The infinite series $\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}$ on the Lviv Scottish book is bounded

Amine Oufaska

December 11, 2023
"In 2017, I managed to solve a problem from the "Lviv Scottish book. The problem had a prize of "butelka miodu pitnego" (a bottle of honey mead). Today, while I was in Warsaw, some representatives from Lviv, Ukraine came (by train, as the Ukraine airspace is obviously closed) I was very touched and honored to unexpectedly receive the prize in person."

Terence Tao

Abstract

In this article we prove that the infinite series $\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}$ on the Lviv Scottish book is bounded, consequently it is convergent.

Notation and reminder

$\mathbb{N}^{*}:=\{1,2,3,4, \ldots\}$ the natural numbers.
$\mathbb{Z}:=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ the integers.
$\mathbb{R}:$ the set of real numbers.
$] 0,1[:=\{0<x<1: x \in \mathbb{R}\}$ the open interval with endpoints 0 and 1.
$|\alpha|:=\max \{-\alpha, \alpha: \alpha \in \mathbb{R}\}$ the absolute value of α.
\forall : the universal quantifier and \exists : the existential quantifier.

For more details about the infinite series, we refer the reader and our students to [4] and to [5].

Introduction

Is the infinite series $\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}$ is convergent? The problem was posed on 22.06.2017 by PhD students of H.Steinhaus Center of Wroclaw Polytechnica. The promised prize for solution is a bottle of drinking honey, see [1] of the Lviv Scottish book. This problem was solved by Terence Tao on 29.09.2017 [2] who is honored on 09.08 .2023 [3]. In this paper we show that this infinite series is bounded, consequently it is convergent.

Lemma. $\forall n \in \mathbb{N}^{*}$ we have $0<|\sin (n)|<1$.
Proof. $\forall n \in \mathbb{N}^{*}$ we have $0 \leq|\sin (n)| \leq 1$, and $n \notin\left\{\frac{k \pi}{2}: k \in \mathbb{Z}\right\}$ because π is irrational, thus $0<|\sin (n)|<1$.

Main Theorem. The infinite series $\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}$ is bounded.
Proof. Indeed, $\quad \sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}=\sum_{n=1}^{+\infty}\left|\frac{\sin (n)}{\sqrt[n]{n}}\right|^{n}$, and $\forall n \in \mathbb{N}^{*}$ we have $0<|\sin (n)|<1$ and $\sqrt[n]{n} \geq 1$, this implies that $0<\left|\frac{\sin (n)}{\sqrt[n]{n}}\right|<1$, then $\exists \alpha, \beta$ $\in] 0,1\left[\operatorname{such}\right.$ that $\alpha=\min \left\{\left|\frac{\sin (n)}{\sqrt[n]{n}}\right|: n \in \mathbb{N}^{*}\right\}$ and $\beta=\max \left\{\left|\frac{\sin (n)}{\sqrt[n]{n}}\right|: n \in \mathbb{N}^{*}\right\}$, then $\sum_{n=1}^{+\infty} \alpha^{n}<\sum_{n=1}^{+\infty}\left|\frac{\sin (n)}{\sqrt[n]{n}}\right|^{n}<\sum_{n=1}^{+\infty} \beta^{n}$, thus $\frac{\alpha}{1-\alpha}<\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}<\frac{\beta}{1-\beta}$, consequently we have $\sum_{n=1}^{+\infty} \frac{|\sin (n)|^{n}}{n}<+\infty$.

References

[1] math.lviv.ua/szkocka/viewpage.php?vol=1\&page=37.
[2] mathoverflow.net/questions/282259.
[3] youtube.com/watch?v=Gs9ZQ9fYMFQ.
[4] Konrad Knopp. Theory And Application Of Infinite Series .
[5] Tim Smits . Integration and Infinite Series.
E-mail address : ao.oufaska@gmail.com

