Collatz Conjecture: A countably infinite sequence

Vishesh Mangla, manglavishesh64@gmail.com

December 2023

1 Introduction

The Collatz conjecture, an unsolved problem in mathematics, has garnered attention over the years with various proven results. In this work, I present a new result that suggests the sequence can potentially have a countably infinite number of terms.

2 Discussion on result and proof

Consider n be a natural number on which we operate the Collatz Algorithm. We can observe that if n is even, the number would become $\frac{n}{2}$ and eventually reach to 1 if we get an even number, i.e., any number of the form 2^{k}, where k is an integer would reach 1 eventually.

So the thing that deviates n from reaching 1 is if n is an odd number but that is trivial to notice. Consider n to be an odd number, then we have:

$$
\begin{equation*}
n \rightarrow 3 n+1 \rightarrow \frac{3 n+1}{2} \rightarrow s \tag{1}
\end{equation*}
$$

Here, s can be an odd number or an even number depending on the number produced by the division $\frac{3 n+1}{2}$. But here is something to observe, the number s is $1.5 n+0.5$ which is greater than n. Let's assume that s is even. In that case writing the sequence again

$$
\begin{equation*}
n \rightarrow 3 n+1 \rightarrow \frac{3 n+1}{2} \rightarrow \frac{3 n+1}{4} \tag{2}
\end{equation*}
$$

We can observe that, $\frac{3 n+1}{4}$ which is $0.75 n+0.25$ is less than n.
So, I conclude that if the transformation $n \rightarrow 3 n+1$ produces a number of the form $2^{2+k} \cdot a$ where k is a whole number and a is an odd number, then we get to a number less than n .

Building on these observations(without proof), consider $n=8 \cdot 2^{k}-1$ for any whole number k which is an odd number. Applying the Collatz Algorithm
on such an n, we get:

$$
\begin{align*}
& \left(8 \cdot 2^{k}-1\right) \\
& \rightarrow 3 \cdot\left(8 \cdot 2^{k}-1\right)+1 \\
& \rightarrow \frac{3 \cdot\left(8 \cdot 2^{k}-1\right)+1}{2} \\
& =\frac{3 \cdot 8 \cdot 2^{k}-3+1}{2} \\
& =\left(8 \cdot 3 \cdot 2^{k-1}-1\right) \\
& \rightarrow 3 \cdot\left(8 \cdot 3 \cdot 2^{k-1}-1\right)+1 \\
& \rightarrow \frac{3 \cdot\left(8 \cdot 3 \cdot 2^{k-1}-1\right)+1}{2} \\
& \rightarrow \frac{8 \cdot 3^{2} \cdot 2^{k-1}-3+1}{2} \\
& =\left(8 \cdot 3^{2} \cdot 2^{k-2}-1\right) \\
& \cdots \tag{3}\\
& \rightarrow\left(3^{k+3}-1\right)
\end{align*}
$$

We can henceforth observe from the above that the Collatz sequence for any $n=8 \cdot 2^{k}-1$ can have a partial sequence of the form given above. Carrying forward the Collatz Algorithm on $\left(3^{k+3}-1\right)$ would give a smaller or bigger number but it's at least possible to get the lower bound of the Collatz sequence length which depends on chosen k .

3 Conclusion

In this paper, I have explored the Collatz conjecture and presented a new result regarding the behavior of the sequence. The proof demonstrated that for natural numbers n subjected to the Collatz Algorithm, the sequence can potentially have a countably infinite number of terms.

