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In deformed special relativity with commuting coordinates transforming according special relativity and deformed plane 

waves the field equations and interactions in coordinate space remain unchanged. However in momentum space Dirac 

and Weyl equations become deformed together with helicity spinors and Mandelstam variables resulting in deformed 

amplitudes for massive and massless particles. 

 

 

 

1. Introduction 

 

Deformed or doubly special relativity (DSR) is a modification of special relativity (SR) with two invariant scales, a 

velocity scale c (speed of light) and a fundamental length scale ℓ  (proportional to the Planck length or inverse Planck 

mass), see the reviews in [1],[2].[3] and references therein. DSR theories obey an invariant deformed dispersion relation 

for energy and three-momentum and modified Lorentz transformations. References [4],[5],[6] investigated the 

possibility to use commuting coordinates transforming according SR with a standard field theory in coordinate space 

but with deformed plane waves [6]. With the aid of auxiliary variables transforming as in SR one can derive the 

deformed Lorentz transformations, momenta, massive and massless helicity spinors. An explicit representation of these 

helicity spinors together with momentum conservation and deformed Mandelstam variables is provided. With these 

quantities one can write down amplitudes in DSR as shown in several examples.  

 

 

2. Commuting SR Coordinates 

 

We use the metric ( , , , )+ − − −  and 1c= =ℏ . A generic DSR theory can be characterised by a deformed dispersion 

relation written in the form 

 
2 2 2 2 2( )f p F E G m= − =2

p  (1) 

 

where E is the energy and p the three-momentum of the particle. Here ( )0
( ) ,

i
f p F p G p

µ =  and the functions 

, ( , , )F G E ℓ
2
p  are assumed to preserve spatial rotational symmetry, see text below (2). ℓ  is a  fundamental length 

corresponding to a high energy 1/ℓ ∼ M , which may be the Planck mass or some lower scale, and one requires 

0
, 1= =

ℓ
F G  in order to obtain SR for low energies.  A subtlety arises in the limit 0= =P p : if  F depends only on P2  

then obtains with F(P 0) 1= =  from (1) 
0

E(P 0) m= =  (
0

m  is the rest mass), if  F depends only on E then one obtains 

with 
0

E(P 0) m= =  from (1) 
0 0

FE F(m )m m= =  (m is the Casimir mass). This can be clearly seen from various DSR 

models in table 1, where again we denote P = p . It can be proved that the last five entries in table 1 own the usual 

group property for two subsequent boosts see [12],[6] and appendix C. The models [9],[10],[11] are of course contained 

in the classes [12],[6]. 
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Table 1: DSR models  

DSR model 2 2 2 2 2F E - G P = m  functions F,G 

κ-Poincare [7] F 2sinh( E / 2) / ( E)= ℓ ℓ , G exp( E / 2)= ℓ  

Herranz [8] F (exp( E) 1) / ( E)= −ℓ ℓ , G 1=  

Magueijo Smolin [9] 
1F G (1 E)−= = − ℓ  

Heuson [10] 
2 2 1/2F G (1 P )−= = − ℓ  

Hinterleitner [11],[10] 
2 2 1/2F G (1 E )−= = − ℓ  

Salesi et al. [12] 
n n 1/ nF G (1 P )−= = − ℓ  

Heuson [6] 
n n 1/ nF G (1 E )−= = − ℓ  

 

For a deformed dispersion relation in the form (1) one can always define a map to auxiliary (SR like) variables µπ  

obeying a standard dispersion relation 

 

( ) ( )0 i
(p)

µ =µ 0 i
π = π π = f Fp Gp  (2) 

2 0 2 2( ) m= − =π π π 2  

 

These auxiliary variables transform under ordinary Lorentz transformations and obey standard momentum conservation, 

which will be important for the setup of helicity spinors used in amplitudes. Helicity is defined as 

⋅ ⋅ ⋅
= = =

G
h

G

S p S p S

p p

π
π

 and for the modified dispersion relation (1) remains the same if 0G > . One can take this as 

an argument for considering the spatially isotropic modified dispersion relation in (1) and not an anisotropic relation 

with different factors 
i

G  in front of every ip .  

 

Here we are mostly interested in the case F G=  with the property that the deformed Lorentz transformations can be 

written in a very compact form. Furthermore the speed of light equals 1 and is energy independent as can be seen by 

using i i 0 i 0 i 0v = π / π = Fp / Fp = p / p  [13]. In [6] we considered in the case F G=  commuting coordinates 

transforming according SR with no momentum dependence in their transformation, but with deformed plane waves. 

Field theory with gauge invariant interactions remains undeformed in coordinate space by using the commuting SR 

coordinates. The dispersion relation (1) for F G=  is invariant under the transformation of the momenta p A pµ µ ν
ν′ = Λ  

for /F F A′ =  derived from 2 2 2 2 2 2 2′ ′ ′= =F p F A p F p . The commuting SR coordinates are here denoted as xµ  and 

transform as ′ = Λx x
ν

µ µ ν , where ,Λ Λ  are standard, standard inverse Lorentz transformations. The boost and rotation 

generators are ( )= −M F p x p xµν ν µ µ ν  and the commutators between them are as usual, as can be seen by introducing 

the auxiliary SR like momenta F pµ µπ = . Noticing that /F F A′ =  the invariants built from these coordinates and the 

momenta become  

  
2

F p p inv
µ

µ = , =F p x inv
µ

µ , =x x inv
µ

µ  (3) 

 

The map in (2) can for example be used to derive from µ νπ πµ
ν′ = Λ  the deformed Lorentz transformations 

p A pµ µ ν
ν′ = Λ  [10]. Similarly one can derive the deformed algebra from the standard algebra of the auxiliary momenta 

and coordinates [10],[12]. The invariant deformed dispersion relation is 
2 2

F p p m=µ
µ  and plane waves are then 

deformed as ( )exp i F p x− ⋅ .   

 

For the following we denote the derivatives with respect to the commuting SR coordinates used in field equations as 

/ x∂ = ∂ ∂ µ
µ  and / x∂ = ∂ ∂µ

µ . 
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Now consider the general deformed dispersion relation in (1). The Klein Gordon equation in coordinate space is 
2

( ) ( ) 0m x
µ

µ ϕ∂ ∂ + =  and by inserting deformed plane waves 
0

( ) exp( i ( ) )x f p xϕ ϕ= − ⋅  one gets again the deformed 

dispersion relation (1), where 0

0
( ) i

i
f p x F p x G p x F E t G⋅ = + = − ⋅p x . The Dirac equation in coordinate space is 

(i ) ( ) 0m x
µ

µγ ψ∂ − =  and the deformed plane wave solutions for particles and antiparticles are 

( ) ( ) exp( i ( ) )
s s

x u p f p xψ = − ⋅ , ( ) ( ) exp( i ( ) )
s s

x v p f p xχ = + ⋅ . The Dirac equation then becomes deformed in 

momentum space and solutions for the spinors 
s

u , 
s

v  were described in [14],[6]. In Weyl representation with 

(1, )= iµσ σ , (1, )= − iµσ σ  and iσ  the Pauli matrices one inserts the deformed plane waves in the standard Dirac 

equation in coordinate space to receive the deformed Dirac equation in momentum space, where 
0

0
( ) i

i
f p F p G pσ σ σ⋅ = + . Similar to the procedure in textbooks [16],[17] one obtains 

 

( )
( ) 0

( )
s

m f p
u p

f p m

σ
σ

− ⋅ 
= ⋅ − 

 , 
( )

( ) 0
( )

s

m f p
v p

f p m

σ
σ

− − ⋅ 
= − ⋅ − 

  (4) 

 

One could also consider the Dirac equation in momentum space in auxiliary momenta (i ) ( ) 0m− =µ
µγ π ψ π . By 

inserting the map (2) one arrives again at (4). 

 

 

3. Deformed spinor helicity 

 

Amplitudes in particle scattering can be calculated most easily in the spinor helicity formalism see [18],[19],[20]. For 

massive particles we use the formalism developed in [21] and adopt the notation of [22],[23],[24]. From hereon we 

denote the auxiliary momenta in a more suggestive form as ( )0
,

i

fp F p G p= =µ µπ  pointing to the physical momenta p 

and the deformation function f. They obey standard momentum conservation and depend on the physical momenta 

pµ with the deformed dispersion relation (1) written shortly as 
2 2=
f

p m . In spherical coordinates one can write the 

momenta and spinors by simply attaching an index called f. The formulas for momenta and spinors in DSR are obtained 

from the formulas in [22]-[24] by substituting →E FE , →P GP , →
f

p p . The momentum 
f

p  is then given by 

 

( )sin( )cos( ) sin( )sin( ) cos( )=
f

p FE GP GP GP
µ θ φ θ φ θ   (5) 

 

Denoting the deformed massive spinors as I

f
p  and 

I

f
p  , the corresponding momentum in bispinor form becomes 

[⋅ = I

f I ff
p p pσ , ⋅ = − 

I

f I ff
p p pσ  (for explicit representation and relations between them see appendix A). 

The helicity spinors are 

 

( )I

f ff
p = n p , ]( ] )I

f ff
p = p - n   (6) 

 

where 
*

f

-s
p = FE +GP

c

 
 
 

, 
f

c
n = FE - GP

s

 
 
 

, ]
f

c
p = FE +GP

s

 
 
 

, ]
*

f

s
n = FE - GP

-c

 
 
 

. For the DSR 

models with F G=  in table 1 one gets 
f

p F p= , I I

f
p = F p ,   

I I

f
p = F p , where 

I
p and Ip   are the 

undeformed spinors. The deformed Weyl equations agreeing with the Dirac equation (4) above with 

( )I I I

f f f
u = p p   are now 

 

⋅ 
I I

f f f
p σ p = m p , ⋅ 

I I

f ff
p σ p = m p  (7) 
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The deformed Lorentz transformations of two component spinors are by using the auxiliary momenta, see also [6]: 

1
f f

p
m

Λ = ⋅σ  acting on angle spinors and 
] 1

f f
p

m
Λ = ⋅σ  acting on square spinors. This gives 

 
* *

*

( ) 21 1

2 ( )2( )
f

FE m GP cc ss GPcs

GPcs FE m GP cc ssm FE m

 + − − −
Λ =  

− + + −+  
, 

]
f f

G G→−
Λ = Λ  (8) 

 

where we used (A2) and 

 

( ) / 2( )⋅ = ⋅ + +f fp p m FE mσ σ  , ( ) / 2( )f fp p m FE m⋅ = ⋅ + +σ σ  (9) 

 

The deformed spinors in a restframe (RF) derived from (A4) with 0=P  and FE = m  are  

 

 
 
 

*
RF

f

-s
p = m

c
, 

RF

f

c
n = m

s

 
 
 

, ]RF

f

c
p = m

s

 
 
 

, ]
*

RF

f

s
n = m

- c

 
 
 

  (10)  

 

Boosting them with 
f

Λ  one finds the deformed spinors in (6) as is shown in appendix B, i.e. we get  

 
RF

ff f
p p= Λ , 

RF

ff f
n n= Λ ,  ] ] ]RF

ff f
p p= Λ , ] ] ]RF

ff f
n n=Λ  (11) 

 

The auxiliary all outgoing momenta obeying standard momentum conservation are written as 

 

[I

i f I ff
i i

p = i i = 0∑ ∑    (12) 

 

The deformed Mandelstam variables are 

 
2 2 2

,
( ) 2

ij f i f j f i j i f j f
s p p m m p p= + = + + ⋅    (13) 

  

For DSR models with =F G  one obtains 
i f i i

F=G
p = F p , for momentum conservation 

i f i i
F=G

i i

p = F p = 0∑ ∑  and for the 

deformed Mandelstam variables 2 2

, 2ij f i j i j i j
F G

s m m F F p p
=
= + + ⋅ . The deformed massive polarisation is defined as 

2 2I J I J I J

i f if F Gf
i i F i i

m m=
 ε = =  , where upper indices should be symmetrised. 

 

We now turn to massless spinor helicity in DSR. In the massless case dispersion relation (1) is 2 2 2 0− =F E G P2  and 

gives GP = FE . The massless momentum is therefore 
* *

2
 −

= ⋅ =  
− 

f f

ss cs
p p FE

cs cc
σ , 

*

*
2

 
= ⋅ =  

 
f f

cc cs
p p FE

cs ss
σ . 

The corresponding massless spinors are then from (A4) (again i  and ]i  are the undeformed spinors) given as 

 
*

i

i i if

i

-s
i = 2F E = F i

c

 
 
 

, ] ]i

i i if
i

c
i = 2F E = F i

s

 
 
 

 (14)  

i

i i i*f

i

c
i = 2F E = F i

s

 
 
 

, [ [i

i i if
i

-s
i = 2F E = F i

c

 
 
 
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The 
i

n  spinors vanish and we have [i f i if f
p i i F p= = , ]i f i iff

p i i F p= = .  

The massless Weyl equations are 
I

i f
f

p σ i = 0⋅   and I

i, f f
p σ i = 0⋅ . One might first think that one could omit the 

factors 
i

F , however the conserved momenta needed in amplitudes are the 
i f

p  and not the 
i

p . Momentum conservation 

for massless particles is  

 

[m=0

i f i if f
i i i

p = i i = F p 0=∑ ∑ ∑   (15) 

 

The deformed massless Mandelstam variables are 

 
0 2

,
( ) 2 2

m

ij f i f j f i f j f i j i j i j ij
s p p p p F F p p F F s

= = + = ⋅ = ⋅ =  (16) 

  

As can be seen easily the massless deformed polarisation agrees with the undeformed polarisation: 

] ] ]i i r i if if+ +

i, f i

i ii r i if

i r F i F r i r
ε = 2 = 2 = 2 = ε

i r i rF F i r
, 

i, f i
ε ε

− −=  

 

 

3. Deformed Amplitudes 

 

Based on the previous section we discuss how one can derive amplitudes in DSR from the amplitudes in SR. One 

simply has to replace the momenta and spinors in SR amplitudes by the deformed ones in (5) and (6) to obtain the 

deformed amplitudes. We discuss this in massless and massive amplitudes (omitting couplings and other factors) and 

comment shortly on loops. 

 

Amplitudes with massless particles: 

We begin with massless three particle amplitudes with particles i,j,k. Let us define ) ]{ }if = -, i if = +i i
σ

= σ σ  and 

similarly ( ) [ ]{ }if , ifi j i j i j
σ

= σ = − σ = +  [24]. Here σ  is the sign of the total helicity 
i j k

h h h h= + +   of the 

amplitude and we get for the deformed amplitude 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 (2 2 2 )2 2 2 2 2 2

2 2 2
3

k j k i i jk i j k i j
h h h h h h h h hh h h h h h h h h h h h

f i j kf f f
i j j k k i F F F i j j k k i

σ σ σ
− − − − − −σ − σ − σ − σ − σ − σ −

σ σ σ σ σ σ
= =A

and thereby 

  

( ) ( ) ( ) ( ) ( ) ( )2 2 2

3 3

k i jj ji k i k
h h h h h hh hh h h h

f i j k i j k
F F F i j j k k i F F F

σ − σ − σ −σ σσ σ σ σ

σ σ σ
= =A A  (17) 

 

If σ = + , then one has to use square brackets, if σ = − , then use angle brackets. Let us look at a few examples of 

massless 3 particle amplitudes: 

( ) [ ] [ ]21/2 1/2 1

3 1 2 3
1/ 2, 1/ 2, 1 2 3 / 1 2

f
F F F− +− + + =A , ( σ = + ) 

( ) 21/2 1/2 1

3 1 2 3
1/ 2, 1/ 2, 1 1 3 / 1 2

f
F F F+ − +− + − =A , ( σ = − ) 

( ) 3 21/2 1/2 2

3 1 2 3
1/ 2, 1/ 2, 2 2 3 3 1 / 1 2

f
F F F+ − +− + − =A , ( σ = − ) 

( ) [ ] [ ][ ]31 1 1

3 1 2 3
1, 1, 1 3 2 / 1 2 3 1

f
F F F− + +− + + =A , ( σ = + ) 

( ) 6 2 22 2 2

3 1 2 3
2, 2, 2 3 1 / 1 2 2 3

f
F F F+ − +− + − =A , ( σ = − ) 

One sees that the prefactors of the deformed massless 3 particle amplitude are simply given by ih

i
F

σ
for every particle. 
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The deformed Parke Taylor formula [25] for n gluon scattering is then (
n
A  is the undeformed amplitude) 

4 42 2 2 2

1 11 2 .. 1 ..F 1 2 .. 1 ..F

f i j i j

n f n

n nf f

i j F F F Fi j

n F n F
= = =A A   

As an example for massless quark, anti-quark, gluon, gluon scattering take [20] 

( )
3

1/2 1/2 1 1

4 1 2 3 4 4

1 3 2 3
1/ 2, 1/ 2, 1, 1

1 2 2 3 3 4 4 1

f f

f

f f f f

F F F F− + −− + − + = =A A   

The spin averaged cross section for e e γ γ+ − →  with massless particles given in [18] becomes in the deformed case 

2 13 14 3 13 4 144 4

14 13 4 14 3 13

2 2
f f

f
f f

s s F s F s
e e

s s F s F s

   
   = + = +
   
   

T  

In summary it seems that one can easily obtain massless amplitudes in DSR from undeformed amplitudes by using  

 

) )if
i F i

σ σ
= , 

i f i i
p F p= , 

0

,

m

ij f i j ij
s F F s

= =  (18) 

 

We make a very short comment on amplitudes with loops. Since SR is valid for the auxiliary variables 
i f

p , it should be 

possible to overtake the results obtained for loops there. Clearly much more work is needed in this context.  

As an example we consider the 4-gluon 1-loop amplitude [20], which in SR can be written as 

( ) ( ) ( )1

4 4 41 ,2 ,3 ,4 1 ,2 ,3 ,4 , ..
loop tree

st I s t
− − − + + − − + += +A A . Here 

4
I  is a 4-point box integral containing (di-) logarithms of 

the Mandelstam variables and 
4

4
1 2 / 1 2 2 3 3 4 4 1tree =A . With (18) one can transfer this in the 

deformed case into 
1 1 2

4 1 2 1 3 4 4

3 4

..
loop tree

f f

F F
F F F F st I

F F

− = +A A . The variables s, t in 
4

I  should be modified according (18). 

 

Amplitudes with massive particles: 

Now we consider some deformed amplitudes with massive particles. In three particle amplitudes with two equal 

massive particles 
1 2

m m m= =  and one massless particle 
3

0m =  one needs the so called x-factor [21],[22]. From 

2 2

1 3 2
( )

f f f
p p p+ =  one obtains 1 3 12 3 3 0f f f f fp p p ⋅ = =  and therefore ]

1
3 3

f f f
p∝  or [1

1
3 3

f ff f
m x p+ = . 

Contracting with a massless auxiliary spinor 
f

ς  results in the deformed x-factor 

[ [1 3 1 1 11 1

1

3

3 3 3

33 3

f f f f

f
F G

f f

p F F p F p
x F x

mm m F F

ς+ +

=
ς

 ς ς ς= = = =
ςς ς

, 
]

[ ]
1 11 1

1

3

3
f

F G

F p
x F x

m

− −

=

ς
= =

ς
  

or together with 1σ = ±  corresponding to the helicity of the massless boson 

 

1f
F G

x F x
σ σ

=
=   (19) 

 

Using the symmetrised x-factor would instead give the more complicated expressions 

] ]1 2 1 1 2 21
3 3

2 3 2 3

f f

f
F G

p p F p F p
x

m m

+

=

ς − ς −
= =

ς ς
 and 

]
[ ]

1 1 2 21
3

2 3
f

F G

F p F p
x

m

−

=

− ς
=

ς
. 

 

The amplitude with two equal mass fermions and a massless spin one boson (photon/gluon), where as usual 

) )Ii
σ σ

=i , is in the deformed case with 
f

x
σ

 from (19): ( ) ( ) ( )3 1 2 1
, ,3

f ff F G
x F F F xσ σ σ

−σ −σ=
= =1 2 1 2 1 2A . In the 

case of a massless spin two boson (graviton) one obtains ( ) ( ) ( )2 2 2 2

3 1 2 1
, ,3

f ff F G
x F F F xσ σ σ

−σ −σ=
= =1 2 1 2 1 2A . 

The amplitude with two massive fermions and one massive spin one boson is  

( ) ( ) ( ) ( ) ( )3 f 1 2 3-σ f σ f -σ σF=G
F F F= =1,2,3 2 3 3 1 2 3 3 1A  
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As example for the massive four-particle amplitude with
f

s from (13) we take 

 ( ) [ ] [ ] ( )( )
2

4 1 2 3 4 1 2f
F G

f

e
e,e,µ,µ F F F F

s=
= + + ↔1 3 2 4 1 3 2 4A   

So similarly to deformed amplitudes with only massless particles we get for DSR models with =F G  in the massive 

case prefactors according the rule  

 

) )if F G
F

σ σ=
=i i , 

i f i i
F=G

p = F p , 2 2

, 2ij f i j i j i j
F G

s m m F F p p
=
= + + ⋅  (20) 

 

 

4. Summary 

 

In summary we have investigated DSR theories based on commutative SR coordinates with deformed plane waves. The 

field theory and interaction structure in space-time remains unchanged in these coordinates, while the Lorentz 

transformations and spinor solutions in momentum space are modified. The physical energy and three momentum of a 

particle are E and p obeying the deformed dispersion relation (1). Using the map to the auxiliary momenta in (2) one 

can investigate momenta, deformed helicity spinors with their deformed Lorentz transformations and by boosting from 

a restframe one obtains deformed massive helicity spinors. We also considered deformed massless helicity spinors, 

which must differ from the undeformed ones since momentum conservation is only valid for the auxiliary momenta. 

Based on this one can derive deformed amplitudes in DSR by substituting the equations (18) or (20) in the massless or 

massive amplitudes obtained in SR. The deformed amplitudes now are depending on the deformation functions F and G 

as one would expect from the beginning. Several examples for deformed amplitudes in the massless and massive case 

are shown. 

 

The serious question arising immediately is of course, how can one check the connection with nature? In a recent 

review on quantum gravity phenomenology [26] many possibilities for testing DSR are suggested. There also may be a 

relation to the recent work [27] proposing that the deformation affects only interactions between elementary particles 

and thus avoids some conceptual problems in DSR theories.  
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Appendix A:  Momenta and helicity spinors in DSR 

 

Here we provide an explicit representation for massive spinors (spin spinors) in spherical coordinates used in 

[22],[23],[24] adapted to DSR based on momentum 

 

( )sin( )cos( ) sin( )sin( ) cos( )=
f

p FE GP GP GP
µ θ φ θ φ θ  (A1) 

 

Using the Pauli matrices iσ  and (1, )= iµσ σ , (1, )= − iµσ σ  the momentum can be written in bispinor form as 

= = = ⋅
ɺf f f fp p p p

µ
αα µσ σ  and = = = ⋅ɺ

f f f f
p p p p

αα µ
µσ σ  where as usual ( )cos / 2=c θ , ( ) ( )⋅s = sin θ / 2 exp i φ , 

( ) ( )∗ ⋅s = sin θ / 2 exp -i φ  and we have * 1cc ss+ = . Note that P = p . 

 
* *

*

( ) 2

2 ( )

 − − −
= ⋅ =  

− + − 
f f

FE GP cc ss GPcs
p p

GPcs FE GP cc ss
σ , 

* *

*

( ) 2

2 ( )

 + −
= ⋅ =  

− − 
f f

FE GP cc ss GPcs
p p

GPcs FE GP cc ss
σ  (A2) 

 

One can check that ( ) ( ) 2

f f
det p = det p = m  gives the deformed dispersion relation (1). In DSR models with F G=  

one obtains simply 
f

p F p=µ µ
, 

f
p F p⋅ = ⋅σ σ  and 

f
p F p⋅ = ⋅σ σ . For several particles 1..i n=  we denote the 

massive spinors as I I

if f
i p=  (I=1,2=SU(2) little group index) and their contractions as 

I J

f
i j  etc. Lowercase 

index spinors are obtained by I

I I Jf f
i i= ε  (

I J
ε  is the usual Levi-Civita tensor) and mirrored spinors by → , 

similarly for square brackets. The spinors are then explicitly 

 

( )I

i f ff
i n i=  , ( )I

i f ff
i n i=  , ]( ] )I

if ff
i i n = − , [( [ )I

if ff
i i n = −  (A3) 

( )I if f f
i i n= − , ( )I if f f

i i n= − , ] ] ]( )I i f ff
i n i= , [ [ [( )I if f f

i n i=  

  
*

i

i i i if

i

s
i FE G P

c

 −
= +  

 
, 

i

i i i i if
i

c
n FE G P

s

 
= −  

 
, 

i

i i i i *f

i

c
i FE G P

s

 
= +  

 
, 

i

i i i i if
i

s
n FE G P

c

 
= −  − 

 (A4) 

] i

i i i if
i

c
i FE G P

s

 
= +  

 
, ]

*

i

i i i i if
i

s
n FE G P

c

 
= −  

− 
, [ i

i i i if
i

s
i FE G P

c

− 
= +  

 
, [ i

i i i i i *f
i

c
n FE G P

s

 
= −  

 
  

 

In DSR models with F G=  one gets I I

if f
i F i= , and similar relations for the other spinors. One can express the 

momentum in (A2) in terms of the spin spinors 

 

[ [ [I

i f I i if ff f ff
p i i i i n n= = + , ] ]I

i f I i if ff fff
p i i i i n n= − = +   (A5) 

 

One can also check that the relations for massive spinors in [22],[23],[24] are fulfilled but now with an index f on 

momenta and spin spinors and we note here several of them 

 
II J IJ J

if f
i i m i i  = = −  ε , [ ]I J i IJ JI ff

i i m i i= − = −ε   (A6) 

[ ]I I I

J i J J ff
i i m i i= − δ = − , [ ]I I

I i I ff
i i 2m i i= − = −  

[I b I

I i a I ff ff
i i m i i = δ = − , [ ]i i if f

i n m i n= = −  

[I

I i fff
i i p= ,  I

I i fff
i i p− =  

I I

i f if f
p i m i ⋅σ =  , I I

i f i ff
p i m i⋅σ =  
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Appendix B:  Boost from a restframe 

 

We begin with showing 
RF

ff f
p p= Λ . By inserting (A4), (8), (10) one obtains 

* * * *

*

!s FE m GP(cc ss ) 2GPcs s1 1
FE GP m

c 2GPcs FE m GP(cc ss ) cm 2(FE m)

     − + − − − −
+ =     

− + + −+     
 or with *cc ss 1+ =   

( )
( )

( )
( )

* * **

* *

s FE m GPcc GPss 2GPcc s FE m GPs
2(FE m) FE GP

c c FE m GPc 2GPss FE m GPcc GPss

 − + − + +  − + + −  + + = =       + ++ + + −    

.  

Equating both vector components gives after squaring 22(FE m)(FE GP) (FE GP m)+ + = + +  and therefore 

2 2 2 2 2 2 22F E 2FEGP 2m(FE GP) F E G P 2FEGP 2m(FE GP) m+ + + = + + + + + . With 2 2 2 2 2m F E G P= −  one sees, that 

both sides are equal concluding the proof, which of course also holds in SR with 1F G= = . 

For 
RF

ff f
n n= Λ  one obtains 

* *

*

!c cFE m GP(cc ss ) 2GPcs1 1
FE GP m

s s2GPcs FE m GP(cc ss )m 2(FE m)

 + − − −   
− =     

− + + −+    
 or 

 

* *

*

c c(FE m GPcc GPss 2GPss ) c(FE m GP)
2(FE m) FE GP

s s(FE m GP)s( 2GPcc FE m GPcc GPss )

 + − + − + −   
+ − = =      + −− + + + −    

.  

Equating the components and squaring gives 22(FE m)(FE GP) (FE GP m)+ − = − +  or 

2 2 2 2 2 2 22F E 2FEGP 2m(FE GP) F E G P 2FEGP 2m(FE GP) m− + − = + − + − +  and again both sides coincide.  

The proof for the square spinors ] ] ]RF

ff f
p p= Λ , ] ] ]RF

ff f
n n= Λ  is analogous. 

 

Appendix C:  Group property of DSR models 

 

Here we show the proof of the group property in DSR classes [6],[12]. We begin with the class of models 
n n 1/ nF G (1 E )−= = − ℓ . Two subsequent deformed Lorentz transformations are given as p = AΛp′  and p = A Λ p′′ ′ ′ ′ , 

where , ′Λ Λ  are standard Lorentz transformations. We introduce the additive rapidity ξ  defined by ch(ξ) = γ , 

sh (ξ) = γv , th(ξ) = v  and employ the hyperbolic relations ch(ξ )ch(ξ) + sh(ξ )sh(ξ) = ch(ξ + ξ ) = ch(ξ )′ ′ ′ ′′  as well as 

ch(ξ )sh(ξ) + sh(ξ )ch(ξ) = sh(ξ + ξ ) = sh(ξ )′ ′ ′ ′′ . The factor A is from [6] ( )( )
-1/n

nn n n

x
A = 1- E + ch(ξ)E - sh(ξ)pℓ ℓ  and the 

deformed Lorentz transformations are ( )x
E = A ch(ξ)E - sh(ξ)p′ , ( )x x

p = A ch(ξ)p - sh(ξ)E′ , 
y y

p = Ap′ , p = Ap
z z
′ . Their 

product should be 
!

p = A Λ p = A Λ AΛp = A A Λ Λp = A Λ p′′ ′ ′ ′ ′ ′ ′ ′ ′′ ′′ . It is well known that ′′ ′Λ = Λ Λ , so we only have to 

show that A = A A′′ ′ . From F = F / A′  we get ( )n n n n n
1- E A 1- E′ =ℓ ℓ . 

( )( )
( ) ( ) ( )( )( )

( ) ( )( )( )
( )( )

-1/n
nn n n

x

-1/n
nn n n

x

-1/ n
n-1 n n n

x

-1/n
n-1 n n n

x

A = 1- E + ch(ξ )E - sh(ξ )p

1- E A + A ch(ξ ) ch( )E - sh(ξ)p - sh(ξ ) ch( )p - sh(ξ)E

A 1- E + ch(ξ )ch( ) + sh(ξ )sh(ξ) E - ch(ξ )sh( ) + sh(ξ )ch(ξ) p

A 1- E + ch(ξ )E - sh(ξ )p

n n

x

′ ′ ′ ′ ′ ′

′ ′= ξ ξ

′ ′ ′ ′= ξ ξ

′′ ′′=

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ
-1A A′′=

 

So it follows A A A′ ′′=  which concludes the proof. 

For the class of models n n 1/ nF G (1 P )−= = − ℓ  one has ( )( )
-1/n

n /2
2n n n 2 2A = 1- P + ch(ξ)p - sh(ξ)E p p

x y z

 + + 
 
ℓ ℓ  [6] and 

from F = F / A′  one has ( )n n n n n
1- P A 1- P′ =ℓ ℓ . This gives similar to above 

( )( ) ( )( )
-1/n -1/ n

n /2 n /2
2 2n n n 2 2 1 n n n 2 2A = 1- P + ch(ξ)p - sh(ξ)E p p A 1- P + ch(ξ )p - sh(ξ )E p p

x y z x y z

−   ′ ′ ′ ′ ′ ′ ′′ ′′+ + = + +   
   
ℓ ℓ ℓ ℓ  

and again A A A′ ′′= . 
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