One Theorem complementary to the Fundamental Theorem of Arithmetic.

Juan Elías Millas Vera.

Zaragoza (Spain). December 2023.

0-Abstract:

In this paper I want to show a complementary theorem of the Fundamental Theorem of Arithmetic. Using the delta notation (Δ) I was able to deduce a generic formula involving prime numbers and natural numbers.

1- Introduction:

Gauss Theorem of Arithmetic can be expressed in a simple way as follows: Every natural number can be expressed as product of p_i primes with powers in exactly one way:

(1)
$$n = \prod_{i=1}^{k} (p_i)^{(\alpha_i)}$$

For α_i belong to Naturals. We will start here our work.

2- Delta notation tool:

As I shown previously in some papers [1]:

(2)
$$\sum_{\substack{k \\ k}}^{i=1} a_i = a_k \div a_{(k-1)} \div \dots \div a_2 \div a_1$$

This is the divisory notation or just Delta notation for operators.

3- Deduction of the formula:

First we start in the FTArith formula:

(3)
$$n = \prod_{i=1}^{k} (p_i)^{(\alpha_i)}$$

Now we use the delta notation in both sides:

(4)
$$\sum_{k}^{i=1} n_i = \sum_{k}^{i=1} \prod_{i=1}^{k} (p_i)^{(\alpha_i)}$$

We simplify:

(5)
$$\sum_{k}^{i=1} n_i = (p_i)^{(\alpha_i)}$$

Because being opposite serial operators we can cancel one with the other, We now correct powers:

(6)
$$\binom{i=1}{\Delta} n_i^{(\frac{1}{\alpha_i})} = ((p_i)^{(\alpha_i)})^{(\frac{1}{\alpha_i})}$$

Simplify again:

(7)
$$p_i = \sqrt[\alpha_i]{\frac{i=1}{\Delta} n_i}$$

And now we can state the Theorem:

Theorem: Every prime number can be expressed as α_i root of i-th natural numbers in serial division by other powers of prime numbers inside the root, in infinite different ways. For α_i and i belong to Naturals.

4- Some easy examples:

Being $p,q,r \in Primes$:

$$(8) \quad p = \sqrt[a]{p^a}$$

For $a \ge 2$, $p^a \in \mathbb{N}$ but $p^a \notin Primes$.

$$(9) \quad p = \sqrt[a]{p^a \cdot q^b \div q^b}$$

For $a \ge 2$, $b \ge 2$, $p^a, q^b \in \mathbb{N}$ but $p^a, q^b \notin Primes$.

(10)
$$p = \sqrt[a]{p^a \cdot q^b \cdot r^c \div q^b \div r^c}$$

For $a \ge 2$, $b \ge 2$, $p^a, q^b, r^c \in \mathbb{N}$ but $p^a, q^b, r^c \notin Primes$.

5- Bibliography:

[1] Millas Vera, Juan Elías. Review of the Serial Operators Theory (https://vixra.org/abs/2109.0029)