regarding e0 I will comment later. In Geometric Algebra probably you would expect e0=1. 

And this is the natural move, but I will come back to this later, as commented.  
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The elements e4, e5, e6 are bivectors whose square is negative, as we will see now. And e7 

is the trivector whose square is also negative, as we will see. 

In general, we will work with orthogonal (not necessarily orthonormal) basis. About the 

non-orthogonal case, we will talk explicitly in certain points of the paper. If nothing is said, 

along the paper we will work with orthogonal metric that fulfills the following, already 

commented, relations: 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖  

𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖 

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

This is, in 3 dimensions: 

  

(𝑒1)2 = 𝑒1𝑒1 = ‖𝑒1‖2 = 𝑔11 

(𝑒2)2 = 𝑒2𝑒2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = 𝑒3𝑒3 = ‖𝑒3‖2 = 𝑔33 

𝑒1𝑒2 = −𝑒2𝑒1 

𝑒2𝑒3 = −𝑒3𝑒2 

𝑒3𝑒1 = −𝑒1𝑒1 

The last three equations are key in orthogonal metric and are the ones that will make work-

ing with bivectors or the trivector much easier. Because they permit us to swap the order 

of the vectors in any geometric product, just adding a minus sign for each swap. These 

means that the result will be the same if we make an even number of swaps. And will be 

the negative of the original if we make an odd number of swaps. 

An example. We have the following trivectors and we want to sum them: 

7𝑒1𝑒2𝑒3 + 2𝑒2𝑒1𝑒3 

We swap e2 and e1 in the second element and we add a minus sign. This is the same as 

using one of the equations above. 

7𝑒1𝑒2𝑒3 − 2𝑒1𝑒2𝑒3 = 5𝑒1𝑒2𝑒3 

But, take into account that when a basis vector is squared, it is converted to a number, so it 

does not count as a vector anymore. It is just a number that can be moved in the product 

not changing signs. For example: 

7𝑒1𝑒2𝑒3𝑒2 + 2𝑒1𝑒3 

We swap e3 and the last e2 in the first element, adding a minus sign. 

−7𝑒1𝑒2𝑒2𝑒3 + 2𝑒3𝑒1 

Now, we perform the square of e2, getting its norm and converting it into a number. 

−7𝑒1(𝑒2)2𝑒3 + 2𝑒3𝑒1 = −7𝑒1‖𝑒2‖2𝑒3 + 2𝑒3𝑒1 = −7𝑒1𝑔22𝑒3 + 2𝑒3𝑒1 

Now, g22 is just a number, so I can move to the beginning of the element (not changing the 

sign), we are moving a number, a scalar, not a vector: 

−7𝑒1𝑔22𝑒3 + 2𝑒3𝑒1 = −7𝑔22𝑒1𝑒3 + 2𝑒3𝑒1 

And now, we exchange e1 and e3 in the first element and yes now, we have to add a minus 

sign (multiply by -1). 

−7𝑔22𝑒1𝑒3 + 2𝑒3𝑒1 = 7𝑔22𝑒3𝑒1 + 2𝑒3𝑒1 = (7𝑔22 + 2)𝑒3𝑒1 
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If instead, we swap the e1 and e3 in the second element we get: 

−7𝑔22𝑒1𝑒3 + 2𝑒3𝑒1 = −7𝑔22𝑒1𝑒3 − 2𝑒1𝑒3 = (−7𝑔22 − 2)𝑒1𝑒3 = −(7𝑔22 + 2)𝑒1𝑒3 

This is the negative as the first result, but take into account that the vectors that multiply 

are reversed, so in fact, it is the same result. I could swap them and change the sign again 

and both results will be the same. 

Another way to see it is using the nomenclature we have defined in the beginning of the 

chapter: 

(7𝑔22 + 2)𝑒3𝑒1 = (7𝑔22 + 2)𝑒5 

But in the second case, we have to reverse to be able to use that nomenclature. Swapping 

the vectors and adding a minus sign (changing the sign): 

−(7𝑔22 + 2)𝑒1𝑒3 = −(−(7𝑔22 + 2))𝑒3𝑒1 = (7𝑔22 + 2)𝑒3𝑒1 = (7𝑔22 + 2)𝑒5 

For more info regarding this type of operations you can check [1][2][3][4][5][6]. 

As commented, all these swapping’s with changing of sign can only be applied in orthog-

onal bases. In non-orthogonal bases you should apply the equations in the beginning of 

chapter. 3.3. 

Knowing this rule, I would just show the squares of the bivectors and the trivector to check 

that they are in fact negative: 

(𝑒4)2 = (𝑒2𝑒3)2 = 𝑒2𝑒3𝑒2𝑒3 = −𝑒2𝑒3𝑒3𝑒2 = −𝑒2𝑔33𝑒2 = −𝑔33𝑒2𝑒2 = −𝑔33𝑔22 

(𝑒5)2 = (𝑒3𝑒1)2 = 𝑒3𝑒1𝑒3𝑒1 = −𝑒3𝑒1𝑒1𝑒3 = −𝑒3𝑔11𝑒3 = −𝑔11𝑒3𝑒3 = −𝑔11𝑔33 

(𝑒6)2 = (𝑒1𝑒2)2 = 𝑒1𝑒2𝑒1𝑒2 = −𝑒1𝑒2𝑒2𝑒1 = −𝑒1𝑔22𝑒1 = −𝑔22𝑒1𝑒1 = −𝑔22𝑔11 
(𝑒7)2 = (𝑒1𝑒2𝑒3)2 = 𝑒1𝑒2𝑒3𝑒1𝑒2𝑒3 = +𝑒1𝑒2𝑒3𝑒3𝑒1𝑒2 = 𝑔33𝑒1𝑒2𝑒1𝑒2 = −𝑔33𝑒1𝑒1𝑒2𝑒2 = −𝑔33𝑔11𝑔22 

Remind that the gij are just numbers, so you can move them as you want along the product. 

I keep the order obtained in the operations to facilitate the understanding, but you can swap 

them as you want not changing the sign or the result. 

Just to close the chapter, I will comment that an entity that is composed by the sum of 

scalars, vectors, bivectors etc… is called a multivector. As an example: 

𝐴 = 3 + 2𝑒1 − 3𝑒1 + 7𝑒3𝑒1 

This entity A is called a multivector. We will see that in Geometric Algebra any object can 

be defined by a multivector expression. 

The most important comment of this section is the following. In Geometric Algebra, once 

you have defined the number of dimensions (in this case 3) and the consequent degrees of 

freedom (or different basis vectors and their combinations, in this case 8, from e0 to e7), it 

does not matter how many operations (sums, geometric products, even exponentials etc…) 

you do, the number of basis vectors and their combinations are always the same (8 in this 

case). You can multiply the times you want any multivector by another one, you will only 

finish with 8 coefficients that multiply 8 basis vectors from e0 to e7 (considering also basis 

vectors their product combinations). Nothing else. This is key in Geometric Algebra and 

its power. 

If you are familiarized with matrices, tensors or tensors products, you know that in those 

cases the number of elements could grow to infinite (the number of dimensions also). In 

Geometric Algebra, there is a limit. And this KEY as we will see. 

3.6. Geometric Algebra Cl3,0. Comments about e0 and e7 
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Before, I have commented that the natural move is that: 

𝑒0 = 1 

And in general, this is what I would have written in any of my previous papers. But in this 

case, as we will see later, it is possible that we need a “degree of freedom more” or the 

possibility that e0 is a scalar function that depends on certain parameters that we will see 

later. 

So, instead of defining e0 equal to 1, we will define it as a scalar (this is important, it is a 

scalar or a function whose output is a scalar, not vectors, not bivectors etc…): 

  
𝑒0 = √𝑔00 

So: 

(𝑒0)2 = ‖𝑒0‖2 = 𝑔00 

As commented g00, is a scalar or a function that outputs a scalar (positive-definite). The 

problem is the conceptual meaning of e0 and g00. Normally g00 would mean the scalar prod-

uct of vectors. In this case, it is not that. It is a function that appear only at certain operations 

that we will see later. 

Regarding the possible values of g00 are (we will comment later): 

𝑔00 = 1 

𝑔00 = ‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2 

𝑔00 =
1

‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2
 

𝑔00 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒) 

As commented, we will keep this nomenclature of g00 as in the end it is discovered that it 

is equal to 1 or to whatever other result we will substitute in the equations. If we put directly 

that it is equal to 1, it will be more difficult to modify the equations. 

Anyhow, for the shake of simplicity, for orthonormal or orthogonal metrics, we will con-

sider e0=1 as it most probably is, except in exceptional situations. For non-orthogonal met-

ric, we will keep it indicated as e0. 

Regarding e7 the important property as commented is this: 

(𝑒7)2 = (𝑒1𝑒2𝑒3)2 = 𝑒1𝑒2𝑒3𝑒1𝑒2𝑒3 = −𝑔33𝑔11𝑔22 

This means, its square is negative, and it is a “neutral” vector. Meaning “neutral” that it 

does not have any “preferred” direction or orientation. The bivectors e4, e5, e6 have also 

negative square but with “preferred” directions. 

(𝑒4)2 = (𝑒2𝑒3)2 = 𝑒2𝑒3𝑒2𝑒3 = −𝑔33𝑔22 

(𝑒5)2 = (𝑒3𝑒1)2 = 𝑒3𝑒1𝑒3𝑒1 = −𝑔11𝑔33 

(𝑒6)2 = (𝑒1𝑒2)2 = 𝑒1𝑒2𝑒1𝑒2 = −𝑔22𝑔11 

But e7 has a negative square and does not point anywhere specific. It applies to the volume 

in general (not a surface or a line). If you have read the papers [4][5][6] probably you have 

already seen the possibility that the time vector can be associated with e7 (the trivector). 
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The reason is that the square of e7 is negative and that taking this consideration is com-

pletely coherent with Dirac Equation, Maxwell equations and Gell-Mann matrices 

[5][6][26][63]. 

When we come to general relativity, the thing gets more complicated. We will see that 

depending on the context, the scalars e0 (as considered in APS[43]) or the trivector e7 can 

represent time depending on the context. We will see later, but first we need to understand 

the spinor in Geometric Algebra to understand the different possible contexts. 

What we will keep from previous papers [4][5][6][26][63]is that as the square of e7 is neg-

ative and does not have any preferred direction. So when the imaginary unit i is used in 

traditional algebra, we will substitute it in Geometric Algebra by the trivector e7. The rea-

son is that in Geometric Algebra there are already elements as e7 (appearing in a natural 

way) whose square is negative.  

And the imaginary unit i is used in traditional algebra as an “unknown or generic” element 

whose square is negative. In Geometric Algebra, what you have to do is, depending on the 

context, to use the corresponding already existing element in the Algebra (of all the ones 

whose square is negative) instead of using i. As commented, we will used e7 for the reasons 

commented above.  

4. The reverse of a multivector and the reverse product 

If we have multivector, the reverse of it can be defined as a multivector with the same 

coefficients but where all the products of basis vectors are reversed. An example: 

𝐴 = 3 + 2𝑒1 − 3𝑒1 + 7𝑒3𝑒1 + 2𝑒2𝑒3 − 5𝑒1𝑒2𝑒3 

Its reverse will be: 

𝐴† = 3 + 2𝑒1 − 3𝑒1 + 7𝑒1𝑒3 + 2𝑒2𝑒3 − 5𝑒3𝑒2𝑒1 

This, in orthogonal metric (not in general) can be converted using chapter 3.2 equations 

into: 

𝐴† = 3 + 2𝑒1 − 3𝑒1 − 7𝑒3𝑒1 − 2𝑒2𝑒3 + 5𝑒1𝑒2𝑒3 = 𝐴∗ 

Being A* the conjugate multivector. This means, in orthogonal metric the reverse of a mul-

tivector is the same as a conjugate of the multivector. The conjugate means changing the 

sign of the elements whose square is negative (this means: bivectors and trivector) and 

keeping the same sign for scalars and vectors (whose square is positive) 

In a non-orthogonal metric, you should use equations in chapter 3.3 instead of those in 

chapter 3.2, so in a general case, reverse and conjugate will not be the same. 

Anyhow, as commented, in this paper we will focus on orthogonal basis, so here reverse 

and conjugate will be the same in most cases (but this is not true for a general case). 

Calculating the reverse for the different basis vectors, we have: 

𝑒0
† = 𝑒0 

𝑒1
† = 𝑒1 

𝑒2
† = 𝑒2 

𝑒3
† = 𝑒3 

𝑒4
† = (𝑒2𝑒3)† = 𝑒3𝑒2 

𝑒5
† = (𝑒3𝑒1)† = 𝑒1𝑒3 

𝑒6
† = (𝑒1𝑒2)† = 𝑒2𝑒1 
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𝑒7
† = (𝑒1𝑒2𝑒3)† = 𝑒3𝑒2𝑒1 

One important property is that a product of basis vectors multiplied by its reverse is always 

positive definite (also in non-orthogonal metrics): 

𝑒0𝑒0
† = 𝑒0𝑒0 = ‖𝑒0‖2 = 𝑔00 

𝑒1𝑒1
† = 𝑒1𝑒1 = ‖𝑒1‖2 = 𝑔11 

𝑒2𝑒2
† = 𝑒2𝑒2 = ‖𝑒2‖2 = 𝑔22 

𝑒3𝑒3
† = 𝑒3𝑒3 = ‖𝑒3‖2 = 𝑔33 

𝑒4𝑒4
† = 𝑒2𝑒3(𝑒2𝑒3)† = 𝑒2𝑒3𝑒3𝑒2 = 𝑒2𝑔33𝑒2 = 𝑔33𝑒2𝑒2 = 𝑔33𝑔22 ≡ 𝑔44 

𝑒5𝑒5
† = 𝑒3𝑒1(𝑒3𝑒1)† = 𝑒3𝑒1𝑒1𝑒3 = 𝑒3𝑔11𝑒3 = 𝑔11𝑒3𝑒3 = 𝑔11𝑔33 ≡ 𝑔55 

𝑒6𝑒6
† = 𝑒1𝑒2(𝑒1𝑒2)† = 𝑒1𝑒2𝑒2𝑒1 = 𝑒1𝑔22𝑒1 = 𝑔22𝑒1𝑒1 = 𝑔22𝑔11 ≡ 𝑔66 

𝑒7𝑒7
†

= 𝑒1𝑒2𝑒3(𝑒1𝑒2𝑒3)† = 𝑒1𝑒2𝑒3𝑒3𝑒2𝑒1 = 𝑔
33

𝑒1𝑒2𝑒2𝑒1 = 𝑔
33

𝑔
22

𝑒1𝑒1 = 𝑔
33

𝑔
22

𝑔
11

≡ 𝑔77 

Where I have defined the gii as the result of these products also for basis vectors with i>3. 

And also, as commented it is defined a g00 as the square for e0 to have one degree of free-

dom more (even that very probably defining it as 1, should be ok, meaning just a that pre-

normalization has been de-facto done). 

As you can guess, the reverse product is just defined as multivector by the reverse of other 

(or the same) multivector following the rules commented above. 

An important thing to comment, is that the reverse should not be mixed up with the inverse. 

The inverse of a product of basis vectors is defined as the inverse of each basis vector in 

reverse order. This is, for example: 

(𝑒7)−1 = (𝑒1𝑒2𝑒3)−1 = (𝑒3)−1(𝑒2)−1(𝑒1)−1 = 𝑒3𝑒2𝑒1 = 𝑒7 

Where in the last steps above, I have used the definition of the superscripts as defined in 

chapters 3.1, 3.2 and 3.3, as the inverse of the basis vectors. We can check that this hold: 

𝑒7𝑒7 = 𝑒1𝑒2𝑒3𝑒3𝑒2𝑒1 = 𝑒1𝑒2 · 1 · 𝑒2𝑒1 = 𝑒1 · 1 · 𝑒1 = 1 

So, in fact, it corresponds to the inverse of e7. The same applies, to the rest of vectors: 

(𝑒1)−1 = 𝑒1 

(𝑒2)−1 = 𝑒2 

(𝑒3)−1 = 𝑒3 

(𝑒4)−1 = (𝑒2𝑒3)−1 = (𝑒3)−1(𝑒2)−1 = 𝑒3𝑒2 = 𝑒4 

(𝑒5)−1 = (𝑒3𝑒1)−1 = (𝑒1)−1(𝑒3)−1 = 𝑒1𝑒3 = 𝑒5 

(𝑒6)−1 = (𝑒1𝑒2)−1 = (𝑒2)−1(𝑒1)−1 = 𝑒2𝑒1 = 𝑒6 

(𝑒7)−1 = (𝑒1𝑒2𝑒3)−1 = (𝑒3)−1(𝑒2)−1(𝑒1)−1 = 𝑒3𝑒2𝑒1 = 𝑒7 

So, you can see that the inverse, also reverses the order, but besides that, it inverses the 

basis vectors (converts the subscripts in superscripts and vice-versa). 

5. Spinor in Geometric Algebra Cl3,0 

 

A spinor in matrix notation has this form: 
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𝜓 = (

𝜓1𝑟 + 𝜓1𝑖𝑖
𝜓2𝑟 + 𝜓2𝑖𝑖
𝜓3𝑟 + 𝜓3𝑖𝑖
𝜓4𝑟 + 𝜓4𝑖𝑖

) 

 

As you can see, it has eight parameters: 

 

𝜓1𝑟   𝜓1𝑖   𝜓2𝑟   𝜓2𝑖   𝜓3𝑟   𝜓3𝑖   𝜓4𝑟  𝑎𝑛𝑑 𝜓4𝑖 

 

In Geometric Algebra, the spinor has this form: 

 

𝜓 = 𝜓𝜇𝑒𝜇 = 𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7 

 

Where the ei are the elements (scalars, vectors, bivectors and trivector) as defined in chapter 

3.5. 

 

The ψi are the coefficients of the spinor or wavefunction. You can see that they are also 

eight as in the matrix notation. You can find a relation between both in [5] [31]and [63]. 

There you can find that that relation is coherent with Dirac Equation and Strong Force 

Interaction (Gell-Mann matrices). 

 

For this paper we will just stick to that these 8 coefficients are sufficient to define a spinor 

or wavefunction. And calculating them is what we need to define the state of a particle or 

a related filed. 

6. Probability density and probability current 

 

As we saw in [63] we can calculate probability density and probability current multiplying 

the reverse of the wavefunction by itself, this way: 

 

𝜓†𝜓 = (𝜓0𝑒0
† + 𝜓1𝑒1

† + 𝜓2𝑒2
† + 𝜓3𝑒3

† + 𝜓4𝑒4
† + 𝜓5𝑒5

† + 𝜓6𝑒6
† + 𝜓7𝑒7

†)(𝜓0𝑒0 + 𝜓1𝑒1

+ 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) 

Where all the vectors, bivectors and the trivector and their reverses, are as defined in chap-

ter 4 and previous ones. 

 

Only in the case of orthogonal metric (not in the general case), this can be simplified as 

(the reverse is the same as the conjugate): 

 

𝜓†𝜓 = 𝜓∗𝜓 = (𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 − 𝜓4𝑒4 − 𝜓5𝑒5 − 𝜓6𝑒6 − 𝜓7𝑒7)(𝜓0𝑒0

+ 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) 

 

As you can see in Annex A2, the result of this multiplication is for the orthogonal case is: 

 
𝜓†𝜓 = 𝜌 + 𝑗 

Being: 

 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓2)2𝑔22 + (𝜓3)2𝑔33 + (𝜓4)2𝑔22𝑔33 + (𝜓5)2𝑔33𝑔11 + (𝜓6)2𝑔11𝑔22

+ (𝜓7)2𝑔11𝑔22𝑔33 

 

 

𝑗 = 2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓3𝜓5𝑔33 + 𝜓4𝜓7𝑔22𝑔33)𝑒1

+ 2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 − 𝜓4𝜓3𝑔33 + 𝜓5𝜓7𝑔33𝑔11)𝑒2

+ 2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 + 𝜓2𝜓4𝑔22 + 𝜓6𝜓7𝑔11𝑔22)𝑒3 

 

Being 𝜌 the probability and 𝑗 the fermionic current. 
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But we can say that even in the general case where the basis is not orthogonal or even if 

the product above is defined another way, the result will have for sure have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

In Annexes A1, A2, A3 and A4, you can find that in whatever metric you are or however 

this product is defined (in A4 it is shown an example using the inverse product instead of 

the reverse product), the result will always have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where μ and ν go from 0 to 7 in the most general case. This means, independently of the 

metric, independently if the product is correctly defined or are some elements pending (see 

Annexes A1, A2, A3 and A4 for details), what it is true is that the result, will have the form 

above.  

 

Even if we calculate wrongly the coefficients of jμ, we can continue with our study as these 

coefficients will represent a general case. In case they change the value, we will change the 

operations done, but the study following will be perfectly correct as the meaning of the 

coefficients jμ is general. This is the power of geometric algebra. We know the form of the 

results even if we have calculated them wrong. We know that the result will have 8 com-

ponents 𝑗𝜇 (very important, scalar coefficients or functions that output a scalar) multiply-

ing 8 basis vectors (considering their product combinations also, this means, considering 

them from eo to e7). 

 

Last comment to make are the measuring units of this 𝑗𝜇𝑒𝜈. For the j0 component the units 

are density of probability in 3D space, this means probability/cubic length. Probability does 

not have units, so it is L-3.  

 

The components j1 to j3 are called the probability current and its units are density of prob-

ability multiplied by velocity. As probability does not have units, the density has L-3 and 

the speed has LT-1, the total units are L-2T-1. To make these units coherent with j0, we have 

to multiply j0 by c (the speed of light) or the opposite, to divide the components of j1 to j3 

by it.  

 

As commented, for orthonormal or orthogonal bases, jμ only has components from 0 to 3. 

For the general case, it would have components from 0 to 7 and the measuring units should 

be harmonized with the units that have the components from 0 to 3. But we will not care 

about that now, we will just consider that we can find a coherent following expression with 

coherent units: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Just to finalize, I will comment that to be consequent with certain papers in the literature 

[57], sometimes I will use the following nomenclature, but you can check that the concept 

is the same, just changing the name of j to V, and the dummy index form μ to ρ: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 = 𝑉𝜌𝑒𝜌 

 

7. Definition of Covariant Operator in Geometric Algebra 

 

We will define the following operator: 

 

𝑒𝜇𝛻𝜇 

Where 𝛻𝜇 is the covariant derivative. This means, if it is applied to a scalar function, it 

will be just the partial derivative with respect to μ of it. If f is a scalar function: 
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𝑒𝜇𝛻𝜇𝑓 = 𝑒𝜇
𝜕𝑓

𝜕𝑒𝜇
 

Where the partial derivative is taken with respect to the coordinate variable that corre-

sponds to the vector eμ. This means, that 𝜕𝑒1 would mean derivative with respect to the 

coordinate variable associated to e1 (typically x in cartesian coordinates, or r in polar coor-

dinates or called e1 in the general case). It is important to recall that in this paper, the coef-

ficients that multiply the vectors are scalars (not “covectors”), so the rule above, apply to 

them (to the coefficients). It does not apply to the vectors as you can see below. 

 

If the function includes vectors, apart from the partial derivative of the coefficients that 

multiply these vectors, we will have to apply the covariant derivative to the vectors. 

 

The covariant derivative of the basis vectors (you can check this in different literature of 

General Relativity or Riemann geometries [58]-[62]) are the Christoffel symbols.  

 

So, applying the product rule of derivation we get: 

 

𝑒𝜇𝛻𝜇(𝑓𝜈𝑒𝜈) = 𝑒𝜇(𝛻𝜇𝑓𝜈)𝑒𝜈 + 𝑒𝜇𝑓𝜈(𝛻𝜇𝑒𝜈) 

 

And it is important that we are keeping the same order of the vectors. Remember they are 

nor commutative in the general case. 

 

Now, for the scalar coefficients fν we can use the same equation shown before (partial 

derivative equation). For the other term (the covariant derivative of a basis vector) we will 

use the Christoffel symbols as they are defined [58]-[62]. 

 

𝑒𝜇𝛻𝜇(𝑓𝜈𝑒𝜈) = 𝑒𝜇(𝛻𝜇𝑓𝜈)𝑒𝜈 + 𝑒𝜇𝑓𝜈(𝛻𝜇𝑒𝜈) = 𝑒𝜇
𝜕𝑓𝜈

𝜕𝑒𝜇
𝑒𝜈 + 𝑒𝜇𝑓𝜈Γ𝜇𝜈

𝜆 𝑒𝜆 

As the partial derivative of the coefficients of f and the Christoffel symbols are just scalars 

(yes, in this context, Christoffel symbols are just scalars that multiply vectors) we can move 

the vectors as follows: 

𝑒𝜇𝛻𝜇(𝑓𝜈𝑒𝜈) = 𝑒𝜇
𝜕𝑓𝜈

𝜕𝑒𝜇
𝑒𝜈 + 𝑒𝜇𝑓𝜈Γ𝜇𝜈

𝜆 𝑒𝜆 = 𝑒𝜇𝑒𝜈

𝜕𝑓𝜈

𝜕𝑒𝜇
+ 𝑒𝜇𝑒𝜆𝑓𝜈Γ𝜇𝜈

𝜆  

 

Another thing to comment is that we can calculate also the covariant derivative of the in-

verse of a vector this way[58-52]: 

 

𝛻𝛽(𝑒𝜇(𝑒𝛼)−1) = 𝛻𝛽(𝑒𝜇𝑒𝛼) = 𝛻𝛽(𝛿𝜇
𝛼) = 0 

𝛻𝛽(𝑒𝜇)𝑒𝛼 + 𝑒𝜇𝛻𝛽(𝑒𝛼) = Γ𝛽𝜇
𝜆 𝑒𝜆𝑒𝛼 + 𝑒𝜇𝛻𝛽(𝑒𝛼) = 0 

𝑒𝜇𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝜆 𝑒𝜆𝑒𝛼 

𝑒𝜇𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝜆 𝛿𝜆

𝛼 

 

𝑒𝜇𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝛼  

𝑒𝜇𝑒𝜇𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝛼 𝑒𝜇 

𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝛼 𝑒𝜇 

 

So, this above, and the already commented classical definition covariant derivative of basis 

vector: 

 

𝛻𝛽(𝑒𝛼) = Γ𝛽𝛼
𝜇

𝑒𝜇 

 

They are the equations we will need in following chapters. Also, to comment something 

that we will need in some steps. The geometric product is not commutative in general. But 

sometimes we will have to commute the vectors. To do so, we have to consider one of these 

three scenarios: 
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• The metric is orthogonal. So, the geometric product is the same as scalar product, 

and therefore commutative. 

• We are in a situation as in chapter 3.4. This is, the symmetry of the sums in certain 

situations, “convert” the geometric products in scalar products. So, the same as 

commented above applies. 

• The other option is directly that we are forced to change the definition of the op-

erators, using scalar products instead of geometric products. As an example, in 

certain situations, we can say, instead of using the operator: 

𝑒𝜇𝛻𝜇 

  We could decide to use: 

𝑒𝜇 · 𝛻𝜇 

Loosing generality (all the non-commutative elements will be lost), rigor and 

probably some solutions, but as a way to move forward. 

 

 

Just to finish we will define the reverse (the reverse not the inverse) of the covariant oper-

ator to a function f as: 

 

(𝑒𝜇𝛻𝜇𝑓)
†

= 𝑓𝛻𝜇
†𝑒𝜇 = (𝑓𝛻𝜇

†)𝑒𝜇 = (𝛻𝜇𝑓)𝑒𝜇 

 

This means, when we see the reverse operator, we have to take into account these things: 

 

• The operator applies to the function on the left of it (not on the right as it is usual). 

• The vector that accompanies it, it is located on the right of the operator, not on the 

left as defined from the non-reverse operator. 

 

Probably you are asking why the vector that accompanies the function is not reversed as 

well. In general, I would say that the logic thing would be to reverse it, creating sometimes 

changes on signs (or even real changes in result in non-orthogonal metric). In this paper I 

will keep it as not reversed to facilitate the things and the message, but it could be that in 

the future, the definition, changes to reversed. 

 

Also, you can ask why the f is not reversed as well. The answer is that to keep the sym-

metry, it should be reversed. But to simplify the nomenclature, we will keep f not reversed, 

and just indicate it directly in the expression if this is the case.  

 

Another thing we could think about is that if the operator is reversed, we should add a 

minus sign to the derivative as we are deriving in the opposite direction to the one repre-

sented by the variable. This is true in fact. But as we will always make double derivatives 

(in the left and in the right, see later), in the end, this will only lead to a change of sign in 

the final results, not affecting the implicit meaning. Anyhow, this is something that proba-

bly has to be taken into account in the future (and also if it is needed or not to reverse the 

vectors that accompany the derivative/del operator). 

 

The last comment is that in Geometric Algebra everything is done keeping symmetries. 

When a double operator has to be applied (like a Laplacian) it is not generally done as a 

double operator on the left. Instead, it is done like a simple operator in the left and another 

simple operator on the right (that is applying to the elements on the left).  

 

The reason for this is that in geometric algebra the order of the vectors matters. As it is not 

the same pre-multiplying than post-multiplying. Because the products are not in general 

commutative or anticommutative, it depends on the product itself (the number of vectors 

and its grade). So, the only way to keep the symmetries is to keep the balance of operators 

on the left and in the right as much as possible. 

 

When this happens, we will have the convention that we will start applying the reverse del 

operator (the one in the right, and afterwards the non-reverse del operator, the one in the 

left). This is just by convention. Taking into account that normally we work with 
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commutators in our calculations, a change of this will only lead to a change of signs in the 

final results. 

 

Apart from this, this will let us also facilitate the factorization of the equations that will be 

key to simplify them in following chapters. 

 

8. Ricci tensor in Geometric Algebra 

 

As we can see in different papers [58]-[62], the Ricci Tensor can be considered as the 

Laplacian of the basis vectors. Taking into account what we have commented about the 

covariant derivative in the previous chapter, we can calculate the Laplacian as a covariant 

derivative on the left and another covariant derivative on the right to keep the symmetry. 

And to be in the most general case as possible, instead of applying to the basis vectors, I 

will apply to a complete field that includes coefficients and vectors: 

𝑉𝜌𝑒𝜌 

If you want to apply only to basis vectors just consider: 

 

𝑉𝜌 = 1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜌 

 

And: 

 

𝑉,𝜇
𝜌

= 0 

Where the comma represents partial derivative with respect to eμ.  

 

Ok, so let’s apply the operator defined in chapter 7 to Vρeρ to the left and the reverse of it, 

to the right. We will start operating the one of the right (the reverse operator). This is just 

by convention as commented in chapter 7. If we do the opposite, we will obtain a different 

result. But we will see that it does not even really matters, as we will perform the reverse 

operation later.  

  

𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 

𝑒𝜇∇𝜇 ((𝑉𝜌𝑒𝜌∇𝜈
†)𝑒𝜈) 

 

𝑒𝜇∇𝜇(∇𝜈𝑉𝜌𝑒𝜌)𝑒𝜈 

 

𝑒𝜇∇𝜇 ((∇𝜈𝑉𝜌𝑒𝜌)𝑒𝜈) 

 

Very important to remark the coefficients Vρ are just scalars. Their covariant derivative is 

just the partial derivative.  

 

And for the vectors, we will apply the equations shown in chapter seven: 

 

𝛻𝛽(𝑒𝛼) = Γ𝛽𝛼
𝜇

𝑒𝜇 

𝛻𝛽(𝑒𝛼) = −Γ𝛽𝜇
𝛼 𝑒𝜇 

 

And to remark that in this context, the Christoffel symbols are just scalar coefficients, that 

multiply vectors. So, the covariant derivative of the Christoffel symbol itself is the partial 

derivative. The covariant of the vectors that accompany them will be done naturally fol-

lowing the derivative product rule. 

 

We start calculating, the expression inside the brackets: 

 

∇𝜈𝑉𝜌𝑒𝜌 = 𝑉,𝜈
𝜌

𝑒𝜌 + 𝑉𝜌Γ𝜈𝜌
𝜎 𝑒𝜎 

 

I change the name of the dummy coefficients for convenience and to follow [57]: 
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∇𝜈𝑉𝜌𝑒𝜌 = 𝑉,𝜈
𝜌

𝑒𝜌 + 𝑉𝜎Γ𝜈𝜎
𝜌

𝑒𝜌 

 

Now I just post-multiply by the vector that appeared in the original equation at the begin-

ning of the paper: 

 

(∇𝜈𝑉𝜌𝑒𝜌)𝑒𝜈 = 𝑉,𝜈
𝜌

𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎
𝜌

𝑒𝜌𝑒𝜈 

 

Now, I proceed with the covariant derivative that was in the left (that applies to all the 

expression above, including the two vectors): 

 

∇𝜇 ((∇𝜈𝑉𝜌𝑒𝜌)𝑒𝜈) = ∇𝜇(𝑉,𝜈
𝜌

𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎
𝜌

𝑒𝜌𝑒𝜈) = 

𝑉,𝜈𝜇
𝜌

𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜌

Γ𝜌𝜇
𝜎 𝑒𝜎𝑒𝜈 − 𝑉,𝜈

𝜌
𝑒𝜌Γ𝜇𝜎

𝜈 𝑒𝜎 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜌
Γ𝜌𝜇

𝜆 𝑒𝜆𝑒𝜈 − 𝑉𝜎Γ𝜈𝜎
𝜌

𝑒𝜌Γ𝜇𝜆
𝜈 𝑒𝜆 = 

 

I change again the name of dummy variables to follow [57] nomenclature: 

 

𝑉,𝜈𝜇
𝜌

𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
𝑒𝜌Γ𝜇𝜈

𝜆 𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜆 Γ𝜆𝜇
𝜌

𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜆𝜎
𝜌

𝑒𝜌Γ𝜇𝜈
𝜆 𝑒𝜈 

 

𝑉,𝜈𝜇
𝜌

𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
Γ𝜇𝜈

𝜆 𝑒𝜌𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜆 Γ𝜆𝜇
𝜌

𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜇𝜈
𝜆 𝑒𝜌𝑒𝜈 

 

Now, we pre-multiply by the vector as it was stated in original equation in the beginning 

of the chapter: 

𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 = 

𝑒𝜇∇𝜇 ((∇𝜈𝑉𝜌𝑒𝜌)𝑒𝜈) = 

𝑉,𝜈𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
Γ𝜇𝜈

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜆 Γ𝜆𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜇𝜈
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 

 

 

Now, we calculate the result with the operations reversed. This is, the operator on the left 

with respect to ν and the reverse operator in the right with respect to μ: 

 

𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇
†𝑒𝜇 = 

𝑒𝜈∇𝜈 ((∇𝜇𝑉𝜌𝑒𝜌)𝑒𝜇) = 

𝑉,𝜇𝜈
𝜌

𝑒𝜈𝑒𝜌𝑒𝜇 + 𝑉,𝜇
𝜆Γ𝜆𝜈

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 − 𝑉,𝜆

𝜌
Γ𝜈𝜇

𝜆 𝑒𝜈𝑒𝜌𝑒𝜇 + 

+𝑉,𝜈
𝜎Γ𝜇𝜎

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 + 𝑉𝜎Γ𝜇𝜎,𝜈

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 + 𝑉𝜎Γ𝜇𝜎

𝜆 Γ𝜆𝜈
𝜌

𝑒𝜈𝑒𝜌𝑒𝜇 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜈𝜇
𝜆 𝑒𝜈𝑒𝜌𝑒𝜇 

 

Noe, let’s calculate the subtraction of one to another (let’s say the commutator of this op-

eration): 

𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇 = 

𝑉,𝜈𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
Γ𝜇𝜈

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜆 Γ𝜆𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜇𝜈
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 − 

−𝑉,𝜇𝜈
𝜌

𝑒𝜈𝑒𝜌𝑒𝜇 − 𝑉,𝜇
𝜆Γ𝜆𝜈

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 + 𝑉,𝜆

𝜌
Γ𝜈𝜇

𝜆 𝑒𝜈𝑒𝜌𝑒𝜇 + 

−𝑉,𝜈
𝜎Γ𝜇𝜎

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 − 𝑉𝜎Γ𝜇𝜎,𝜈

𝜌
𝑒𝜈𝑒𝜌𝑒𝜇 − 𝑉𝜎Γ𝜇𝜎

𝜆 Γ𝜆𝜈
𝜌

𝑒𝜈𝑒𝜌𝑒𝜇 + 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜈𝜇
𝜆 𝑒𝜈𝑒𝜌𝑒𝜇 = 

 

To be able to perform, this operation we have to be able to “move” vectors inside the prod-

ucts. This can only be done if we are in one of three cases commented in chapter 7. This 

is: orthogonal metric, summation of symmetric elements (chapter 3.4) or changing the ge-

ometric product by the scalar product in the definition of the covariant operator.  
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So, we will consider that we are in one of these three cases and let’s move the position of 

the vectors inside the products at our convenience: 

 

𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇 = 

𝑉,𝜈𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
Γ𝜇𝜈

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎,𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜈𝜎

𝜆 Γ𝜆𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜇𝜈
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 − 

−𝑉,𝜇𝜈
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜇
𝜆Γ𝜆𝜈

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜆

𝜌
Γ𝜈𝜇

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

−𝑉,𝜈
𝜎Γ𝜇𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜇𝜎,𝜈

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉𝜎Γ𝜇𝜎

𝜆 Γ𝜆𝜈
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜈𝜇
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 = 

 

We see that the only elements left (the ones that do not cancel) are the ones in bold. See 

[57] for more info. 

𝑉,𝜈𝜇
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜈
𝜆Γ𝜆𝜇

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜆

𝜌
Γ𝜇𝜈

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

+𝑉,𝜇
𝜎Γ𝜈𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑽𝝈𝚪𝝂𝝈,𝝁

𝝆
𝒆𝝁𝒆𝝆𝒆𝝂 + 𝑽𝝈𝚪𝝂𝝈

𝝀 𝚪𝝀𝝁
𝝆

𝒆𝝁𝒆𝝆𝒆𝝂 − 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜇𝜈
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 − 

−𝑉,𝜇𝜈
𝜌

𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑉,𝜇
𝜆Γ𝜆𝜈

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 + 𝑉,𝜆

𝜌
Γ𝜈𝜇

𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 + 

−𝑉,𝜈
𝜎Γ𝜇𝜎

𝜌
𝑒𝜇𝑒𝜌𝑒𝜈 − 𝑽𝝈𝚪𝝁𝝈,𝝂

𝝆
𝒆𝝁𝒆𝝆𝒆𝝂 − 𝑽𝝈𝚪𝝁𝝈

𝝀 𝚪𝝀𝝂
𝝆

𝒆𝝁𝒆𝝆𝒆𝝂 + 𝑉𝜎Γ𝜆𝜎
𝜌

Γ𝜈𝜇
𝜆 𝑒𝜇𝑒𝜌𝑒𝜈 = 

 

This is: 

= 𝑉𝜎(Γ𝜈𝜎,𝜇
𝜌

+ Γ𝜈𝜎
𝜆 Γ𝜆𝜇

𝜌
− Γ𝜇𝜎,𝜈

𝜌
− Γ𝜇𝜎

𝜆 Γ𝜆𝜈
𝜌

)𝑒𝜇𝑒𝜌𝑒𝜈 = 

= 𝑉𝜎(Γ𝜈𝜎,𝜇
𝜌

− Γ𝜇𝜎,𝜈
𝜌

+ Γ𝜈𝜎
𝜆 Γ𝜆𝜇

𝜌
− Γ𝜇𝜎

𝜆 Γ𝜆𝜈
𝜌

)𝑒𝜇𝑒𝜌𝑒𝜈 = 

As Vσ and the Christoffel symbols are just scalars in this context I can move it freely inside 

the product. 

 

= (Γ𝜈𝜎,𝜇
𝜌

− Γ𝜇𝜎,𝜈
𝜌

+ Γ𝜆𝜇
𝜌

Γ𝜈𝜎
𝜆 − Γ𝜆𝜈

𝜌
Γ𝜇𝜎

𝜆 )𝑉𝜎𝑒𝜇𝑒𝜌𝑒𝜈 = 

= 𝑅𝜎𝜇𝜈
𝜌

𝑉𝜎𝑒𝜇𝑒𝜌𝑒𝜈 

 

Where 𝑅𝜎𝜇𝜈
𝜌

 is the Riemann tensor, as commented in [57]. 

 

Now, if we consider that we are within one of the three cases commented in chapter 7, we 

can consider that this product is scalar and therefore: 

 

𝑒𝜇𝑒𝜌 = 𝑒𝜇 · 𝑒𝜌 = 𝛿𝜌
𝜇

 

So: 

 

𝑅𝜎𝜇𝜈
𝜌

𝑉𝜎𝑒𝜇𝑒𝜌𝑒𝜈 = 𝑅𝜎𝜇𝜈
𝜌

𝑉𝜎𝛿𝜌
𝜇

𝑒𝜈 = 𝑅𝜎𝜇𝜈
𝜇

𝑉𝜎𝑒𝜈 

 

Now checking [57] we can see that the last element is the Ricci tensor. 

 

𝑅𝜎𝜇𝜈
𝜇

𝑉𝜎𝑒𝜈 = 𝑅𝜎𝜈𝑉𝜎𝑒𝜈 

 

 

So summing up we can say that (in the last step, I have just used the property that dummy 

indices can be renamed as convenience): 

 

𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇 = 𝑅𝜎𝜈𝑉𝜎𝑒𝜈 = 𝑅𝜇𝜈𝑉𝜇𝑒𝜈 

 

If we want to isolate the Ricci tensor, we could do: 

 

 
(𝑅𝜎𝜈𝑉𝜎𝑒𝜈)𝑒𝜈𝑉𝜎 = 𝑅𝜎𝜈𝑉𝜎𝑒𝜈𝑒𝜈𝑉𝜎 = 𝑅𝜎𝜈𝑉𝜎 · 1 · 𝑉𝜎 = 𝑅𝜎𝜈𝑉𝜎𝑉𝜎 = 𝑅𝜎𝜈 

 

(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈𝑉𝜎 = (𝑅𝜎𝜈𝑉𝜎𝑒𝜈)𝑒𝜈𝑉𝜎 = 𝑅𝜎𝜈 

 

𝑅𝜎𝜈 = (𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈𝑉𝜎  
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If we want to calculate the Ricci scalar[57]-[62], we can do: 

 

𝑅 = 𝑔𝜎𝜈𝑅𝜎𝜈 = 𝑔𝜎𝜈(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈𝑉𝜎

= (𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑔𝜎𝜈𝑒𝜈𝑉𝜎  

 

Another way to obtain it (but not isolating it): 

 

(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑅𝜎𝜈𝑉𝜎𝑒𝜈 

𝑔𝜎𝜆𝑔𝜈𝜃(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑔𝜎𝜆𝑔𝜈𝜃𝑅𝜎𝜈𝑉𝜎𝑒𝜈 

𝑔𝜎𝜆𝑔𝜈𝜃(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑅𝜆𝜃𝑉𝜎𝑒𝜈 

𝑔𝜆𝜃𝑔𝜎𝜆𝑔𝜈𝜃(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑔𝜆𝜃𝑅𝜆𝜃𝑉𝜎𝑒𝜈 

𝑔𝜆𝜃𝑔𝜎𝜆𝑔𝜈𝜃(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑅𝑉𝜎𝑒𝜈 

𝑔𝜎𝜈(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈
†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) = 𝑅𝑉𝜎𝑒𝜈 

 

 

 

9. Klein-Gordon equation of a field 

 

We consider the definition of stress-energy tensor of a scalar field [65]-[67]. We will not 

use natural units. It is better to use real units with factors so we can control that the meas-

uring units of the variables are coherent: 

 

𝐺𝜇𝜈 = 𝑇𝜇𝜈 = 2ℏ2𝜕𝜇𝜙𝜕𝜈𝜙 − ℏ2𝑔𝜇𝜈𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙 − 𝑔𝜇𝜈𝑚2𝑐2𝜙2 

 

We divide by 2m: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝜕𝜇𝜙𝜕𝜈𝜙 −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙 −

1

2
𝑔𝜇𝜈𝑚𝑐2𝜙2 

 

It is important to check that the measuring units are coherent. 
ℏ2

𝑚
 units are Energy·L2. But 

there are always two derivatives with respect two spatial coordinates that creates a L-2. So, 

the units of the first two elements are energy. The last element mc2 is energy also. So, in 

principle ok. But the stress energy tensor should have units that are Energy·L-3. Do not 

worry, we will solve this later, as the field that only appears in the right-hand side elements 

will have L-3 units, leaving everything ok. 

 

The first, thing we will do is to apply the operator we defined in chapter 7. But as there are 

some vectors missing to be able to do that, we will just multiply and divide by them, leaving 

everything ok. 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇𝑒𝜇𝜕𝜇𝜙𝜕𝜈𝜙𝑒𝜈𝑒𝜈 −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼𝑒𝛼𝜕𝛼𝜙𝜕𝛽𝜙𝑒𝛽𝑒𝛽 −

1

2
𝑔𝜇𝜈𝑚𝑐2𝜙2 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑒𝜇𝜕𝜇𝜙𝜕𝜈𝜙𝑒𝜈)𝑒𝜈 −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛼𝜕𝛼𝜙𝜕𝛽𝜙𝑒𝛽)𝑒𝛽 −

1

2
𝑔𝜇𝜈𝑚𝑐2𝜙2 

 

And here’s the drill. Instead of applying this to a scalar filed as it was original conceived 

by the equation, we will apply it to a vector field. We have the tools commented in chapters 

7 and 8 to make all the operation so we can do it. We will apply to a general field that is: 

𝑉𝜌𝑒𝜌 

And the double derivatives, will be left and reverse right derivatives (keeping the symme-

tries as always in geometric algebra), instead of two left derivatives. 
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𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈

†𝑒𝜈)𝑒𝜈 −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛼∇𝛼𝑉𝜌𝑒𝜌∇𝛽

† 𝑒𝛽)𝑒𝛽 −
1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 

 

I add the following elements to the equation. I can do it, because its sum is zero: 

 

−
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈 +
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽

+
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇̅𝜇𝑒𝜇)𝑒𝜈 −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 

 

Once added, we have: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈

†𝑒𝜈)𝑒𝜈 −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛼∇𝛼𝑉𝜌𝑒𝜌∇𝛽

† 𝑒𝛽)𝑒𝛽 −
1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

−
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈 +
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽

+
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈 −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 

Reordering: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈

†𝑒𝜈)𝑒𝜈 −
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇̅𝜇𝑒𝜇)𝑒𝜈

−
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛼∇𝛼𝑉𝜌𝑒𝜌∇𝛽

† 𝑒𝛽)𝑒𝛽

+
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 −
1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈 −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 

 

Factorizing as possible: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑒𝜇∇𝜇𝑉𝜌𝑒𝜌∇𝜈

†𝑒𝜈 − 𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇
†𝑒𝜇)𝑒𝜈

−
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛼∇𝛼𝑉𝜌𝑒𝜌∇𝛽

† 𝑒𝛽 − 𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼
† 𝑒𝛼)𝑒𝛽

−
1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈

−
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 

 

 

Applying the relation to the Ricci tensor commented in 8: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇(𝑅𝜎𝜆𝑉𝜎𝑒𝜆)𝑒𝜈 −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑅𝜎𝜆𝑉𝜎𝑒𝜆)𝑒𝛽 −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑒𝜇(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇)𝑒𝜈 −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼)𝑒𝛽 

 

Now, again we will suppose that the vectors can be moved inside the product, following 

one of the three possible cases commented in 7 (orthogonal metric, sum over symmetric 

elements or defining from the beginning that the products are scalar instead of geometric, 

losing solutions and rigor). 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑒𝜇𝑒𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼𝑒𝛽(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑒𝜇𝑒𝜈(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑒𝛼𝑒𝛽(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 
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If the products are scalars (following the three cases in chapter 7) the geometric product of 

two vectors is the metric (or delta if they are inverse). 

 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑔𝛼𝛽(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) −
1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝛼𝛽𝑔𝛼𝛽(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

Operating: 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝜈∇𝜈𝑉𝜌𝑒𝜌∇𝜇

†𝑒𝜇) −
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

Changing the dummy variables names: 

 

𝑇𝜇𝜈 =
ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌

+
ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝛽∇𝛼

† 𝑒𝛼) −
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

Operating: 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

Now I multiply by eσeσ to simplify the operations and get to the Ricci scalar. I could obtain 

the same result, multiplying by gλσgλσ: 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜆𝑒𝜎𝑒𝜎) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

Here, I can move the vectors inside the product considering the 3 cases of cahpater 7 (this 

is not even necessary if I use gλσgλσ instead of eσeσ: 

 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜎𝑒𝜆𝑒𝜎) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝜎𝜆𝑉𝜎𝑒𝜎𝑔𝜆𝜎) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

Now, I just change nomenclature of dummy indices: 

 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑔𝜆𝜌𝑅𝜌𝜆𝑉𝜌𝑒𝜌) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

The following move, I am not sure if it can be done or not. If it cannot be done. Just sub-

stitute 𝑅 by 𝑔𝜆𝜌𝑅𝜌𝜆 in the following equations. 

 

𝑇𝜇𝜈 =
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑅𝑉𝜌𝑒𝜌) −

1

2
𝑔𝜇𝜈𝑚𝑐2𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

𝑇𝜇𝜈 =
1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑉𝜌𝑒𝜌 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝑉𝜌𝑒𝜌∇𝛼

† 𝑒𝛼) 

 

Here, it comes another drill. We have seen that the solution to: 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 And just changing nomenclature, we can consider that it has the form: 
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𝜓†𝜓 = 𝑗𝜇𝑒𝜇 = 𝑉𝜌𝑒𝜌 

 

So why not applying the above equations to 𝜓†𝜓 when appears 𝑉𝜌𝑒𝜌? This is to apply 

the equation to collapsed waveform of a particle. This is to its probability and fermionic 

current. As you know the units of 𝜓†𝜓 is L-3. This is because the probability does not 

have units, but 𝜓†𝜓 represents the density of probability. This is probability divided by 

volume (L-3). So here, we solve the issue of the measuring units. They are Energy·L-3 in all 

the elements. 

 

𝑇𝜇𝜈 =
1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

Oner thing we could do to simplify even more, considering we can move the vectors freely 

inside the products and that they are scalar multiplied (3 cases of chapter 7) is: 

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝑒𝜈𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑒𝜇𝑒𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑔𝜇𝜈𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

Now, we can define a multivector (not even tensor): 

 

𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑔𝜇𝜈𝑔𝜇𝜈𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 +

1

2

ℏ2

𝑚
(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

Which result is not a scalar. It is a multivector with elements in the eight vectors (scalars, 

3 vectors, 3 bivectors and trivector). 

 

Above, the stress-energy tensor is treated as independent of the particle, or the field we are 

considering. Below, we will see three examples of using this equation, taking into account 

possible relations between the particle and this tensor. 

 

9. 1 Considering that the stress energy tensor is zero  

 

If we consider that the stress energy tensor is zero (vacuum solution), we can calculate as 

follows: 

  

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑔𝜇𝜈𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

 

0 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

−
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

− (
ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 
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(−
ℏ2

𝑚
𝑅 + 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

 

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 = (𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 

𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼)𝑒𝜈 =

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 =

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

 

We can see that equation obtained, takes into account to calculate wavefunction not only 

the energy of the particle but also curvature conditions of the space-time in its position 

(scalar curvature R).  

 

This is, it is like the energy to be taken into account is not mc2 alone but also, we have to 

subtract an element depending on the Ricci scalar R. In fact, operating the factor: 

 

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) =

𝑚2𝑐2

ℏ2
− 𝑅 

Multiplying by ℏ2𝑐2 (multiplying by constants do not change the meaning of the equa-

tion, it just escalates its values): 

𝑚2𝑐4 − 𝑅ℏ2𝑐2 

 

Taking the square root to get Energy units: 

√𝑚2𝑐4 − 𝑅ℏ2𝑐2 = 𝑚𝑐2√1 −
𝑅ℏ2𝑐2

𝑚2𝑐4
= 𝑚𝑐2√1 −

𝑅ℏ2

𝑚2𝑐2
 

 

We can see that the classical energy of a mass at rest 𝑚𝑐2 is reduced by a factor depending 

on the Ricci scalar. We will get back to this later. 

 

Coming back to the previous equation. If we perform the multiplication to the bracket, we 

can see that the equation is in fact a Klein-Gordon equation [65][67] with an extra element 

that depends on the Ricci scalar R. We can check easily that the units of 
𝑚2𝑐2

ℏ2  and R are 

L-2, so everything is coherent, 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) = (
𝑚2𝑐2

ℏ2
− 𝑅) 𝜓†𝜓 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚2𝑐2

ℏ2
𝜓†𝜓 − 𝑅𝜓†𝜓 

 

Coming back to the equation: 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 
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We can see is that the equation (as expected for a Klein-Gordon equation) can be factored 

(a la Dirac way) this way: 

 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 =

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 = √

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓√

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 

𝑒𝛽∇𝛽𝜓† = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓† 

 

𝜓∇𝛼
† 𝑒𝛼 = 𝜓√

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 

 

(∇𝛼𝜓)𝑒𝛼 = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓 

In the end, the equations in alpha and beta are the same, just reversing sometimes or chang-

ing signs. We could simplify even more: 

 

(∇𝛼𝜓)𝑒𝛼𝑒𝛼 = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛼𝜓 = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛽𝜓† = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝛽𝜓† 

Or performing the multiplication to the bracket: 

 

∇𝛼𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅 𝜓𝑒𝛼 

∇𝛽𝜓† = √
𝑚2𝑐2

ℏ2
− 𝑅𝑒𝛽𝜓† 

Which we can see is just the Dirac equation [5][13][31][71] with that extra-term that sub-

tract the Ricci scalar to the 
𝑚2𝑐2

ℏ2  element. 

 

One important thing is that in Geometric Algebra we do not work with imaginary numbers 

(only bivectors or trivector that make its function, you can check [1][[3][4][5][6] for more 

information). So, the element inside √
𝑚2𝑐2

ℏ2 − 𝑅 must be positive to keep the coherence. 

 

So: 

𝑚2𝑐2

ℏ2
− 𝑅 > 0 

𝑚2𝑐2

ℏ2
> 𝑅 

𝑅 <
𝑚2𝑐2

ℏ2
 

 



J. Sánchez 

 

 

 30  

 

This means, there is a limit to the value of the Ricci scalar curvature depending on the 

mass. It is important to remark that the limit is in the absolute value of the mass, not to the 

mass density in volume, so the possibility of arriving to singularities is highly reduced. 

 

If we represent the Dirac equation in standard matrix-tensor notation (not Geometric Alge-

bra) as defined as [71][72] (here the imaginary numbers are allowed): 

 

−𝑖ℏ𝛾𝜇𝜕𝜇𝜓 + 𝑚𝑐𝜓 = 0 

𝑖ℏ𝛾𝜇𝜕𝜇𝜓 = 𝑚𝑐𝜓 

𝑖𝛾𝜇𝜕𝜇𝜓 =
𝑚𝑐

ℏ
𝜓 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
𝜓 

Using the equation obtained in this chapter, it should read: 

 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅𝜓 

 

So, it will be the same but including this Ricci scalar that is subtracted from the element 
𝑚2𝑐2

ℏ2 . Both of them have L-2 units. 

 

In Annex A5, I show, how following a similar process we can get a modification of the 

Einstein equation, with this result: 

 

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (1 −

ℏ2

𝑚2𝑐2
𝑅) = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈  

 

One important conclusion of these equations is that the higher the energy of the mass (in 

Dirac equation) or the higher the stress-energy tensor (in Einstein equation), the Ricci sca-

lar increases due to gravitational effects. As the Ricci scalar is being subtracted to the en-

ergy of the system (to the particle energy or the stress-energy tensor), the system will arrive 

to a balance avoiding singularities. This is summed up in the following equation that im-

pose a limit to the Ricci scalar depending on the mass (not the mass density), reducing 

highly the possibilities of arriving to singularities: 

 

𝑅 <
𝑚2𝑐2

ℏ2
 

 

Other important conclusion is that in the Dirac equation, as we have now the mass and the 

Ricci scalar (that depends on the mass), probably finding eigenvalues of equilibrium could 

lead to the discovery of the discrete values of the masses of the different particles. 

 

And it would explain why there are families of three different masses per type of particle. 

They would correspond to the eigenvalues depending on the three possible values of the 

indices (1,2,3) corresponding to the three dimensions (their three corresponding eigen vec-

tors in the 3 spatial dimensions of Cl3,0). 

 

 

9. 2 Considering that the stress energy of the particle is the one of a 
point particle (this option if probably wrong) 

 

If we follow [68][69], we can consider the stress energy tensor, just relates to the energy 

and momentum of the particle. Being coherent with the units, one option could be the en-

ergy density of the particle defined by its waveform collapse (squared by its reversed). The 
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units are coherent Energy·L-3 and for the cross elements Force·L-2 (pressure) that has the 

same units as Energy·L-3. So, a definition would be: 

 

𝑇𝜇𝜈 = 𝑚𝑐2𝑒𝜇𝜓†𝜓𝑒𝜈 

But, we have to take into account that in this context the element 𝑚𝑐2 is reduced by the 

element containing the Ricci scalar (that appeared in chapter 9), so we should use instead: 

 

𝑇𝜇𝜈 = (𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 

 

 

I remind you that: 
 

𝜓†𝜓 = 𝜓𝜇𝑒𝜇
†𝜓𝜈𝑒𝜈 = (𝜓0𝑒0

† + 𝜓1𝑒1
† + 𝜓2𝑒2

† + 𝜓3𝑒3
† + 𝜓4𝑒4

† + 𝜓5𝑒5
† + 𝜓6𝑒6

† + 𝜓7𝑒7
†)(𝜓0𝑒0

+ 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 

(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒3𝑒2 + 𝜓5𝑒1𝑒3 + 𝜓6𝑒2𝑒1 + 𝜓7𝑒3𝑒2𝑒1)(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2

+ 𝜓3𝑒3 + 𝜓4𝑒2𝑒3 + 𝜓5𝑒3𝑒1 + 𝜓6𝑒1𝑒2 + 𝜓7𝑒1𝑒2𝑒3) 

 

So, this is in fact a complicate operation, not a trivial one, with one scalar as result. It has 

result in all 8 vectors (scalars, 3 vectors, 3 bivectors and the trivector). 

You can see in Annexes A1, A2, A3, A4 different examples of the calculation. For exam-

ple, the most simple on (orthonormal metric) A1, gives: 

 

𝜓†𝜓 = 𝜌 + 𝑗       (29.1) 

 

With: 

 

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

And: 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓0𝜓2 + 𝜓1𝜓6 − 𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
 

So considering the definition of the Stress Energy tensor, as commented above: 

 

𝑇𝜇𝜈 = 𝑚𝑐2𝑒𝜇𝜓†𝜓𝑒𝜈 

 

And introducing the equation found in the end of chapter 9: 

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑔𝜇𝜈𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

 

(𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

(𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 −

1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

(𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

3

2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

3 (𝑚𝑐2 −
ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 =

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 
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3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 = 𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼)𝑒𝜈 =

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝜇𝜓†𝜓𝑒𝜈 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 =

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
3𝑚2𝑐2

ℏ2
𝜓†𝜓 − 3𝑅𝜓†𝜓 

 

 

We can see that we obtain an equation like the Klein-Gordon equation obtained in 9.1 but 

with a factor of 3. So, this result seems to be erroneous. Anyhow, we will continue operat-

ing. 

 

If this was ok, the “Dirac” factorization would be: 

 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 =

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 

𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼 = √

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓√

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 

𝑒𝛽∇𝛽𝜓† = √
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓† 

 

𝜓∇𝛼
† 𝑒𝛼 = 𝜓√

3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 

 

(∇𝛼𝜓)𝑒𝛼 = √
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓 

In the end the equations in alpha and beta are the same, just reversing sometimes or chang-

ing signs. We could simplify even more: 

 

(∇𝛼𝜓)𝑒𝛼𝑒𝛼 = √
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛼𝜓 = √
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛽𝜓† = √
3𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝑒𝛽𝜓† 

∇𝛼𝜓 = √
3𝑚2𝑐2

ℏ2
− 3𝑅 𝜓𝑒𝛼 

∇𝛽𝜓† = √
3𝑚2𝑐2

ℏ2
− 3𝑅𝑒𝛽𝜓† 

 

 

But as commented this assumption of considering the stress-energy tensor of a particle as 

considered in this chapter seems mistaken, and therefore its results. In fact, in the Klein-
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Gordon equation and in the Dirac equations a non-expected factor by 3 appears. So this 

assumption and its consequent results seems wrong. 

9. 3 Introducing the Einstein Tensor in the Equation  

 

Coming from the equation we got in the end of chapter 9: 

 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

And taking the Einstein General Relativity equation [58]-[62]: 

 
8𝜋𝐺

𝑐4
𝑇𝜇𝜈 = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 

Operating this equation: 

 

𝑇𝜇𝜈 =
𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

 

𝑇𝜇𝜈 =
𝑐4

8𝜋𝐺
𝑅𝜇𝜈 −

1

2

𝑐4

8𝜋𝐺
𝑔𝜇𝜈𝑅 + Λ

𝑐4

8𝜋𝐺
𝑔𝜇𝜈 

 

𝑇𝜇𝜈 =
𝑐4

8𝜋𝐺
𝑅𝜇𝜈 −

𝑐4

16𝜋𝐺
𝑔𝜇𝜈𝑅 + Λ

𝑐4

8𝜋𝐺
𝑔𝜇𝜈 

 

And now, we introduce in the equation in the end of chapter 9: 

 

𝑇𝜇𝜈 =
1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) =

1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 +

1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) +
1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) = 0 

1

2

ℏ2

𝑚
𝑔𝜇𝜈 (𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼)) +

1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) = 0 

 

 

This equation above seems (and it is) very complicated but it can be solvable. 

The unknow variables are: 

 

• 𝜓0 𝜓1 𝜓2 𝜓3𝜓4𝜓5𝜓6𝜓7 

• 𝑔11 𝑔22 𝑔33𝑔23𝑔31𝑔12 𝑎𝑛𝑑 𝑖𝑡 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑙𝑠𝑜 𝑔00 𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 1 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 

 

 

So, in total 14 (or 15) unknown variables. The equation above, only because it is a multi-

vector equation, is converted into 8 equations (one per type of vector, bivector, scalar and 

trivector). So not even counting that it is also a tensor equation also (probably the equations 

obtained as a tensor equation are linearly dependent to the ones of the multivector), we will 

have 8 equations. 

 

The rest of the equations we will get from the continuity equation[68]: 

 

𝑒𝜆∇𝜆𝑇 = 0 

With T defined as (end of chapter 9): 
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𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 +

1

2

ℏ2

𝑚
(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) 

 

Or in tensor form: 

 
𝑒𝜆∇𝜆𝑇𝜇𝜈 = 0 

Being 𝑇𝜇𝜈: 

𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈 

 

Or in the classical form of the divergence: 

 

∇𝜆𝑇𝜆𝜌 = 0 

Being: 
 

𝑇𝜆𝜌 = 𝑔𝜆𝜇𝑔𝜌𝜈𝑇𝜇𝜈 =
1

2
𝑔𝜆𝜇𝑔𝜌𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜇𝜓†𝜓𝑒𝜈 +

1

2
𝑔𝜆𝜇𝑔𝜌𝜈

ℏ2

𝑚
𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜈

=
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜆𝜓†𝜓𝑒𝜌 +

1

2

ℏ2

𝑚
𝑒𝜆(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)𝑒𝜌 

 

These are another 8 equations. So, in total, we have 16 equations to solve 14 or 15 variables, 

so it should be ok. The system is over dimensioned. This means, we can take some of the 

unknowns as parameters, or even normalize the system as convenience (making those free 

parameters whatever value we want to make a normalization).  

 

Coming back to this equation: 

 
1

2

ℏ2

𝑚
𝑔𝜇𝜈(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼) +
1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) = 0 

 

Putting it more symmetric (considering we are in one of the three cases of chapter 7): 

 

1

2

ℏ2

𝑚
e𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼

† 𝑒𝛼)e𝜈 +
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) e𝜇𝜓†𝜓e𝜈 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
e𝜇𝑅e𝜈 + e𝜇Λ𝑔𝜇𝜈) = 0 

 

This equation, for sure can be factorized a la Dirac way somehow. But the quadratic equa-

tion solution has to be used, complicating the things. I will come back with this in next 

revisions of the paper. 

 

10 Influence of Ricci scalar in the energy of a particle  

 

We have seen in 9.1 the following equation: 

 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑚𝑐2√1 −
𝑅ℏ2

𝑚2𝑐2
 

But what is the influence of the second element? Let’s check the influence in a proton at 

the surface of Earth 

 

We know: 

 

𝑚𝑝𝑟𝑜𝑡𝑜𝑛 = 1.6726𝐸 − 27𝑘𝑔 

ℏ = 1.05457𝐸 − 34𝐽 · 𝑠 

𝑐 = 299792458𝑚/𝑠 
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To calculate the Ricci scalar R is more complicated. If we use the Schwarzschild metric 

would be zero. What we can do is to calculate the Kretschmann scalar [70] considering 

Schwarzschild metric in the surface of Earth (related to the Ricci scalar curvature) and take 

its square root (its dimensions are L-4 and the Ricci scalar is L-2. As commented, this is just 

a reference:  

 

𝐺 = 6,6743𝐸 −
11𝑁𝑚2

𝑘𝑔
 

𝑀𝑒𝑎𝑟𝑡ℎ = 5,9722𝐸24 𝑘𝑔 

𝑟 = 𝑟𝑒𝑎𝑟𝑡ℎ = 6,371𝐸6𝑚 

 

√𝐾𝑟𝑒𝑡𝑠𝑐ℎ𝑚𝑎𝑛𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 = √
48𝐺2𝑀2

𝑐4𝑟6
√

48 · (6,6743𝐸 − 11)2(5,9722𝐸24)2

2997924584(6371𝐸3)6

= 1.18821𝐸 − 22𝑚−2 

 

Coming back here, now considering a proton: 

 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑚𝑐2√1 −
𝑅ℏ2

𝑚2𝑐2

= 1.6726𝐸 − 27

· 2997924582√1 −
(1.05457𝐸 − 34)2

1.6726𝐸 − 27
· 1.18821𝐸 − 22

= 1.503257𝐸 − 10√1 − 7.9𝐸 − 64 

 

We can see that the square root factor effect is several orders of magnitude lower than the 

original energy. Even if we consider R=1 (an example), we would be in a similar situation: 

 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑚𝑐2√1 −
𝑅ℏ2

𝑚2𝑐2

= 1.6726𝐸 − 27 · 2997924582√1 −
(1.05457𝐸 − 34)2

1.6726𝐸 − 27
· 1

= 1.503257𝐸 − 10√1 − 6.651𝐸 − 42 

 

We can see that that the square root factor effect is neglectable in general. And only in very 

big gravitational fields (with R very high), the second element could start having an effect. 

 

Anyhow, this last point is important. As commented in chapter 9.1, the higher the mass, 

the Ricci scalar increases due to gravitational effects. As the Ricci scalar is being subtracted 

to the energy depending on the mass, the system will arrive to a balance avoiding singular-

ities. 

 

11. Conclusions 

 

In this paper we have used Geometric Algebra to be able to embed the Klein-Gordon equa-

tion for a particle in a non-Euclidean field (vacuum solution in a gravitational field) getting 

the following equation: 

𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅) 𝜓†𝜓 
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𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼) =
𝑚2𝑐2

ℏ2
𝜓†𝜓 − 𝑅𝜓†𝜓 

 

Which is similar to the Klein-Gordon equation but with an extra term involving the Ricci 

scalar R. 

 

Where 𝜓†𝜓 is the wavefunction collapsed (multiplied by its reverse), this way: 

 

𝜓†𝜓 = (𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 − 𝜓4𝑒4 − 𝜓5𝑒5 − 𝜓6𝑒6 − 𝜓7𝑒7)(𝜓0𝑒0 + 𝜓1𝑒1

+ 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 𝜌 + �⃗� 

 

Being 𝜌 and 𝑗 the probability density and the fermionic current respectively. 

 

The equation above can be factored to be simplified into: 

 

 

∇𝛼𝜓 = √
𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅)  𝜓𝑒𝛼 

∇𝛼𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅 𝜓𝑒𝛼 

 

Which again, is similar to the Dirac equation but with an extra term involving the Ricci 

scalar R. 

 

Meaning that the energy of a particle is somehow decreased by a factor that depends on the 

Ricci scalar (the curvature of the space where it lies in): 

 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑚𝑐2√1 −
𝑅ℏ2

𝑚2𝑐2
 

 

This reduction is in general negligible, being several orders of magnitude below the normal 

energy. Anyhow, as the mass increases, the Ricci scalar increases also due to gravitational 

effects. As the Ricci scalar is being subtracted to the energy depending on the mass, the 

system will arrive to a balance before becoming a singularity.  

 

This is summed up in the following equation that impose a limit to the Ricci scalar depend-

ing on the mass (not the mass density), highly reducing the possibilities of arriving to sin-

gularities: 

𝑅 <
𝑚2𝑐2

ℏ2
 

 

Even considering the Dirac equation in standard tensor notation: 

𝑖𝛾𝜇𝜕𝜇𝜓 =
𝑚𝑐

ℏ
𝜓 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
𝜓 

We could adapt it, just adding that element to the equation:  

 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅𝜓 

 

In a similar way we obtain a variation of the Einstein equation with this form: 
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8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (1 −

ℏ2

𝑚2𝑐2
𝑅) = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈  

 

Following other path, we found another equation: 

 
1

2

ℏ2

𝑚
𝑔𝜇𝜈 (𝑒𝛽∇𝛽(∇𝛼(𝜓†𝜓)𝑒𝛼)) +

1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) = 0 

 

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown variables: 8 

coefficients of the wavefunction 𝜓0 𝑡𝑜 𝜓7 and 6 metric elements 𝑔𝑖𝑗  (i,j from 1 to 3) with a 

possible added 𝑔00. 

 

The rest of the equations (8 equations more) come from the continuity equation: 

 
𝛻𝜆𝑇𝜆𝜌 = 0 

Being: 

𝑇𝜆𝜌 = 𝑔𝜆𝜇𝑔𝜌𝜈𝑇𝜇𝜈 =
1

2
(

ℏ2

𝑚
𝑅 − 𝑚𝑐2) 𝑒𝜆𝜓†𝜓𝑒𝜌 +

1

2

ℏ2

𝑚
𝑒𝜆(𝑒𝛽𝛻𝛽𝜓†𝜓𝛻𝛼

†𝑒𝛼)𝑒𝜌 

 

So, the equation is in fact, solvable. 
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A1. Annex A1. Bra-Ket product in Euclidean metric 

 

The bra-ket product of a reversed spinor (in orthogonal metrics is the same as reverse) can 

be calculated as: 
 

𝜓†𝜓 = 𝜓𝜇𝑒𝜇
†𝜓𝜈𝑒𝜈 = (𝜓0𝑒0

† + 𝜓1𝑒1
† + 𝜓2𝑒2

† + 𝜓3𝑒3
† + 𝑒4

† + 𝜓5𝑒5
† + 𝜓6𝑒6

† + 𝜓7𝑒7
†)(𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2

+ 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 𝜓∗𝜓 = 

= (𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 − 𝜓4𝑒4 − 𝜓5𝑒5 − 𝜓6𝑒6 − 𝜓7𝑒7)(𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒4

+ 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 

= (𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 − 𝜓4𝑒2𝑒3 − 𝜓5𝑒3𝑒1 − 𝜓6𝑒1𝑒2 − 𝜓7𝑒1𝑒2𝑒3)(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3

+ 𝜓4𝑒2𝑒3 + 𝜓5𝑒3𝑒1 + 𝜓6𝑒1𝑒2 + 𝜓7𝑒1𝑒2𝑒3) = 

      (𝜓0)2 + 𝜓0𝜓1𝑒1 + 𝜓0𝜓2𝑒2 + 𝜓0𝜓3𝑒3 + 𝜓0𝜓4𝑒2𝑒3 + 𝜓0𝜓5𝑒3𝑒1 + 𝜓0𝜓6𝑒1𝑒2 + 𝜓0𝜓7𝑒1𝑒2𝑒3 + 

𝜓1𝜓0𝑒1 + (𝜓1)2 + 𝜓1𝜓2𝑒1𝑒2 − 𝜓1𝜓3𝑒3𝑒1 + 𝜓1𝜓4𝑒1𝑒2𝑒3 − 𝜓1𝜓5𝑒3 + 𝜓1𝜓6𝑒2 + 𝜓1𝜓7𝑒2𝑒3 + 

𝜓2𝜓0𝑒2 − 𝜓2𝜓1𝑒1𝑒2 + (𝜓2)2 + 𝜓2𝜓3𝑒2𝑒3 + 𝜓2𝜓4𝑒3 + 𝜓2𝜓5𝑒1𝑒2𝑒3 − 𝜓2𝜓6𝑒1 + 𝜓2𝜓7𝑒3𝑒1 + 

𝜓3𝜓0𝑒3 + 𝜓3𝜓1𝑒3𝑒1 − 𝜓3𝜓2𝑒2𝑒3 + (𝜓3)2 − 𝜓3𝜓4𝑒2 + 𝜓3𝜓5𝑒1 + 𝜓3𝜓6𝑒1𝑒2𝑒3 + 𝜓3𝜓7𝑒1𝑒2 

−𝜓4𝜓0𝑒2𝑒3 − 𝜓4𝜓1𝑒1𝑒2𝑒3 + 𝜓4𝜓2𝑒3 − 𝜓4𝜓3𝑒2 + (𝜓4)2 + 𝜓4𝜓5𝑒1𝑒2 − 𝜓4𝜓6𝑒3𝑒1 + 𝜓4𝜓7𝑒1 − 

−𝜓5𝜓0𝑒3𝑒1 − 𝜓5𝜓1𝑒3 − 𝜓5𝜓2𝑒1𝑒2𝑒3 + 𝜓5𝜓3𝑒1 − 𝜓5𝜓4𝑒1𝑒2 + (𝜓5)2 + 𝜓5𝜓6𝑒2𝑒3 + 𝜓5𝜓7𝑒2 − 

−𝜓6𝜓0𝑒1𝑒2 + 𝜓6𝜓1𝑒2 − 𝜓6𝜓2𝑒1 − 𝜓6𝜓3𝑒1𝑒2𝑒3 + 𝜓6𝜓4𝑒3𝑒1 − 𝜓6𝜓5𝑒2𝑒3 + (𝜓6)2 + 𝜓6𝜓7𝑒3 − 

−𝜓7𝜓0𝑒1𝑒2𝑒3 − 𝜓7𝜓1𝑒2𝑒3 − 𝜓7𝜓2𝑒3𝑒1 − 𝜓7𝜓3𝑒1𝑒2 + 𝜓7𝜓4𝑒1 + 𝜓7𝜓5𝑒2 + 𝜓7𝜓6𝑒3 + (𝜓7)2 

 

Please, take into account that for simplification I have considered directly 𝑒0 = 1. If in the 

end, it has another value, it has just to be considered in the operations.  

 

Continuing with the operation. If we separate from the result above only the scalars, we 

have: 

 

(𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

We will call this sum 𝜌 (probability density): 

  

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

If we separate the components that multiply by 𝑒1 we get: 

 

𝜓0𝜓1 + 𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7 + 𝜓5𝜓3 − 𝜓6𝜓2 + 𝜓7𝜓4

= 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7) 

In 𝑒2  we get: 

𝜓0𝜓2 + 𝜓1𝜓6 + 𝜓2𝜓0 − 𝜓3𝜓4 − 𝜓4𝜓3 + 𝜓5𝜓7 + 𝜓6𝜓1 + 𝜓7𝜓5

= 2(𝜓0𝜓2 + 𝜓1𝜓6 − 𝜓3𝜓4 + 𝜓5𝜓7) 

In 𝑒3  we get: 
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𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓3𝜓0 + 𝜓4𝜓2 − 𝜓5𝜓1 + 𝜓6𝜓7 + 𝜓7𝜓6

= 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7) 

In 𝑒2𝑒3 : 
𝜓0𝜓4 + 𝜓1𝜓7 + 𝜓2𝜓3 − 𝜓3𝜓2 − 𝜓4𝜓0 + 𝜓5𝜓6 − 𝜓6𝜓5 − 𝜓7𝜓1 = 0 

 

In 𝑒3𝑒1: 

 

𝜓0𝜓5 − 𝜓1𝜓3 + 𝜓2𝜓𝑥𝑦𝑧 + 𝜓3𝜓1 − 𝜓4𝜓6 − 𝜓5𝜓0 + 𝜓6𝜓4 − 𝜓7𝜓2 = 0 

In 𝑒1𝑒2: 

𝜓0𝜓6 + 𝜓1𝜓2 − 𝜓2𝜓1 + 𝜓3𝜓7 + 𝜓4𝜓5 − 𝜓5𝜓4 − 𝜓6𝜓0 − 𝜓7𝜓3 = 0 

In 𝑒1𝑒2𝑒3: 

𝜓0𝜓7 + 𝜓1𝜓4 + 𝜓2𝜓5 + 𝜓3𝜓6 − 𝜓4𝜓1 − 𝜓5𝜓2 − 𝜓6𝜓3 − 𝜓7𝜓0 = 0 

 

If we call vector 𝑗 (fermionic current) the sum in 𝑒1, 𝑒2 and 𝑒3 , we get: 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓0𝜓2 + 𝜓1𝜓6 − 𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
 

So, in total we have: 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗       (29.1) 

 

With: 

 

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

And: 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓0𝜓2 + 𝜓1𝜓6 − 𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 
 

 

 

A2. Annex A2. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal) 

 

We apply the following relations, when performing the multiplication: 

 

(𝑒0)2 = ‖𝑒0‖2 = 𝑔00 

 

(𝑒1)2 = ‖𝑒1‖2 = 𝑔11 

(𝑒2)2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = ‖𝑒3‖2 = 𝑔33 

 

𝑒0𝑒𝑖 = 𝑒𝑖𝑒0 

 

𝑒2𝑒3 = −𝑒3𝑒2 

𝑒3𝑒1 = −𝑒1𝑒3 

𝑒1𝑒2 = −𝑒2𝑒1 

 

For simplification we will consider directly 𝑒0 = 1. If in the end, it has another value, it 

just will have to be considered in the operations.  
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𝜓†𝜓 = 𝜓𝜇𝑒𝜇
†𝜓𝜈𝑒𝜈 = (𝜓0𝑒0

† + 𝜓1𝑒1
† + 𝜓2𝑒2

† + 𝜓3𝑒3
† + 𝜓4𝑒4

† + 𝜓5𝑒5
† + 𝜓6𝑒6

† + 𝜓7𝑒7
†)(𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2

+ 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 
(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒3𝑒2 + 𝜓5𝑒1𝑒3 + 𝜓6𝑒2𝑒1 + 𝜓7𝑒3𝑒2𝑒1)(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒2𝑒3 + 𝜓5𝑒3𝑒1 + 𝜓6𝑒1𝑒2 + 𝜓7𝑒1𝑒2𝑒3) = 

      𝜓02
+ 𝜓0𝜓1𝑒1 + 𝜓0𝜓2𝑒2 + 𝜓0𝜓3𝑒3 + 𝜓0𝜓4𝑒2𝑒3 + 𝜓0𝜓5𝑒3𝑒1 + 𝜓0𝜓6𝑒1𝑒2 + 𝜓0𝜓7𝑒1𝑒2𝑒3 + 

𝜓1𝜓0𝑒1 + 𝜓12
‖𝑒1‖2 + 𝜓1𝜓2𝑒1𝑒2 − 𝜓1𝜓3𝑒3𝑒1 + 𝜓1𝜓4𝑒1𝑒2𝑒3 − 𝜓1𝜓5‖𝑒1‖2𝑒3 + 𝜓1𝜓6‖𝑒1‖2𝑒2 + 𝜓1𝜓7‖𝑒1‖2𝑒2𝑒3 + 

𝜓2𝜓0𝑒2 − 𝜓2𝜓1𝑒1𝑒2 + 𝜓22
‖𝑒2‖2 + 𝜓2𝜓3𝑒2𝑒3 + 𝜓2𝜓4‖𝑒2‖2𝑒3 + 𝜓2𝜓5𝑒1𝑒2𝑒3 − 𝜓2𝜓6𝜓𝑥𝑦𝑒1𝑒2𝑒3 + 𝜓3𝜓7‖𝑒3‖2𝑒1𝑒2 

−𝜓4𝜓0𝑒2𝑒3 − 𝜓4𝜓1𝑒1𝑒2𝑒3 + 𝜓4𝜓2‖𝑒2‖2𝑒3 − 𝜓4𝜓3‖𝑒3‖2𝑒2 + 𝜓42
‖𝑒2‖2‖𝑒3‖2 + 𝜓4𝜓5‖𝑒3‖2𝑒1𝑒2 − 𝜓4𝜓6‖𝑒2‖2𝑒3𝑒1 + 𝜓4𝜓7‖𝑒2‖2‖𝑒3‖2𝑒1 − 

−𝜓5𝜓0𝑒3𝑒1 − 𝜓5𝜓1‖𝑒1‖2𝑒3 − 𝜓5𝜓2𝑒1𝑒2𝑒3 + 𝜓5𝜓3‖𝑒3‖2𝑒1 − 𝜓5𝜓4‖𝑒3‖2𝑒1𝑒2 + 𝜓52
‖𝑒3‖2‖𝑒1‖2 + 𝜓5𝜓6‖𝑒1‖2𝑒2𝑒3 + 𝜓5𝜓7‖𝑒3‖2‖𝑒1‖2𝑒2 − 

−𝜓6𝜓0𝑒1𝑒2 + 𝜓6𝜓1‖𝑒1‖2𝑒2 − 𝜓6𝜓2‖𝑒2‖2𝑒1 − 𝜓6𝜓3𝑒1𝑒2𝑒3 + 𝜓6𝜓4‖𝑒2‖2𝑒3𝑒1 − 𝜓6𝜓5‖𝑒1‖2𝑒2𝑒3 + 𝜓62
‖𝑒1‖2‖𝑒2‖2 + 𝜓6𝜓7‖𝑒1‖2‖𝑒2‖2𝑒3 − 

−𝜓7𝜓0𝑒1𝑒2𝑒3 − 𝜓7𝜓1‖𝑒1‖2𝑒2𝑒3 − 𝜓7𝜓2‖𝑒2‖2𝑒3𝑒1 − 𝜓7𝜓3‖𝑒3‖2𝑒1𝑒2 + 𝜓7𝜓4‖𝑒2‖2‖𝑒3‖2𝑒1 + 𝜓7𝜓5‖𝑒1‖2‖𝑒3‖2𝑒2 + 𝜓7𝜓6‖𝑒1‖2‖𝑒2‖2𝑒3

+ 𝜓72
‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2 

 

If we separate from the result above only the scalars, we have: 
 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓2)2𝑔22 + (𝜓3)2𝑔33 + (𝜓4)2𝑔22𝑔33 + (𝜓5)2𝑔33𝑔11 + (𝜓6)2𝑔11𝑔22 + (𝜓7)2𝑔11𝑔22𝑔33 

 

We will call above sum 𝜌 (probability density). 

 

Now, if we separate by 𝑒1 : 
 

𝜓0𝜓1 + 𝜓1𝜓0 − 𝜓2𝜓6‖𝑒2‖2 + 𝜓3𝜓5‖𝑒3‖2 + 𝜓4𝜓7‖𝑒2‖2‖𝑒3‖2 + 𝜓5𝜓3‖𝑒3‖2 − 𝜓6𝜓2‖𝑒2‖2

+ 𝜓7𝜓4‖𝑒2‖2‖𝑒3‖2
 

 

2(𝜓0𝜓1 − 𝜓2𝜓6‖𝑒2‖2 + 𝜓3𝜓5‖𝑒3‖2 + 𝜓4𝜓7‖𝑒2‖2‖𝑒3‖2) 

 

𝜓0𝜓1 + 𝜓1𝜓0 − 𝜓2𝜓6𝑔22 + 𝜓3𝜓5𝑔33 + 𝜓4𝜓7𝑔22𝑔33 + 𝜓5𝜓3𝑔33 − 𝜓6𝜓2𝑔22 + 𝜓7𝜓4𝑔22𝑔33 

 

2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓3𝜓5𝑔33 + 𝜓4𝜓7𝑔22𝑔33) 

 

By 𝑒2 : 
+𝜓0𝜓2 + 𝜓1𝜓6‖𝑒1‖2 + 𝜓2𝜓0 − 𝜓3𝜓4‖𝑒3‖2 − 𝜓4𝜓3‖𝑒3‖2 + 𝜓5𝜓7‖𝑒3‖2‖𝑒1‖2 + 𝜓6𝜓1‖𝑒1‖2

+ 𝜓7𝜓5‖𝑒1‖2‖𝑒3‖2 

 

2(+𝜓0𝜓2 + 𝜓1𝜓6‖𝑒1‖2 − 𝜓3𝜓4‖𝑒3‖2 + 𝜓5𝜓7‖𝑒3‖2‖𝑒1‖2) 

 

+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 + 𝜓2𝜓0 − 𝜓3𝜓4𝑔33 − 𝜓4𝜓3𝑔33 + 𝜓5𝜓7𝑔33𝑔11 + 𝜓6𝜓1𝑔11 + 𝜓7𝜓5𝑔11𝑔33 

2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 − 𝜓4𝜓3𝑔33 + 𝜓5𝜓7𝑔33𝑔11) 

By 𝑒3 : 
  

+𝜓0𝜓3 − 𝜓1𝜓5‖𝑒1‖2 + 𝜓2𝜓4‖𝑒2‖2 + 𝜓3𝜓0 + 𝜓4𝜓2‖𝑒2‖2 − 𝜓5𝜓1‖𝑒1‖2 + 𝜓6𝜓7‖𝑒1‖2‖𝑒2‖2

+ 𝜓7𝜓6‖𝑒1‖2‖𝑒2‖2 

 

2(+𝜓0𝜓3 − 𝜓1𝜓5‖𝑒1‖2 + 𝜓2𝜓4‖𝑒2‖2 + 𝜓6𝜓7‖𝑒1‖2‖𝑒2‖2) 

 

+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 + 𝜓2𝜓4𝑔22 + 𝜓3𝜓0 + 𝜓4𝜓2𝑔22 − 𝜓5𝜓1𝑔11 + 𝜓6𝜓7𝑔11𝑔22 + 𝜓7𝜓6𝑔11𝑔22 

 

2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 + 𝜓2𝜓4𝑔22 + 𝜓6𝜓7𝑔11𝑔22) 

In 𝑒2𝑒3 plane: 
 

+𝜓0𝜓4 + 𝜓1𝜓7‖𝑒1‖2 + 𝜓2𝜓3 − 𝜓3𝜓2 − 𝜓4𝜓0 + 𝜓5𝜓6‖𝑒1‖2 − 𝜓6𝜓5‖𝑒1‖2 − 𝜓7𝜓1‖𝑒1‖2 = 0 
 
 

In 𝑒3𝑒1 plane: 
+𝜓0𝜓5 − 𝜓1𝜓3 + 𝜓2𝜓7‖𝑒2‖2 + 𝜓3𝜓1 − 𝜓4𝜓6‖𝑒2‖2 − 𝜓5𝜓0 + 𝜓6𝜓4‖𝑒2‖2 − 𝜓7𝜓2‖𝑒2‖2 = 0 

 

 

In 𝑒1𝑒2 plane: 
 

+𝜓0𝜓6 + 𝜓1𝜓2 − 𝜓2𝜓1 + 𝜓3𝜓7‖𝑒3‖2 + 𝜓4𝜓5‖𝑒3‖2 − 𝜓5𝜓4‖𝑒3‖2 − 𝜓6𝜓0 − 𝜓7𝜓3‖𝑒3‖2 = 0 

In 𝑒1𝑒2𝑒3 plane: 
 

+𝜓0𝜓7 + 𝜓1𝜓4 + 𝜓2𝜓5 + 𝜓3𝜓6 − 𝜓4𝜓1 − 𝜓5𝜓2 − 𝜓6𝜓3 − 𝜓7𝜓0 = 0 

 

So, in this case, we can sum up the result as: 

 
𝜓†𝜓 = 𝜌 + 𝑗 

Being: 

 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓2)2𝑔22 + (𝜓3)2𝑔33 + (𝜓4)2𝑔22𝑔33 + (𝜓5)2𝑔33𝑔11 + (𝜓6)2𝑔11𝑔22

+ (𝜓7)2𝑔11𝑔22𝑔33 
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𝑗 = 2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓3𝜓5𝑔33 + 𝜓4𝜓7𝑔22𝑔33)𝑒1

+ 2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 − 𝜓4𝜓3𝑔33 + 𝜓5𝜓7𝑔33𝑔11)𝑒2

+ 2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 + 𝜓2𝜓4𝑔22 + 𝜓6𝜓7𝑔11𝑔22)𝑒3 
 

 

Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 
 
A3. Annex A3. Bra-Ket product between the reverse of a spinor 
and a spinor in non-Euclidean metric (Non orthogonal and non or-
thonormal). Debería llevar una capa forrada de armiño 

 

We should do the following operation again: 

 
𝜓†𝜓 = 𝜓𝜇𝑒𝜇

†𝜓𝜈𝑒𝜈 = (𝜓0𝑒0
† + 𝜓1𝑒1

† + 𝜓2𝑒2
† + 𝜓3𝑒3

† + 𝜓4𝑒4
† + 𝜓5𝑒5

† + 𝜓6𝑒6
† + 𝜓7𝑒7

†)(𝜓0𝑒0 + 𝜓1𝑒1 + 𝜓2𝑒2

+ 𝜓3𝑒3 + 𝜓4𝑒4 + 𝜓5𝑒5 + 𝜓6𝑒6 + 𝜓7𝑒7) = 
(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒3𝑒2 + 𝜓5𝑒1𝑒3 + 𝜓6𝑒2𝑒1 + 𝜓7𝑒3𝑒2𝑒1)(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒2𝑒3 + 𝜓5𝑒3𝑒1 + 𝜓6𝑒1𝑒2 + 𝜓7𝑒1𝑒2𝑒3) = 

 

But using the following rules commented in chapter 3.3.  

 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 𝑔𝑖𝑗 = 𝑔𝑗𝑖 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑔𝑖𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

 

(𝑒1)2 = 𝑒1𝑒1 = ‖𝑒1‖2 = 𝑔11 

(𝑒2)2 = 𝑒2𝑒2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = 𝑒3𝑒3 = ‖𝑒3‖2 = 𝑔33 

𝑒1𝑒2 = 2𝑔12 − 𝑒2𝑒1 = 2𝑔21 − 𝑒2𝑒1 

𝑒2𝑒3 = 2𝑔23 − 𝑒3𝑒2 = 2𝑔32 − 𝑒3𝑒2 

𝑒3𝑒1 = 2𝑔31 − 𝑒1𝑒3 = 2𝑔13 − 𝑒1𝑒3 

 

 

I am not going to do it (you have a start of these calculations in[63]), but anyhow, you can 

understand that the result, whatever it is, will have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 

 

A4. Annex A4. Bra-Ket product between the inverse of a spinor and 
a spinor in non-Euclidean metric (Orthogonal but not orthonor-
mal). 
 

If instead of multiplying by the reverse, we multiply by the inverse (in orthogonal but not 

orthonormal metric), we should use the following rules from previous chapters: 

 

(𝑒0)2 = ‖𝑒0‖2 = 𝑔00 

 

(𝑒1)2 = ‖𝑒1‖2 = 𝑔11 
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(𝑒2)2 = ‖𝑒2‖2 = 𝑔22 

(𝑒3)2 = ‖𝑒3‖2 = 𝑔33 

 

𝑒0𝑒𝑖 = 𝑒𝑖𝑒0 

 

𝑒2𝑒3 = −𝑒3𝑒2 

𝑒3𝑒1 = −𝑒1𝑒3 

𝑒1𝑒2 = −𝑒2𝑒1 

 

 

(𝑒𝑖)
−1 = 𝑒𝑖 =

𝑒𝑖

𝑔𝑖𝑖

=
𝑒𝑖

‖𝑒𝑖‖
2
 

 

(𝑒𝑖𝑒𝑗)
−1

=
𝑒𝑗𝑒𝑖

‖𝑒𝑗‖
2

‖𝑒𝑖‖
2

=
𝑒𝑗𝑒𝑖

𝑔𝑗𝑗𝑔𝑖𝑖

 

 

Where all the above relation we have seen in previous chapters. 

Operating: 

 
𝜓−1𝜓 = (𝜓0 + 𝜓1

𝑒1

‖𝑒1‖2
+ 𝜓2

𝑒2

‖𝑒2‖2
+ 𝜓3

𝑒3

‖𝑒3‖2
+ 𝜓4

𝑒3𝑒2

‖𝑒2‖2‖𝑒3‖2
+ 𝜓5

𝑒1𝑒3

‖𝑒3‖2‖𝑒1‖2
+ 𝜓6

𝑒2𝑒1

‖𝑒1‖2‖𝑒2‖2
+ 𝜓7

𝑒3𝑒2𝑒1

‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2
) 

 
(𝜓0 + 𝜓1𝑒1 + 𝜓2𝑒2 + 𝜓3𝑒3 + 𝜓4𝑒2𝑒3 + 𝜓5𝑒3𝑒1 + 𝜓6𝑒1𝑒2 + 𝜓7𝑒1𝑒2𝑒3) 

= 

 

      (𝜓0)2 + 𝜓1𝜓0
𝑒1

‖𝑒1‖2
+ 𝜓2𝜓0

𝑒2

‖𝑒2‖2
+ 𝜓3𝜓0

𝑒3

‖𝑒3‖2
− 𝜓4𝜓0

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
− 𝜓5𝜓0

𝑒3𝑒1

‖𝑒3‖2‖𝑒1‖2
− 𝜓6𝜓0

𝑒1𝑒2

‖𝑒1‖2‖𝑒2‖2
− 𝜓7𝜓0

𝑒1𝑒2𝑒3

‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2
+ 

 

𝜓0𝜓1𝑒1 + (𝜓1)2 − 𝜓2𝜓1𝑒1

𝑒2

‖𝑒2‖2
+ 𝜓3𝜓1

𝑒3

‖𝑒3‖2
𝑒1 − 𝜓4𝜓1𝑒1

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
− 𝜓5𝜓1

𝑒3

‖𝑒3‖2
+ 𝜓6𝜓1

𝑒2

‖𝑒2‖2
− 𝜓7𝜓1

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
+ 

 

 

𝜓0𝜓2𝑒2 + 𝜓1𝜓2
𝑒1

‖𝑒1‖2
𝑒2 + (𝜓2)2 − 𝜓3𝜓2𝑒2

𝑒3

‖𝑒3‖2
+ 𝜓4𝜓2

𝑒3

‖𝑒3‖2
− 𝜓5𝜓2𝑒1𝑒2

𝑒3

‖𝑒3‖2
− 𝜓6𝜓2

𝑒1

‖𝑒1‖2
− 𝜓7𝜓2

𝑒3

‖𝑒3‖2

𝑒1

‖𝑒1‖2
+ 

 

 

𝜓0𝜓3𝑒3 − 𝜓1𝜓3𝑒3

𝑒1

‖𝑒1‖2
+ 𝜓2𝜓3

𝑒2

‖𝑒2‖2
𝑒3 + (𝜓3)2 − 𝜓4𝜓3

𝑒2

‖𝑒2‖2
+ 𝜓5𝜓3

𝑒1

‖𝑒1‖2
− 𝜓6𝜓3

𝑒1

‖𝑒1‖2

𝑒2

‖𝑒2‖2
𝑒3 − 𝜓7𝜓3

𝑒1

‖𝑒1‖2

𝑒2

‖𝑒2‖2
 

 

 

+𝜓0𝜓4𝑒2𝑒3 + 𝜓1𝜓4
𝑒1

‖𝑒1‖2
𝑒2𝑒3 + 𝜓2𝜓4𝑒3 − 𝜓3𝜓4𝑒2 + (𝜓4)2 − 𝜓5𝜓4

𝑒1

‖𝑒1‖2
𝑒2 + 𝜓6𝜓4𝑒3

𝑒1

‖𝑒1‖2
+ 𝜓7𝜓4

𝑒1

‖𝑒1‖2
+ 

 

 

+𝜓0𝜓5𝑒3𝑒1 − 𝜓1𝜓5𝑒3 + 𝜓2𝜓5𝑒1

𝑒2

‖𝑒2‖2
𝑒3 + 𝜓3𝜓5𝑒1 + 𝜓4𝜓5𝑒1

𝑒2

‖𝑒2‖2
+ (𝜓5)2 − 𝜓6𝜓5

𝑒2

‖𝑒2‖2
𝑒3 + 𝜓7𝜓6

𝑒2

‖𝑒2‖2
+ 

 

 

+𝜓0𝜓6𝑒1𝑒2 + 𝜓1𝜓6𝑒2 − 𝜓2𝜓6𝑒1 + 𝜓3𝜓6𝑒1𝑒2

𝑒3

‖𝑒3‖2
− 𝜓4𝜓6

𝑒3

‖𝑒3‖2
𝑒1 + 𝜓5𝜓6𝑒2

𝑒3

‖𝑒3‖2
+ (𝜓6)2 + 𝜓7𝜓6

𝑒3

‖𝑒3‖2
+ 

 
 

+𝜓0𝜓7𝑒1𝑒2𝑒3 + 𝜓1𝜓7𝑒2𝑒3 + 𝜓2𝜓7𝑒3𝑒1 + 𝜓3𝜓7𝑒1𝑒2 + 𝜓4𝜓7𝑒1 + 𝜓5𝜓7𝑒2 + 𝜓6𝜓7𝑒3 + (𝜓7
)

2

 

 

The scalar part is the same as the one multiplying by the reverse in a Euclidean orthonormal 

metric:  

 
𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

This could be a hint, that probably this is the real operation that has to be done in general, 

instead of the reverse. The issue is that in orthonormal metric, the inverse and the reverse 

are the same operation. But this is not true in general, in non-orthonormal metrics. 

 

If continuing with the operation, for example, we separate by 𝑒1 we can see that the result 

is not as compact and in orthonormal or orthogonal solutions. 

 
𝜓1𝜓0

𝑒1

‖𝑒1‖2
+ 𝜓0𝜓1𝑒1 − 𝜓6𝜓2

𝑒1

‖𝑒1‖2
+ 𝜓5𝜓3

𝑒1

‖𝑒1‖2
+ 𝜓7𝜓4

𝑒1

‖𝑒1‖2
+ 𝜓3𝜓5𝑒1 − 𝜓2𝜓6𝑒1 + 𝜓4𝜓7𝑒1 

 

Even we can see that the result in the planes is not zero. Example 𝑒2𝑒3: 

 
−𝜓4𝜓0

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
− 𝜓7𝜓1

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
− 𝜓3𝜓2𝑒2

𝑒3

‖𝑒3‖2
+ 𝜓2𝜓3

𝑒2

‖𝑒2‖2
𝑒3 + 𝜓0𝜓4𝑒2𝑒3 − 𝜓6𝜓5

𝑒2

‖𝑒2‖2
𝑒3 + 𝜓5𝜓6𝑒2

𝑒3

‖𝑒3‖2
+ 𝜓1𝜓7𝑒2𝑒3 

 

Or 𝑒1𝑒2𝑒3 , also different from zero: 
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−𝜓7𝜓0

𝑒1𝑒2𝑒3

‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2
− 𝜓4𝜓1𝑒1

𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
− 𝜓5𝜓2𝑒1𝑒2

𝑒3

‖𝑒3‖2
− 𝜓6𝜓3

𝑒1

‖𝑒1‖2

𝑒2

‖𝑒2‖2
𝑒3 + 𝜓1𝜓4

𝑒1

‖𝑒1‖2
𝑒2𝑒3 + 𝜓2𝜓5𝑒1

𝑒2

‖𝑒2‖2
𝑒3

+ 𝜓3𝜓6𝑒1𝑒2

𝑒3

‖𝑒3‖2
+ 𝜓0𝜓7𝑒1𝑒2𝑒3 

 
Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓−1𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 
In case that we perform this operation (multiplying by the inverse) in an orthonormal met-

ric, we will get the same result as in Annex A1 (as the inverse is the same as the reverse in 

this case). 

 

In case, that we perform this operation in a non-orthogonal (and therefore non-orthogonal 

case), we will have to follow the rules in chapter 3.3. 

 

Anyhow, the result will always have this form: 

 

𝜓−1𝜓 = 𝑗𝜇𝑒𝜇 

A5. Annex A5. Other considerations regarding chapter 9 
 

In chapter 9.1 we have made a modification in the standard tensor/matrix notation in the 

Dirac equation based on the results of this paper. From here: 

 

𝑖𝛾𝜇𝜕𝜇𝜓 =
𝑚𝑐

ℏ
𝜓 

To here: 

𝑖𝛾𝜇𝜕𝜇𝜓 = √
𝑚2𝑐2

ℏ2
− 𝑅𝜓 

 

Why not making similar changes in other equations? For example, as we have reduced the 

factor that involves the mass in above equation, why not making the same in the stress 

energy tensor for example? 

 

If we divide this factor: 

 

𝑚2𝑐2

ℏ2
− 𝑅 

 

By: 

 

𝑚2𝑐2

ℏ2
 

 

We get a per unit factor of: 

 

1 −
ℏ2

𝑚2𝑐2
𝑅 

This is the factor to use in equations that are quadratic in 𝜓 (like the ones involving Stress-

Energy tensor or Ricci tensor. And the following the one that are liear with 𝜓 , like the 

Dirac equation above. 

 

√1 −
ℏ2

𝑚2𝑐2
𝑅 
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So, for example the Einstein equation with this modifier should read something like: 

 

𝑇𝜇𝜈 (1 −
ℏ2

𝑚2𝑐2
𝑅) =

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

 

Going, even further, we have used in chapter 8, a step where we converted the Ricci tensor 

in Ricci scalar in a not very rigorous way. We can see that there is no problem with that as 

we could put it directly in the equation this way: 

 

𝑇𝜇𝜈 (1 −
ℏ2

𝑚2𝑐2
𝑅𝜇𝜈) =

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

 

Going even further, to assure that the divergence of the stress energy tensor keeps being 

zero, we could add the subtraction by the half of the Ricci scalar, this way: 

 

𝑇𝜇𝜈 (1 −
ℏ2

𝑚2𝑐2
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅)) =

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

 

Or even include the cosmological constant: 

 

 

𝑇𝜇𝜈 (1 −
ℏ2

𝑚2𝑐2
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈)) =

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

Of all these possibilities, the most possible (or the one most coherent with the paper) is the 

one already commented: 

 

𝑇𝜇𝜈 (1 −
ℏ2

𝑚2𝑐2
𝑅) =

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) 

 

Or in the typical form: 

 

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (1 −

ℏ2

𝑚2𝑐2
𝑅) = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈  

 

The same way, if consider that instead of the Ricci scalar we should use the Ricci tensor, 

the Klein-Gordon equation should read: 

 

𝑒𝜇(𝑒𝛽∇𝛽𝜓†𝜓∇𝛼
† 𝑒𝛼)𝑒𝜈 =

𝑚

ℏ2
(𝑚𝑐2 −

ℏ2

𝑚
𝑅𝜇𝜈) 𝑒𝜇𝜓†𝜓𝑒𝜈 

With all the different variations as commented above regarding the stress-energy tensor. 

 

We cannot take a “Dirac equation” from here as we cannot take the “square root” (or fac-

torization in two factors) of 𝑅𝜇𝜈. 


